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Abstract 

Restenosis, a pathological condition characterised by neointima formation and lumen 

narrowing, can occur in some patients submitted to percutaneous coronary intervention. 

Reducing its incidence remains an important medical issue.  

 

Circulating endothelial precursor cells (EPCs) home to the vascular injury site and contribute to 

re-endothelialisation and neointima attenuation. However, the engraftment and repair capacity 

of EPCs from patients with cardiovascular disease are typically impaired.  

 

Priming strategies to increase EPCs’ engraftment may improve post-injury outcomes. Anti-

angiogenic miR-92a is upregulated in EPCs of cardiovascular patients, contributing to their 

reduced regenerative capacity. It was hypothesized that miR-92a antagonism in EPCs could 

result in a more favourable angiogenesis profile, with the rationale of developing a future 

functional priming strategy before cell transplantation which could lead to increased 

engrafting/thriving and accelerated re-endothelialisation on injured segments, hence, 

contributing towards post-PCI restenosis prevention.  

 

The aims of the work were: 1) to differentiate and characterise CD34+-derived late-outgrowth 

EPCs from an enriched progenitor human source; 2) to characterise target gene expression and 

demonstrate in vitro the functional priming following the treatment of EPCs with miR-92a 

inhibitor and relate it to the ensueing integrin α5 subunit (ITGA5) derepression. 

 

A human EPC culture was obtained following differentiation of cord blood CD34+ cells. miR-92a 

inhibitor treatment using oligofectamine in CD34+-derived late-outgrowth EPCs revealed pro-

angiogenic,-migratory,-proliferative, and -adhesive effects in vitro, which was accompanied by 

the derepression of integrin α5 (ITGA5). Remarkably, siRNA ITGA5 abrogated the enhanced 

matrix adhesion in primed EPCs, highlighting the role of the miR-92a downstream target in EPC 

engraftment. Preliminary intraluminal transplantation results suggested enhanced engraftment 

capacity of primed EPCs in the rat carotid balloon angioplasty model. 
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Introduction 

Chapter 1: Endothelial progenitor 
cells for vascular repair after 
angioplasty 

 

 

Coronary artery disease (CAD) is the principal cause of death in industrialised nations 

and expected to become so in emerging countries by 2020 (Bassand et al., 2007). 

Atherosclerotic plaque stenosis or rupture, with differing degrees of superimposed 

thrombosis and distal embolization, is the substrate for the acute or chronic ischemia 

seen in these patients. For both, the advent percutaneous coronary intervention (PCI) 

inaugurated a new era of clinical management. PCI is considered a minimally invasive, 

endovascular procedure to widen stenotic or (partially) occluded arteries, usually 

subsequent to arterial atherosclerosis. A deflated balloon attached to a catheter is 

passed over a guide-wire into the narrowed vessel and then inflated to a fixed size. The 

balloon forces expansion of the blood vessel and the surrounding muscular wall, 

allowing an improved blood flow (angioplasty). A stent may be inserted at the time of 

ballooning to ensure the vessel remains open, and the balloon is then deflated and 

withdrawn. Still, PCI can often fail because of restenosis, thrombosis, and vasospasm 

(Bennett & O'Sullivan, 2001). In this introductory chapter, I will review some of the 

principles behind (1.1) post-PCI restenosis, the (1.2) contribution of Endothelial 

precursor cells (EPCs) for vascular repair and (1.3) the role of miR-92a for priming EPCs.  
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1.1 Restenosis 
 
 

Post-injury arterial restenosis is a prevalent condition among 

certain risk groups 
 

PCI has become widely accepted as an efficient and safe treatment modality for CAD, 

leading to improved perfusion, quality of life and survival (Kolh & Wijns, 2011). However, 

being an invasive technique, there is a risk of complications. As the balloon is inflated to 

high atmospheric pressures to restore normal coronary blood flow and compress the 

atheroma plaque, it also eccentrically distends the vessel. Mechanical injury is 

necessarily a feature of PCI, resulting from the barotrauma and vigorous opposition of 

stent struts against the vessel wall if a stent is also deployed. Consequently, a 

comprehensive inflammatory and proliferative reaction, involving several different 

cellular players, is set in motion. Although this response is physiological, it can be 

exaggerated in some patients, resulting in lumen re-narrowing or restenosis. PCI success 

can be limited by restenosis of the target vessel in 30–60% of patients, particularly if 

multi-vessel disease or diabetes is present (Rajagopal & Rockson, 2003), while the 

incidence of in-stent restenosis has been reported to be as high as 29% in high-risk 

populations using bare metal stents (Mauri et al., 2008). This complication is defined by 

angiographic or clinical criteria and prompts revascularization (Cutlip et al., 2007). To 

date, many predictive clinical, biological, (epi)genetic, lesion-related and procedural risk 

factors (RFs) have been recognized (Jukema, Verschuren, Ahmed, & Quax, 2012). 

Defining risk markers is not only helpful for risk stratification and prognosis, helping in 

the identification of those that could benefit from additional treatment modalities, but 

also provides valuable information on the underlying molecular and cellular mechanism 

of restenosis, with implications for new therapies.  
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Restenosis pathophysiology involves a complex interplay of 

endothelial cells, platelets, leukocytes, vascular smooth muscle 

cells, mesenchymal and endothelial precursor cells  
 

The reason why restenosis remains largely unsolved clinically is likely attributed to its 

complex mechanisms. The vascular endothelium is a dynamic border between 

circulating blood elements and the surrounding tissue. The entire endothelial cell (EC) 

monolayer comprises 1013 ECs and covers approximately 7m2 in an average adult (Cines 

et al., 1998). It regulates nutrient and blood component traffic and participates in many 

other complex physiologic events such as angiogenesis and inflammation (Y. Lin, 

Weisdorf, Solovey, & Hebbel, 2000). Moreover, it has pivotal roles in coagulation, 

inflammation, vasodilatation and vasoconstriction through a variety of important 

regulatory substances, including prostaglandins and nitric oxide (NO) (Cines et al., 1998). 

In healthy subjects, a low level of endothelial turnover occurs basally (Hristov & Weber, 

2008). However, in acute vascular injury (as in PCI), there is a significant (potentially 

reversible) impairment of the endothelial monolayer.  Under normal circumstances, the 

cellular and molecular processes that control vascular injury responses result in vascular 

healing. In pathological conditions, dysregulation of vascular repair results in persistent 

vascular inflammation. These cases may cause irreversible structural damage, i.e. a 

restenotic obstruction of the lumen, which can constitute a medical condition on its 

own. The cascade of complex biological events leading to restenosis comprises two 

major processes: neointimal hyperplasia and constrictive remodelling (Figure 1). Its 

putative causal mechanisms have not yet been fully identified, but are thought to 

include inflammation,  vascular smooth muscle cell (VSMC) proliferation, and matrix 

remodelling (Jukema, Verschuren, et al., 2012). 
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Figure 1 | Restenosis 
Intravascular ultrasound images of the various stages of coronary artery disease. Indicated are the outer 
border of the vessel (green), the lumen (red), and the coronary stent (pink). Schematic representations 
are shown to the right of these images. The processes occurring in the vessel immediately after PCI (with 
stent placement) are highlighted in detail. Adapted from (Jukema, Verschuren, et al., 2012). ECM, 
extracellular matrix; PCI - Percutaneous coronary intervention. 

 

 

A functionally intact endothelium is a pre-requisite for the inhibition of intimal 

hyperplasia (Kipshidze et al., 2004), which is attributed to the potent inhibitory effects 

of endothelium-derived NO (von der Leyen et al., 1995). The endovascular laceration 

due to rigid stent struts and high-pressure balloon inflations is considered the initiating 

event of neointimal hyperplasia after balloon angioplasty (Behrendt & Ganz, 2002), since 

it determines the loss of a significant anti-thrombogenic cap, triggering an intense local 

inflammatory response. Then, there is dysfunction of neighbouring ECs, which undergo 

apoptosis. The resulting endothelial denudation and fragmentation of the internal 

elastic lamina result in a rapid influx of leukocytes and in the exposure of circulating 

platelets to the sub-endothelial matrix (Inoue et al., 2011). The exposed deeper matrix 

contains many platelet-activating factors (Fager, 1995), which give rise to 

microthrombus formation. Activated platelets, dysfunctional ECs, and macrophages 

within thrombi are a primary source of reactive oxygen species, chemotactic and 

mitogenic factors which can induce a VSMC phenotypic transition (Durham, Speer, 

Scatena, Giachelli, & Shanahan, 2018; Pakala, Willerson, & Benedict, 1997). Mature, 

differentiated VSMCs express a unique repertoire of contractile proteins (Owens, 1995), 

enabling them to perform their contractile functions. VSMCs are highly plastic cells and 
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can undergo de-differentiation upon environmental modulation, a change that is 

reversible. Within one week after endothelial denudation, the shortage of 

arterioprotective factors, such as NO, and the increased production of growth factors, 

such as platelet-derived growth factor (PDGF-BB), drive the VSMCs in the innermost part 

of the media to switch back to a more synthetic phenotype (N. M. Liu, Siu, Youn, & Cai, 

2016). Synthetic VSMCs are characterised by a reduced contractile protein content, an 

increased rate of proliferation, and increased secretion of extracellular matrix (ECM) 

proteins and cytokines (Doran, Meller, & McNamara, 2008).  The disassembly of stress 

fibres and the rearrangement of actin filaments, drive the transformed VSMCs to acquire 

a polarised asymmetric shape, facilitating the migratory activity towards the tunica 

intima, the source of chemoattractants (cytokines, growth factors, ECM components). 

Later on, the neointima is developed by excessive matrix deposition and the 

accumulation of migrated VSMCs, circulating progenitor cells (Psaltis, Harbuzariu, 

Delacroix, Holroyd, & Simari, 2011; Sata et al., 2002) and myofibroblasts (Y. Shi et al., 

1996; D. Wang, Li, Dai, Wang, & Li, 2018).  

Neointima formation is followed by inward remodelling of the vessel, a process called 

constrictive remodelling.  The proposed underlying mechanisms for this process include 

media matrix remodelling (Riessen, Wight, Pastore, Henley, & Isner, 1996), migration of 

myofibroblasts towards the intima (Zargham, 2008), and restoration of the VSMC 

contractile phenotype within the neointima (Shanahan & Weissberg, 1998). Whereas 

PDGF signalling promotes the synthetic phenotype, activation of TGF-β pathways 

favours their differentiation back into contractile VSMCs (Nazari-Jahantigh, Wei, & 

Schober, 2012). It seems likely that there is a disturbed blood flow after neointima 

outgrowth that may lead to chronic TGF-β mediated deposition of collagen and FN 

(Zargham, 2008). This matrix composition will activate specific integrin receptors in 

VSMC, such as α1β1 and α8β1 (Zargham, Pepin, & Thibault, 2007), eliciting re-expression 

of differentiated contractile markers (Shanahan & Weissberg, 1998), resulting in scar 

contraction and late luminal loss. The latter suggests that the pathophysiology of 

restenosis may be different in the early and late phases after vascular injury.  

 

Given its complexity, the development of innovative therapeutic approaches to 

restenosis lies in a detailed understanding of the events and timings causing both 
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neointimal thickening and vascular remodelling, including all cellular sources. The 

restenosis process was formerly ascribed to vascular SMCs and ECs only, however 

diverse vascular wall progenitor cells with specific mural distribution (Figure 2)  are also 

implicated in vascular disease and repair (Vono, Spinetti, Gubernator, & Madeddu, 2012; 

D. Wang et al., 2018) through their intrinsic endothelial, smooth muscle, hematopoietic 

or mesenchymal differentiation potential (Psaltis & Simari, 2015). 

 

Figure 2 | Mural distribution of postnatal vascular wall and bone marrow derived progenitor cells 
implicated in vascular repair. 
Different types of progenitor cells have been identified within all mural layers of arteries and veins, as 
well as derived from the circulation. AMPC – adventitial macrophage progenitor cell; BM - bone marrow; 
EPC – endothelial precursor cell; CVC - calcifying vascular cells; HPC/HSC – hematopoietic progenitor/stem 
cell; MVSC – multipotent vascular stem cell; SVP - saphenous vein-derived progenitor cells; SPC – smooth 
muscle progenitor cell; VW-MSC – vascular wall mesenchymal stem cell. 

 
 

Vascular wall progenitors 

The adventitia, the outermost layer of the blood vessel, is composed of a collagen-rich 

extracellular matrix embedded with a mixture of cells. It provides an interface to the 

highly cellular and cytokine-rich perivascular connective/adipose tissue and with vasa 

vasorum (Stenmark et al., 2013). Evidence for vascular stem/progenitor cell enrichment 

in the adventitia, specifically along its border with the media (vasculogenic zone), is 

robust (Halper, 2018). Namely, the presence of cells with endothelial potential 

(CD34+CD31-) in the so-called vasculogenic zone of the inner adventitia has been 

inferred from arterial ring sprouting assays (Zengin et al., 2006). 
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Also, adventitial macrophage progenitor cells (AMPCs) proliferate and differentiate in 

response to growth factors to generate macrophages and dendritic cells locally in the 

adventitia (Halper, 2018).  

In addition, a specific population of Sox10+ multipotent vascular stem cell (MVSCs) is 

activated upon vascular injury, becomes proliferative, and can migrate from both medial 

and adventitial layers to contribute to neointima formation and microvessel formation 

during tissue repair and regeneration (D. Wang et al., 2017). 

Highly proliferative progenitors have also been isolated from human veins, and termed 

“saphenous vein-derived progenitor cells” (SVPs). These cells are localized around 

adventitial vasa vasorum and co-express CD34, pericyte/mesenchymal antigens and  

stem cell marker Sox2 (D. Wang et al., 2018). SVPs improve neovascularization and blood 

flow recovery (Campagnolo et al., 2010). 

Vascular wall multipotent stem cells (VW-MPSCs), which co-express certain MSC 

markers (CD44, CD73,  CD105, CD90, Stro1 and CD29) and stemness markers Oct4 and 

Sox2 (D. Klein et al., 2011), when transplanted with human umbilical vein endothelial 

cells (HUVECs) into matrigel plugs in immunodeficient mice, lead to new vessel 

formation covered with MPSC-derived pericyte- and smooth muscle-like cells (D. Klein 

et al., 2011). MPSCs include two cell types:  (1) Perycites are contractile cells that 

surround and appose microvascular ECs, with which they share a basement membrane 

that separates much of the pericyte–endothelial interface, except at discrete 

intercellular contact points. Perycites serve to pattern vascular networks and facilitate 

EC growth and differentation, while regulating vessel tone, caliber, permeability and 

providing mechanical stability in established vessels (Psaltis & Simari, 2015), therefore, 

facilitating neovascularization and angiogenesis (Katare et al., 2011). However, pericytes 

can also differentiate into myofibroblasts and are another important cellular source of 

vascular/organ fibrosis (Katare et al., 2011).  (2) VW-MSCs also occupy the perivascular 

niche supporting angiogenesis, and they have multilineage differentiation potential into 

mature pericytes, SMCs, and perhaps even ECs, help mediate vascular tissue 

homeostasis and repair (Psaltis & Simari, 2015). This is achieved by trophic support of 

other vascular cells, vasa vasorum expansion, differentiation into SMCs, pericytes and 

adventitial fibroblasts, and production of mineral and fat deposits, collagen and 

extracellular matrix in both adventitia and atheroma.  
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The media also harbors MVSCs and side population (SP) progenitors, both of which have 

smooth muscle cell-forming potential.  This small population of Sca-1+, c-kit (-/low), Lin-

, CD34-/low cells from the media layer, can give rise to ECs and SMCs cultured with 

vascular endothelial growth factor (VEGF) and transforming growth factor β1 (TGF-

β1)/platelet-derived growth factor BB (PDGF-BB) respectively. A population of calcifying 

vascular cells (CVCs) which can be found in human atherosclerotic lesions in the arterial 

media is also known to to differentiate into SMC, osteogenic, and chondrogenic lineages 

(Tintut et al., 2003). 

 

In the intima progenitor cells with endothelial potential have been described (cKit+ SP), 

and subendothelial pericytes also identified in the intima in human arteries of all sizes 

(Psaltis & Simari, 2015).   

 

Bone marrow progenitors 

While the before mentioned progenitor populations are locally derived or maintained in 

the vessel wall itself, the vascular repair process seems to be partially governed by cells 

derived from the bone marrow (BM) too (Bianconi et al., 2018; Sata et al., 2002). It is 

understood that the participation of the BM in arterial remodelling after injury is not 

only limited to the inflammatory stage of the vascular remodelling process driven by 

mononuclear cells (MNCs) and macrophages. A minor population of BM-derived VSMCs 

within the neointima has also been identified (Rodriguez-Menocal et al., 2009), as well 

as, circulating BM-derived endothelial progenitor cells (EPCs) recruited to sites of 

vascular injury, where they encourage healing by resident ECs, thereby significantly 

contributing to re-endothelialisation and limiting neointimal formation (Haider, Aziz, & 

Al-Reshidi, 2017; Szmitko, Kutryk, Stewart, Strauss, & Verma, 2006). Only EPCs will merit 

our focus for the PhD work. 
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1.2 The role of EPCs in restenosis 
 

There is widespread consensus that there are circulating blood cells termed EPCs that 

are involved in the process of forming new blood vessels and repairing injured ones. 

Since Asahara first identified them in 1997 (Asahara et al., 1997), mounting evidence 

suggests that this cell population functionally contributes to pathological changes in 

cardiovascular disease (CVD) models of peripheral vascular disease (Vaughan et al., 

2012), stroke (Y. Fan et al., 2010; Takizawa, Nagata, Nakayama, Masuda, & Asahara, 

2016), retinopathy (X. Liu et al., 2010), myocardial and limb ischemia (Bonauer et al., 

2009), atherosclerosis (Torsney, Mandal, Halliday, Jahangiri, & Xu, 2007; Q. Xu, 2008) 

and tumour vascular associated-growth (Lyden et al., 2001; Patenaude, Parker, & 

Karsan, 2010), which makes them therapeutically promising for vascular repair (Balaji, 

King, Crombleholme, & Keswani, 2013). These precursor cells are mobilised mainly from 

the BM, and are then recruited to sites of ischemic (Zampetaki, Kirton, & Xu, 2008), 

atherosclerotic (Pelliccia et al., 2010) or endothelial (Werner et al., 2002) distress, and 

there contribute to angiogenesis (Takahashi et al., 1999) and re-endothelialisation 

(Pelliccia et al., 2010). Their regeneration potential is associated with an inherent ability 

to incorporate within the vessel and secrete pro-angiogenic factors (Zampetaki et al., 

2008) and to terminally differentiate into proliferative mature ECs (Lev et al., 2010). 

Consequently, autologous EPC transplantation to improve neovascularization and 

vascular repair has been sought, as well as epigenetic and genetic techniques aimed at 

enhancing their ex vivo expansion and therapeutic potential (Balaji et al., 2013). 

However, so far, there is still substantial ambiguity regarding the origin, definition, and 

identification of EPCs (Hristov, Erl, & Weber, 2003; Simard et al., 2017).  
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EPC origin 
 

Adult stem cells are unspecialized cells capable of replicating or self-renewing 

themselves, and are able to give rise to mature cell types that have characteristic 

morphologies and specialised functions (Figure 3) (Bautch, 2011). A precursor or 

progenitor cell is an intermediately undifferentiated cell type but lacks self-renewing 

ability (Bautch, 2011). Such cells are usually regarded as "committed" to differentiating 

along a specific cellular development pathway. EPCs are a putative kind of adult 

progenitor cells committed to differentiate into mature ECs when triggered (Bai & 

Wang, 2008), but they do not have baseline characteristics of mature ECs. According to 

various in vitro and in vivo studies (Gunsilius et al., 2000), EPCs and hematopoietic 

progenitor cells (HPCs) are believed to derive from a common stem cell called  

hemangioblast (A. M. Muller, Medvinsky, Strouboulis, Grosveld, & Dzierzak, 1994), since 

both lineages share similar cell-surface antigens, including Kinase insert domain 

receptor (KDR), Tie-2, and CD34 (Flamme & Risau, 1992).   Specifically, CD34+KDR+ cells 

have been shown to give rise to both HPC and EPCs with long-term proliferative 

potential (Pelosi et al., 2002). CD34 antigen expression is then gradually reduced as 

hematoendothelial lineages maturate (Sidney, Branch, Dunphy, Dua, & Hopkinson, 

2014).  CD45 expression seems to be a distinctive feature since CD34+ cells are known 

not to express CD45 during hematoendothelial development, rather acquiring it during 

differentiation into HPC, except if they are destined to differentiate into ECs 

(Timmermans et al., 2009). To make things more complex, the potential of BM-derived 

HPCs to transdifferentiate in vivo and in vitro into EPCs has also been documented by 

some research groups (Gehling et al., 2000; Grant et al., 2002). Understanding the 

endothelial-to-hematopoietic transition will have significant implications for the 

interpretation of the EPC phenotype and vascular biology in general since there is 

considerable overlap between these cellular players.  
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Figure 3 | Hemangioblast model.  

Development of ECs from EPC (precursor cell) and angioblast (stem cell). HPC – hematopoietic progenitor 
cell; HSC – hematopoietic stem cell; EPC – endothelial precursor cell; SMC – smooth muscle cell. Adapted 
from (Bautch, 2011). 

 

 

EPC definition 
 

Controversy still exists whether cells with numerous hematopoietic features that also 

participate in the process of new blood vessel formation and vascular repair ought to be 

called EPCs or not. Should the term EPC be reserved for a progenitor for the endothelial 

lineage alone? The answer is yes, and to date, some defining properties have been 

proposed for EPCs (Patel, Donovan, & Khosrotehrani, 2016; Simard et al., 2017; Yoder, 

2012). It must be a circulating cell that gives rise to progeny exhibiting clonal 

proliferation and differentiation restricted to the endothelial lineage. Moreover, it can 

generate capillary-like structures with a lumen in vitro (cytoplasmic vacuolation). It 

should have the capability to form stable blood vessels (cells must secrete a basement 

membrane) when implanted into tissues, to become an integrated part of the host 

circulatory system and to present the potential to undergo remodelling to form the 

intima of the vessel. Most circulating BM-derived cells identified so far fail to do so 

(Hirschi, Ingram, & Yoder, 2008). Thus their EPC designation should be revisited. Finding 

a unique cell surface marker that would allow prospective isolation and enrichment of 

cells displaying the above activities would certainly help clarify the EPC identity and must 

remain a focus for the field. 
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EPC identification  
 

To date, putative EPCs have been identified using two general approaches: surface and 

functional phenotyping. Nevertheless, the precise identification of EPCs remains 

tentative (Hristov et al., 2003; Patel et al., 2016; Simard et al., 2017), since many of the 

(nonspecific) markers used in phenotyping these cells are shared by both HPCs and 

mature ECs. Their multiple roles in vascular homoeostasis, redundant sources (Urbich & 

Dimmeler, 2004), broad plasticity (Asahara et al., 1997) and general uncertainty about 

tissue culture modulation on phenotype add to the uncertainty around the identification 

so far. All the afore-mentioned factors have resulted in various proangiogenic subsets 

being used in basic research and clinical trials (Chong, Ng, & Chan, 2016; Rafii & Lyden, 

2003; Sekiguchi, Ii, & Losordo, 2009) with inconsistent therapeutic outcomes (Beeres, 

Atsma, van Ramshorst, Schalij, & Bax, 2008; Chong et al., 2016).  

 

 

Cell surface phenotype 

 

EPC antigen characterization has been evolving thanks to the contribution of modern 

flow cytometry, which now uses multiple simultaneous fluorochromes properly 

compensated, linear scale analysis of low-intensity staining regions, gate exclusion of 

false signals by erythrocyte or monocyte specific staining as well as by positive nDNA 

staining, a feature lacking in microparticles (Pober, 2012). 

 

Historically, EPCs have been thought to be derived from CD34+ cells, which subsequently 

differentiated into cells expressing definitive endothelial markers (Asahara et al., 1997) 

and which play a role in regenerative angiogenesis (Fadini et al., 2008). This was further 

supported by the findings by Kawamoto and colleagues, who demonstrated that CD34- 

cells lacked proangiogenic potential (Kawamoto et al., 2006). The transmembrane 

phosphoglycoprotein CD34 belongs to the CD34-superfamily, which also comprises 

podocalyxin and endoglycan (Nielsen & McNagny, 2008). CD34 has a molecular weight 

of 115 kDa and possesses an extracellular domain that is heavily sialylated, O-linked 

glycosylated and contains several N-linked glycosylation sites (Sidney et al., 2014). l-

Selectin (CD62L), E-selectin and CrkL are the most commonly described ligands for CD34 
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(Baumheter et al., 1993; Felschow, McVeigh, Hoehn, Civin, & Fackler, 2001). The CD34 

antigen was first identified on hematopoietic stem cells (HSCs) (and then on 

mesenchymal stem cells or MSCs), but it is not restricted to these cell types. Several 

other non-hematopoietic cell types coexpress tissue-specific markers alongside CD34, 

suggesting that the presence of CD34 may indicate a specific progenitor for that tissue. 

Evidence for this is certainly apparent in muscle satellite cells, epithelial progenitors, 

corneal keratocytes, and interstitial cells (Sidney et al., 2014). It has been hypothesised 

that CD34 plays a role in trafficking of HSCs to niches within the BM (Nielsen & McNagny, 

2008, 2009). Additionally, CD34 is involved in cytoadhesion, regulation of cell 

differentiation and proliferation processes (Healy et al., 1995; Nielsen & McNagny, 2008, 

2009). Its role in enhancing cell proliferation and/or blocking differentiation is 

corroborated by its progressive decline in surface density from multipotent 

hematopoietic progenitors to more mature cells, suggesting a role in the maintenance 

of the undifferentiated progenitor phenotype (Krause, Fackler, Civin, & May, 1996). 

Moreover, there are fewer HPCs in embryonic and adult tissues in CD34-knockout mice 

compared with wild-type animals, while adult-derived progenitors seem to harbour a 

proliferation defect (J. Cheng et al., 1996). Despite the hematopoietic changes, the 

CD34 knockout mice are viable and show a typical hematopoietic profile of adult blood 

(Salati et al., 2008). Nevertheless, their vascular phenotype is abnormal, given that CD34 

is also expressed on all vascular ECs of both adults and embryos (Baumhueter, Dybdal, 

Kyle, & Lasky, 1994; Young, Baumhueter, & Lasky, 1995). Gene deletion studies have 

demonstrated the pivotal role of CD34 in the development and integrity of blood 

vessels. CD34-/- mice are prone to autoimmune arthritis because of increased vascular 

permeability (Blanchet et al., 2010). Loss of CD34 results in altered vessel structure and 

vascular integrity within developing tumors (Maltby et al., 2011). Moreover, during early 

embryogenesis, the loss of CD34 was sufficient to delay the opening of the nascent 

lumen of the aorta (Strilic et al., 2009). 

 

Exactly, because CD34 expression has also been reported in microvasculature mature 

ECs (Timmermans et al., 2009), other groups have suggested the use of a more immature 

marker for putative EPCs (Gehling et al., 2000). CD133 was considered a good candidate 

since it is expressed on HSCs but, unlike CD34, not on mature ECs (Handgretinger et al., 
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2003). In fact, virtually all mature hematopoietic cells, including megakaryocytes, 

mature myeloid, lymphoid and erythroid cells fail to express CD133 (Miraglia et al., 

1997). Since the discovery of CD133, also called Prominin-1, as a transmembrane 

glycoprotein in human HSCs and mouse neuroepithelial cells (Z. Li, 2013), many studies 

have demonstrated that its expression is associated with progenitor/stem activity, 

tumorigenesis, regeneration, differentiation, and metabolism (Z. Li, 2013). Among other 

processes, CD133 is particularly involved in glucose and transferrin uptake, autophagy, 

membrane-membrane interaction, and as a matrix metalloproteinase (Z. Li, 2013). 

CD133+ cells are kept at relatively constant numbers in BM, blood, different tissues and 

even tumours, due to a dynamic and reversible expression in response to the changes 

of cell microenvironment. Typically, when cellular damage occurs via chemical, physical 

or mutational insults, CD133+ progenitor or stem cells are activated, differentiate and 

start proliferating to promote neuronal, bone, muscle or vascular regeneration (Cao et 

al., 2013; Kijima et al., 2009; M. Shi et al., 2009). In the hematopoietic system, its 

expression seems to be more restricted to a subset of CD34 bright progenitor cells in 

human fetal liver, BM, umbilical cord blood (UCB) and peripheral blood (PB) (Buhring et 

al., 1999). CD133+ cells isolated from UCB have been reported to undergo in vitro pre-

angiogenic process, form pseudo-vessel structures and present angiogenesis under 

hypoxic conditions (Paprocka et al., 2011), but there are contradictory reports 

concerning their EC differentiation (Case et al., 2007; Peichev et al., 2000). In vivo, 

CD133+ cells seem to support neovascularization of ischemic tissues in animal models 

(Bartunek et al., 2005; Y. X. Cui, Kafienah, Suleiman, & Ascione, 2013; Perin & Silva, 

2009), but generally speaking, total CD133+ cells should not be regarded as EPCs because 

they lack endothelial markers and mostly represent HPCs (Gehling et al., 2000). In 

summary, the relative non-specificity of this marker, the rarity of these cells in human 

BM and UCB (Y. X. Cui et al., 2013), and different differentiation results have been 

limiting factors for its use.  

 

Unfortunately, no single specific surface marker has been found to distinguish EPCs. 

Currently, investigators characterise EPCs by including hematopoietic stemness markers 

in combination with markers demonstrating endothelial commitment, but this has 

resulted in an extensive list of putative EPCs immunophenotypes (Timmermans et al., 
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2009). The most studied one reflects the co-expression of CD34 and Kinase insert 

domain receptor (KDR), considered to be immature cells with endothelial priming (Balaji 

et al., 2013) able to generate ECs in vitro (Asahara et al., 1997; Bompais et al., 2004). 

KDR is also known as vascular endothelial growth factor receptor 2 (VEGFR-2), CD309 or 

Flk1 (Fetal Liver Kinase 1). KDR, the human gene that encodes the type III 

transmembrane kinase receptor, is located in chromosome 4q11–q12 (Holmes, Roberts, 

Thomas, & Cross, 2007). VEGFR-2 is the principal receptor transmitting VEGF signals in 

the vascular endothelium (and aslo lymphatic endothelium). Therefore it has a critical 

role in vascular development, which is highlighted by the fact that VEGFR-2 knockout 

mice die at E8.5-9.5 due to defective development of blood islands, endothelial cells and 

haematopoietic cells (Shalaby et al., 1995). VEGFR-2 binds all VEGF-A isoforms, VEGF-C, 

-D and -E.  Ligand binding induces receptor dimerisation and autophosphorylation. 

Downstream effects of VEGFR-2 activation in the vascular endothelium include cell 

proliferation, migration, permeability and survival, resulting in vasculogenesis and 

angiogenesis, through a number of genes with known roles in angiogenesis, such as Cox-

2, Down syndrome critical region-1 (DSCR-1), Endocan, Decay-accelerating factor (DAF), 

Egr3, Ets-1, MMP-1 or Flt-1 (Sato et al., 2000). 

One major problem is that CD34+KDR+ cells are so rare in the steady-state PB that they 

can usually be sorted only from CB or mobilised PB (Fadini et al., 2008). Moreover, there 

is also substantial debate concerning this definition, because none of the markers is 

specific (Peichev et al., 2000) and CD34+KDR+ phenotype may represent mature ECs in 

microvascular endothelia or circulating mature ECs (CECs) sloughed from vasculature as 

well (Kachamakova-Trojanowska, Bukowska-Strakova, Zukowska, Dulak, & Jozkowicz, 

2015; Timmermans et al., 2009).  

 

As some mature ECs may detach from the vessel wall and enter the circulation of healthy 

and diseased human subjects (Blann et al., 2005), Peichev et al. attempted to devise a 

separation protocol to distinguish circulating EPCs from CECs (Peichev et al., 2000). Since 

mature ECs do not express CD133 (Gehling et al., 2000), the authors, in addition to CD34 

and KDR positivity, included CD133 expression as a discriminating marker. According to 

their results, only a small subset of CD34+ cells derived from hematopoietic sources 

expressed CD133 and KDR (2% percentage of total circulating CD34+ cells). The 
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restrictive triple expression pattern was also observed in some cells coating the luminal 

surface of implanted left ventricular assist devices in human subjects, suggesting that 

one could use CD34, CD133, KDR as markers for circulating EPC in human subjects. 

Therefore, they extrapolated that CD34+KDR+ cells that coexpress the more immature 

CD133 might represent the true EPC population. Remarkably, CD34+CD133+KDR+ cells 

have been shown to facilitate tumour microvasculature growth (Bertolini, Mancuso, & 

Kerbel, 2005; D. Gao et al., 2008), yet there is no evidence that these cells differentiate 

into ECs and directly incorporate into the vessels. In fact, CD34+CD133+KDR+ cells do not 

contribute to the formation of ECs in vitro (Case et al., 2007), nor do they spontaneously 

form capillary-like structures in vitro or in vivo (Case et al., 2007; Timmermans et al., 

2007). Interestingly, Peichev and colleagues back in 2000 (Peichev et al., 2000) did not 

test the triple positive cells for expression of CD45, a common leukocyte antigen. Case 

and colleagues subsequently reported that CD34+CD133+KDR+ cells represent an 

enriched population of CD45+ cells using in vitro hematopoiesis assays.  It is clearer now 

that the proangiogenic CD34+CD133+KDR+ cells are of haematopoietic origin and may 

not be true EPCs (Case et al., 2007; Simard et al., 2017) since they do not possess the 

postnatal vasculogenic profile that is proposed for a cell with endothelial progenitor 

properties (Estes et al., 2010; Medina et al., 2017). While these proangiogenic HPCs may 

be recruited to denuded vessels early in the process of vascular repair, it is more 

probable that they promote angiogenesis via paracrine mechanisms (Estes et al., 2010; 

Medina et al., 2017; Medina et al., 2010; Richardson & Yoder, 2011). Since the evidence 

does not support the use of CD133, another marker is needed to discriminate circulating 

CD34+KDR+ precursors from mature CECs, which also express CD34 and KDR.  

 

Lately, the combined analysis of CD45 expression has also been proposed to identify 

EPCs. Most CD34+ cells express CD45 at low intensity (CD45dim) (Fadini, Losordo, & 

Dimmeler, 2012). Timmermans and colleagues (Timmermans et al., 2007) used 

Magnetic activated cell sorting (MACS) preenriched UCB CD34+ cells (mean purity 94,3%) 

and sorted them into CD34+CD45+ HPCs (mean purity 99.5%) and a small (2% of total 

CD34+ cells) CD34+CD45- cell fraction (mean purity 99.2%) from the same blood unit, 

using stringent flow cytometry gates. The cell fractions were then cultured separately in 

M199 or EBM2 media. Their experiences revealed that in vitro EC-like cells derived only 
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from the CD34+CD45- cells, whereas CD34+CD45+ HPCs did not generate cells with 

endothelial phenotype in culture (Timmermans et al., 2007).  They also showed that the 

CD34+CD45- cell fraction expressed KDR, unlike CD34+CD45+ HPC cells.  Intriguingly, Case 

(Case et al., 2007) and Timmermans’s (Timmermans et al., 2007) findings seem to clash, 

since Case advocated by Fluorescence-activated cell sorting (FACS) that MACS CD34+-

enriched CD133+KDR+-FACS sorted are universally positive for CD45, while Timmermans 

could not find KDR expression by real time polymerase chain reaction (RT-PCR) in 

CD34+CD45+ cells. It may be that Timmermans’ group while sorting for MACS CD34+-

enriched CD45+-FACS sorted cells did not manage to gate in the limited 

CD34+CD133+KDR+ cell subset, or that the KDR cDNA numbers were too low to start PCR 

amplification. Both hypotheses could explain a negative KDR expression in RT-PCR. More 

recently, Lanuti et al. using rigorous polychromatic flow cytometry settings, came to the 

same observation, that CD45+CD34+CD133+KDR+ could not be found in any PB or CB 

sample since KDR expression could not be detected on the surface of 

CD45+CD34+CD133+ cells (Lanuti et al., 2016). Irrespective of the contribution of the 

small triple positive population, the data presented by Timmermans et al. are consistent 

with the previous observation that CD34+KDR+, but not CD34+KDR- cells, are endothelial 

precursors (Pelosi et al., 2002). Because analysis of the hematopoietic marker CD45 was 

not performed in the initial description of CD34+KDR+ precursors (Asahara et al., 1997; 

Peichev et al., 2000; Pelosi et al., 2002; Q. Shi et al., 1998) it is likely that CD34+KDR+ cells 

in these studies were confined to the CD34+CD45- cell fraction, which probably 

comprises the true origin of EPCs (Medina et al., 2017; Simard et al., 2017; Timmermans 

et al., 2007).  In fact, CD34+KDR+ cells show improved association with CAD and response 

to statin therapy if restricted to the CD45dim gate (Schmidt-Lucke et al., 2010). 

 

Looking for a more accurate EPC phenotype, CD146, a transmembrane glycoprotein 

described as a component of the endothelial junction involved in cell adhesion, 

permeability and transmigration (Kebir et al., 2010), has also gathered recent interest. 

CD146 was initially implicated in melanoma growth and metastasis (L. Mills et al., 2002), 

yet it has shown links to angiogenesis as well (Y. Kang et al., 2006). In their article, Tura 

et al. (Tura et al., 2013) confirmed that endothelial colony-generating EPCs were present 

only in the CD34+CD133- MNC fraction. Following further enrichment using CD146 they 
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found that only the CD34+CD133-CD146+ subset gave rise to colonies with true 

endothelial characteristics, unlike CD146 negative. These findings are in line with a 

recent study by Mund et al. who also reported that EPC colonies express CD146 (Mund, 

Estes, Yoder, Ingram, & Case, 2012). Unfortunately, Tura et al. did not assay for KDR 

expression in their subsets. Moreover, another critical issue remains unresolved: the cell 

marker CD146 used to identify putative EPC is not able to distinguish them from 

circulating mature cells, since CD146 is constitutively expressed on mature ECs too 

(Boos, Lip, & Blann, 2006). 

 

In summary, our best attempt to identify a putative EPC surface phenotype is presented 

in Figure 4. 

 
Figure 4 | Simplified Venn diagram depicting subgrouping of different progenitor cell phenotypes 
HPC-comprehending subsets: CD34+CD133+KDR+(Case et al., 2007); CD34-CD133+KDR+ (Reyes et al., 2002); 
CD34+CD45+(CD133+) (Timmermans et al., 2007), (Case et al., 2007); EPC-comprehending subsets: 
CD34+CD45-(KDR+CD133-) (Timmermans et al., 2007)); CD34+KDR+ (Pelosi et al., 2002), (Tura et al., 2013). 
The question mark represents the putative region with EPC potential. Alternatively, EPCs could arise from 
two distinct subsets, CD34+CD146+ and CD34+KDR+. No single marker is known to date to distinguish EPCs 
from ECs. CD – cluster of differentiation; HPC – hematopoietic progenitor cell; EC – endothelial cell; EPC – 
endothelial precursor cell; KDR – kinase insert domain receptor. 

 

 

Altogether, it seems that the CD34+KDR+ phenotype represents the best compromise 

regarding detection accuracy, biological meaning and clinical usefulness. It is possible 

that a distinctive marker or marker combination is still to be found. Until then, the use 

of heterogeneous marker combinations to define EPCs (and even gating strategies which 
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are not standardised), makes the significance of flow cytometric studies difficult to 

interpret, creates obstacles to the direct comparison of data between researchers, and 

may result in discrepancies in the interpretations of study results among different 

groups. It is now clear that hematopoietic and vascular endothelial progenitors display 

the same set of antigens and can only be discriminated by extensive testing. Therefore, 

one should strongly consider that any putative EPC, whatever its surface phenotype, be 

carefully assessed by gene expression and validating its endothelial potential in vitro and 

in vivo (morphology, clonogenicity, functionality). 

 

Functional phenotype 

 

Inferring the presence of endothelial precursors within a given cell population by the 

identification of cells bearing mature endothelial characteristics after a period of culture 

under pro-angiogenic conditions is another approach to identifying (and isolating) EPCs. 

This was first attempted by Asahara et al. (Asahara et al., 1997) in 1997 by isolating 

human PB CD34+ cells (15.7% enrichment) and culturing them in fibronectin (FN)-coated 

dishes. They reported that CD34-enriched cells had a spindle-shaped morphology and 

clustered together similarly to blood island-like clusters found in the embryonic yolk sac. 

The putative EPCs expressed numerous cell surface proteins typically present in human 

umbilical vein endothelial cells (HUVECs). They interpreted this endothelial-like 

outgrowth as constituting evidence for the presence of circulating post-natal angioblasts 

which could generate EPCs. Further studies revealed that KDR expressing putative EPCs 

(enriched to 20%) improved microvascular density after infusion into nude mice with 

induced hindlimb ischemia. Although the results were ground-breaking, potential 

limitations of this study have been discussed. These included the lack of sufficient 

cellular pre-enrichment to constitute a purified cell population, failure to perform clonal 

analytical studies and lack of high cellular resolution evidence that the infused putative 

EPCs directly formed the new blood vessels in the ischemic tissues of the mice with 

induced vascular injury.  
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Three optimised culture methods inspired by the original Asahara assay (Asahara et al., 

1997) have been proposed as an alternative to FACS antigen analysis (Fadini et al., 2012; 

Williamson, Stringer, & Alexander, 2012) (Figure 5). 

 

The first one developed by Kalka et al. (Kalka, Masuda, Takahashi, Kalka-Moll, et al., 

2000) involves plating MNCs on FN-coated dishes and incubating them with medium 

containing endothelial growth factors and serum. After three days in culture, the non-

attached cells were removed and the adherent cells kept in culture for 14 days. Two 

types of cell populations were generated sequentially by the EPC culture assay. The cells 

initially seeded were round, and after 3 to 5 days started grouping in clusters. These 

were comprised of elongated cells which had a spindle shape like that of the EPC first 

reported by Asahara (Asahara et al., 1997). These cells were termed early EPC, given 

their short culture time. They showed peak growth at 2 to 3 weeks and after that, they 

did not replicate in vitro and gradually disappeared after four weeks in culture.  

 

Figure 5 | An overview of the most common methods to isolate EPCs. 
Adapted from (Fadini et al., 2012). CD – cluster of differentiation; EC – endothelial cell; EC-CFU - 
endothelial cell colony-forming unit; ECFC - endothelial colony-forming cell; eNOS – endothelial nitric 
oxide synthase; EPC – endothelial precursor cell; KDR – kinase domain insert receptor; LDL – low-density 
lipoprotein; MNC – mononuclear cell; vWF – von Willebrand factor.  

 

 

Another population of cells with different morphology and growth pattern appeared in 

2 to 3 weeks after plating and were defined as late-outgrowth EPCs. These were firmly 

attached to the plate and rapidly replicated from several cells to colonies with 
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cobblestone appearance like ECs. They exhibited multiple population doublings without 

senescence resulting in exponential growth at 4 to 8 weeks and lived up to 12 weeks. 

Remarkably, both cell types internalised acetylated-low density lipoproteins (ac-LDL). 

Despite its simplicity, this isolating method seems flawed by the lack of specificity of the 

cells obtained.  Several blood cells (stem, progenitor, or mature lineages) also possess 

integrin receptors for FN which promote their attachment to the culture matrix. 

Remarkably, adherent monocytes when cultured in media containing endothelial 

growth factors are known to express a variety of proteins typically associated with ECs 

(von Willebrand factor - vWF, endothelial nitric oxide synthase - eNOS, CD31 and KDR) 

(Schmeisser et al., 2001; Schmeisser, Graffy, Daniel, & Strasser, 2003). Hence, this very 

straightforward assay of adherent MNCs growth did not promote the exclusive 

emergence of EPCs. 

 
Hill and colleagues  optimised the previous assay by attempting to deplete the early-

adherent MNCs, macrophages and circulating mature ECs from the putative EPC system 

(Hill et al., 2003). To do this, they allowed a 48h incubation before replating the non-

adherent cells on fresh FN-coated dishes. In 5-7 days, central clusters of round cells 

surrounded by multiple spindle-shaped cells emerged and were scored as endothelial 

cells colony-forming units (EC-CFUs). Subsequent transcriptome, proteomic, and 

functional analysis have revealed that cells generated by the CFU assay are more closely 

related to hematopoietic cells than to ECs (Yoder, 2012). Although worthy in intent, the 

failure to show that all hematopoietic cells were depleted by the preplating step 

diminished the interest on this method to isolate putative EPCs. 

 

Later, a different type of colony derived from an ECFC assay developed by Ingram et al. 

(Ingram et al., 2004) and further improved by Yoder et al. (Yoder et al., 2007) was 

described. In contrast to EC-CFUs, the ECFC colonies emerged from the adherent 

fraction on type I collagen following the removal of the non-attached population within 

the first 24h, after 14–21 days in culture (Ingram et al., 2004; Y. Lin et al., 2000).  

According to Lin and colleagues (Y. Lin et al., 2000), who have subsequently replicated 

the assay, the discarding of non-adherent cells leaves 19 ± 9 attached cells with 

endothelial-like morphology and positive for anti-endothelial monoclonal antibody 

P1H12 staining, plus 100–200 other MNCs which die out within the first two weeks of 
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culture. The outgrowth colonies are composed of CD34+ ECFCs (Timmermans et al., 

2007) which are morphologically indistinguishable from mature ECs, but present a 

delayed robust proliferative potential, with some colonies growing to more than 10,000 

progeny from a single cell plated 14 days earlier (Ingram, Caplice, & Yoder, 2005; Ingram 

et al., 2004). 

Although both short and long-term cultured cells arising from EC-CFU and ECFC assays 

share mutual properties, such as expression of CD31, CD34, lectin binding, and 

acetylated low-density lipoprotein (acLDL) uptake, they possess distinctive phenotypes 

regarding morphology, proliferative and functional potential (Medina et al., 2017; 

Timmermans et al., 2007) (Table 1). 

 

Table 1 | Progeny characteristics following EC-CFU and ECFC assays. 
EC-CFUs or “early EPCs” are generated from a non-adherent population of MNCs cultured on fibronectin 
and appear some 5 to 7 days in culture. EC-CFUs exhibit endothelium-like surface characteristics, 
however, they are composed of monocytes and angiogenic lymphocytes and have little capacity to form 
perfusing vessels or incorporate directly into vascular structures. EC-CFUs exhibit phagocytic activity and 
avidly secrete angiogenic growth factors. Contrastingly, ECFCs or late-outgrowth EPCs are generated from 
adherent MNCs grown on type I collagen and appear after 2 to 3 weeks of cell culture. ECFCs are 
morphologically indistinguishable from mature ECs and are derived from non-hematopoietic (CD45-) cells 
expressing CD34. ECFCs have robust proliferative potential and the capacity to form perfusing blood 
vessels in vitro. Adapted from (Timmermans et al., 2009), (Fadini et al., 2012), (Tura et al., 2013), (Balaji 
et al., 2013; Medina et al., 2017). CD – cluster of differentiation; EC – endothelial cell; EC-CFU - endothelial 
cell colony-forming unit; ECFC - endothelial colony-forming cell; MACs- myeloid angiogenic cells;  MNC – 
mononuclear cell; PAC – proangiogenic cells. 

Characteristics EC-CFU / “early EPCs”/ PACs / MACs ECFC / late outgrowth EPCs 

Adhesive 

protein 

Fibronectin Collagen 

Precursor CD45+CD14+CD34+KDR+ 

CD146- 

 

CD34+KDR+CD146+ 

CD45-CD14- 

Appearance in 

culture 

5-7 days 14-21 days 

Proliferative 

potential 

Low High 

Phagocytic 

function 

Yes No 

Ability to form 

vascular 

networks on 

Matrigel 

Low High 

Incorporation 

into vessels 

Low, preferentially perivascular High 
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Cytokine and 

growth factor 

release 

High Low 

Improve 

neovasculariza

tion in vivo 

Yes Yes 

Morphology Mass of round and spindle-shaped 

cells 

 

 

polygonal cells in cobblestone 

monolayer 

 

 
 

Short-term cultured EC-CFUs, historically termed “early EPCs”, are forced within a few 

days in culture to express endothelial markers, such as eNOS, CD31, CD105, CD141, 

CD144, CD146, vWF, Tie-2, KDR, and E-selectin, while preserving CD34 positivity 

(Padfield, Newby, & Mills, 2010; Yoder et al., 2007; Zampetaki et al., 2008). Therefore, 

they were thought to be cells with EC fate derived from circulating HPCs (Hirschi et al., 

2008). However, the coexpression of endothelial markers by EC-CFUs has been a topic 

of controversy. There is evidence that the detection of endothelial markers might result 

from contamination with microparticles deriving from platelets which fuse with MNCs 

leading to false-positive events in FACS analysis (Prokopi et al., 2009), which would mean 

that isolated HPCs do not differentiate at all into an endothelial lineage as some groups 

have hinted (Yoder et al., 2007). The lack of an endothelial predetermination is further 

supported by the discovery that the endothelial genes in EC-CFUs are epigenetically 

repressed (Ohtani et al., 2011). Silencing of promoters of specific endothelial 

commitment genes (eNOS, KDR, vWF, and VE-cadherin) seems to occur at the level of 

histones and DNA methylation (Ohtani et al., 2011). In fact, it is well established now 

that the colonies arising from the CFU-Hill assay are, in fact, composed of a heterogenic 

population that mainly originates from myeloid hematopoietic cells, and shares 

common features with monocyte/macrophages, such as spindle morphology (Yoder et 

al., 2007), bacteria phagocytic ability (Hur et al., 2007), and colony stimulating factor-1 
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receptor and expression of nonspecific esterase that is inhibited by sodium fluoride 

(Yoder et al., 2007). These colonies are in fact a combination of core CD3+CD31+CXCR4+ 

angiogenic T-cell lymphocytes and monocytes at the periphery (Hur et al., 2007; Rohde 

et al., 2007). EC-CFUs are generated from CD14+ cells (Urbich et al., 2003) since depletion 

of CD14+ cells prevents their formation (Rohde et al., 2006). Their numbers are high after 

isolation, but they have a low proliferative potential (Zampetaki et al., 2008), and thus 

cannot be further expanded. Despite being able to incorporate into the endothelial 

monolayer, they fail to form perfused vessels in vivo (Yoder et al., 2007; Zampetaki et 

al., 2008). It is thought that “early EPCs” support neovascularization in vivo in an indirect 

fashion, by producing specific growth factors and chemokines, since they do not seem 

to adopt a typical endothelial phenotype in vitro (Timmermans et al., 2007). 

Hypothetically, “early EPCs” are recruited to damaged sites and secrete regulatory 

cytokines that help vessel repair by local neighbour (Ingram, Mead, et al., 2005) or 

circulating (Timmermans et al., 2009) cells with endothelial progenitor potential. The 

paracrine secretion of pro-angiogenic substances like VEGF, stromal derived factor 1 

(SDF-1), interleukin 8 (IL-8), matrix metalloproteinase 9 (MMP-9), granulocyte and 

granulocyte-monocyte colony stimulating factors (G-CSF and GM-CSF) by these cells has 

been extensively demonstrated, all of which are implicated in the mobilisation of BM 

progenitors (Hur et al., 2007; Inoue et al., 2011; Rehman, Li, Orschell, & March, 2003) 

and in support of tissue-residing cells contributing indirectly to angiogenesis and 

vascular repair (Simard et al., 2017; Urbich & Dimmeler, 2004; Ziegelhoeffer et al., 2004). 

Based on their ability to support angiogenesis, not necessarily associated with any 

definitive endothelial commitment (Rehman et al., 2004), early EPCs should be 

redefined (Fadini et al., 2012) as proangiogenic cells (PACs) or myeloid angiogenic cells 

(MACs) instead, as some researchers have already suggested (Medina et al., 2017; Yoder 

et al., 2007). 

 

In contrast, ECFCs or late-outgrowth EPCs display similar endothelial features in vitro 

and were reported to contribute to neovascularization by incorporating as newly 

matured ECs into vessels in vivo (Yoder et al., 2007), and therefore probably act more as 

true EPCs (Ingram et al., 2004; Y. Lin et al., 2000; Medina et al., 2017; Yoder et al., 2007). 

The number of late-outgrowth EPCs is extremely low after isolation, with approximately 
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1 colony arising per 108 mononuclear cells plated (Fadini et al., 2012). However, while 

short-term cultured PACs can only support vascular network formation, long-term 

outgrowing EPCs can form vascular structures in vitro in the absence of co-culture 

(Sieveking, Buckle, Celermajer, & Ng, 2008). Unlike PACs which have a spindle-shaped 

morphology, these clusters appear as tightly adherent colonies with cobblestone 

appearance, which begin to proliferate only 2–3 weeks after seeding at a high 

proliferation rate (Ingram et al., 2004; Zampetaki et al., 2008), and can be maintained in 

culture extensively (Zampetaki et al., 2008). In fact, in compliance with the notion that 

the hallmark of progenitor cells is their ability to proliferate and to give rise to progeny, 

Ingram and colleagues demonstrated that the late EPCs could achieve ≥100 population 

doublings (Ingram et al., 2004). These cells do not exhibit the pan-leukocyte marker 

CD45 (Timmermans et al., 2007), the myeloid/macrophage markers CD14 (Padfield et 

al., 2010), CD11 (Padfield et al., 2010) and CD133 (Timmermans et al., 2007), nor do they 

have phagocytic behaviour (Padfield et al., 2010). In fact, there is no ECFC growth 

starting from CD45+ or CD14+ enriched populations (Gulati et al., 2003; Timmermans et 

al., 2007), clearly indicating the need for a CD45-CD14-CD34+ origin. Remarkably, late-

outgrowth EPCs, unlike PACs, do not produce an enormous amount of angiogenic 

growth factors (Hur et al., 2004). Medina and colleagues compared PACs and late EPCs 

by genome-wide transcriptional profiling and 2D protein electrophoresis and discovered 

they displayed strikingly different gene expression signatures (Medina et al., 2010). PACs 

highly expressed haematopoietic specific transcripts (WAS, RUNX1, LYN) with links to 

immunity and inflammation (TLRs, HLAs), whereas late-outgrowth EPCs expressed many 

transcripts involved in angiogenesis-related signalling pathways (Tie2, eNOS, Ephrins). 

Proteomic comparison between PACs and MNCs indicated that 77% of the proteins 

isolated by 2-D gels are also expressed by monocytes, while 90% of spots identified are 

common between late-outgrowth EPCs and ECs (Medina et al., 2010). Therefore, PACS 

are haematopoietic cells with a monocytic-like molecular profile, while late-outgrowth 

EPCs have a molecular fingerprint which suggests a close association to the endothelial 

lineage. In concordance with the latter, while short-term cultured PACs can only support 

vascular network formation, long-term outgrowing EPCs can form vascular structures in 

vitro (Sieveking et al., 2008). The ability of the ECFCs to display spontaneous 

vasculogenic properties distinguishes this EPC from all other types of cells that have 
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been given this term.  They are mobilised upon injury insults (Massa et al., 2009), have 

proliferative capacity (Ingram et al., 2004), adopt an EC phenotype, and are capable of 

forming perfusing vessels in vivo (Yoder et al., 2007).  

 

Altogether, late-outgrowth EPCs most accurately fulfil the criteria of an EPC suitable for 

endogenous vascular repair. However, and even though the cells obtained by the 

protocols differ in their capacity to differentiate in ECs and to physically form new blood 

vessels, most of the published short-term or long-term culture methods yielded cells 

with the ability to improve neovascularization in preclinical models (Hur et al., 2004; 

Urbich & Dimmeler, 2004; Yoder et al., 2007; Yoon et al., 2005). Consequently, it could 

be suggested that both phenotypes have a complementary role in vascular repair (Chong 

et al., 2016; Urbich, Aicher, et al., 2005), where the low proliferative potential PACs act 

to secrete angiogenic factors stimulating the proliferative capability of the late 

outgrowth EPCs (Zampetaki et al., 2008). In fact, the simultaneous injection of both cells 

types has been shown to significantly promote greater tissue repair (Yoon et al., 2005), 

highlighting their synergistic role in improving physiological angiogenesis.  
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EPC sources and mobilisation 
 

Despite the advance in EPC research, the primary sources of these cells and 

differentiation pathways of late-outgrowth EPCs are still under debate (Simard et al., 

2017)  (Figure 6). 

 

Figure 6 | Origin and differentation of EPCs. 
Scheme depicts the possible origin and differentiation of EPCs from hematopoietic and non-
hematopoietic cells. EPCs give rise to endothelial cell lineage, including late-outgrowth EPCs and ECs. HPCs 
give rise to blood cells, such as monocytes and PACs. Whether monocytes can act as PACs and vice versa 
is still controversial. CECs can arise from the detachment of mature ECs and repair other areas of 
endothelium damage or can stem from the differentiation of PACs. Adapted from (Urbich & Dimmeler, 
2004), (Timmermans et al., 2009), (Balaji et al., 2013), (Marcola & Rodrigues, 2015), (Cappellari, D'Anna, 
Avogaro, & Fadini, 2016). CD – cluster of differentiation; CEC – circulating endothelial cell; EC - endothelial 
cells; EPC – endothelial precursor cell; HPC – hematopoietic progenitor cell; KDR – kinase insert domain 
receptor; PAC – proangiogenic cell. 

 
 

 

Initially, late EPCs were ascribed to BM-derived circulating angioblasts (Y. Lin et al., 

2000). At the BM, EPCs reside in a special osteoblastic niche characterised by low oxygen 

tension and high SDF-1α level and from there are repeatedly mobilised in response to 

peripheral stimuli (Hristov et al., 2003) for supporting re-endothelialisation and 

angiogenesis (Figure 7). The interaction between stem cells and stromal cells 

(osteoblasts, ECs, fibroblasts) are amplified by membrane-anchored cytokines which 

transduce proliferation and or differentiation signals, or by the maintenance of 

progenitors in a quiescent state under the constraints of limited growth factor 
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concentrations. Rapid availability of cytokines is essential for the recruitment of 

quiescent EPCs to a permissive vascular niche where they can proliferate, differentiate, 

and be released into circulation. EPC recruitment has been demonstrated to be impaired 

in eNOS−/− mice (Aicher, Heeschen, et al., 2003).  Therefore, the mobilization is believed 

to be chiefly dependent on the activation of eNOS (Heissig et al., 2002) produced by 

osteoblasts and ECs in the presence of several mobilizing factors. These include insulin, 

G-CSF, HIF1-α, VEGF, erythropoietin, SDF-1, placental growth factor, estrogen and SDF-

1α (also known as CXCL12), which get upregulated upon tissue hypoxia, or wound-

healing conditions to a concentration greater than that in the BM (Aicher, Heeschen, et 

al., 2003; Balaji et al., 2013; De Falco et al., 2004; B. Li et al., 2006; Shim, Nam, Hyuk, 

Yoon, & Song, 2015). All these factors act via the phosphoinositide 3-kinase/protein 

kinase B (Akt) pathway resulting in eNOS activation (Dimmeler et al., 1999). In turn, the 

increased bioavailability of NO upregulates the enzymatic activity of elastase, cathepsin 

G and MMPs, which then cleave the intercellular bonds between the stem and stromal 

cells (Dimmeler et al., 1999; Urbich & Dimmeler, 2004). Particularly, MMP-9 activation 

results in the release of a soluble kit ligand in the BM niche, which cleaves adhesive 

bonds on stromal cells, leading to EPC migration into the vascular zone, and subsequent 

proliferation and PB mobilisation via transendothelial migration (Heissig et al., 2002). 
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Figure 7 | EPC mobilisation from BM. 
The BM-derived EPCs reside in an osteoblastic microenvironment where they can readily sense and 
respond to the stress-induced demands for supporting re-endothelialisation and angiogenesis. The NO-
induced activation of MMP-9, which cleaves adhesion/survival-promoting membrane-bound Kit ligand 
(mKitL) into a survival/motogenic soluble Kit ligand (sKitL), constitutes an early step in this process. 
Subsequently, cKit-positive stem and progenitor cells, including the common hemangioblast, move to the 
vascular zone of the BM microenvironment, where they switch from a quiescent to a proliferative state 
and are released into circulation. Adapted from (Heissig et al., 2002) and (Balaji et al., 2013). BM – bone 
marrow; CD – cluster of differentiation; EC - endothelial cells; eNOS – endothelial nitric oxide synthase; 
EPC – endothelial precursor cell; EPO – erythropoietin; G-CSF – granulocyte colony stimulating factor; GM-
CSF – granulocyte-monocyte colony stimulating factor; HPC – hematopoietic progenitor cell; KDR – kinase 
insert domain receptor; MMP9 – matrix metalloproteinase-9; PAC – proangiogenic cell; SDF-1- stromal 
derived factor 1; VEGF – vascular endothelial growth factor. 

 

 

Irrespective of the BM contribution to an EPC circulatory pool, the possible existence of 

specific niche(s) of vascular wall EPCs locally derived or maintained should also be 

considered. Indeed, during the past decade evidence of an array of progenitor cells 

resident within the mural layers which could contribute towards the endothelial 

homoeostasis (Figure 8) has emerged (Psaltis & Simari, 2015).  
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Figure 8 | Hypothetical scheme of vascular wall EPC zones. 
This scheme illustrates the concept of vascular mural zones containing EPCs and HPCs capable of 
differentiating into endothelial cells and form capillary-like sprouts from the vascular wall, and immune 
cells, respectively. Additionally, lineage-committed MSCs, SPCs, MVSCs and AMPCs have also been 
described to reside within the mural layers of vessels. Dashed lines correspond to internal and external 
elastic laminas.  Adapted from (Ingram, Mead, et al., 2005), (Zengin et al., 2006), (Naito, Kidoya, Sakimoto, 
Wakabayashi, & Takakura, 2012), (S. Fang, Wei, Pentinmikko, Leinonen, & Salven, 2012) and (Psaltis & 
Simari, 2015). ABC - ATP-binding cassette; AMPC -  adventitial macrophage progenitor cells; CD – cluster 
of differentiation; EPC – endothelial precursor cell; HPC – hematopoietic precursor cell; HP-ECFC – high 
potential endothelial colony forming cell; KDR – kinase domain receptor; MSC – mesenchymal stem cell; 
MVSC -  multipotent vascular stem cell; SP – side population; SPC - smooth muscle progenitor cell; VE-cad 
– vascular endothelial cadherin. 

 

 

In support of this theory, Zengin and colleagues identified an enriched area of CD34+ and 

KDR+ cells (aside from the expected positive staining for CD34 in the endothelial layer), 

located between the smooth muscle and adventitial layers of the vascular wall, in close 

vicinity to the external elastic membrane (Zengin et al., 2006). Interestingly, this zone 

did not stain for CD31 and VE-cadherin like in the intima, nor SMA-like in the media. By 

marking the cells of the vasculogenic zone ex vivo with an AdV5-GFP-system, Zengin 

demonstrated that this vascular wall zone contains a niche of cells capable of forming 

outward capillary sprouts during an arterial ring assay. During the Matrigel assay, there 

was a significant accumulation of CD34+ cells not only in the vasculogenic zone but also 

in the whole adventitia of the vascular wall. During this process, the GFP-CD34+ cells 

became positive for markers typical of activated (CEACAM1) and tightly-junctional 

endothelium (occluding, VE-cadherin), but remained negative for CD31. Another 

minority population that was detected in the vasculogenic zone were cells positive for 
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CD45. Their number within the wall did not change significantly after the ring assay, nor 

did they apparently participate in capillary formation, although a few of them migrated 

into the collagen gel outside the rings. Therefore, it was hypothesised that the 

vasculogenic zone seemingly contains cells of different subpopulations and CD45+ cells, 

postulated to be cells of HPC origin, which may act as inflammatory cells relevant for a 

local immune response or angiogenesis support. Although the observations were 

compelling towards the existence of a niche of cells within the vessel wall with 

angiogenic outgrowth potential, this work did not unequivocally identify a putative EPC 

nor a definitive EPC source. No distinctive antigenic or clonogenic characterization was 

pursued to differentiate this cells from CECs bearing low proliferative potential, for 

instance. Moreover, peri-adventitial AdGFP tagging is not sufficient to validate that the 

outgrowth ECs came from the “vasculogenic zone”. Moreover, matrigel-based sprouting 

assays are not specific for cells of endothelial lineage, and outgrowths from vascular 

explants contain a mixture of fibroblasts, macrophages, ECs, and pericytes (Zengin et al., 

2006; Zorzi, Aplin, Smith, & Nicosia, 2010) making it difficult to differentiate bona fide 

EPCs from other PACs that coexist in the adventitia and possess hematopoietic features 

(Zengin et al., 2006).  

 

In contrast to the previous study by Zengin, others used rigorous clonal assays to try to 

identify vascular wall EPCs. Ingram and colleagues described an entire hierarchy of cells 

that could be isolated from vessel wall-derived cultures (Ingram, Mead, et al., 2005) and 

which displayed a high proliferative potential similar to that of late-outgrowth EPCs. In 

endopoiesis, the most proliferative progenitor that can be cultured in the absence of a 

stromal cell monolayer is designated a high proliferative potential–ECFC (Ingram et al., 

2004). Single high proliferative potential-ECFCs are capable of generating colonies that 

go on to form secondary and tertiary colonies upon replating (Ingram et al., 2004). To 

compare the clonogenic capacity of single cells derived from UCB or vessel walls, Ingram 

grew monolayers of UCB-derived late-outgrowth EPCs, HUVECs, and Human aortic 

endothelial cell (HAECs) and demonstrated that, surprisingly, they could all be passaged 

for at least 40 population doublings. Then, they performed single cell culture which 

revealed that both high proliferative potential-ECFCs and low proliferative potential-

ECFCs exist among HUVEC and HAEC populations. These intima-derived progenitor cells 

expressed EC surface markers (CD31, CD141, CD105, CD146, CD144, vWF) and displayed 
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the similar clonogenic potential to UCB EPCs. The presence of high proliferative 

potential-ECFCs among HUVECs and HAECs derived from vessel walls could explain the 

high passage number achieved by otherwise terminally differentiated mature ECs with 

low proliferative potential (Bompais et al., 2004).  

 

Subsequent data have supported this notion that EC turnover is not a stochastic 

property of mature ECs, but rather the result of a hierarchical organisation of different 

endothelial subpopulations categorised by their clonogenic potential (Psaltis & Simari, 

2015). Naito and colleagues identified a side population (SP) of CD31+CD45− 

stem/progenitor-like ECs at the intima of pre-existing blood vessels, based on their 

ability to efflux lipophilic fluorescent Hoechst 33342 dye via the ATP-binding cassette 

(ABC) family of cell membrane transporter proteins (Naito et al., 2012). The SP assay is 

a FACS based method that relies on the fact that while uptake of the DNA binding dye 

occurs uniformly in all cells through passive diffusion, efflux is an active energy-driven 

process, and only certain cells expressing a sufficient number of ABC transporters are 

able to actively efflux the dye out of the cell, which in turn is captured on FACS. 

Combining the SP assay with cell surface phenotyping lead to the observation that this 

sub-population of stem/progenitor-like ECs were found to constitute nearly 1% of all 

CD31+CD45− ECs present in samples of hindlimb muscle, liver, lung and heart, but could 

not be detected in BM, blood or ECs in culture. Since the SP assay is performed on viable 

cell populations, this enabled subsequent functional characterization of the cells in vitro 

and in vivo. Although quiescent in steady state, the sorting of the SP-ECs revealed within 

them a colony forming nature, high replication potential compared to other colony-

forming ECs, and ability to regenerate mature blood vessels in vivo ischemic milieus, as 

well as a distinct gene expression pattern compared with conventional ECs. Moreover, 

a high nucleus/cytoplasm ratio and high expression of surface marker CD133 strongly 

suggest that the SP ECs possessed essential characteristics of stem/progenitor cells. 

Nevertheless, although ABC transporters are enriched in stem/progenitor cells, several 

reports document that the SP phenomenon is not restricted to this phenotype 

(Golebiewska, Brons, Bjerkvig, & Niclou, 2011). Such transporters have also been 

described in specific differentiated cells where they are thought to play a role in 

protection against the cytotoxic effects of toxins and xenobiotics (multiple drug 
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resistance) by limiting toxin/drug entry into certain tissues and promoting their 

elimination into bile and urine (Fromm, 2000). 

 

Fang and colleagues later identified an intimal population of Lin−CD31+CD105+Sca-1+c-

kit+ ECs from mouse pulmonary vasculature that contained a rare (0.4%) subset of ECFCs. 

This c-kit+ clonal subset was shown by transgenic reporter tracing to be of probably 

endothelial and non-hematopoietic origin (S. Fang et al., 2012). These cells were 

recognised by in situ immunostaining in the capillaries, arteries, and veins of a range of 

organs (lung, liver, kidney and subcutaneous tissues), as well as in neovessels in 

subcutaneous Matrigel plugs, and in murine and human melanoma cells and breast 

cancer samples. Then, the authors demonstrated that the clonal progeny of single c-kit+ 

ECFCs could generate host-perfused blood vessels in vivo within Matrigel plugs, and 

confirmed their capacity for long-term self-renewal. Phenotyping of c-kit-deficient mice 

exposed a reduction in ECFC recovery, along with reduced angiogenesis and tumour 

growth, that notably were not restored by reconstitution of the hematopoietic system 

with wild-type BM (S. Fang et al., 2012). 

 

These vascular wall EPCs are not to be confused with the reduced outgrowth potential 

mature intima-derived CECs which get dislodged from the vessel wall.  Some so-called 

circulating EPCs are these injured, or senescent ECs sloughed from the vessel wall into 

the blood stream (Figure 6). CECs which are CD146+CD34brightCD45- (Cappellari et al., 

2016), are described as mature ECs that detach from the endothelial layer into the 

circulation at angiogenic sites, during increased shear stress (Rowand et al., 2007), 

veinpuncture (Boos, Lane, et al., 2006) and several clinical disorders that have in 

common the presence of vascular injury (Blann et al., 2005), such as diabetes (Lombardo 

et al., 2012). It is estimated that normal adults have 2.6 ± 1.6 CEC/mm of PB. The majority 

of these CECs are quiescent, and at least half are microvascular as defined by CD36 

positivity (A. Solovey et al., 1997). CECs bear no or low proliferative potential in culture 

(Blann et al., 2005), unlike late EPCs (CD34+KDR+). In fact, CECs are currently practically 

indistinguishable by flow cytometry alone from late-outgrowth EPCs, except for CD34 

brightness (Cappellari et al., 2016). Therefore one needs to differentiate them according 

to their proliferative capacity. Lin et al. studying sex-mismatched BM transplant patients 
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claimed that the majority of the so-called circulating EPCs (95%) were in fact derived 

from the vessel wall and displayed restricted growth capability (Y. Lin et al., 2000). 

Briefly, the authors, following the analysis of fluorescence in situ hybridization of PB 

samples from BM transplant recipients who had received gender-mismatched grafts 5–

20 months earlier, reported that most circulating CD146+ cells (considered endothelial-

committed cells (A. N. Solovey et al., 2001)) exhibited a recipient genotype. Genotype 

analysis of buffy coat cultures from these subjects revealed an outgrowth of ECs of both 

donor and recipient genotypes. Remarkably, ECs with recipient genotype had expanded 

only 17 ± 9–fold after 27 ± 4 days in culture, whereas cells having transplant donor 

genotype displayed a delayed outgrowth profile but expanded fully 1023 ± 476–fold 

over the same time window. These findings suggest that the majority of circulating 

endothelial committed-cells found in fresh PB were derived from the recipient own 

vessel walls and had limited growth capability (CECs), and the delayed but exuberant 

endothelial outgrowth in culture stemmed from the rarer donor BM-derived circulating 

cells (EPCs).  

 

Other groups have suggested that parenchymatous organs, such as the muscle, adipose, 

dermis, liver, intestine and liver (Aicher et al., 2007), could be alternative EPC source 

contributing to the circulating progenitor cell pool. However, since an insufficient 

phenotyping was carried out at the time and in light of subsequent work, it is likely that 

CD146+CD34-CD133-Syto16+ vascular wall resident ECs could exist in the wall of adult 

blood vessels of those organs (Ergun & Gehling, 2007). 

 

Moreover, reports that myeloid cells can generate endothelial progeny are also a matter 

of debate. CD14+CD34low myeloid cells have been shown to coexpress endothelial 

markers and form tube-like structures ex vivo (Schmeisser et al., 2001). Furthermore, ex 

vivo expansion of purified CD14+ MNCs generated cells with an endothelial phenotype, 

which incorporated in newly formed blood vessels in vivo (Urbich et al., 2003). These 

data would suggest that myeloid cells may transdifferentiate to the endothelial lineage 

cells. Nevertheless, it is possible that these assays might have been contaminated by 

CD45- cells with true endothelial potential.  
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In summary, to date, the in vivo counterpart of the late-outgrowth EPCs is yet to be 

unambiguously demonstrated, due to its rarity in circulation and the lack of a marker 

combination that uniquely identifies these cells. So far, the BM, and possibly the blood 

vessel vascular wall, are considered the most likely repository and processing EPC 

compartments (Simard et al., 2017). Alternatively, there is even the possibility that late-

outgrowth EPCs are culture artefacts resulting from the in vitro selection pressure 

(Timmermans et al., 2009). 

 

EPC homing, engraftment and differentiation 
 

Incorporation of circulating EPCs at the injury site (homing) requires a coordinated 

sequence of multistep adhesive and signalling events including chemoattraction, 

selectin-mediated rolling, integrin-mediated adhesion, diapedesis through the 

endothelial monolayer, invasion in the ECM involving integrin-dependent processes and 

proteases, and finally, differentiation into ECs (Figure 9). 

Once mobilised from the BM, EPCs in circulation respond to gradient signalling in the 

tissues undergoing active remodelling. Some homing chemokines and respective EPC 

receptors upregulated after arterial injury are IL-8 and CXCR2; RANTES/CCL5 and CCR5; 

growth-regulated oncogene-a and CXCR1; and C-C chemokine and chemokine (C–C 

motif) receptors 2 and 5 (Balaji et al., 2013; Hristov & Weber, 2008). Platelet adhesion 

to the injured vascular wall also constitutes a major determinant of re-endothelialisation 

by inducing the release of SDF-1α (also known as CXCL12) (Massberg et al., 2006; Stellos 

& Gawaz, 2007). SDF-1α is a chemoattractant that exerts its role through binding with 

its receptor C-X-C chemokine receptor 4 (CXCR4), expressed on the EPC surface (Walter 

et al., 2005), thus acting as a sensor for circulating EPC cruising through sites of the 

microvasculature wherein an SDF-1α gradient is present. Blocking CXCR4 significantly 

reduces the adhesion of EPCs to mature EC monolayers in vitro (Ceradini et al., 2004) 

and homing of the progenitor cells to the ischemic myocardium (Abbott et al., 2004) or 

after arterial wire injury in vivo (Hristov, Zernecke, Bidzhekov, et al., 2007).  
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Figure 9 | Mechanism of EPC homing, engraftment and differentiation. 
Recruitment and incorporation of late-outgrowth EPCs into injured vessels requires a coordinated 
multistep process including chemoattraction, adhesion, trans-endothelial migration, matrix degradation 
and in situ differentiation. Factors that are proposed to regulate the distinct steps are indicated. Dashed 
green lines correspond to molecular interactivity. The dashed yellow line corresponds to damaged 
endothelium. Adapted from (Urbich & Dimmeler, 2004) and (Caiado & Dias, 2012). BM – bone marrow; 
CD – cluster of differentiation; CXCR2 - C-X-C chemokine receptor type 2; CXCR4 - C-X-C chemokine 
receptor type 4; EC – endothelial cell; ECM – extracellular matrix; EPC – endothelial precursor cell; GF – 
growth factors; IGF – insulin –like growth factor, IL – interleukin; MCP1 - Monocyte Chemoattractant 
Protein-1, MMP - Matrix metalloproteinase, PAC – proangiogenic cell; PDGF – platelet derived growth 
factor; PSGL1 - P-selectin-glycoprotein ligand-1; SDF – stromal derived factor; VEGF – vascular endothelial 
growth factor. 

 

 

Concordantly, a dysregulation of the SDF-1α/CXCR4 signalling in EPCs from patients with 

stable chronic CAD has been described (Walter et al., 2005). The intrinsic migratory 

capacity of EPCs towards SDF-1α even seems to determine the functional improvement 

of patients receiving stem cell therapy in clinical trials (Britten et al., 2003). The 

upregulation of SDF-1α transcription factor HIF-1α (Schober, Karshovska, Zernecke, & 

Weber, 2006) at injured arteries and in hypoxic tissue promotes the recruitment of 

mobilised EPCs, which characteristically overexpress CXCR4 (Leone et al., 2005), to these 

sites (Ceradini et al., 2004; Karshovska et al., 2007). Therefore, it is not surprising that 

local SDF-1α concentration after AMI is strikingly correlated to the neovascularization 

response (J. Yamaguchi et al., 2003). Interestingly, VEGF-mediated SDF-1α release by 

perivascular myofibroblasts can act as a potent chemoattractant to both EPCs (Kalka, 

Masuda, Takahashi, Gordon, et al., 2000) and PACs (Grunewald et al., 2006), suggesting 

that the same cytokines may cooperate during homing of different BM cell types. 
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Importantly, retention of PACs near damaged vessels enhances chemoattraction of EPCs 

via secretion of more recruiting factors. Moreover, it seems that EPCs and PACs also 

share common adhesion molecules which enable them to adhere to the damaged 

tissues (Z. J. Liu et al., 2010). SDF-1α specifically upregulates the expression of E-selectin, 

an adhesion molecule, on the luminal surface of murine and human mature ECs (Z. J. Liu 

et al., 2010), otherwise minimally expressed constitutively, thus enhancing rolling of 

EPCs and PACs over EC monolayers (Peled et al., 1999; Vajkoczy et al., 2003). 

  

Rolling consists of the brief low-affinity contact of circulating EPCs with the activated EC 

monolayer, platelets and exposed ECM, through a landing mechanism, determining a 

drastic velocity reduction from the hydrodynamic velocity just before their subsequent 

integrin-mediated arrest. Adhesion is initiated by this first tethering event through 

tissue-specific selectins and their carbohydrate ligands. Expression of E-selectin is 

restricted to ECs previously activated by inflammatory cytokines, while  P-selectin can 

be expressed both on ECs and platelets (Chavakis, Urbich, & Dimmeler, 2008). 

Therefore, EPCs, which bear selectins´ ligands P-selectin-glycoprotein ligand-1 (PSGL-1), 

CD162 and CD44 at the surface can roll slowly along the vessel wall (Z. J. Liu et al., 2010; 

Peled et al., 1999; Vajkoczy et al., 2003) before firm adhesion, which is confirmed using 

intravital microscopy (H. Jin et al., 2006). EphB4 mediated EPC activation leads to 

overexpression of PGSL-1 (Zampetaki et al., 2008), which subsequently enhances 

adhesion to P-selectin and E-selectin. Remarkably, E-selectin-deficient mice have an 

impaired homing and recovery after ischemia (Nishiwaki et al., 2007; Oh et al., 2007), 

while HUVECs transfected with E-selectin small interference RNA (siRNA) significantly 

capture fewer EPCs under flow than HUVECs treated with control siRNA (Sharma, 2010), 

further supporting the role of E-selectin for EPC rolling. Additionally, activation of P-

selectin also seems to improve EPC-mediated neovascularization (Foubert et al., 2007). 

On the other hand, the siRNA-mediated inhibition of PSGL-1 impairs the adhesive 

properties of EPCs (Foubert et al., 2007). Still, some studies suggest that the adhesion 

force between EPCs and ECs by PSGL-1/selectins only may not be sufficient unless 

contributions of other bonds are considered (Peled et al., 1999). Concordantly, in 

addition to E-selectin, adhesion molecules such as VCAM-1, ICAM-1 and integrin α4 are 

also upregulated in vascular ECs upon SDF-1α stimulation (Z. J. Liu et al., 2010). 
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The process of rolling is reversible. Many EPCs that roll will not stop, but dissociate from 

the vessel surface and re-enter the bloodstream. Molecular adhesive bonding must form 

rapidly for cells to tether, and the bonding must break rapidly for cells to roll (“docking 

stage”). For the EPC to stop, the low affinity rolling interactions must be replaced by 

high-affinity bonds. Mechanistically, shear flow and rolling triggers specific EPC 

intracellular signalling that induce the upregulation of integrins and their activation into 

high-affinity states for ECM ligands, promoting the subsequent integrin-dependent 

arrest of the activated EPCs at the site of vascular remodelling (“locking stage”) (Green, 

Pearson, Camphausen, Staunton, & Simon, 2004; Urbich & Dimmeler, 2004). Integrins 

are glycosylated heterodimeric proteins which consist of non-covalent linked α- and β-

subunits. Both subunits are considered type I transmembrane proteins, containing large 

extracellular domains and short cytoplasmic domains (Humphries, Byron, & Humphries, 

2006). Mammalian genomes comprise 18 α subunit and 8 β subunit genes, and so far 24 

different αβ combinations have been recognized at the protein level (Humphries et al., 

2006).  Being a transmembrane protein, integrins on the cytoplasmic face of the plasma 

membrane coordinate the assembly of the cell cytoskeleton and signalling complexes 

which may determine cell fate. On the extracellular face, integrins engage both ECM 

macromolecules or counter-receptors on contiguous cell surfaces. A specific integrin can 

bind multiple counter-receptors (Humphries et al., 2006) (Figure 10). Likewise, most 

ECM and cell surface adhesion proteins can bind to different integrin receptors (Plow, 

Haas, Zhang, Loftus, & Smith, 2000). EPCs can express distinct integrin subunits (α1–α6, 

α9, αv, β1–β3, β5, β7) (Balaji et al., 2013).  Integrins families are named after their β 

component, irrespective of their α dimer. Despite their extensive variety, integrin-ligand 

combinations are typically clustered into four main classes, reflecting the structural basis 

of the molecular interaction: RGD- and LDV-binding integrins, or αA-domain-containing 

β1 integrins and non-αA-domain -containing laminin-binding integrins (Humphries et al., 

2006).  

β1-Integrins are recognised as one of the other major integrin families implicated in EPC 

adhesion to activated ECs or directly to the exposed ECM components in denuded 

vessels, namely, VCAM-I and FN (Balaji et al., 2013). In particular, the α5β1 integrin, 

which is highly expressed in EPCs (Balaji et al., 2013), combines with exposed FN to form 

a ligand-receptor complex that not only mediates cell adhesion via focal adhesion 
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complexes formation (Shyy & Chien, 2002) but can also promote cell proliferation, 

survival and even differentiation (Pagan, Khosla, Li, & Sannes, 2002). Other integrins 

such as the α4β1-integrins also play an important part in EPC adhesion to ECM, via 

interaction with vascular cell adhesion molecule I (VCAM-I) (H. Jin et al., 2006). The 

laminin-binding α6β1 integrin also promotes EPC engraftment to the sites of vascular 

repair (Bouvard et al., 2010). β2-Integrins also have an essential role in the retention of 

EPCs by binding to multiple members of the intercellular adhesion molecule family, 

fibrinogen, and polysaccharides (Chavakis et al., 2005). 

 

Figure 10 | Integrin ligands. 
This scheme illustrates the major integrins and their ligands’ molecular interactions. Adapted from 
(Humphries et al., 2006). BSP - bone sialoprotein; Del-1 - developmental endothelial locus-1; EGF - 
epidermal growth factor; ICAM - intercellular cell adhesion molecule; iC3b - inactivated complement 
component C3b; LAP-TGF – latency associated peptide transforming growth factor; MAdCAM-1 - mucosal 
addressin cell adhesion molecule 1; MFG-E8 - milk fat globule EGF factor 8; PECAM-1 - platelet endothelial 
cell adhesion molecule 1 (CD31); PSI - plexin/semaphorin/integrin homology; VCAM-1 - vascular cell 
adhesion molecule 1; vWF - von Willebrand factor. 
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Noticeably, necrotic ECs express high mobility group box 1 (HMGB1) which further 

reinforces the interaction of β1 and β2 integrins with their ligands, enhancing EPC 

adhesion and homing to ischemic areas in vivo (Chavakis et al., 2007). Additionally, 

adhesion of EPCs to denuded vessels and faster reendothelialization of injured carotid 

arteries in vivo can also be mediated by αvβ3- and αvβ5-integrins, which bind to FN and 
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vitronectin (Walter et al., 2002), while inhibition of these integrins with specific cyclic 

RGD peptides impairs this effect. However, is there an integrin participation sequence?  

 

Blocking studies suggest that α5β1 is the primary integrin involved in the initial cell 

arrest (Angelos et al., 2010). α5β1 recognises the RGD sequence (Arg-Gly-Asp-Xaa) 

found in a variety of ECM components, particularly in FN and osteopontin. In fact, this 

interaction can be quite strong, with single molecule studies revealing that α5β1 can 

form catch bonds with FN with a maximum bond lifetime at 40 pN per bond (F. Kong, 

Garcia, Mould, Humphries, & Zhu, 2009). Nevertheless, while high matrix forces are 

primarily supported by clustered α5β1 integrins bond with FN, less stable links to αVβ3 

seem equally important to complement mechanotransduction, resulting in 

reinforcement of integrin-cytoskeleton linkages through talin-dependent bonds (Roca-

Cusachs, Gauthier, Del Rio, & Sheetz, 2009). 

 

Then, once EPCs become adherent at specific homing sites, they need to migrate 

through the endothelial monolayer and invade through the interstitial ECM to arrive at 

tissue repair sites, where they will exert their purpose. The process of trans-endothelial 

migration is partly mediated by β2-integrins, MCP-1, CD99 and VEGF (Balaji et al., 2013; 

Imbert et al., 2006).  Moreover, EPC invasion via proteolytic matrix degradation depends 

on the activity of extracellular proteases, mainly MMP-9 and cathepsin L, and also the 

serine protease urokinase-type plasminogen activator and tissue-type plasminogen 

activator, that break down and remodel the matrix components to allow for EPC 

migration (Basire et al., 2006; Chavakis et al., 2008; Urbich, Heeschen, et al., 2005). In 

particular, the role of cathepsin L, a highly-expressed protease in EPCs, is essential for 

matrix degradation and invasion. Cathepsin L knockout mice exhibited impaired 

recovery after hindlimb ischaemia and cathepsin L knockout EPCs neither homed to sites 

of ischemia nor participated in neovascularization (Urbich, Heeschen, et al., 2005). 

MMP-2 is also intrinsically linked to EPCs’ invasive properties, since EPCs from MMP2-/- 

mice exhibit reduced ECM degradation and as a result, these animals respond poorly to 

hind limb ischaemia because of reduced neoangiogenesis, a phenotype that can be 

rescued upon transplantation of MMP2+/+ wt BM cells (X. W. Cheng et al., 2007). 
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When engrafted at the site of tissue repair, the process of differentiation/maturation 

into EC phenotype and functional integration into vessels comprises VEGF-induced 

differentiation and subsequent proliferation (Caiado, Real, Carvalho, & Dias, 2008; 

Dimmeler et al., 2001). The first step for differentiation depends on integrin-mediated 

adhesion to ECM components (Caiado & Dias, 2012), in particular, it seems triggered by 

the interaction between integrin α5β1 and FN (Balaji et al., 2013; Wijelath et al., 2004). 

Accordingly, the FN-binding integrin subunits αv, α4 and α5 integrins are all expressed 

throughout EPC differentiation, further reinforcing that the interaction of EPCs with FN 

is essential for the differentiation process (Qin et al., 2006). Once activated, the 

maturation and acquisition of an endothelial phenotype is the subsequent step and 

depends mainly on the regulation of the transcription factor HoxA, which is regulated 

by histone deacetylases (Urbich & Dimmeler, 2004). Not surprisingly HoxA9 has been 

linked to the regulation of eNOS, KDR and vascular endothelial cadherin expression 

(Rossig et al., 2005). Moreover, the final step, EPC survival and proliferation, is regulated 

by angiopoietin- tyrosine kinase with immunoglobulin-like, EGF-like domains receptor 

pathways and VEGF (Hildbrand et al., 2004). 

 

VEGF, in particular, has a an essential role in the entire “EPC cycle” (mobilization, 

homing, differentiation and proliferation) enhancing its functional angiogenesis 

phenotype (L. Li et al., 2017) , thus, leading to enhanced vascular repair in vitro and in 

vivo (Aicher, Heeschen, et al., 2003; J. Chen et al., 2016; Hutter et al., 2004), via multiple 

signalling pathways including mitogen-activated protein kinase/extracellular signal-

related kinase (MAPK/ERK)(Kawasaki et al., 2008; J. Xu et al., 2008). EPCs transfected 

with adenovirus encoding for VEGF are more capable of homing to denuded areas and 

differentiating into ECs (Iwaguro et al., 2002). In mammals, the VEGF family consists of 

five members, VEGF-A, VEGF-B, VEGF-C, VEGF-D and placenta growth factor 

(PLGF)(Holmes et al., 2007). The biological importance of VEGF-A is highlighted by the 

fact that VEGF-A−/− mice exhibit severe defects in vascular development and ultimately 

die at E9.5–10.5 (Carmeliet et al., 1996). VEGF-A binds to both VEGFR-1 and VEGFR-2. In 

humans, six VEGF-A splice variants have been detected following alternative splicing of 

a single precursor mRNA(Robinson & Stringer, 2001). VEGF-A165 is the most abundantly 

expressed and biologically active form (Robinson & Stringer, 2001).  
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EPC-mediated endothelial regeneration 
 

Disruption of normal coagulation, fibrinolysis, vascular tone and permeability (Iaconetti 

et al., 2012), are common features related to the removal of the homeostatic regulation 

of the endothelium. Moreover, the depletion of the endothelial source of NO generation 

paves the way for the inducible form of NOS (iNOS), abundantly expressed by infiltrating 

immune cells, to enhance ROS generation, with subsequent activation of oxidant-

sensitive transcriptional pathways that increase VSMC proliferation and migration 

(Cooke, 2003) leading to neointima formation. Re-endothelialisation after vascular 

injury is the compensatory response that counteracts this proliferative cascade. 

Regeneration potential due to the migration and proliferation of the injury adjacent 

mature ECs is now known to be low (Urbich & Dimmeler, 2004). On the contrary, the 

contribution of circulating EPCs to support the re-endothelialisation of injured arteries 

is well established. Besides preventing the contact of VSMC with pro-synthetic 

circulating products, EPCs prevent neointima formation by directly blocking VSMC 

proliferation and migration in a paracrine manner (S. Q. Liu et al., 2011), although many 

of the involved substances are yet to be identified. 

Following acute vascular insults such as angioplastly (Gill et al., 2001) or stenting (Garg 

et al., 2008) a rapid increase in circulating EPCs is observed. Importantly, EPC levels 

remain unchanged in diagnostic angiography alone (Egan et al., 2009; N. L. Mills et al., 

2009), implying that the endothelial injury and ensuing inflammation (Garg et al., 2008) 

characterised by a robust rise in high sensitivity c-reactive protein (hs-CRP) levels, are 

warranted for the mobilisation of EPCs from the BM (Werner et al., 2002). Indeed, an 8-

fold increase in blood G-CSF concentrations, along with milder elevations in SCF, SDF-1α 

and VEGF, have been reported following vascular injury (C. H. Wang et al., 2008). The 

more severe the endothelial injury, the higher the change magnitude of EPCs in 

circulation (M. Gao et al., 2015). Consistently, the therapeutic transplantation of EPCs 

forces an inhibitory feedback reducing hs-CRP, tumor necrosis factor (TNF)-α and SDF-

1α levels early after arterial injury (S. Q. Liu et al., 2011). 

 

EPC recruitment is preceded by a peak 2.6-fold increase in circulating PACs only 6 hours 

post-injury (Bonello, Basire, Sabatier, Paganelli, & Dignat-George, 2006), suggesting an 
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important role for these cells in the immediate response to vascular injury, as opposed 

to the same fold increase in circulating EPCs occurring simply at 24h (Bonello et al., 2006; 

Marboeuf et al., 2008). Interestingly, the magnitude of CD34+CD45+ PACs mobilisation 

independently predicts subsequent in-stent restenosis (Inoue et al., 2007). It is possible 

that an exaggerated response by the hematopoietic precursors (CD45+) over endothelial 

precursors (CD45-) may favour a maladaptive response to vascular injury, therefore 

leading to restenosis.  

 

The proposed timing of events for the EPC-mediated re-endothelialisation is displayed 

in Figure 11 and Figure 12. PACs are mobilised early after vascular injury, and then avidly 

secrete angiogenic factors encouraging resident EC proliferation and migration. Over a 

period of days to months, BM and vessel -derived EPCs home, proliferate and contribute 

to effective reendothelialization and the restoration of vascular homoeostasis.  

 

Figure 11 | Hypothetical role of various cellular players in endothelial denudation injury. 
Following endothelial cell denudation injury, loss, or turnover, EPCs migrate and proliferate to repair the 
middle section of the injured area. There is a minimal adjacent ECs’ regenerative contribution at the ends. 
This follows a series of events where platelets and proangiogenic hematopoietic cells are first drawn to 
the site of injury to facilitate repair by further recruiting EPCs. Adapted from (Richardson & Yoder, 2011). 
CD- cluster differentiation; EC – endothelial cell; EPC – endothelial precursor cell; KDR – kinase domain 
receptor; PAC – proangiogenic cell. 

 
 

Another interesting model used to study neointima formation is vascular allograft 

transplantation. ECs of vascular allografts are damaged at an early stage by the immune-

mediated reaction and regenerated after that. The paradigm that this type of re-
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endothelialisation is dependent on the remaining ECs of donor's vessels has been 

challenged by recent findings that establish circulating EPCs as sources of neointimal 

lesions of allografts (Hu, Davison, Zhang, & Xu, 2003). Hu and colleagues, using chimeric 

mice (wild-type/TIE2-LacZ BM and TIE2-LacZ/wild-type BM), provided solid evidence 

that regenerated ECs at arterial allografts originate from β-gal expressing recipient 

circulating EPCs, and not from remaining ECs of donor vessels nor from adjacent 

recipient ECs from carotid arteries where allografts were anastomosed. Another 

pertaining observation from Hu et al. is that circulating EPCs were also involved in 

neovascularization of the neointima, thereby modulating its formation. Usually, 

nourishment of the intima is accomplished by oxygen diffusion from the lumen of the 

vessel, whereas the media and the adventitia are nurtured by vasa vasorum, the 

vasculature microvessels. When vessel wall thickness exceeds the effective diffusion 

distance of oxygen (e.g. ruptured plaque or post-angioplasty neointima), vasa vasorum 

then proliferate in the inner layers of the vessel wall (Fuster, Moreno, Fayad, Corti, & 

Badimon, 2005), where they are usually absent. There is evidence that de novo vasa 

vasorum within allografted vessels are derived from the recipient BM-derived β-gal-

expressing EPCs (Hu et al., 2003). The fact that EPCs may modulate the neointima 

formation is interesting from the therapeutical standpoint, although the purpose of 

angiogenesis in neointimal lesions remains poorly understood. Vasa vasorum coverage 

and neointima growth (Mulligan-Kehoe & Simons, 2014) seem to be associated, possibly 

fuelled by facilitated blood and oxygen delivery and trafficking of resident inflammatory 

cells to the vessel wall, yet, emerging studies provide a different interpretation angle. 

EPC-derived vasa vasorum, rather than being restenosis contributors, may well be a 

biomarker of endogenous vascular repair (Leor & Marber, 2006) and serve as functional 

pathways for reverse lipid transport (Moreno, Sanz, & Fuster, 2009) and as stem cell 

reservoirs (Blum A, 2014), therefore contributing to plaque stabilisation and neointima 

inhibition (Moreno et al., 2009).  

One more possible mechanism by which EPCs can reduce neointima formation is worthy 

of discussion. BM-derived MSCs are also mobilised after vascular injury and participate 

in the remodelling process (C. H. Wang et al., 2008). According to Wang and colleagues, 

on adhesion to the wire injured vessel wall, seeded MSCs proliferate in patches and can 

differentiate into both smooth muscle cell (SMC) and mesoderm-derived ECs. The same 
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study revealed that by co-culturing with late-outgrowth EPCs, helped MSCs differentiate 

towards an EC phenotype, through a paracrine effect. Remarkably, co-transplantation 

of MSCs plus late-outgrowth EPCs in vivo modulated the differentiation of the former 

mostly into an endothelial-like lineage, leading to early re-endothelialisation and 

attenuation of intimal hyperplasia. 

 

Irrespective of the EPC-mediated mechanisms supporting re-endothelialisation, the 

current scientific belief is that the earlier re-endothelialisation is achieved, the less 

neointima will form (Hristov, Zernecke, Liehn, & Weber, 2007; Larsen et al., 2012) 

(Figure 12). On the contrary, an inadequate PAC/EPC ratio after injury may result in 

persistent inflammation and delayed re-endothelialisation, thus potentiating VSMC 

hypertrophy and ECM deposition, leading to restenosis. Concordantly, the numbers of 

CD14+CD45+ cells are higher in patients with subsequent restenosis, which is in line with 

the hypothesis that excessive circulating angiogenic cells contribute to the neointima 

formation (Pelliccia et al., 2010). 

 

Figure 12 | Hypothetical role of circulating EPCs after iatrogenic injury. 
The endothelial monolayer acts as a non-adhesive surface for platelets and leukocytes and regulates 
fibrinolysis and vascular tone. (A) Under resting conditions, circulating concentrations of the 
proangiogenic cells (EC-CFUs) and circulating EPCs are low, particularly in patients with atherosclerotic 
disease. (B) Angioplasty and stent placement causes damage to the endothelium exposing collagen and 
tissue factor, activating platelets and the coagulation cascade, which may result in acute or sub-acute 
thrombosis. In the absence of an intact endothelium, local platelet/platelet and platelet/leukocyte 
complexes form, and intense local inflammatory infiltrate ensues with detectable systemic inflammation. 
A biphasic response to vascular injury caused by percutaneous coronary intervention is hypothesised. (C) 
The early response consists of mobilisation of the precursors of PACs/EC-CFUs involving angiogenic 
monocytes and lymphocytes. PACs home to the site of injury and avidly secrete angiogenic factors, 
encouraging resident endothelial cell proliferation and migration and the mobilisation and homing of 
bone marrow-derived and local EPCs to the site of vascular injury. (D) Over a period of days to months, 
EPCs proliferate, contributing to effective re-endothelialisation and the restoration vascular 
homoeostasis. (E, F) An inadequate PAC/EPC response after percutaneous coronary intervention, due to 
low progenitor engraftment and activity, may lead to delayed re-endothelialisation and persistent 
inflammation, thus potentiating smooth muscle hypertrophy and extracellular matrix deposition, leading 
to restenosis and symptoms of myocardial ischemia. Adapted from (Padfield et al., 2010). CFU - colony-
forming unit; EC – endothelial cell; EPC – endothelial progenitor cell; G-CSF - granulocyte-colony 
stimulating factor; GM-CSF - granulocyte-macrophage- colony stimulating factor; HGF - hepatocyte-like 
growth factor; IL - interleukin; MMP - matrix metalloproteinase; VEGF - vascular endothelial growth factor; 
VEGFR2 - vascular endothelial growth factor receptor-2.  
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The “faster EPC-mediated re-endothelialisation the more suppressed neointima” 

hypothesis has been addressed in several pre-clinical models of arterial injury, 

providing strong supporting evidence (Table 2). 

 

Table 2 | Pre-clinical studies addressing EPC-mediated re-endothelialisation after vascular injury. 
BM – bone marrow; CD – cluster of differentiation; CXCR2 - C-X-C chemokine receptor type 2; CXCR4 - C-
X-C chemokine receptor type 4; eNOS – endothelial nitric oxide synthase; EPC – endothelial precursor cell; 
G-CSF - Granulocyte colony-stimulating factor; GFP - Green fluorescent protein; HO1 - Heme oxygenase 
1; HPB – peripheral blood from healthy volunteers; LDL – low density lipoprotein; KDR – kinase domain 
receptor; MCP1 - Monocyte Chemoattractant Protein-1 ; MNC – mononuclear cell; PB – peripheral blood; 
PPB – peripheral blood from patients;  Sca1 - Stem cells antigen-1; UCB – umbilical cord blood; UEA - Ulex 
Europaeus Agglutinin I; VECAD - vascular endothelial cadherin; vWF - Von Willebrand factor 

Author Year Model Subjects Cell type used Effect 

(Walter et al., 

2002) 

Murine Tie-2/lacZ 
BM transplant 

recipients 
subjected to 

balloon mediated 
arterial injury and 

pre-treatment 
with simvastatin or 

placebo 

18 placebo, 
34 simvastatin 

Di-Ac-LDL+lectin+ 

MNCs 

Simvastatin enhanced 
EPC mobilisation after 

vascular injury and 
increased their 

adhesive capacity; re-
endothelialisation 
was accelerated by 

BM-derived cells and 
neointimal hyperplasia 

was reduced 

(Werner et al., 

2002) 

Murine GFP BM 
transfection 

followed by wire 
arterial injury and 

pre-treatment 
with rosuvastatin 

or placebo 

5 placebo,  
4 rosuvastatin 

Sca 1+KDR+ cells of BM 

origin 

Rosuvastatin 
enhanced BM-derived 

EPC 
mobilisation after 

vascular injury; 
reendothelialization 
was accelerated by 

BM-derived cells and 
neointimal hyperplasia 

was reduced 

(Werner et al., 
2003) 

Intravenous cell 
therapy after wire 

mediated 
murine arterial 

injury 

6 vascular injury Spleen-derived Di-Ac-
LDL-lectin+ 

MNCs with (EPC) or 
without (MNC) a 

period of culture in 
endothelial growth 

medium 

Cell therapy enhanced 
re-endothelialisation 

in 
splenectomized 
animals and was 

associated 
with a reduction of 

neointima formation, 
but 

MNCs were more 
effective than EPCs 
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(Fujiyama et al., 
2003) 

Intravenous cell 
therapy versus 

saline after 
balloon-mediated 

murine arterial 
injury 

12 vascular injury, 
12 controls 

BM: CD14+CD34-; 
CD14-CD34+ 

PB: CD14+CD34- 

Compared with saline 
placebo, BM-derived 
CD34+ cells and both 
PB- and BM-derived 

CD14+ cells up-
regulated endothelial 
markers, accelerated 
re-endothelialisation. 

and inhibited 
neointimal hyperplasia 

after 
activation with MCP-1 

(Griese et al., 
2003) 

Transplantation of 
LacZ transduced 

EPCs into balloon-
injured carotid 

arteries and 
bioprosthetic 

grafts in rabbits 

6-8 EPC,  
6-8 saline 

(morphometric 
analysis) 

PB Dil-Ac-LDL+ CD34+ 

MNCs differentiated in 
culture 

Transplantation of 
EPCs led to rapid re-
endothelialisation of 
the denuded vessels 
and graft segments, 

resulting in significant 
reduction in neointima 

deposition 

(D. Kong, Melo, 
Gnecchi, et al., 
2004) 

G-CSF versus 
control before 

balloon mediated 
murine arterial 

injury 

5 G-CSF,  
5 controls 

CD34+KDR+ G-CSF enhanced EPC 
mobilisation after 
vascular injury; re-

endothelialisation was 
accelerated by BM-

derived cells and 
neointimal hyperplasia 

was reduced 

(D. Kong, Melo, 
Mangi, et al., 
2004) 

EPCs transduced 
with specific 

retroviral vectors 
were transplanted 
following balloon 
angioplasty of the 
common carotid 
artery in rabbits 

6 eNOS-EPCs, 
 6 HO1-EPCs, 
6 GFP-EPCs,  

6 saline 

PB Dil-Ac-LDL+ CD34+ 
vWF+eNOS+ VECAD+ 

MNCs differentiated in 
culture 

EPC transplantation 
prevented thrombosis 

and reduced 
neointimal hyperplasia 

in denuded carotid 
arteries by promoting 
re-endothelialisation; 
genetic engineering 

further enhanced this 
effect with eNOS 
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(Yoshioka et al., 
2006) 

G-CSF after wire-
mediated arterial 

injury in mice; 
treatment pre- and 
post-arterial injury 

versus post-
arterial injury 

alone 

22 G-CSF,  
20 controls 

CD34+KDR+ G-CSF reduced 
neointimal hyperplasia 

in 
association with the 
mobilisation of BM-

derived EPCs and 
accelerated 

reendothelialization 
compared with 

control; the effect was 
enhanced if 

administered before 
the injury 

(Takamiya et al., 
2006) 

1. G-CSF before 
balloon-mediated 
arterial injury in 

rats 
2. GFP BM-

transfected mice 
subjected to 

balloon-mediated 
arterial injury 

10 G-CSF,  
5 placebo 

CD117+KDR+ 1. G-CSF enhanced 
EPC mobilisation after 

vascular injury; re-
endothelialisation was 

accelerated, and 
neointimal hyperplasia 

was reduced 
2. GFP-expressing BM-

derived cells 
contribute 

to neo-
endothelialisation 



 

Introduction - 67 
 

(Hristov, Zernecke, 
Bidzhekov, et al., 
2007) 

Wire induced 
arterial injury in 
Apo E-/- athymic 

nude mice 
followed 24h after 

by ex vivo 
perfusion of 

human ester–
labelled EPCs pre-
treated with mAbs 
to CXCR2, CXCR4, 
or IgG2a isotype 

control 
 

EPCs labelled with 
CM-DiI were pre-

treated with 
blocking CXCR2 
mAb or isotype 
and injected in 

vivo intracardially 
into athymic NMRI 

nude mice; 
recruitment to 
injured carotid 

arteries was 
analysed after 7 

days  

3-6 treated,  
3-6 controls 

 
 
 
 
 

3 treated,  
3 controls 

 
 
 
 
 
 
 
 

BM Di-Ac-LDL+lectin+ 
CD31+KDR+VECAD+ 

CXCR2+CXCR4+ MNCs 
differentiated in 

culture 

Blocking CXCR2 in vivo 
and ex vivo inhibited 
the incorporation of 

human EPCs 
expressing CXCR2 at 
sites of arterial injury 
in athymic nude mice 

and reduced re-
endothelialisation 

(X. Zhao, Huang, 
Yin, Fang, & Zhou, 
2007) 

4-,6-Diamidino-2-
phenylindole- 

labelled EPCs or 
saline were 

injected through 
tail vein after wire 

injury in 
splenectomized 

rats 

6 EPCs, 
6 saline 

Spleen-derived Di-Ac-
LDL+UEA+ CD31+eNOS+ 

MNCs differentiated in 
culture 

Administration of EPCs 
enhanced 

reendothelialization 
and inhibition of 

neointima formation 
at 3 weeks compared 

with that of saline 

(Z. L. Ma et al., 
2009) 

Transplantation of 
autologous 

superparamagneti
c iron oxide 

labelled EPCs 
following carotid 

artery balloon 
injury in rabbits 

14 EPCs, 
6 control 

PB CD34+ 
CD106+CD146+KDR+ 

MNCs differentiated in 
culture 

MRI showed reduced 
stenosis in EPC-
treated rabbits 

compared moderate 
to severe stenosis 

in controls; Histology 
revealed significantly 
thinner wall, greater 

internal diameter and 
smaller plaque 

(S. H. Wang et al., 
2009) 

Transplantation 
EPC following mice 

femoral arteries 
wire-injury  

 

15 EPCs, 
15 saline 

Wharton jelly in 
human umbilical cord-

derived Di-Ac-
LDL+CD34+CD31+vWF+ 

cells differentiated in 
culture 

EPCs transplantation 
lead to rapid re-

endothelialisation, 
thereby inhibiting 

neointimal hyperplasia 
at 4 weeks 
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(S. Q. Liu et al., 
2011) 

Transplantation of 
autologous EPCs 
following rabbit 

ear central artery  
 

5 EPCs, 
5 saline 

BM Di-Ac-LDL+lectin+ 
CD144+ eNOS+ 

caveolin-1+ MNCs 
differentiated in 

culture 

EPCs participated in 
re-endothelialisation 
directly and reduced 
the increase in intima 
area at days 14 and 28 

 

(B. Cui et al., 2011) Transplantation of 
recombinant 

retrovirus vector 
expressing eNOS 
or GFP infected 

EPCs after carotid 
balloon 

angioplasty in rats 

6 eNOS, 
6 GFP, 

6 saline 

BM Di-Ac-LDL+UEA+ 
eNOS+vWF+ MNCs 
differentiated in 

culture 

Transplantation of 
both eNOS-EPCs and 
GFP-EPCs inhibited 

neointimal hyperplasia 
compared with saline 

injection. The 
antiproliferative effect 

of EPCs was further 
enhanced by 

overexpression of 
eNOS 

(Y. Yin et al., 2015) Balloon 
angioplasty carotid 

artery injury in 
nude rats followed 

by intraluminal 
human EPC 

transplantation 

4 UCB-EPCs,  
4 PPB-EPCs,  
4 HPB-EPCs,  

4 saline 

BM Di-Ac-LDL+ 
CD31+CD34+ KDR+ 

MNCs differentiated in 
culture 

2 weeks after 
transplantation, more 
labelled UCB-EPCs and 

HPB-EPCs than PPB-
EPCs were found by 
cell tracking in the 

injury zone. 
Administration of PPB-

EPCs, HPB-EPCs 
and UCB-EPCs 
enhanced re-

endothelialisation and 
inhibited neointima 
formation compared 
to the saline control 

(Ikutomi et al., 
2015) 

Wire-mediated 
endovascular 
injury in rat 

femoral artery 
followed by six 
sequential cell 

injections (1 × 106 
per time at 0, 1, 3, 

5, 7 and 9 days 
after the injury). 

8 sham,  
8 vehicle,  
8 PACs,  
8 EPC,  

8 mature ECs 

BM Di-Ac-LDL+lectin+ 
CD34+CD31+KDR+ 

MNCs differentiated in 
culture 

After 4 weeks, 
transplanted EPCs, but 

not PACs or ECs, 
significantly 

attenuated neointimal 
lesion formation in 

injured arteries 

(N. M. Liu et al., 
2016) 

Intravenous cell 
therapy versus no 

therapy after 
balloon-mediated 
murine femoral 

wire arterial injury 

3 treated, 
3 controls 

BM CD31+CD34+ 
CD133+Flk1+wWF+ 

MNCs differentiated in 
culture 

Infusion of netrin-1 
preconditioned wild 

type EPCs substantially 
attenuated neointimal 

formation 
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(H. Wang et al., 
2016) 

Intracarotid 
transplantation of 

genetically 
modified GFP-EPCs 

overexpressing 
PDGFR-β into a 

mouse model of 
carotid 

artery injury after 
splenectomy 

12 pEGFP-N2-
PDGFR- β EPCs, 
12 pEGFP EPCs, 

12 saline 

Spleen-derived Di-Ac-
LDL+lectin+KDR+ MNCs 

differentiated in 
culture 

EPCs overexpressing 
PDGFR-β accelerate 
re-endothelialsation 

and mitigate 
neointimal formation 

 

Given the observed translational potential of EPCs, therapeutic re-endothelialisation 

strategies to mitigate restenosis after PCI are being pursued in clinical studies. These 

include 1) EPC pharmacological mobilisation, 2) EPC intravenous transplantation and/or 

3) stent-based EPC therapies. 

 

 

EPC pharmacological mobilisation 

 

Statins administred for 4 weeks to CAD patients can increase peripheral EPC numbers 

up to three times (Vasa, Fichtlscherer, Adler, et al., 2001), which occurs in a dose-

dependent manner (Leone et al., 2008), via augmentation of Akt phosphorylation within 

minutes, which yields an increase inmobilization, migration, proliferation, and survival 

of EPCs (Llevadot et al., 2001). In culture, statins induce differentiation of CD34+ cells 

toward ECs (Dimmeler et al., 2001) and enhance their adhesive capacity (Walter et al., 

2002). Together these observations may help to explain the reduced rate of post-PCI 

restenosis in patients treated with statins (Walter et al., 2000), although there are no 

published human statin trials which specifically output EPC-mediated re-

endothelialisation in the context of vascular injury.  Similarly, angiotensin converting 

enzyme inhibitors, like ramipril and enalapril, were shown to increase EPC levels both in 

the experimental model and in patients (C. H. Wang et al., 2006), probably by preventing 

the membrane-bound extracellular CD26/dipeptidylpeptidase from cleaving the EPC 

mobilizer/chemoattractant SDF-1a/ CXCL12. The same effect was reported for valsartan, 

an angiotensin II inhibitor (Bahlmann et al., 2005). The EPC mobilising effect of 

endogenous G-CSF release after AMI is also well established (Leone et al., 2006). 

Unfortunately, despite enhanced endothelialisation, intracoronary G-CSF 

administration in clinical trials has been associated with an increased incidence of in-
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stent restenosis, despite improvement in left ventricular ejection fraction (S. Kang, Yang, 

Li, & Gao, 2008). It is possible that this effect may be mediated by non-specific pro-

inflammatory actions of G-CSF leading to SMC mobilisation from the BM instead 

(Padfield et al., 2010), thus, hampering its translation into clinics. Erythropoietin 

administered following vascular injury, in spite of also enhancing re-endothelialisation 

(possibly through eNOS-dependent mobilisation from BM (Urao et al., 2006)), is 

associated with an increased incidence of neointimal proliferation in animal models, 

again, perhaps because of the non-specific mobilisation of SMC (Reddy, Vasir, Hegde, 

Joshi, & Labhasetwar, 2007). Clinical trials which have considered EPO use in PCI-treated 

AMI patients have confirmed that this strategy is not beneficial for prevention of 

neointimal hyperplasia (Stein et al., 2012; Taniguchi et al., 2010).  

 

EPC intravenous transplantation 

 

According to the results in mouse (Werner et al., 2003) and rabbit (Griese et al., 2003; 

Z. L. Ma et al., 2009) models of endovascular injury, the intraluminal administration of 

EPCs should, theoretically, accelerate vascular healing by quickly populating denuded 

parts of the vessel wall. Nevertheless, data regarding the transfusion of progenitor cells 

into humans are derived from trials using heterogeneous subsets of autologous BM-

derived progenitor populations, and not EPCs differentiated in culture (since the safety 

of phenotypically modified cells in humans is not established yet). BM contains a 

complex assortment of progenitor cells, including HSCs, SP cells, MSCs and 

multipotential adult progenitor cells (MAPCs), a subset of MSCs (Dimmeler, Burchfield, 

& Zeiher, 2008). The potential risk that infusion of BM-derived progenitors may increase 

post-PCI inflammatory signalling and promote differentiation into VSMCs, thus 

aggravating the severity of restenosis, has been raised (Inoue et al., 2007). However, 

only one trial by Bartunek et al. in 2005 reported an increased incidence of restenosis 

after infusion of BM CD133+ progenitor cells (despite improved left ventricular 

performance, increased myocardial perfusion and viability)(Bartunek et al., 2005).   

On the contrary, a meta-analysis of 18 randomised controlled trials on the therapeutic 

effects of adult progenitor cells for acute myocardial infarction (AMI) did not reveal an 

augmented risk for restenosis (M. Jiang et al., 2010). One of the RCTs included was the 
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research by Assmus et al. that refutes an adverse effect of BM-derived progenitor 

therapy on restenosis development in the setting of AMI. If anything, revascularization 

rates were significantly reduced in the BM-derived progenitor group at 2 years’ follow-

up (Assmus et al., 2010). In contrast, a substudy of REPAIR-AMI assessing the effect of 

intracoronary BM-derived MNCs transplantation on coronary flow dynamics by 

intracoronary Doppler flow velocity measurements, indicated a significantly greater 

recovery of coronary blood flow reserve in the MNC-treated arm compared with control 

placebo infusion (Erbs et al., 2007). However, a definitive answer to the question 

whether infusion of BM-derived progenitor cells may alter the process of restenosis 

development (either adversely by incorporation of inflammatory progenitor cells into 

the vascular wall, or beneficially via enhanced re-endothelialisation) is still awaited, 

because the referenced trials used heterogeneous samples of “EPCs” (and none of them 

studied restenosis as a primary endpoint)(Fisher, Zhang, Doree, Mathur, & Martin-

Rendon, 2015). 

 

EPC stent-based therapy  

 

Recently, the concept of in vivo/in situ endothelialisation of stents has been pursued 

with the rationale that accelerated establishment of the endothelial layer covering the 

stent struts would reduce the risk of neointimal hyperplasia and, simultaneously 

thrombosis (which is an adverse effect of drug-eluting stents)(Chong et al., 2016; Simard 

et al., 2017). Capture stents, using a proprietary coating that contains anti-CD34 

antibodies were developed to test this hypothesis. EPCs are proposed to bind to the 

endoluminal face of the bioengineered struts, proliferate and migrate to fill the intra 

strut spaces establishing a confluent, functional monolayer of ECs on the stented arterial 

segment. In HEALING-I, the first human trial using the Genous® stent, CAD patients 

successfully underwent implantation of the capture stent in a single primary target 

lesion in a native coronary artery, which was considered safe and feasible. After 6 

months, coronary angiography and intravascular ultrasound were performed revealing 

negligible late luminal loss and safety (Szmitko et al., 2006). Since then, Genous® stents 

have progressed to phase III clinical trials and have been deployed in over 5,000 patients 

(J. Aoki et al., 2005; Silber et al., 2011). The clinical trials revealed a binary restenosis 
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rate for the EPC stent that was 13 percent compared to 26.6 percent for bare metal 

stents at 6 months (Wojakowski et al., 2013). Among the 4,939 patients included in the 

e-HEALING registry, the 12-month cumulative event rate for target lesion 

revascularization was 5.7%, which is similar to that of drug-eluting stents (Lasala et al., 

2008), with minimal incidence of late stent thrombosis (0.2%)(Silber et al., 2011).  

It is important to understand that the long-term results of the capture stents are not yet 

available, and until then, no definitive conclusions about long-term safety or 

effectiveness can be made. A recent study in pigs found that the EPC capture stent 

improved re-endothelialisation at an early stage but ultimately conferred no effect on 

neointimal thickness compared with control stents over long-term observation (van 

Beusekom, Ertas, Sorop, Serruys, & van der Giessen, 2012). On a cautionary note, CD34 

alone is not distinctive of EPCs, and it is shared by several progenitors, including smooth 

muscle progenitor cells (Padfield et al., 2010). Therefore, restenosis with anti-CD34 

coated stents may occur because of the non-specific capture of non-EPC cells, posing 

the theoretical risk of neointima development. This indiscriminate binding effect could 

be particularly striking in individuals susceptible to in-stent restenosis, such as patients 

with CVD RF, where SMP are relatively more abundant in circulation than EPCs (Duckers 

et al., 2007), which could be worsened by low engraftment capability of senescent EPCs.  

 

EPC consumption, senescence and prognosis 
 

Overall regenerative EPC activity has significant prognosis impact and is dependent on 

two factors: circulating EPC levels and EPC activity status.  

 

EPC consumption 

 

A competent BM can translate vascular injury into productive EPC recruitment, restoring 

normal endothelial function. However, a high CVD RF profile can perpetuate injury by 

impairing EPC production and mobilisation beyond EPC consumption. The BM then 

becomes incompetent and the repairing EPCs numbers insufficient. Remarkably, the 

HEALING II registry reported that patients with normal CD34+KDR+ EPC titters had lower 

rates of in-stent restenosis than patients with reduced circulating EPCs (Duckers et al., 
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2007). Moreover, circulating EPC numbers remain significantly lower in patients who 

developed restenosis after 6 months (Lei et al., 2007; Wojakowski et al., 2013).  

 

There are several important physiological and pathological stimuli for EPC mobilisation. 

Physical activity and oestrogen levels are included among the physiological factors 

reported to enhance EPC mobilisation from the BM by acting through eNOS-, -MMP9 

(Matrix metalloproteinase-9) and VEGF-mediated mechanisms (Laufs et al., 2004; 

Strehlow et al., 2003). Growth hormone (GH) and insulin growth factor-1 (IGF-1) are 

among hormones that increase NO bioavailability, therefore raising EPC mobilization 

(Thum, Fleissner, et al., 2007). Any reduction in the previous mobilizers could mean 

decreased EPC levels. Else more, ageing has an adverse impact on EPC levels (Scheubel 

et al., 2003) via a reduction in IGF-1 and VEGF circulating levels. Smoking is included 

among the suppressive factors via increased oxidative stress and reduced NO 

bioavailability, resulting in depletion of EPCs for vascular repair in a dose-dependent 

manner (Michaud, Dussault, Haddad, Groleau, & Rivard, 2006) and with a rapid 

amelioration after smoking cessation (Kondo et al., 2004). Diabetes mellitus and 

glycaemia control also negatively influence EPC levels (Fadini et al., 2005). In particular, 

the presence of vascular complications seems strictly correlated with reduced 

peripheral number of EPCs (Fadini et al., 2005), thus suggesting that EPC depletion can 

be involved in its pathogenesis. In fact, in diabetic patients with carotid disease, the 

lowest levels of EPCs are observed in patients with over 70% stenosis (Fadini et al., 

2006). Diabetics with simultaneous CAD show even lower numbers of circulating EPCs 

(Kunz et al., 2006). The abnormality in EPC mobilization in diabetes is presumably due 

to the impairment of eNOS-NO cascade in BM (Z. J. Liu & Velazquez, 2008). Chronic renal 

failure is similarly associated with lower EPC levels, which occurs with reduced 

Erythropoietin production, an established EPC mobilisation trigger in humans 

(Bahlmann et al., 2004). In the setting of severe CAD, higher levels of substances like 

asymmetric dimethylarginine (ADMA), a potent endogenous inhibitor of eNOS, have 

been described and are associated with lower levels of EPCs (Thum et al., 2005). 

Similarly, TNF-α a common CVD inflammation mediator, with its well-known 

myelosuppressive effect, could be responsible for the reduction of EPC-poiesis and 

mobilisation levels observed in the late phases of heart failure (Valgimigli et al., 2004). 
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EPC senescence 

 

In 2015, Ying and colleagues reported that the transplantation of EPCs from UCB and PB 

from CVD patients or healthy volunteers, all increased re-endothelialisation and reduced 

neointima formation in a rat carotid injury model (Y. Yin et al., 2015). However, 

compared with the patient group, more homing EPCs were observed in the 

cryopreserved UCB and PB from healthy controls, and these presented a significantly 

faster re-endothelialisation and reduced neointima. In vitro studies then showed that 

patient-derived PB EPCs displayed decreased migration, proliferation, adhesion, and 

survival activities as compared to PB-EPCs from healthy volunteers and cryopreserved 

UCB-EPCs. The same observations were derived in groups of human patients with in-

stent restenosis, given that their EPCs also exhibit lower migration and proliferation 

capacity in vitro (Lei et al., 2007). 

 

Thus, it seems that impaired quality of EPCs is also intrinsically associated with CVD 

and/or CVD RFs (Chong et al., 2016; Urbich & Dimmeler, 2004; Vasa, Fichtlscherer, 

Aicher, et al., 2001), including diabetes, smoking, hypertension, hyperlipidemia, 

atherosclerosis, smoking, and obesity, which account for the deterioration of 

endothelial regeneration. In the elderly, the migration and proliferation capacity of BM-

EPCs are decreased (Dimmeler & Zeiher, 2004), and flow-mediated brachial artery 

reactivity correlates negatively with this impairment (Heiss et al., 2005). Circulating EPCs 

from healthy smokers also exhibit impaired functional activities (Michaud et al., 2006). 

Enhanced angiotensin II levels present in hypertensive disease induce oxidative stress, 

which in turn accelerates EPC senescence by reducing telomerase activity (Imanishi, 

Moriwaki, Hano, & Nishio, 2005). Hypercholesterolaemia per se determines a reduction 

in EPCs’ migratory, proliferative, adhesive and angiogenesis potential secondary to an 

increase in senescence, as demonstrated after EPC incubation with LDL-oxidized, 

whereas HDL-cholesterol has the opposite effect (J. Z. Chen et al., 2004; X. Wang, Chen, 

Tao, Zhu, & Shang, 2004). Similarly, a severe delay of re-endothelialisation after vascular 

injury is seen in diabetic patients, mostly, due to impaired EPC adhesion, proliferation, 

integrin profile, engraftment and differention (Balaji et al., 2013; Callaghan, Ceradini, & 

Gurtner, 2005). High glucose exposure has been shown to promote EPC senescence and 
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endothelial dysfunction by modifying NO-mediated mechanisms (Y. H. Chen et al., 

2007). Further reinforcing the EPC senescence contribution to delayed re-

endothelialisation, Ii and colleagues injected diabetic and nondiabetic EPCs 

intravenously after arterial injury in diabetic and nondiabetic mice (Ii et al., 2006). 

Notably, diabetic EPCs homing to the denuded vessel were significantly reduced, 

regardless of the diabetic status of the recipient mice. The underlying EPC functional 

diabetic impairment might be due, at least in part, to increased NADPH oxidase-

dependent processes (Sorrentino et al., 2007) and uncoupling of the eNOS (Thum, 

Fraccarollo, et al., 2007), both resulting in excessive superoxide anion formation instead 

of NO, reducing the bioavailability of the latter. CRP, a well-known inflammatory 

mediator present in CVD, has a direct inhibitory effect on EPC activity, influencing 

adhesion through a transcriptional reduction of chemoattractant factors such as 

monocyte chemoattractant protein-1 and -2, macrophage inflammatory protein-1a, 

colony-stimulating factor, and IFN-gamma inducible protein-10 and inducing early EPC 

apoptosis (Fujii, Li, Szmitko, Fedak, & Verma, 2006; Verma et al., 2004). Also, the 

proliferative capacity of EPCs and their ability to support in vitro tube formation were 

reported to be significantly impaired in patients with Cardiac Syndrome X (P. H. Huang 

et al., 2007). 

 

Prognosis 

 

To date, one's risk for vascular events has focused exclusively on assessing propensity 

for vascular damage, either by evaluating conventional RFs, or more recently by 

evaluating markers of inflammation and other circulating markers related to subclinical 

target organ injury. Nevertheless, vascular health is better represented as a balance 

between ongoing injury and resultant vascular repair. EPC enumeration and functional 

characterization represent the only available assessment of the reparative side of that 

balance. Therefore, the role of EPCs as biomarkers has recently been considered 

(Aragona et al., 2016; Leone et al., 2009). The evidence is there that EPC levels decrease 

in parallel with the presence of RFs. The extent of the EPC pool negatively correlates 

with cumulative indices of cardiovascular event risk, such as the Framingham risk score 

(Fadini, Agostini, Sartore, & Avogaro, 2007; Werner & Nickenig, 2006). The ratio 
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between EPCs and CECs has been proposed as a comprehensive vascular health 

measure, because EPCs inform on the endothelial repair capacity, whereas CECs are 

indicators of ongoing endothelial shedding (Cappellari et al., 2016). At the bedside, EPC 

counts following coronary stenting may potentially serve as a predictor for the risk 

stratification of therapeutic coronary interventions (M. Gao et al., 2015). Mobilization 

of EPCs by acute ischemia was also found to be significantly lower in the patients who 

developed restenosis after 6 months (Wojakowski et al., 2013).  These findings correlate 

nicely with the current view of the EPC pool as an indicator of vascular regenerative 

capacity, based on the observation that serum EPC levels are markedly decreased in 

patients with overt atherosclerotic disease (Aragona et al., 2016; Fadini et al., 2007). 

However, more importantly, EPC may not be simply a marker of vascular fitness. An 

inverse relationship between circulating EPCs and CAD severity, independent of 

traditional RFs, has recently been described (Kunz et al., 2006). For every 10-colony 

forming unit increase in EPCs, the likelihood of multivessel CAD declines by 20% (Kunz 

et al., 2006), revealing a prognostic contribution. To further characterise the 

independent prognostic value of circulating EPCs, Werner and colleagues led the EPCAD 

study. In patients with angiographically documented CAD, the cardiovascular event rate 

at 1 year increased in parallel with the reduction in baseline EPC levels, after adjustment 

for known confounders, such as age, gender, vascular RFs, drug therapy, PCI, etc 

(Werner et al., 2005). Schmidt-Lucke et al. later confirmed that reduced numbers of 

EPCs independently predicted progression of atherosclerotic disease in a mixed 

population of coronary patients and healthy controls (Schmidt-Lucke et al., 2005). These 

data revealed that EPCs are not innocent bystanders but active players in maintaining a 

healthy vascular tree (Leone et al., 2009). In fact, EPC levels are kept in a steady state 

during the inaugural asymptomatic years of CVD RFs (Fadini et al., 2007), suggesting that 

EPCs can efficiently counteract the detrimental effect of RFs on vascular function until 

their pool gets exhausted (Hill et al., 2003), at which point EPC numbers become 

inversely related to the number of CVD RFs present (Vasa, Fichtlscherer, Aicher, et al., 

2001). Following angioplasty, in particular, the individual susceptibility to neointima 

formation could be determined not only by the extent of the endothelial injury, 

exposure to simultaneous RFs but also by the capability to mobilise promptly functional, 

viable EPCs and repair the endothelial damage.  
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1.3 miR-92a inhibitor for EPC priming 
 
EPCs have been used for non-thrombogenic re-endothelialisation of vascular grafts, 

heart valve replacements, and intravascular stent devices (Balaji et al., 2013). A crucial 

aspect concerning EPC therapies is the magnitude of engraftment of transplanted or 

mobilised EPCs into the remodelling vessels as assessed by single-photon emission 

computed tomography, positron emission tomography or magnetic resonance.  

Although studies evaluating the biodistribution of the cells by non-invasive imaging 

cannot give insights into the morphological integration and the cell fate after prolonged 

time (Chavakis et al., 2008), research thus far has documented only limited engraftment 

of EPCs (anywhere between 1 and 50%)(Balaji et al., 2013; Haider et al., 2017). The 

amount of radioactivity detected in the rat ischemic heart was only about 2% after 24 

to 96h following infusion of ex vivo cultured EPCs, indicating that only a minor 

percentage of cells home/are retained at the ischemic site (Aicher, Brenner, et al., 2003). 

Similar results were reported after infusion of uncultured labelled PB MNCs (Hou et al., 

2005) or purified CD34+ cells (Brenner et al., 2004), while most of the radioactivity was 

rather found in the spleen and the liver (Aicher, Heeschen, et al., 2003; Hou et al., 2005). 

The extent of engraftment indicated in clinical trials, in which labelled BM CD34+ or 

CD133+ cells were infused directly into the coronary artery of patients with AMI or 

chronic myocardial infarction, was no different (Caveliers et al., 2007; Goussetis et al., 

2006; Kurpisz et al., 2007). Following infusion, only 2.6 to 11% of the radioactivity was 

sensed in the heart, after that declining to 1 to 7%. Of course, the variation reported so 

far may be due to differences in the target tissues studied, heterogeneity of EPC subsets 

used, genetic differences in the chosen clinical models, and lack of standardised tracking 

techniques (Balaji et al., 2013). However, worryingly there is no question that the 

paucity of EPC levels among PCI patients, combined with the fact that traditional CVD 

RFs impair normal survival, differentiation, proliferation, migration (Fadini et al., 2007) 

and engraftment (Chavakis et al., 2008) of the few EPCs remaining, negatively impacts 

upon PCI outcomes. Paradoxically, it is those patients who undergo vascular 

interventions that have both reduced EPC numbers and function, despite having the 

greatest need for these cells to repair the injured vessels. Thus, the functional 

impairment identified in EPCs from high-risk CVD patients poses itself an additional 
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hurdle for mobilisation strategies or for using autologous cell sources for 

transplantation. At present, there is no pharmacological treatment available to increase 

arterial endothelialisation established as such. Recently, one of the key breakthroughs 

for the study of gene expression regulation has been the discovery of micro ribonucleic 

acids (miRNAs), which may directly regulate 30% (C. Zhang, 2010) to 90% (R. A. Ambros, 

2000) of the genes in a cell. The expression of miRNAs can regulate various aspects of 

stem/progenitor cell functions (Heinrich & Dimmeler, 2012). A priming/regeneration 

therapy utilising miRNAs, designed to increase EPC adhesion, survival and proliferation 

at the site of injury in elderly patients with chronic disease, could considerably facilitate 

vascular repair. 

 

miRNAs as potent transcriptional regulators 
 

microRNAs are a type of regulatory non coding RNAs (ncRNAs) which have been recently 

shown to govern fundamental processes during vascular disease (Iaconetti, Gareri, 

Polimeni, & Indolfi, 2013). Unlike structural ncRNAs, which include ribosomal and 

transfer RNAs, regulatory ncRNAs can further be classified according to their transcript 

size (Iaconetti et al., 2013; X. Liu, Hao, Li, Zhu, & Hu, 2015) (Table 3). 

 

Table 3 | Classification of non-coding regulatory RNAs. 
Noncoding regulatory RNAs Abbreviation Functions 

Small (<50 nucleotide) 

microRNAs 

PIWI-interacting RNA 

short interfering RNA 

 

miRNA 

piRNA 

siRNA 

 

post-transcriptional regulators 

DNA methylation, transposon repression 

RNA interference 

Medium (50-200 nucleotide) 

small nucleolar RNAs 

promoter upstream transcripts 

transcription initiation RNAs 

 

snoRNA 

PROMPTs 

tiRNAs 

 

RNA modification, rRNA processing 

Associated with chromatin changes 

Epigenetic regulation 

Long (>200 nucleotide) 

long intergenic ncRNA 

enhancer-like ncRNA 

transcribed ultraconserved regions 

natural antisense transcripts 

promoter-associated long RNAs 

pseudogenes 

 

lincRNAs 

eRNA 

T-UCRs 

NATs 

PALRs 

None 

 

Epigenetic regulators of transcription 

Transcriptional gene activation 

Regulation of miRNA and mRNA levels 

mRNA stability 

chromatin changes 

microRNA decoys 
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The first miRNA was identified in C. Elegans in 1993 (R. C. Lee, Feinbaum, & Ambros, 

1993). Back then lin-4 was thought to be a worm-specific curiosity, but with the 

subsequent identification of the phylogenetically conserved let-7 (Pasquinelli et al., 

2000), scientists took greater notice and began looking for other similar small non-

coding RNAs. Since then, thousands of miRNAs have been identified, and it is evident 

now that they have a considerable impact on shaping transcriptomes and proteomes of 

eukaryotic organisms (Lim et al., 2005). In fact, miRNA have been shown to control EC 

and VSMC biology and thereby can regulate the progression of vascular diseases, such 

as restenosis (Iaconetti et al., 2013). 

 

 

Biological definition and function of miRNAs 

 

miRNAs are a class of approximately 22-nucleotide long regulatory noncoding RNAs, 

which work at a post-transcriptional level, i.e. between the transcription and the 

translation of a gene at the RNA level. They are now known to be critical regulators of 

signalling pathways in multiple cell types including ECs, EPCs and perivascular cells 

(Garcia de la Torre et al., 2015). miRNAs are assembled into RNA-induced silencing 

complexes (RISC) resulting (mostly) in gene silencing, either by transcript destabilisation, 

translational inhibition, or both (Filipowicz, Bhattacharyya, & Sonenberg, 2008) (Figure 

13). The current notion is that translational inhibition alone seems to be the exception 

rather than the rule, at least for mammalian miRNAs (Siomi & Siomi, 2010). The 

specificity of miRNAs to their target messenger ribonucleic acids (mRNAs) is canonically 

determined by base-pairing of a 6–8-nucleotide seed sequence in the 5′ end of the 

mature miRNA to a perfectly or imperfectly complementary match sequence in the 3′ 

UTR end of the target mRNA (Bartel, 2004; Hausser & Zavolan, 2014). More than 60% of 

human protein-coding genes are predicted to contain miRNA-binding sites within their 

3´UTRs (Friedman, Farh, Burge, & Bartel, 2009). The nature of the miRNA:mRNA 

interaction means that a single miR can target sequentially, on average, hundreds of 

distinct mRNA molecules with related biological functions (Lim et al., 2005; Siomi & 

Siomi, 2010; Urbich, Kuehbacher, & Dimmeler, 2008). Moreover, conversely, individual 

mRNAs can be targeted by multiple miRs which appear to act cooperatively, since 
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mRNAs frequently possess multiple miRNA-binding sites. Hence, it has become evident 

that complementary miRNAs often function by acting in concert, resulting in a highly 

complex miR regulatory potential. Additionally, several miRNAs exhibit tissue-specific 

expression patterning, suggesting a cell type-specific function (W. J. Yang et al., 2005). 

 

 

Biogenesis and maturation of miRNAs 

 

The transcription of miRNAs depends on their localisation within the genome. Primary 

miRNA transcripts (pri-miRNA) are generated individually or in clusters after the 

transcription of specific sequences by RNA polymerase II and III located either in exons 

or introns of coding genes or non-coding genes (Issler & Chen, 2015; Urbich et al., 2008). 

miRNAs that have their promoters are independently expressed, while miRNAs 

organised in clusters share similar transcriptional modulation (Urbich et al., 2008). Pri-

miRNAs form unique secondary hairpin structures (one or more), each composed of a 

stem and a terminal loop (Figure 13). Pri-miRNAs are 5’-capped, spliced, and 

polyadenylated, and they can produce more than one functional miRNA (Siomi & Siomi, 

2010). 

 

The pri-miRNA nuclear processing into stem–loop precursors is mediated by a complex 

containing Drosha and the microprocessor complex subunit DiGeorge syndrome critical 

region 8 (DGCR8). The Microprocessor complex includes several other cofactors such as 

the DEAD-box RNA helicases p68 (DDX5) and p72 (DDX17), as well as heterogeneous 

nuclear ribonucleoproteins (hnRNPs)(Gregory et al., 2004), which may function to 

promote the specificity and activity of Drosha cleavage (Siomi & Siomi, 2010). Following 

cleavage, the RNA molecule is reduced to 70–110 nucleotides in length, and it is referred 

to as precursor miRNA (pre-miRNA). Nuclear processing generates a product with a 2 

nucleotide 30 overhang (Siomi & Siomi, 2010), characteristic of RNase III-mediated 

cleavage. The pre-miRNA is then exported to the cytoplasm through exportin 5 (XPO5) 

which recognises the overhang, in a complex with RAS-related nuclear protein (RAN)–

GTP (Issler & Chen, 2015). 
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Figure 13 | miRNA biogenesis, maturation pathway and mode of action. 
The miRNA biogenesis pathway is a series of biochemical steps that converts the primary miRNA transcript 
(pri-miRNA) to the biologically active, mature miRNA. MiRNAs are transcribed from intergenic or intronic 
genomic sequences as mono- or polycistronic, long, primary precursor transcripts (pri-miRNAs). These are 
cleaved into precursor hairpins (pre-miRNAs) by the nuclear RNase III-like enzyme Drosha. Drosha cleaves 
the 5′ and 3′ arms of the pri-miRNA hairpin, whereas DGCR8 stabilises the complex and determines the 
precise cleavage site. Pre-miRNAs hairpins are then exported to the cytoplasm by Exportin-5 in a Ran-
GTP–dependent manner and are further cleaved by a complex containing the endonuclease Dicer to 
mature miRs of 18 to 25 nucleotide length. Following Dicer-mediated cleavage, Dicer and its interaction-
domain protein TAR RNA binding protein (TRBP) dissociate from the miRNA duplex to form the active 
RNA-induced silencing complex (RISC) that becomes functional upon assembly of one of the two strands. 
The RNA-induced silencing complex directs the miRNA to the target mRNA, which leads either to 
translational repression or degradation of the target mRNA. The re-import of miRNAs into the nucleus or 
its export through exosomes are alternative options. Adapted from (Issler & Chen, 2015), (Kuehbacher, 
Urbich, & Dimmeler, 2008), (Urbich et al., 2008) and (Bauersachs & Thum, 2011). AGO2 – argonaute 2; 
ATP – adenosine triphosphate; DGCR8 -DiGeorge syndrome critical region 8; GTP – guanosine 
triphosphate; mRNA – messenger RNA; miRNA – microRNA; miRISC – miRNA-loaded into RNA-induced 
silencing complex; XPO5 – exportin 5. 

 

 

The pre-miRNA is then cleaved by Dicer to generate a mature ~22-nucleotide miRNA 

duplex. While most miRNAs are produced by this canonical pathway, in certain 

circumstances, splicing can replace Drosha-mediated processing of pri-miRNAs into pre-

miRNAs. The less abundant miRNAs which circumnavigate Drosha processing are called 

mirtrons, and consist of pre-miRNA- like hairpins that are made by splicing and 

debranching of short hairpin introns. If the intron-derived miRNAs resulting from splicing 

from their host transcripts and the debranching lariat enzyme has the appropriate size 

to form a hairpin resembling a pre-miRNA, it then bypasses Drosha cleavage (Winter, 

Jung, Keller, Gregory, & Diederichs, 2009).  
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The double-stranded duplex must be separated into the primary strand (which is 

complementary to the target mRNA) and the passenger strand (which is subsequently 

degraded). Selection of the miRNA strand which will be incorporated into the RISC is 

regulated in a cell type-specific manner, but one important parameter for strand 

selection is the thermodynamic asymmetry of the miRNA duplex (Khvorova, Reynolds, 

& Jayasena, 2003). Typically, the miRNA strand whose 5’ end is less stably base-paired 

will be more frequently sorted as the functional guide (Siomi & Siomi, 2010). 

Nevertheless, recent deep-sequencing studies revealed that pre-miRNAs could be 

bifunctional with individual passenger strands sometimes not being degraded, but 

rather associate with Argonaute2 (AGO2) dependent on specific mismatches (Siomi & 

Siomi, 2010). The strand of the mature miRNA is then loaded into the RISC complex 

together with two major class of proteins (AGO2 and GW182)(Issler & Chen, 2015), 

guiding the complex to target the 3′ untranslated region (3′ UTR) of the mRNAs to 

promote their degradation or simply inhibit their translation. Although the entire 

sequence of miRNA can bind to the target, it is usually nucleotides at position 2-7 that 

compose the seed sequence that determines target specificity (Lai, 2002). Whereas 

mRNA degradation needs a high miRNA-target complementarity, the translational 

repression only requires low miRNA-target complementarity (Lewis, Shih, Jones-

Rhoades, Bartel, & Burge, 2003). The GW182 proteins have been shown to interact with 

the cytoplasmic poly(A)-binding protein (PABP) and together might function as a scaffold 

for the assembly of the multiprotein deadenylation complex that silences miRNA 

targets, including the PAN2-PAN3 and CCR4-NOT (Bauersachs & Thum, 2011). 

Additionally, human AGO2 can endonucleolytically cleave target mRNA (via Rnase H 

recruitment) which is perfectly complementary to the miRNA (Dias & Stein, 2002; D. 

Gibbings & Voinnet, 2010). Of note, miRNAs in the cell are present as miRISC complexes, 

in which both the 5’ and 3’ ends are thought to be bound directly by AGO2, thus being 

protected from instantaneous exonuclease-mediated degradation (Y. Wang, Sheng, 

Juranek, Tuschl, & Patel, 2008). Re-importation of miRNAs into the nucleus is an 

alternative pathway and is especially relevant because there is accumulating evidence 

that miRNAs can regulate gene expression at the transcriptional level (Kim, Saetrom, 

Snove, & Rossi, 2008). 
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Location of the miRNA machinery 

 

There appears to be a link between miRNA -mediated silencing and membrane 

trafficking since formation and turnover of the RISC complex occur at the endosomal 

membrane (Siomi & Siomi, 2009) (Figure 14). Endosome maturation requires gradual 

accumulation of inwardly budding vesicles termed multivesicular bodies (MVB), using 

the Endosomal Sorting Complex Required for Transport (ESCRT). Depleting ESCRT will 

block MVB formation, which results in impaired miRNA silencing (Piper & Katzmann, 

2007). GW182 and AGO2, mutually associated with miRNA gene silencing, are enriched 

in the endosomal MVB fraction in particular foci called GW-bodies (D. J. Gibbings, 

Ciaudo, Erhardt, & Voinnet, 2009), which are GW182-rich and DCP1-poor. In fact,  MVBs 

seem to be the site where miRNA biogenesis and RISC-assembly pathways intersect, 

with continuous removal of GW182 being required for the efficient passage of miRNA 

strand duplex from DICER to AGO2 (Siomi & Siomi, 2009). AGO2 is an essential 

component of the RISC complex that can directly degrade mRNA by slicing (Meister, 

2013). A second AGO2 pool distinct from GW-bodies has been identified. These GW182-

poor cytoplasmic foci are called cytoplasmic processing bodies (P‑bodies). Inside the P-

body, miRNA targets are sequestered from the translational machinery and are 

subjected to mRNA degradation, at least partially, through deadenylation. There, 

enzymes involved in mRNA decapping (DCP1 and DCP2) are usually concentrated and 

promote translational inhibition and mRNA decay (Meister, 2013). RISC complex and 

P‑bodies seem to interact physically (Siomi & Siomi, 2009) with targeted mRNAs being 

pushed away from the translational machinery into the latter. The miRNA-mediated 

silencing occurs by fusion with lysosomes and consequential release of the miR-RISC to 

another repression cycle. Concordantly, blocking the maturation of MVBs into 

lysosomes by the loss of the tethering factor HPS4 enhances miRNA-mediated silencing 

and leads to overaccumulation of GW‑bodies (Y. S. Lee et al., 2009). KRAS-MEK-ERK 

(Extracellular signal–regulated kinase) signalling was shown to occur on late endosomes 

(McKenzie et al., 2016), and in fact,  MEK-ERK signalling downstream of mutant KRAS 

suppresses AGO2 (via phosphorylation) and its association with MVBs, thereby 

inhibiting release of AGO2 and several miRNAs in exosomes, favouring their transfer into 

P-bodies (McKenzie et al., 2016). Alternatively, if AGO2 is not phosphorylated, miRNAs 
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can be packaged inside 50- to 90-nm membrane-derived particles called exosomes, 

which are generated from MVBs and are secreted from the cells after fusion with the 

plasma membrane, into plasma or other cells (Y. S. Lee et al., 2009; Valadi et al., 2007). 

Not to be confused with microvesicles which are directly shed from the cell membrane. 

Of note, there seems to be a protection via association with other molecules (e.g., the 

miRNA– AGO2 complex (Melo et al., 2014)) or modifications of the miRNAs that make 

them resistant to RNase activity when being transported or when unloaded from the 

exosomes.  

 
 

Figure 14 | miRNA-RISC assembly & turn-over and corresponding cellular compartments 
MVBs are late endosomal compartments, between early endosomes and lysosomes. MVBs can also 
release internal vesicles, called exosomes, into the extracellular space. RISC formation and turnover 
appear to occur in MVBs, specifically at GW bodies. Briefly, PABP binds the CBC, as well as the 3’ polyA-
tail of a 5’ m7G capped mRNA, thereby circularising the mRNA allowing it to be translated by ribosomes. 
Recognition of an mRNA by a miRNA bound to AGO2 which favours the release of CBC from mRNA. Upon 
CBC release, new translation initiation cannot occur, and ribosomes are eventually released from the 
repressed mRNA. Repressed mRNA is no longer circularised by PABP linking the 5’ cap and polyA tail. PABP 
is presumably released at this stage from repressed mRNA since PABP is not enriched in P-bodies. P-bodies 
are enriched in mRNA decapping and deadenylation complexes (DCP1A/DCP2 and CAF1/CCR4-NOT, 
respectively). Cap and polyA tail are removed from repressed mRNA. AGO is released from miRNA and 
repressed mRNA. Then, HSP90 stabilises empty AGO, which is presumably retained on the membrane. 
AGO binds Dicer and acquires the duplex miRNA. On the other hand, phosphorylation of AGO2 specifically 
inhibits AGO2 association with MVBs (reduced slicing activity), diminishes secretion into exosomes, and 
increases association with P-bodies (therefore promoting translational repression). Adapted from (D. 
Gibbings & Voinnet, 2010) and (McKenzie et al., 2016). AGO2 – argonaute 2; CBC - Cap-Binding Complex; 
CAF1 - chromatin assembly factor-1; DCP1 - mRNA-decapping enzyme 1; DCP2- mRNA-decapping enzyme 
2; ESCRT - endosomal sorting complexes required for transport; HPS4 - Hermansky-Pudlak syndrome 4 
protein; HSP90 – heat shock protein 90; MEK – mitogen-activated protein kinase; mRNA – messenger 
RNA; miRNA – microRNA; MVB - multivesicular bodies; PABP - Poly(A)-binding protein; RISC – RNA-
induced silencing complex. 
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miRNA regulation 

 

Importantly, most miRNAs exhibit strict developmental stage-specific and tissue-specific 

expression patterns, and moreover, their levels can become altered during disease 

(Siomi & Siomi, 2010). In contrast to the linear miRNA processing pathway that was 

initially thought to be universal for the biogenesis of all mature miRNAs, multiple studies 

led to the understanding that there are several regulatory options to express and 

process individual miRNAs differentially. Many steps can be performed in multiple ways, 

omitted or replaced, and are affected by different mechanisms for individual miRNAs. 

miRNA expression is mainly controlled at the transcriptional level, through feedback 

regulation. For instance, some miRNAs regulate transcription factors that, in turn, 

regulate expression of the miRNA, forming a negative feedback loop (Siomi & Siomi, 

2010). Moreover, host genes harbouring miRNA sequences in their intronic sites impose 

their pattern of expression to the respective miRNAs (Kuchen et al., 2010). Remarkably, 

several miRNAs exhibit a promoter structure similar to that of protein-coding genes (i.e., 

TATA box, initiator elements, frequencies of CpG islands, transcriptions factor bindings 

sites), making them amenable to transcriptional regulation (Figure 15) (Ozsolak et al., 

2008). Particularly, regulatory sequences present in their promoters can lead to tissue 

and development-specific miRNA expression (Obernosterer, Leuschner, Alenius, & 

Martinez, 2006). miRNA editing can be another biogenesis regulation step.  Editing 

corresponds to the post-transcriptional change of RNA sequences by deamination of 

adenosine (A) to inosine (I), altering the base pairing and structural properties of the 

transcript. Editing of miRNA transcripts by ADAR1 and ADAR2 inhibits its cleavage by the 

endonuclease Drosha and leads to the degradation by the ribonuclease Tudor-SN, which 

preferentially cleaves double-stranded RNA containing inosine–uracil pairs (W. Yang et 

al., 2006). Editing can also impact further downstream processing steps such as cleavage 

by Dicer in the cytoplasm (Winter et al., 2009). Additionally, miRNAs’ maturation can be 

suppressed as a consequence of the Drosha or Dicer -processing steps (Obernosterer et 

al., 2006; Thomson et al., 2006).  
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Figure 15 | Transcriptional regulation of miRNAs. 
Most miRNAs are processed by RNA polymerase II from independent genes or introns of protein-coding 
genes. Usually, miRNAs have their promoter region, regulated by numerous transcription factors. In a 
main canonical pathway, primary miRNA precursors (pri-miRNA) are first processed by Drosha and then 
exported to the cytoplasm. Few pre-miRNAs are produced independently (thus bypassing Drosha-
mediated processing) from very short introns of genes (mirtrons) by splicing actions. Drosha associates 
with DGCR8 and many other cofactors to form the Drosha-DGCR8 complex. Many factors associate with 
the Drosha/DGCR8 complex, thereby regulating its stability and activity. The p68 forms heterodimers with 
p72, p53, and Smad factors, whereas further editing of pri-miRNAs occurs by ADARs that affect miRNA 
accumulation and miRNA target specificity. After export to the cytoplasm, pre-miRNAs associate with the 
endonuclease Dicer and several other regulatory proteins, such as TRBP and Argonaute 2. AGO2 and PABP 
can interact with the deadenylases CAF1/CCR4 or with DCP1/2, facilitating mRNA deadenylation and 
uncapping respectively, thus contributing towards mRNA degradation. Additionally, human AGO2 can 
endonucleolytically cleave target mRNA which is perfectly complementary to the miRNA. Adapted from 
(Siomi & Siomi, 2010). ADAR - adenosine deaminases acting on RNA; CAF1 - chromatin assembly factor-1; 
DCP1 - mRNA-decapping enzyme 1; DCP2- mRNA-decapping enzyme 2; hnRNP - heterogeneous nuclear 
ribonucleoprotein; PABP - Poly(A)-binding protein; NF - nuclear factor; KSRP -  KH-type splicing regulatory 
protein; SMAD - mothers against decapentaplegic homolog; SNIP1-   Smad nuclear interacting protein 1; 
TF – transcription factors; TRBP - transactivation-response RNA-binding protein. 

 

 

Other layers of biogenesis modulation have been described such as epigenetic (e.g. 

methylation inactivation) or during export of pre-miRNA from the nucleus to the 

cytoplasm (which may be differentially regulated). Interestingly, many miRNAs are 

encoded in the genome as clusters and are transcribed as polycistronic primary 

transcripts. However, there is evidence that miRNAs located in those clusters can be 

independently regulated (Guil & Caceres, 2007), suggesting that individual miRNAs can 

be regulated post-transcriptionally by factors that confer them specificity. Other post-

transcriptional regulatory mechanisms during miRNA maturation include strand 

selection mechanisms and stabilisation of the transcripts through terminal adenylation 

(Katoh et al., 2009). Also, it seems that miRNA degradation by exonuclease XRN-2 can 
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be blocked by the binding of miRNA-target RNA, suggesting that targets can modulate 

the stability of specific mature miRNAs and help to prevent detrimental overexpression 

of miRNAs when target abundance is low. In summary, it is conceivable that that miRNA 

processing pathways are more complex than currently recognised. 

 

miRNA terminology 

 

Several thousands of miRNAs across different species have been identified. Thus, an 

intuitive annotation system had to be adopted (V. Ambros et al., 2003). Newly identified 

miRNA genes are numbered sequentially and prefixed by 'mir' followed by a dash (e.g., 

mir-92). The uncapitalized 'mir' refers to the pre-miRNAs while the capitalised 'miR' 

refers to the mature forms. miRNAs with similar mature sequences are annotated in 

lower case letters to show their similar structure (e.g., miR-92a and miR-92b). Distinct 

precursor sequences that express equal mature sequences are indicated with an 

additional number (e.g., miR-92a-1 and miR-92a-2). Annotation for the species they are 

identified in should come first (e.g., hsa-miR-92a in Homo sapiens). miRNAs originating 

from the 3′ end or 5′ end are denoted with a '-3p' or '-5p' suffix, respectively (e.g., miR-

92a-1-3p and miR-92a-1-5p).  

 

Upregulation of miR-92a following vascular injury 

 

Over the last few years, several miRNAs have been recognised as emerging gene 

regulators in the pathogenesis of vascular remodelling (L. J. Chen, Lim, Yeh, Lien, & Chiu, 

2012). EPCs, ECs, VSMCs and inflammatory cells, all have specific roles in restenosis and 

vascular remodelling after angioplasty and stenting. MiRNAs are ubiquitous and have 

been shown to modulate the stress response of ECs to injury, to drive VSMC phenotype 

switch, and to control macrophage function involved in arterial remodelling (L. J. Chen 

et al., 2012). Evidence of changes in miRNA expression profiles after angioplasty in 

animal models is growing, and a few expression signatures have now been correlated 

with restenosis (Small & Olson, 2011). Compared with uninjured arteries, microarray 

analysis demonstrated that 7 days after balloon angioplasty 113 out of 140 miRNAs were 

differentially expressed: 60 were up-regulated, and 53 were down regulated (Ji et al., 
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2007). At 14 days after injury, 63 were upregulated, and 47 were downregulated out of 

140 artery miRNAs, whereas 102 of the 140 artery miRNAs were aberrantly expressed 

(55 overexpressed and 47 downregulated) at 28 days after angioplasty. A large number 

of miRNAs that were found to be upregulated both in VSMCs and in ECs after or during 

vascular injury further highlights their importance in the pathophysiology of arterial 

restenosis after injury (Gareri, De Rosa, & Indolfi, 2016). Using this microarray approach, 

Ji and colleagues noticed that miR-21 was upregulated 5-fold in neointimal lesions, 

which was confirmed by qPCR. This miRNA is particularly interesting because it 

highlights an orchestrated action targeting different molecules in the EPC, EC, VSMC or 

macrophage, leading to various stress-specific responses, but exerting their function in 

a combined mode, across interacting cell types. MiR-21 simultaneously induces EPC 

senescence through High motility group AT-hook 2 (HMGA2) (Zhu et al., 2013), reduces 

EC-mediated angiogenesis and migration by targeting RhoB (Sabatel et al., 2011), 

promotes proliferation and inhibits apoptosis of VSMC via suppression of the 

phosphatase (PTEN) and up-regulation of Bcl-2 (Ji et al., 2007), and enhances VCAM-1– 

and CCL2-dependent monocyte adhesion via suppression of PPAR-gamma (Zhou et al., 

2011).  

 

Given the miR-21 example, the scientific community became convinced that the 

identification of miRNAs that might have specific functions in vascular remodelling by 

advanced high-throughput analyses at the transcriptome levels in injured vessels could 

unveil a new class of potential therapeutic targets for restenosis. Revisiting the 

microarray data, I searched for another miRNA aberrantly expressed after vascular 

injury which could theoretically have a differential effect on ECs and SMCs (Table 4). 

Such miRNA aimed to selectively accelerate the formation of novel endothelium on 

injured segments (and simultaneously inhibit smooth muscle) could putatively be an 

attractive strategy to prevent post-injury restenosis. 

  



 

Introduction - 89 
 

Table 4 | miRNAs possibly involved in the vascular response to injury. 
(+) or (−), respectively, indicate induction or inhibition of a specific phenotype/biological effect. Adapted 
from (Polimeni, De Rosa, & Indolfi, 2013), (Forte et al., 2014) and (Gareri et al., 2016). BMPR2 - bone 
morphogenetic protein receptor type II; Cdc-42 - cell division control protein 42; EC – endothelial cell; 
FGF1 – fibroblast growth factor 1; FOXO4 - Forkhead box protein O4; HMGA2 - High-mobility group AT-
hook 2; ITGA5 – integrin alpha 5 subunit; KDR – kinase insert domain receptor; KLF-2 - Krüppel-like factor 
2;  KLF-4 - Krüppel-like factor 4; KLF-5 - Krüppel-like factor 5; miR – microRNA; MKK4 - mitogen-activated 
protein kinase kinase 4; PTEN - phosphatase and tensin homolog; RhoB - Ras homolog gene family; 
member B; SDF1 – stromal derived factor 1; SMAD3 - small mother against decapentaplegic; SMC – 
smooth muscle cell; Spred1 - Sprouty-related; EVH1 domain-containing protein 1; STIM - stromal 
interaction molecule; uPA - urokinase-type plasminogen activator - VCAM-1; vascular cell adhesion 
molecule 1; WWP1 - NEDD4-like E3 ubiquitin-protein ligase. 

miRNAs In vitro effect in ECs Modulation 
after injury 

Validated targets 

miR-21 Apoptosis and proliferation (-) ↑ HMGA2, RhoB 

miR-92a 
Angiogenesis, proliferation and 
migration (-) 

↑ ITGA5, KLF-4, MKK4 

miR-126 
Vascular integrity and angiogenesis  
(-) 

↑ Spred-1, VCAM-1, KDR, 
SDF1 

miR221/222 Proliferation and migration (-) ↑ c-kit, eNOS 

miRNAs In vitro effect in SMCs Modulation 
after injury 

Validated targets 

miR-17~92 
Differentiation, migration and 
proliferation (+) 

↑ BMPR2 

miR-21 Apoptosis and proliferation (+) 
↑ PTEN, BMPR2, BCl2, 

WWP1 YOD1, SATB1 

miR-23b 
Differentiation, migration and 
proliferation (-) 

↓ FOXO4, uPA, SMAD3 

miR-31 Pro-synthetic (+) ↑ LATS2 

miR-133a Differentiation and proliferation (-) ↓ Sp-1 

miR-125 
Differentiation, migration and 
proliferation (-) 

↓ Ets-1 

miR-145 
Differentiation, migration and 
proliferation (+) 

↓ KLF-5, KLF-4, 
calmodulin kinase IIδ 

miR-143 Proliferation and migration (-) ↓ KLF-5, Elk-1 

miR-146 Proliferation and migration (+) ↑ KLF-4 

miR-195 Proliferation and migration (-) ↓ Cdc-42, FGF1, Cyclin D1 

miR-221/222 Proliferation and migration (+) ↑ p27, p57 

miR-424 
Differentiation, migration and 
proliferation (+) 

↑ Cyclin D1, STIM, 
Calumenin 
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miR-92a, which was overexpressed at 1.57 in a log2ratio compared to normal arteries 

after 28 days (Ji et al., 2007), seemed to be a match, given that its overexpression results 

in a significant reduction in EC proliferation and migration in vitro, while the same does 

not apply to SMCs when subject to the same treatment (Daniel et al., 2014). These 

findings suggest that the functional impact of miR-92a is predominantly restricted to 

ECs. Vice versa, inhibition of miR-92a produces differential effects on ECs and VSMC, 

reducing proliferation of the latter (Iaconetti et al., 2012). Already during my PhD, miR-

92a was confirmed by qPCR to be significantly up-regulated in ECs adjacent to the 

vascular injury site following wire-induced manipulation of the femoral artery in mice 

(Daniel et al., 2014). This is particularly interesting for EPC priming since there are 

reasons to believe that EPCs, besides sharing some functional features with ECs, also 

have a similar miRNA signature, which includes miR-92a, miR-126, miR-130a and miR-

221/222 (Q. Zhang, Kandic, & Kutryk, 2011).  

 

Circulating miR-92a as biomarker 

 

Interestingly, although miR-92a levels rise locally after vascular injury (Daniel et al., 

2014), circulating miR-92a levels in CAD patients are significantly downregulated 

(Fichtlscherer et al., 2010). The exact mechanisms leading to this reduction remain 

unclear. Possible reasons put forward include exhaustion of miRNAs storage and 

production in vascular cells after bout release and activation of the vasculature, or, 

alternatively, enhanced uptake by blood cells or cells at the atherosclerotic/injury 

lesions. When these patients are treated with statins a trend towards a further reduction 

in the levels of circulating miR-92a is observed (Fichtlscherer et al., 2010; Y. Jiang et al., 

2015), suggesting that low circulatory levels of miR-92a likely represent a global 

compensatory protective mechanism that might be boosted in response to statin 

therapy, while miR-92a overexpression following injury is part of a stress and harmful 

response. This phenomenon reinforces the potential role of circulating miRs as 

biomarkers for diagnosis of CVD. In fact, circulating miR-21, miR-143, miR-145, and miR-

100, which are found to be dysregulated in patients with intra-sent restenosis compared 

to controls, have already been studied as biomarkers for intra-stent restenosis (He et 
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al., 2014), which could easily be exploited to risk stratify patients after PCI non-invasively 

and to assess possible intervention failure (He et al., 2014).  

 

 

The importance of miR-92a in vascular biology 

 

The modulation of vascular-specific processes by some miRNAs which control cell 

growth, migration, apoptosis, capillary tube formation has been extensively studied to 

date (Bonauer, Boon, & Dimmeler, 2010).  In the next section, I focus on the specific role 

of miR-92a in vascular biology. 

 

 

miR-92a-1 is encoded in the mir-17~92 cluster 

 

The polycistronic mir-17~92 cluster maps to human chromosome 13 and encodes 6 

mature miRNAs (miR-17, miR-18a, miR-19a, miR-19b, miR-20a and miR-92a-1) 

transcribed as one common primary transcript (Concepcion, Bonetti, & Ventura, 2012; 

Venturini et al., 2007). The sequence of the mir-17~92 cluster is highly conserved among 

vertebrates, and evolutionary gene duplications followed by subsequent loss of 

individual miRNA components have resulted only in two mammalian paralogs: the miR-

106a~363 cluster and the miR-106b~25 cluster (Figure 16). These are located on 

different chromosomes and contain individual miRNAs that are highly similar to those 

encoded by the mir-17-92 cluster. The miR-106a~363 is located on chromosome X, while 

the miR-106b~25 cluster is located on human chromosome 7.  It is curious to note that 

not only the sequence of each miRNA component is highly conserved across species 

among all 3 paralogs, the entire organisation of these miRNAs within the family also 

exhibits a high level of conservation. Curiously, ablation of miR-106b~25 or miR-

106a~363 causes no obvious phenotype (Ventura et al., 2008). The functional 

significance of this conservation remains still unclear (Olive, Jiang, & He, 2010). Another 

important concept is that of “seed family”. miRNAs with similar seed sequences are 

predicted in silico to target highly overlapping sets of genes and are usually grouped 

functionally in the same “seed family”. 
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Figure 16 | Schematic representation of the gene of miR17~92 cluster and its paralogs. 
miRNAs sharing the same seed sequence are represented by boxes of the same colour. The miRNAs 
encoded by the 3 clusters can be categorized into four separate miRNA families according to their seed 
sequences, including the miR-17 family (miR-17, miR-20a, miR-20b, miR-106a, miR-106b and miR-93), the 
miR-18 family (miR-18a and miR-18b), the miR-19 family (miR-19a, miR-19b-1 and miR-19b-2) and the 
miR-92 family (miR-92a-1, miR-92a-2, miR-363 and miR-25). Black bands represent future mature strand 
regions. Adapted from (Concepcion et al., 2012). chr – chromosome; miR – miRNA. 

 

 

The miR 17~92 polycistron first raised awareness after several studies revealed its 

upregulation in different hematologic (Venturini et al., 2007) and solid (Hayashita et al., 

2005; Volinia et al., 2006) malignancies and that there was an association with cancer-

related angiogenesis (Kuehbacher et al., 2008). Nevertheless, opposing studies showed 

that the DNA region encoding the cluster is deleted in patients with ovarian, breast and 

melanoma cancers (L. Zhang et al., 2006). Moreover, enforced expression of miR-17 in 

breast cancer cell lines reduces the proliferation of the cancer cells, likely via repression 

of AIB1, a transcriptional co-activator of E2F1 and the oestrogen receptors (Hossain, 

Kuo, & Saunders, 2006). Further adding to the complexity of this cluster’s signature, 

there is considerable evidence suggesting that its various members differ in their 

oncogenic potential (Concepcion et al., 2012).  Therefore, one might speculate that the 

mir-17~92 cluster tumorigenicity is context, cell and miR product-dependent, although 

it is also possible that its multiple members can act synergistically, either by converging 

on the same targets or by targeting multiple nodes from a common pathway or 

biological output.  Theoretically, depending on cell type and physiological context, there 

is an enormous plasticity potential for gene regulation here, as different target mRNAs 
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may be repressed by a combination of cluster components. Additional roles for the mir-

17~92 cluster have been identified. These include the regulation of essential immune 

and hematopoietic processes, and of the lung, heart and skeletal development (Bonauer 

& Dimmeler, 2009; Xiao et al., 2008).  In fact, the developmental defects can be severe 

enough to cause death shortly after the birth of mir-17~92 homozygotes null mice, with 

lung hypoplasia and a ventricular septal defect (Ventura et al., 2008). Remarkably, there 

is a lack of an obvious vascular phenotype in mir-17~92–deficient mice, hinting that the 

cluster may not be essential for endothelial differentiation during embryonic 

development (Jevnaker, Khuu, Kjole, Bryne, & Osmundsen, 2011). Although the mir-

17~92 cluster has been associated with fundamental aspects of EC biology, namely, the 

regulation of cell cycle and sprouting angiogenesis, curiously, neither the cluster nor its 

individual members seem to be essential for endothelial differentiation (Treguer, 

Heinrich, Ohtani, Bonauer, & Dimmeler, 2012). Individual and combined inhibition of 

the members of the miR-17–92 cluster during differentiation from ESC or iPS cells did 

not affect the expression of well-established endothelial markers.   

Recently, a hemizygous germline deletion involving the mir-17~92 locus has been 

identified as the genetic determinant of the rare autosomal dominant condition known 

as Feingold syndrome (Marcelis et al., 2008). Patients with this condition present a 

broad range of skeletal defects, including short stature, brachymesophalangy and 

microcephaly. Affected individuals may also present mental retardation and 

gastrointestinal atresia, albeit with lower penetrance (Marcelis et al., 2008).  

 

This syndrome with peculiar phenotype abnormalities highlights the importance of 

miRNA in fine-tuning gene expression in a timely, spatially and coordinated manner. 

Given the functional specificity of different mir-17~92 components, it is evident now 

that the polycistronic cluster is subjected to complex transcriptional regulation. The 

cluster regulation at transcriptional level relies on its promoter (Figure 17). ChIP assay 

has shown the binding of c-Myc, E2F, and cyclin D1 to the upstream promoter region of 

the miR-17–92 cluster (O'Donnell, Wentzel, Zeller, Dang, & Mendell, 2005). Also, an 

STAT3 binding site is present in this promoter (Brock et al., 2009).   

Inhibition of their transcriptional activity or targeting the respective downstream 

signalling pathways have been shown to prevent neointima formation. Venturini and 
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O’Donnell were the first to show that c-Myc stimulated the transcription of the miR-

17~92 cluster in human B-cells and chronic myeloid leukaemia cells (O'Donnell et al., 

2005; Venturini et al., 2007). Remarkably, the cluster can be directly activated by c-Myc 

proto-oncogene alone or in association with RAS (Dews et al., 2006; O'Donnell et al., 

2005). Not surprisingly, the cluster is also documented to be transcriptionally activated 

by c-myc homolog MYCN in neuroblastoma cells (Haug et al., 2011). In fact, the 

observations that either MYCN loss-of-function mutations or miR-17~92 

haploinsufficiency can lead to the very same defective Feingold phenotype are in 

agreement (Marcelis et al., 2008). These findings are consistent with the functions of 

mir-17~92 in promoting proliferation in a diversity of cell types, including cells of 

epithelial, lymphoid and neural origin. An interesting aspect is that, in contrast to the 

expression of the mir17~92 cluster promoter transcription factors, miR-92a alone seems 

to be mainly expressed in ECs (Iaconetti et al., 2012), so that clinical inhibition of miR-

92a might result in higher cell specificity than inhibition of the corresponding 

transcription factors. Further transcriptional activators found to directly bind to the 

promoter of miR-17~92 include E2Fs  (chromatin immunoprecipitation reveals that E2F3 

is the major E2F family member that binds to the promoter region according to 

(Sylvestre et al., 2007)), Smad3 and Cyclin D1, which are regulated by miR-17 and miR-

20a, which in turn can regulate the cluster promoter through a negative feedback loop 

(Bonauer & Dimmeler, 2009; T. Luo, Cui, Bian, & Yu, 2014; Sylvestre et al., 2007; Woods, 

Thomson, & Hammond, 2007; Yu et al., 2008). E2Fs are vital for the progression of the 

cell cycle, as they trigger a large number of S phase genes, including Cyclins E and A, 

thymidine kinase and DNA polymerase. As a consequence, theoretically, cycling cells are 

likely to have elevated mir-17~92 levels due to the periodic surge of E2F activity during 

S phase, while quiescent cells would present reduced cluster levels. This is consistent 

with the high level of mir-17~92 polycistron expression in transformed cell lines, but not 

in the primary cell culture or fully differentiated cell types (Olive et al., 2010). 

Additionally, stimulation of mir-17~92 expression by pro-inflammatory cytokines such 

as IL-6 (Brock et al., 2009) or VEGF (Suarez et al., 2008) may occur, although it was 

recently identified that VEGF-mediated up-regulation of mir-17~92 only elevates the 

expression level of three individual miRNAs of the entire cluster (miR-17, miR-

18 and miR-20) (Suarez et al., 2008) while reducing miR-92a (Iaconetti et al., 2012), to 
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contribute to the control of angiogenic phenotypes.  In summary, there seems to be a 

selective mir-17~92 biogenesis under specific biological contexts. 

 

Figure 17 | Known mechanisms accounting for transcriptional and post-transcriptional regulation of 
the miR-17~92 cluster. 
Adapted from (Bonauer & Dimmeler, 2009). IL-6 – interleukin 6; miR – microRNA; MYCN - N-Myc proto-
oncogene protein; Smad3 - mothers against decapentaplegic homolog 3; STAT3 - signal transducers and 
activators of transcription 3; VEGF – vascular endothelial growth factor. 

 

 

Although initial studies focused only on the transcriptional regulation of mir-17~92, 

more current research has begun to shed light on how members of the cluster are 

individually and uniquely regulated beyond transcription. In fact, the six miRNAs 

encoded by the mir-17~92 cluster are often expressed at different levels, suggesting that 

they are either processed at varying rates or that their stability can be modulated 

(Concepcion et al., 2012). For instance, the RNA-binding protein hnRNPA1 binds to the 

loop structure of miR-18a and facilitate its processing by Drosha,  without affecting the 

processing of the remaining mir-17~92 cluster members (Guil & Caceres, 2007).  

 

Cluster members, if differentially triggered, may be capable of regulating distinct 

pathophysiological components of vascular regeneration, our main focus. The 

redundancy in miRNA function and the occurrence of compensatory mechanisms has 

been emphasised. For instance, overexpressing the entire mir-17~92 cluster in c-Myc-

induced tumours increases angiogenesis (Dews et al., 2006), which is thought to the 
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result of the dominant downregulation of the antiangiogenic molecules 

thrombospondin-1 (TSP-1) and connective tissue growth factor (CTGF) by miR-18 and 

miR-19, respectively (Dews et al., 2006). Similarly, miR-17 has been described to repress 

the anti-angiogenic factor tissue inhibitor of metalloproteinase 1 (TIMP1) (Otsuka et al., 

2008). On the contrary, the overexpression of miR-17 and miR-20a per se blocks 

angiogenic sprouting and migration (via Jak-1 downregulation?)(Doebele et al., 2010; 

Shan et al., 2009), and overexpression of miR-92a interferes with intersegmental vessel 

development in zebrafish (Bonauer et al., 2009). Based on the reported studies it 

appears that the mir-17~92 cluster members may exhibit distinct specific vasculogenic 

effects depending on the cell type, miRNA abundance and context.  Therefore, the effect 

of miRNAs from the cluster differs for ischaemia and tumour-associated angiogenesis, 

which is fundamental if one considers these miRNAs as potential therapeutic targets. 

However, surprisingly, in ECs, the response seems to be highly consistent. All cluster 

members appear to behave as negative angiogenic regulators. Recently Doebele et al. 

revealed that overexpression of the individual members miR-17, miR-18, miR-19a, and 

miR-20a specifically in ECs, reduced angiogenic sprouting in vitro, whereas inhibitors of 

these miRNAs rescued the effect (Doebele et al., 2010). Overexpression of miR-92a in 

HUVECs also suppresses angiogenic sprout formation in vitro, and vice versa, while the 

inhibition of miR-92a in vivo promotes neovascularization and the functional recovery 

after hindlimb ischemia in mice (Bonauer et al., 2009).  

 

 

miR-92a exerts anti-angiogenic actions in ECs 
 
Several members of the miR-17~92 cluster have been shown to control angiogenesis. 

miR-92a too is considered an endogenous repressor of the angiogenic program in ECs 

and a potent regulator of angiogenesis in vivo (Zampetaki & Mayr, 2012). Moreover, 

miR-92a is reported to inhibit EC proliferation, migration, adhesion and vascular 

sprouting in vitro by downregulating the expression of validated target genes, which 

include the class III histone deacetylase sirtuin 1 (SIRT1), integrin subunit α5 (ITGA5) and 

αv (ITGAV), sphingosine-1-phosphate receptor-1 (SIP-1),  Suppressor of cytokine 

signalling 5 (SOCS5)(Loyer et al., 2014), mitogen activated protein kinase kinase-4 (MKK-

4) and the flow-induced atheroprotective transcription Krüppel-like factor 2 and 4 (KLF2 
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and KLF4)(Bonauer et al., 2009; Doebele et al., 2010; Y. Fang & Davies, 2012; Wu et al., 

2011). These genes are all known to contribute to the cell-matrix interaction, cell 

migration, apoptosis and angiogenesis in ECs (Seeger, Zeiher, & Dimmeler, 2013). 

Remarkably, miR-92a is also involved in the modulation of eNOS in ECs (Bonauer et al., 

2009). Namely, its inhibition leads to an increase in NO production, which is paramount 

in fostering endothelial regeneration besides inhibiting VSMCs proliferation, thus 

preventing neointimal hyperplasia (Indolfi et al., 2002). Consistently, the functional 

inhibition of miR-92a enhances EC proliferation and migration (Iaconetti et al., 2012). In 

vivo, miR-92a expression is increased in ischemic tissues within the first days after 

infarction (Bonauer et al., 2009; Hinkel et al., 2013) and the respective antagomir-based 

silencing increases infarct border zone neovascularization and improves heart function 

after AMI (Bonauer et al., 2009). Loyer et al. reported that miR-92a also acts as a 

proinflammatory regulator in ECs by activating inflammatory cytokines, thus promoting 

monocyte adhesion (Loyer et al., 2014). Systemic administration of miR-92a inhibitor 

rescued this effect after AMI and limb ischemia by enhancing blood vessel growth 

(Bonauer et al., 2009). Similarly, systemic administration of miR-92a inhibitor enhanced 

re-endothelialisation and reduced neointima formation after balloon injury (Iaconetti et 

al., 2012).  

 

Besides being involved in neointima formation, miR-92a is also known to promote 

atherosclerosis under disturbed flow (Iaconetti et al., 2012; Loyer et al., 2014), through 

the suppression of KLF2 and its key targets eNOS and thrombomodulin (Cowan et al., 

2010; Salameh, Galvagni, Bardelli, Bussolino, & Oliviero, 2005). The miR-92a induced 

increase in IL-6 and MCP-1 secretion, which are proinflammatory EC cytokines, besides 

promoting monocyte adhesion to ECs via increased ICAM-1 expression are also likely 

contributors (Loyer et al., 2014). Proatherogenic oxidised LDLs strongly activate miR-92a 

expression in ECs in atheroprone areas with low shear stress (oscillatory flow)(Loyer et 

al., 2014). On the contrary, high shear stress (laminar flow) protects ECs cells from miR-

92a induction by oxLDL (Loyer et al., 2014). The in vivo evidence corroborates that miR-

92a is highly expressed in ECs isolated from the atheroprone aortic arch, in contrast to 

non-susceptible regions (Y. Fang & Davies, 2012). Concordantly, a reduction in 

circulating endothelial microparticles (a marker of EC dysfunction)(Rautou et al., 2011) 
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and a reduction of ICAM-1 expression in atherosclerotic lesions is seen following miR-

92a inhibitor treatment in vivo. Also, eNOS expression is restored by miR-92a inhibition 

in vitro (Loyer et al., 2014). Moreover, by specifically blocking miR-92a in 

hypercholesteremic LDLR-/- mice, Loyer et al. managed to reduce endothelial 

inflammation, decrease atherosclerotic plaque burden and promote a more stable 

lesion phenotype (Loyer et al., 2014). 

 

 

miR-92a inhibition for EPC priming 

 

miR-92a seems to be associated with EC senescence. miR-92a expression is upregulated 

in ECs upon aging (X. Lin et al., 2016), which inhibits cell proliferation by targeting SIRT1 

(Iaconetti et al., 2012). Moreover, miR-92a expression is upregulated by ischemia 

(Bonauer et al., 2009; Hinkel et al., 2013) and in ECs and EPCs of CAD patients 

(Fichtlscherer et al., 2010; Q. Zhang et al., 2011). A TNF-α-induced inflammatory 

response also upregulates miR-92a in ECs (Iaconetti et al., 2012). On the other hand, 

miR-92a is decreased during EC differentiation (Kane et al., 2010; Treguer et al., 2012) 

and VEGF stimulation (Iaconetti et al., 2012) (which is needed for differentiation), 

whereas miR-17, miR-18 and miR-19 are upregulated upon induction of differentiation. 

The differential expression pattern is consistent with the observation that after 

induction of hindlimb ischemia only miR-92a from the cluster is significantly upregulated 

(Bonauer et al., 2009). One can, therefore, hypothesise that miR-92a is in a quiescent 

state in active, healthy cells and is only upregulated upon pathophysiological conditions 

(Table 5). 
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Table 5 | miR-92a local expression levels in specific settings. 
(↑) or (↓), respectively, indicate downregulation or upregulation of miR-92a levels. CAD – coronary 
artery disease; EC – endothelial cell; EPC – endothelial precursor cell; miR – microRNA; oxLDL – oxidated 
low density lipoprotein; TNF – tumour necrosis factor; VSMC – vascular smooth muscle cell. 

↓miR-92a (species) Studies 

EC after atorvastatin (human) (Fichtlscherer et al., 2010) 

Laminar blood flow (human) (Wu et al., 2011) 

VEGF stimulation (rat) (Iaconetti et al., 2012) 

↑miR-92a (species) Studies 

EC from CAD patients (human) (Q. Zhang et al., 2011) 

EPCs from CAD patients (human) (Q. Zhang et al., 2011) 

ECs/VSMCs in vascular injury site 
(rat, human) 

(Daniel et al., 2014), (T. Luo et al., 2014) 
 

Ischemic injury (rat, pig, rat) 
 

(Bonauer et al., 2009), (Hinkel et al., 2013), (H. Liu, Li, 
Zhao, & Hu, 2016) 

Inflammation (stimulation with 
TNFα) (rat) 

(Iaconetti et al., 2012) 
 

Oscillatory blood flow (mice) (Loyer et al., 2014) 

Hypercholesterolemia/Atherogenic 
oxLDL (mice) (Loyer et al., 2014) 

 

Up-regulation of anti-angiogenic miR-92a in high CVD risk patients is likely to contribute 

to the dysfunction of their EPCs and reduced regenerative capacity. Everything 

considered, inhibition of miR-92a expression could be exploited to increase endothelial 

regeneration via EPC priming and inhibit neointimal proliferation after vascular injury. 

To inhibit endogenous miRNAs, chemically engineered oligonucleotides assembled as 

single-stranded RNA analogues designed to bind and silence complementary miRNAs 

have been tried (Krutzfeldt et al., 2005).   

 

 

miRNA inhibition 

 

The use of miRNAs inhibitors offers exceptional advantages over other regulatory 

mechanisms that also control gene expression, such as transcriptional regulators, 

epigenetic modifications or viral vectors. Firstly, miRNAs do not integrate into the 
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genome. Therefore insertional mutagenesis concerns are averted. Secondly, inhibitors, 

by repressing endogenous miRNAs with the ability to concurrently target many mRNAs 

of integrated pathways, result in a more efficient upregulation of combined effectors in 

specific settings. This aspect may also be an advantage, since targeting multiple genes 

simultaneously with a single inhibitor could modulate complex networks such as 

restenosis. In fact, in silico simulations indicate that miRNA -mediated feed-forward 

loops are more effective than transcriptional repressors in buffering gene expression 

under perturbed conditions (Osella, Bosia, Cora, & Caselle, 2011). Given the functional 

network redundancy, miRNAs are known to exert mild effects at baseline but 

pronounced biological functions under stress/pathology (N. Liu & Olson, 2010), which is 

the case in post-angioplasty restenosis. Moreover, by acting post-transcriptionally at the 

cytoplasm level, miRNAs inhibitors can have an immediate effect on protein synthesis, 

thereby achieving greater potency than otherwise possible in a short period. The latter 

seems particularly adequate for a circulating EPC rolling at a denuded vessel. Lastly, 

miRNA inhibition results in a transient expression of the target effectors for a short 

period of days only. miR-92a repression during the first steps of EPC adhesion, migration 

and proliferation is most useful before EPCs already incorporated in the vascular wall 

can return to a wild-type phenotype. This strategy may be of interest to avoid the 

possibility of long-term functional cell modification in vessels, as uncontrolled cell 

proliferation or low differentiation state. 

 

Altogether, these are exciting times for the application of miR-92a inhibitors. However, 

there are certain limitations to therapeutic targeting of miRNAs. This modality carries 

the inherent risk of affecting RNA species other than the intended miRNA target. Hence, 

the specificity of these constructs is among the issues that still need addressing (Thum, 

2012). There are cell type-specific effects, discrepancies between prediction algorithms 

and experimental observations, not to mention differences in targets between humans 

and other species (Anand, 2013). Ideally, inhibitors must be designed to target the seed 

sequence, since targeting other regions of the mature miRNA may have no or limited 

effect on miRNA activity (Stenvang, Petri, Lindow, Obad, & Kauppinen, 2012). 

Interactions are likely to occur through imperfect base pairing, but the recent 

development of chemical modifications have improved the miR antagonism field by 
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reducing mismatch discrimination (Beavers, Nelson, & Duvall, 2015). However, the latter 

have increased complexity versus the simple Watson-Crick base pairing rules making it 

harder to predict interaction sites for fully complementary miRNA inhibitors accurately. 

Another potential miRNA inhibitor -mediated off-target effect is determined by miRISC 

oversaturation (Khan et al., 2009). The exogenous miRNA inhibitor competes for RISCs, 

thereby rendering it unavailable to other endogenous miRNAs (Stenvang et al., 2012). 

The resulting loss of available RISC complexes leads to a global abrogation of 

endogenous miRNA-mediated regulation.  

Another issue still pending is safety. More evidence from large animal studies is 

warranted before therapeutic inhibition of miR-92a can enter human trials for CVD. Even 

though miR-92a has also been implicated in non-cancerous settings, there are reports 

that aberrant expression of miR-92a can be a feature in neoplastic transformation and 

is sometimes associated with enhanced tumour proliferation, survival, invasion and 

metastasis (M. Li et al., 2014). Plasma miR-92a levels have been used to successfully 

distinguish between acute leukaemia or colorectal cancer patients and healthy controls 

(Z. Huang et al., 2010; Tanaka et al., 2009). Remarkably, inhibition of mir-92a in a cell 

line reproducing acute promyelocytic leukaemia prevented cellular proliferation (Sharifi, 

Salehi, Gheisari, & Kazemi, 2013). Hepatocellular carcinoma patients present elevated 

miR-92a levels in the cancerous tissue, albeit they have reduced levels of miRNA in 

plasma compared to healthy donors (Shigoka et al., 2010). The role of miR-92a in breast 

cancer has not been fully clarified. Zhang et al. showed that the miR-17∼92a cluster was 

deleted in 21.9% of analysed breast cancer tissue samples (L. Zhang et al., 2006). More 

recently, Nilsson et al. reported that downregulation of miR-92a in breast cancer cells 

resulted in increased cell migration, possibly through miR-92a affected genes that are 

involved in the regulation of the actin cytoskeleton and Mitogen-activated protein 

kinase (MAPK) signalling pathway. Altogether, evidence indicates that miR-92a 

expression status can differ depending on cancer type and have diverging functional 

implications. It is likely that miR-92a is involved in some cancer hallmarks, tumor-

associated angiogenesis being one. If miR-92a can behave as an oncomir or its 

modulation influence tumour suppressors, then its modulation should be used with 

extreme caution, but this is extensible to every miRNA in study.  
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miRNAs inhibitors can be divided into four type classes: antagomiR oligonucleotides, 

miR sponges (oligos with multiple miR binding sites), miR-masks (oligos with gene 

specific sequences complementary to miR binding sites to act as competitive inhibitors) 

and small-molecule miR inhibitors (molecules that can unspecifically inhibit the miRNA 

pathway). AntagomiRs are the most common class of miRNA inhibitors. They are 

synthetic oligos that bind to and sterically inhibit the binding of the RISC-loaded miRNA 

guide strand to target mRNAs. The first antagomiRs were DNA oligos of complementary 

sequence and equal length to the full target mature miRNAs. Normally, nucleic acids are 

quickly degraded in biological compartments (Thum, 2012). Unmodified DNA oligos 

were very unstable (Hutvagner, Simard, Mello, & Zamore, 2004). Therefore, subsequent 

antagomiR designs have focused on increasing stability and endonuclease resistance, in 

addition to improving binding affinity to miRNA. The earliest modifications included 

methylation of nucleoside ribose 2’ hydroxyl groups (“OMe”), which improved RNA 

binding affinity compared to unmodified sequences, but did little towards increasing 

oligo stability and nuclease resistance (Beavers et al., 2015; Lennox & Behlke, 2011). 

Cholesterol modified antisense oligos were later developed with a 3’ end conjugation to 

cholesterol which imparts nuclease resistance (Krutzfeldt et al., 2007) and improves 

cellular uptake and the biostability (Krutzfeldt et al., 2005). Additionally, the 

hydrophobic cholesterol moiety enables these antagomiRs to better traverse the cell 

membrane and enter cells without the aid of a delivery vector (Krutzfeldt et al., 2005). 

However, clinical translation of this strategy has been limited by the relatively high doses 

to achieve miRNA inhibition (up to 80 mg/kg in a mouse model)(Krutzfeldt et al., 2005), 

and the concerning off-target effects demonstrated in vivo (Krutzfeldt et al., 2005). A 

recently designed, highly efficient, antagomiR by ExiqonTM relies on highly-modified 

locked nucleic acids (LNA). LNAs contain a methylene bridge between the 2’-O and 4’C 

of ribose to “lock” it into an optimal C-3′-endo conformation which results in a 

thermodynamically very strong duplex hybridization with the complementary miRNA 

(Beavers et al., 2015). Consequently, LNA-modified chemistries show higher anti-miRNA 

affinity at lower doses compared with the equivalent antagomiR (Fabani & Gait, 2008). 

LNA nucleotides can be mixed with RNA residues in the oligonucleotide whenever 

desired and hybridize with RNA according to Watson-Crick base-pairing rules. Also, full 

or mixed LNA oligos show a 10-fold increase in serum stability compared with 
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unmodified oligonucleotides (Rapozzi, Cogoi, & Xodo, 2006). Recently, very short 8-mer 

fully modified LNA oligomers only directed against the seed region of a miRNA were 

introduced (Obad et al., 2011). This strategy is useful for targeting multiple miRNA from 

seed families, but can also result in significant off-target effects given the small 

oligonucleotide sequence (Thum, 2012). 

 

mirVana® miRNA inhibitor from AmbionTM (used in this study to achieve miR-92a 

repression) are the latest generation of commercially available chemically -modified 

antagomiRs at the time. They are single-stranded oligonucleotides with proprietary 

chemical modifications (3rd generation), that irreversibly bind and inactivate the natural 

miRNAs when transfected into cells, resulting in artificial up-regulation of target mRNA 

translation. According to the manufacturer, these inhibitors have the highest-potency 

inhibition at the lowest miRNA inhibitor concentration in vitro, when compared with 

other two leading competitors (Exiqon or Dharmacon)(Lam, 2012; LifeTecnhologies, 

2012). They are allegedly highly specific, stable and previously validated for in vivo use, 

given their purity and non-toxicity (Lam, 2012). Non-specific off-target effects are 

therefore unlikely. Importantly, the use of miR-92a miRvana mimic and inhibitor has 

been validated in ECs (H. Liu et al., 2016). 
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1.4 Aims of this thesis 
 

Restenosis remains a cause of failure in a significant number of coronary interventions, 

requiring innovative solutions. Current strategies to reduce the incidence of restenosis 

are mainly based on suppressing VSMC proliferation (e.g. drug eluting stents) rather 

than increasing endothelial healing. In fact, antiproliferative therapies may even 

interfere with arterial endothelialisation. The contribution of circulating EPCs homing to 

injured vessels is considered essential to selectively promote re-endothelialisation and 

therefore prevent neointima formation (Curcio, Torella, & Indolfi, 2011). However, EPC 

regeneration potential depends greatly on the extent of their engraftment and activity 

at the target site. Often, EPC numbers and function among CVD patients are intrinsically 

impaired leading to low engraftment, which could limit re-endothelialisation. Therefore, 

EPC-priming therapies designed to increase their ability to engraft at the site of vascular 

injury are attractive and have the potential to improve clinical outcomes after PCI. 

miRNAs have emerged as gene network regulators, engaging several distinct mRNAs in 

an orchestrated manner across different interacting cell types. In previous work, miR-

92a was shown in vitro to reduce angiogenesis, proliferation, migration and adhesion to 

ECM in ECs (Bonauer et al., 2009). Since the anti-angiogenic miR-92a was also shown to 

be upregulated in vessels after injury (Ji et al., 2007) and in EPCs from CAD patients (Q. 

Zhang et al., 2011), we hypothesized that miR-92a antagonism in CD34+-derived EPCs 

could result in a more favourable angiogenesis profile in vitro similarly to ECs, with the 

rationale of developing a future functional priming strategy before cell transplantation 

which could lead to increased engrafting/thriving and accelerated re-endothelialisation 

on injured segments, hence, contributing towards post-PCI restenosis prevention.  

 

The specific aims of my research are as follows: 

1. Differentiate and characterise CD34+-derived late-outgrowth EPCs from an enriched 

human source;  

2. Characterise gene expression and demonstrate the functional priming following miR-

92a inhibitor treatment on CD34+-derived late-outgrowth EPCs in vitro, and relate it to 

the target ITGA5 expression  



 

Results - 105 
 

Chapter 2: Materials and Methods 

 

2.1 Reagents 
 

• Accustain Solution ADR-1000, NanoEnTek, Pleasanton, USA  

• ABC solution, Vecastain Elite ABC Kit, PK 6100, Vector Laboratories, Peterborough, UK 

• Alexafluor488 AcLDL, L-23380, Biomedical Technologies, Stoughton, USA 

• Anti-biotin microbeads, 130-090-485, Milteny Biotec, Bergisch Gladbach, Germany 

• Antibody one step biotinylation kit, 130-093-385, Milteny Biotec, Bergisch Gladbach, Germany 

• Avidin/Biotin Blocking Kit, SP-2001, Vector Laboratories, Peterborough, UK 

• Bio-Rad Protein Assay Kit, 500-0112, Bio-Rad, Herts, UK 

• Blocker Casein, 37528, ThermoFisher Scientific, Surrey, UK 

• Bovine serum albumin (BSA), 23209, Thermo Fisher Scientific, Surrey, UK 

• Brilliant II SYBR Green qPCR Master Mix, 600828, Agilent, CA, USA 

• Bupivacaine 0.5% with epinephrine 1:200,000, Cook-Waite Marcaine 0.5% with epinephrine, 185-

2557, Carestream dental, Hertfordshire, UK 

• DAB substrate solution, D4168, SigmaFast DAB tablets, Sigma Aldrich, Dorset, UK 

• CD133 Microbead kit, 130-097-049, Milteny Biotec, Bergisch Gladbach, Germany 

• CD34 Microbead Kit, 130-046-702, Milteny Biotec, Bergisch Gladbach, Germany 

• Cell Titer Glo, G7571, Promega, Southampton, UK 

• CellTracker CM-DiI, C7001, Invitrogen, Paisley, UK 

• Collagen type I rat tail, 08-115, Milipore, Temecula, USA 

• Complete Protease Inhibitor Cocktail, 11873580001, Roche, Mannheim, Germany  

• DMEM 10x, 12800-017, Gibco Thermo Fisher Scientific, Surrey, UK 

• DNAse I, 11284932001, Roche Diagnostics, Mannheim, Germany 

• DPX Mountant for histology, slide mounting medium, 06522, Sigma Aldrich, Dorset, UK 

• EDTA (Ethylenediaminetetraacetic acid), 17892, Thermo Scientific, Surrey, UK 

• E-gel precast agarose gel 1.2%, ThermoFisher Scientific, Surrey, UK 

• Endothelial Basal media (EBM), CC-3121, Lonza, Gaithersburg, USA 

• Endothelial Growth Media bullet kit (EGM), CC-3124, Lonza, Gaithersburg, MD, USA 

• Enhanced Chemiluminescence (ECL) Plus Reagent Detection system, PI80196, Thermo Scientific, 

Surrey, UK 

• Ethanol, 20816.298, VWR BDH Prolabo, Leuven, Germany 

• Ethidium bromide, 15585011, Thermo Scientific, Surrey, UK 

• FcR blocking reagent, human, 130-059-901, Miltenyi Biotec, Bergisch Gladbach, Germany 

• Fentanyl/fluanisone (40µg/100g), Hypnorm, Vm21757/4000, Vetapharma, Leeds, UL 
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• Fetal bovine serum (FBS), 10437028, Gibco Thermo Fisher Scientific, Surrey, UK 

• Fibronectin from human plasma, 0,1% solution, F0895, Sigma Aldrich, Dorset, UK 

• Fluoresceinamine, 46930, Sigma Aldrich, Dorset, UK 

• Fms-related tyrosine kinase 3 (Flt3) ligand, 300-19-100, PrepoTech Inc, Rocky Hill, USA 

• Formalin, HT501128-4L, Sigma Aldrich, Dorset, UK 

• Gel, Nu-PAGE Novex 4-12% Bis-Tris gels, NP0321BOX, ThermoFisher Scientific, Surrey, UK 

• Gelatin from porcine, G1890, Sigma Aldrich, Dorset, UK 

• Haematoxylin solution, 51275, Fluka, USA 

• Heparin sodium salt from porcine intestinal mucosa, H3393, Sigma Aldrich, Dorset, UK 

• Histopaque-1077 HybriMax, 10771, Sigma-Aldrich, Dorset, UK 

• Human serum lyophilized albumin (HSA) powder, A9511, Sigma-Aldrich, Dorset, UK 

• Hydrogen peroxide, 216763, Sigma Aldrich, Dorset, UK 

• Hyperfilm, 28-9068-40, GE Healthcare, Buckinghamshire, UK 

• Isoflurane, Isoflo B506, Abbott, MaidenHead Berkshire, UK 

• Krebs solution, K4002, Sigma Aldrich, Dorset, UK 

• LDS Sample Buffer (4x), NuPAGE, NP0007, ThermoFisher Scientific, Surrey, the UK 

• Matrigel Matrix Growth Factor Reduced, 356230, BD Biosciences, Erembodegem, Belgium 

• Midazolam, Versed, Roche, Mannheim, Germany 

• Molecular Weight Marker, Spectra Multicolor Broad range protein ladder, 26634, ThermoFisher 

Scientific, Surrey, UK 

• MOPS SDS Running Buffer (20X), NuPAGE, NP0001, ThermoFisher Scientific, Surrey, UK  

• Opti-MEM and GlutaMAX-I, 51985-026, ThermoFisher Scientific, Surrey, UK 

• Oligofectamine (OF) transfection reagent, 12252-011, ThermoFisher Scientific, Surrey, UK  

• Paraformaldehyde (PFA), P6148, Sigma Aldrich, Munich, Germany 

• Penicillin 100U/ml + Streptomycin 100µg/ml, 15070-063, Life Technologies, Paisley, UK 

• Pentobarbitone sodium 20% (w/v), Pentojet, 05055037400045, Animal Care, York, UK 

• Perfluoro-1,5-crown ether (PFCE), 9312, Fluorochem, Derbyshire, UK 

• Phosphate buffered saline (PBS), 4417, Sigma Aldrich, Dorset, UK 

• Phosphate buffered saline (PBS) with CaCl2 and MgCl2, 14080-048, Gibco ThermoFisher Scientific, 

Surrey, UK  

• Polylactic-co-glycolic acid (PLGA), Resomers 502 H; 50:50 lactic acid: glycolic acid, Boehringer 

Ingelheim, Ingelheim am Rhein, Germany 

• PLGA-PEG Ak12k24 (for the gel), Akina, Inc, IN, USA 

• Pluronic F-127, powder, P2443, Sigma Aldrich, Dorset, UK 

• Polyvinyl alcohol, 363146, Sigma Aldrich, Dorset, UK 

• Prolong Gold anti-fade reagent with DAPI (4',6-diamidino-2-phenylindole); P36931, ThermoFisher 

Scientific, Surrey, UK 

• Pronase, 10165921001, Roche Diagnostics, Mannheim, Germany 
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• Propylene carbonate, 310328, Sigma Aldrich, Dorset, UK 

• Protamine sulphate, P3369, Sigma Aldrich, Dorset, UK 

• QuantiTect Reverse Transcription Kit, +205311, Qiagen, Dusseldorf, Germany 

• Quantum Simply Cellular anti-Mouse IgG Kit, 815A, Bangs Laboratories, Indiana, USA 

• Radio-Immunoprecipitation Assay (RIPA), R0278, Sigma Aldrich, Dorset, UK 

• Reastain Quick Diff Kit, 102164, Gentaur, Kampenhout, Belgium 

• ReBlot Plus Strong antibody stripping solution, 2504, Millipore, CA, USA 

• RPMI 1640 medium, 11875-093, ThermoFisher Scientific, Surrey, UK 

• Sample reducing buffer (10x), NuPAGE, NP009, ThermoFisher Scientific, Surrey, UK 

• Serum donkey, D9663, Sigma Aldrich, Dorset, UK 

• Serum goat, X0907, Dako, Glostrup, Denmark 

• Serum human, AB, 14-490E, Lonza, Gaithersburg, USA 

• Serum porcine, 26250084, Thermo Scientific, Paisley, UK 

• Skin moisturiser, Opsite 66004978, Smith&Nephew, UK 

• Sodium citrate tribasic dehydrate, 54641, Sigma Aldrich, Dorset, UK 

• Stem cell factor (SCF), 300-07-100, PrepoTech Inc, Rocky Hill, USA  

• Transfer buffer (1x), NuPAGE, NP00061, ThermoFisher Scientific, Surrey, UK 

• Trifluoroethanol, T63002, Sigma Aldrich, Dorset, the UK 

• Triton X-100, X100-1L, Sigma Aldrich, Dorset, UK 

• Trypan Blue, 17-942E, Lonza, Gaithersburg, MD, USA 

• Trypsin, 15090-046, Invitrogen, Paisley, UK 

• Tween 20, 23360010, Acros Organics, NJ, USA 

• Vascular endothelial growth factor (VEGF165), 100-20, PrepoTech Inc, Rocky Hill, USA 

• X-VIVO 15, serum free hematopoietic cell medium, 04-744Q, Lonza, Gaithersburg, MD, USA 

• Xylene, 28975.360, VWR BDH Prolabo, Leuven, Germany 

 

  

http://www.sigmaaldrich.com/catalog/product/sigma/p3369?lang=en&region=GB
http://products.invitrogen.com/ivgn/en/US/adirect/invitrogen?cmd=catProductDetail&productID=15090046
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2.2 Equipment 
 

• Accuchip2x Kit AD2K-200, NanoEnTek, Pleasanton, USA 

• Adam-MC, Cell Counter, NanoEnTek, Pleasanton, USA 

• Angiogenesis 96 Well ibiTreat µ-Plate, 89646, Ibidi, Munich, Germany 

• Axio Observer, Carl Zeiss International, Germany 

• Axiovert A1, fluorescence microscope, Carl Zeiss International, Germany 

• Axiovert 40 C, inverted optical microscope, Carl Zeiss International, Germany 

• BD FACScalibur, Flow cytometer, Becton Dickinson, CA, USA 

• BD FACS Verse, Flow cytometer, Becton Dickinson, CA, USA 

• BD 115 Model, incubator, Binder Gmbh, Tuttlingen, Germany 

• Branson 2510, Ultrasonic Cleaner, Brandson, Danbury, CT, USA 

• Catheter 2Fogarty embolectomy, #120602F, Edwards Lifesciences, Nyon, Switzerland 

• Cell Strainer 100 µm mesh, 352360, Falcon, Corning, Corning, USA) 

• CellTrics 30, separation filters, 04-0042-2316, Sysmex Partec, Görlitz, Germany 

• Ceramic beads pre-filled 0.5 mL tubes, Precellys soft tissue homogenising kits, CK14-KT03961-1-

203.05, Bertin Technologies, France 

• Coverslips, CB00140RA1, 14 mm Menzel-Glaser, Braunschweig, Germany 

• Deskscan, scanner, Hewlett-Packard, London, UK 

• Dialysis membrane (50 kDa), 132 544, Spectrum Labs, Rancho Dominguez, CA, USA 

• Dialysis membrane (12-14 kDa), 132 706, Spectrum Labs, Rancho Dominguez, CA, USA 

• E-Gel® iBase™ Power System, Thermo Scientific, Surrey, UK 

• GENios, Fluorescence, Absorbance and Luminescence Reader, TECAN, Mannendorf, Switzerland 

• Heating mat, 75404, Magnetic heat pad, morphy Richards, the UK 

• ImageLock 96-well Plates, 4379, Essen Bioscience, Herts, UK 

• IncuCyte Cell Migration Kit, 4493, Essen Bioscience, Herts, UK 

• Incucyte Zoom live-cell analysis system, microscope, Essen Bioscience, Herts, UK 

• Jamshidi T-handle, 13 G x 3", TJC3513, Carefusion, Vernon Hils, USA 

• Lab-Tek II, chamber slides, 154534; Nalge Nunc International, IL, USA 

• Leica M80, stereomicroscope, Leica Microsystems, Milton Keynes, United Kingdom 

• Leica Macrofluo, macroscope, Leica Microsystems, Milton Keynes, the UK 

• Minilys, tissue homogenizer, Bertin Technologies, France 

• Mini&MidiMACS, Immunomagnetic sorting system, 130-042-501, Miltenyi Biotec, Bergisch Gladbach, 

Germany 

• Mx3000P qPCR System, Stratagene, CA, USA 

• Nanodrop 3300 spectrophotometer, Thermo Scientific, Surrey, UK 

• NDP Nanozoomer Digital Pathology, Slide scanner microscope, Hamamatsu, Tokyo, Japan 
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• Pap pen for IHC, delimiting pen, S2002, Dako, Glostrup, Denmark 

• PVDF/Filter Paper Sandwich, 0.45 µm pore size, Invitrolon, LC2005, ThermoFisher Scientific, Surrey, 

UK  

• QIAshredder, Tissue and Cell Homogenizer, 79654, Qiagen, Dusseldorf, Germany 

• RNeasy Mini kit, RNA isolation kit, 74104, Qiagen, Dusseldorf, Germany 

• Slide, microscope slide, 6310098, Menzel-Glaser, Braunschweig, Germany 

• Snijders Scientific, Lyophilisator, Tiburg, Holland 

• Surgical micro-clips, S&T B-2 Vascular Clamp, 00398-02, Finescience tools, Heidelberg, Germany 

• Surgical micro-scissors, Vannas Spring Scissors, 15000-00, Finescience tools, Heidelberg, Germany 

• Surgical vessel dilating forceps, S&T D-5a, 00125-11, Finescience tools, Heidelberg, Germany 

• Suture 3-0 mersilk, W587, Johnson & Johnson Intl, St. Stevens-Woluwe, Belgium 

• Suture 3-0 sofsilk, S-304, Covidien Syneture, Dublin, Ireland 

• Suture 4-0 vycril, W9570, Johnson & Johnson Intl, St. Stevens-Woluwe, Belgium 

• Thermo Denley Spiramax 5, roller, ST124080, Thermo Scientific, Paisley, UK 

• Thermomix comfort; Eppendorf mixer, Hamburg, Germany 

• Transwell 8 μm membrane pore size, 353097, Falcon, Becton Dickinson 

• VibraCell, Sonicator, Sonics, CT, USA 

• Zeiss LSM 510 Meta, confocal microscope, Carl Zeiss International, Germany 

• Zeta Pals light scattering analysis, Brookhaven Instruments Corporation, NY, USA  

 

Unless otherwise stated, tissue culture plasticware was from BD Biosciences 

 

2.3 Software 
 

• Axiovision 4.5, Carl Zeiss International, Germany 

• Cell Quest Pro, Becton Dickinson, California, USA 

• FlowJo, Ashland, USA 

• Image J, National Institute of Health, rsb.info.nih.gov/ij 

• Incucyte Zoom software, Essen Bioscience, Herts, UK 

• Simple PCI, HCImage, PA, USA 

• QuickCal, Bangs Laboratories, Indiana, USA 

• Zeta Plus Particle Sizing v. 2.27, Brookhaven Instruments Corporation, NY, USA 
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2.4 Animals 
 

Animal experiments were conducted by the Animal Care and Ethics Guidelines of UCL, 

Royal Veterinary College, University of London, and the United Kingdom Home Office 

Animals (Scientific Procedures) Act (1986). 

Pigs: Bone marrow (BM) samples were obtained from a total of 35 healthy 2-3-month-

old Yorkshire pigs (25 to 35 kg) immediately after they were euthanised by penetrating 

captive bolt shot to the brainstem. The pigs were being used for a dermal toxicology 

study at the University of Hertfordshire but were not subject to any prior 

treatment/surgery. Pigs were kept at 20º-25ºC all the time with daylight and free access 

to tap water and regular daily food.  

Mice: Mouse aortic rings were obtained from C57BL/6 mice housed at UCL Biological 

Service Unit services, which were culled by schedule 1 procedure.  Mice were kept at 

20ºC to 25ºC all the time with free access to tap water and regular daily food. 

Rats: Male Sprague-Dawley rats (Charles River UK) 350-400g (2-3 months old) were used 

for the carotid artery balloon angioplasty experiments. Specimen retrieval was done 

following perfusion under terminal anaesthesia using pentobarbitone via 

intraperitoneal injection (50 mg/kg), according to the UCL Biological Services Unit 

protocol. Rapid euthanasia was accomplished by exsanguination (liver tear), while 

simultaneously perfusing the arterial tree via an intra-cardiac 200 mL continuous 

injection of 0.9 % saline solution at a physiological pressure. 

 

2.5 Umbilical coord blood collection 
 

Fresh, non-cryopreserved, red blood cell (RBC)-replete umbilical cord blood (UCB) units 

were provided by Anthony Nolan’s Research Institute for Laboratory Research after 

normal delivery from full-term births (≥36 weeks gestational age) using standard 

collection procedures. The collection was approved by the Anthony Nolan Cell Therapy 

Center’s generic research tissue bank ethics approval extendable to external applicants 

for material. Written informed consent from subject mothers was obtained before 

donation. The samples were stored in 100 mL sterile bags containing 35 mL of citrate-
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phosphate-dextrose anticoagulant solution and processed within 24h after collection 

from parturient. All units were transported and stored at room temperature (RT). 

 

2.6 Bone marrow blood collection 
 

Pigs were placed ventrally, and 50 mL of BM were aspirated from the iliac crest using a 

Jamshidi T-handle biopsy needle and syringe (Figure 18), and then transferred to a 50 

mL tube, previously heparinized (final concentration 25 international units/ml) and 

supplemented with 1% (v/v) Penicillin/Streptomycin. The samples were then filtered 

through a Falcon 100 µm cell strainer and kept overnight on a roller at RT for next day 

processing. 

 
Figure 18  | Pig bone marrow blood aspiration performed in the iliac crest (white arrows) with specific 
biopsy apparatus. 

 

 
 

2.7 Immunomagnetic sorting of progenitor cells  
 

Enrichment of progenitor cells in suspension is usually performed by fluorescent 

activated (FACS) (Bonner, Hulett, Sweet, & Herzenberg, 1972) or immunomagnetic 

(MACS) (Miltenyi, Muller, Weichel, & Radbruch, 1990) selection systems. Both 

techniques take advantage of the expression of known surface antigens for cellular 

separation, using specific antibody binding. FACS separation depends on the conjugation 

of fluorescent tags to these antibodies, while MACS uses conjugation to 

superparamagnetic iron-dextran containing microbeads. Unlike FACS which requires 

single-cell analysis (excitation above a threshold level signals the corresponding tagged 
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cell to be separated), MACS is more of a bulk method, where unlabelled cells are eluted, 

and labelled cells are retained in the magnetic field, giving the separated populations. 

An obvious consequence is that while FACS can be more accurate (especially if using 

multiple antibodies), it is significantly slower than MACS (Tomlinson, Tomlinson, Yang, 

& Kirkham, 2013), thus negatively impacting on viability (Q. Li et al., 2013). CliniMACS 

(the automated isolation system from the same company) enjoys FDA approval for 

clinical applications and is currently the only Good Manufacturing Practices compliant 

cell separation system available for immunomagnetic separation of progenitor cells 

from blood products (Blake et al., 2012).  

For these reasons, I opted for the MACS system from Miltenyi Biotec to isolate 

progenitor cells from mononuclear cells (MNCs) for its ease of use and reliability 

(Kekarainen, Mannelin, Laine, & Jaatinen, 2006). The mini- and midi-MACS column 

matrix provides a strong magnetic field, allowing the positive selection of cells carrying 

specific antigens on their surface, previously incubated with corresponding 

superparamagnetic microbead-conjugated antibodies. Unlabeled cells pass through the 

column, while the retained labelled cells can then be eluted from the column after 

removal from the magnet. 

 

2.7.1 Isolating human CD34+ or CD133+ cells from UCB 
 

Labelled human CD34 and CD133 progenitor cells were isolated from MNCs using MACS 

immunomagnetic separation system (Mini&MidiMACS) (Figure 19), overall as described 

elsewhere (Jaatinen & Laine, 2007), but with significant optimisation steps introduced 

resulting in higher purity and viability of selected population. Briefly, buffy coats were 

obtained after centrifugation of ~100 mL UCB samples for 45 min at 500g at 20ºC (brake 

0) and diluted 1:3 in RPMI medium.  Buffy coat is the white coloured leukocyte layer that 

resides directly above the RBC/granulocyte layer after crude centrifugation of whole 

blood. MNCs were then obtained after buffy coat density gradient separation using 

Histopaque reagent (40% reagent:60% sample per Falcon). Upon centrifugation, the 

relatively lower density MNCs migrate into a layer that floats on top of the histopaque 

reagent layer, while higher density RBCs contaminants rest below. MNCs were 

resuspended in 300 µl of DNAse (filtered; 1mg/mL in PBS) to prevent unwanted cell 
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clumping (Hering et al., 1989), pooled together and then 10 mL of manufacturer’s 

labelling buffer at 4ºC was added, so that the total yield of MNCs could be estimated 

using a 50-fold dilution in PBS. The sample was then centrifuged for 10 min, 20ºC, 300 

G, accelerator 9/ brake 9 and the cells re-suspended again in 200 µl of DNAse 1mg/mL 

and 1 mL of pre-cooled MACS buffer (BSA 0,5% w/v in PBS with EDTA 2 mM). This was 

followed by a 30-minute incubation at 4ºC of MNCs with paramagnetic microbeads 

conjugated to mouse monoclonal anti-human CD34 or CD133 antibodies (100 µl FcR 

blocking reagent and 100 µl microbeads per 108 cells), in manufacturer’s labelling buffer 

enriched with 20% (v/v) human serum (300 µl per 108 cells). Cells were washed once and 

resuspended in 500 µl DNAse 1mg/mL and MACS buffer (500 µl per 108 cells). After 

application through pre-primed 30µm CellTrics separation filters, labelled cells were 

enriched on a LS column placed in a magnetic field. Eluted cells were labelled a second 

turn with 25 μl FcR blocking reagent plus 25 µl micro beads in 300 µl of MACS buffer for 

15 minutes at 4ºC. After one wash, cells were resuspended in 2 mL of MACS buffer and 

placed in a MS column in the magnetic field for the final elution. After centrifugation at 

1000 rpm for 8 min at RT, cells are then resuspended in the appropriate medium 

according to laboratory assay to be conducted, counted and plated at the desired cell 

density. 

Figure 19 | MACS direct labelling system. 
Column-based separation implies the injection of magnetically labelled cell suspension into a column held 
within a magnet. Cells then flow through the column and those who are labelled will be retained, whereas 
unlabeled cells are washed out. Finally, the column is removed from the magnet stand, and the suspension 
buffer is forced through the column by plunger giving labelled target cells in suspension. Adapted from 
MACS manual. 

 

→  
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2.7.2 Isolating porcine CD34+ cells from pig BMB 
 

CD34+ progenitor cells were isolated from pig BM blood MNCs using MACS 

immunomagnetic separation system, overall according to the human UCB isolation 

protocol, but with relevant, original, modifications since no anti-pig CD34 microbeads 

were available. An indirect labelling method was performed instead, where cells were 

labelled with a primary antibody that was biotinylated (Figure 20). In a second step, 

magnetic labelling was carried out by using anti-biotin microbeads. Briefly, following 

buffy coat separation, MNCs were labelled with 50 µl of the biotinylated goat anti-pig 

CD34 antibody (Anti-CD34 Antibody (Extracellular Domain) LS-C35556, LSBio, Seattle, 

USA) for 5 minutes at RT, for a final concentration of 1:20. The anti-porcine antibody 

needed to be biotinylated the day before as per Miltenyi Biotec’s instructions. Cells were 

then washed in 10 mL MACS buffer twice (centrifugation for 10 min, 20º C, 300 g, 

accelerator 9/ brake 9), and re-suspended in 80 µl MACS buffer enriched with 20% (v/v) 

porcine serum per 108 mononuclear cells. The MNC fraction mixture was after that 

incubated with Miltenyi Biotec’s anti-biotin microbeads for 15 minutes at 4ºC, following 

a 20 µl per 107 cells ratio. Again, cells were washed with 10 mL MACS buffer and 

centrifuged for 10 min, 20º C, 300 g, accelerator 9/ brake 9. After pellet resuspension in 

buffer (500 µl per 108 cells), labelled cells were primed with a CellTrics 30 µm meshwork 

and enriched once on a LS column placed in a magnetic field. The sample was eluted 

twice using 5 mL MACS buffer, and, after a final centrifugation at 1000 rpm for 8 min at 

RT, cells were resuspended in medium and plated at the desired cell density.  

 

Figure 20 | MACS indirect labelling schematics. 
Adapted from MACS manufacturer manual. 
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2.8 Automatic cell counting and viability 

determination 
 

Quantification of total cell number and mean cell viability was achieved by using 

Accuchip slides and an Adam-MC haemocytometer-based automated cell counter, 

according to manufacturer’s protocol. Briefly, this technology identifies propidium 

iodide stained cells, by using integrated microfluidic chip technology, LED-based 

fluorescence microscopy and charged coupled device detection. 

 

2.9 Flow cytometry 
 

Flow cytometry captures information about the properties of individual cells, including 

size, intracellular organelle density (forward scatter – side scatter FSC-SSC dot plot) and 

the presence of specific fluorescently labelled antibodies bound to or inside cells. 

Fluorescent activated cell sorting (FACS) can be used to sort cells into populations 

defined by these parameters. A beam of light of a single wavelength generated by a laser 

is directed onto a hydrodynamically focused stream of fluid containing cells conjugated 

with specific fluorophores, allowing the determination of the proportion of cells 

containing that specific antigen, and the degree of expression (intensity).  The antibodies 

used for FACS, and corresponding dilutions, are described in Table 6. The excitation and 

emission maxima of the fluorophores used are given in Table 7. 
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Table 6 | Antibodies used for flow cytometry. 
BMB - bone marrow blood; CD – cluster of differentiation; FITC - Fluorescein isothiocyanate; Ig – 
immunoglobulin; PE – Phycoerythrin; UCB – umbilical cord blood; VEGFR2 – vascular endothelial growth 
factor receptor 2. 

Target antigen Cell type Primary and secondary antibodies 

CD34 human UCB 
progenitor cells and 
human late-
outgrowth EPCs 

1° = mouse monoclonal anti-human CD34-PE 
conjugated (1:11, 130-081-002, Milteny Biotec, 
Bergisch Gladbach, Germany) 
Isotype control = mouse monoclonal IgG2a-PE 
conjugated (1:11, 130-091-835, Miltenyi Biotec, 
Bergisch Gladbach, Germany) 

CD34 pig BMB CD34+ cells 1° = goat anti-pig CD34 (1:11, LS-C35556, LSBio, 
Seattle, USA) 
2° = donkey anti-goat IgG-FITC (1:100, A11055, Life 
technologies, Paisley, UK) 
Isotype control = normal goat IgG (sc-2028, Santa 
Cruz Biotechnology, Heidelberg, Germany) 
 

CD133 human UCB 
progenitor cells and 
human late-
outgrowth EPCs 

1° = mouse monoclonal anti-human 
CD133/1(AC133)-PE (1:11,130-080-801, Milteny 
Biotec,Bergisch Gladbach, Germany) 
Isotype control = mouse monoclonal IgG1-PE (1:11, 
130-098-106, Miltenyi Biotec, Bergisch Gladbach, 
Germany) 
 

VEGFR2/KDR human UCB 
progenitor cells and 
human late-
outgrowth EPCs 

1° = mouse monoclonal anti-human VEGFR2-PE 
conjugated (1:11, 130-093-598, Milteny Biotec, 
Bergisch Gladbach, Germany) 
Isotype control = mouse monoclonal IgG1-PE (1:11, 
130-098-106, Miltenyi Biotec, Bergisch Gladbach, 
Germany) 
 

VEGFR2/KDR pig BMB late-
outgrowth EPCs 

1° = rabbit anti-pig VEGFR2-FITC conjugated (aa8-
290) (1:11, LS-C420389, LSBio, Seattle, USA) 
Isotype control = normal rabbit IgG-FITC conjugated 
(1:11, sc-3870, Santa Cruz Biotechnology, 
Heidelberg, Germany) 
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Table 7 | Fluorophores used in flow cytometry 
Approximate fluorescence excitation and emission maxima are indicated (solvent-dependent) from 
corresponding manufacturers’ online resources. FITC - Fluorescein isothiocyanate; miRNA – microRNA; 
NP – nanoparticle; PE – Phycoerythrin. 

Probe Fluorophore Excitation (nm) Emission (nm) 

Conjugated miRNA FITC 494 521 

Conjugated antibody FITC 495 519 

Conjugated NP Fluoresceinamine 495 519 

Conjugated antibody PE 565 573 

 

2.9.1 Determination of the proportion of cells containing a 

specific fluorophore 
 

FACS was used with different cell types and in different experimental settings: 

 

1) To determine the purity of the populations enriched by immunomagnetic sorting for 

CD34 or CD133, cells freshly isolated from blood samples were left to recover 48h in a 

5% carbon dioxide (CO2) incubator at 37ºC (200,000 cells/96 well plate) in 200 uL of X-

VIVO serum-free medium supplemented with Flt3-ligand and SCF at 50 ng/mL, to allow 

the magnetic microbeads used for cell isolation to disintegrate from the cell surface, 

before carrying out the protocol. This was particularly important because the antibodies 

used for flow cytometry were chosen precisely to tag the same epitopes than the 

microbeads antibodies, to increase specificity. 

 

2) To quantify the presence of specific fluorescently-labelled surface antigens, adherent 

cells in culture were harvested by trypsinization (trypsin 0.1% v/v in PBS) and pelleted 

with one centrifugation step, before carrying out the protocol.  

 

3) For confirmation of cellular internalisation of nanoparticles(NP):miRNA complexes 

using FACS analysis, late-outgrowth EPCs were transfected for 4h with 

fluoresceinamine-labelled NPs (500 µg/mL) or NPs conjugated with 5’-fluorescein 

labelled miR-92a (250µg/ml and 100nM respectively). The miRNA used was 5’ 

fluorescein-labelled hsa-miR-92a-1 miRCURY LNA inhibitor, 410456-04, Exiqon, 
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Vedbaek, Denmark. After treatment with particles or complexes, cells were washed 

twice with PBS 1% (w/v) BSA, incubated in a solution of 600 µg/mL Trypan blue for 2 

minutes, at RT, and washed twice with PBS before being trypsinized (trypsin 0.1% v/v in 

PBS) and carrying out the protocol. Trypan blue is used to quench externally attached 

particles/miRNA to differentiate between the signal from membrane-associated 

(external) and internalised fluorochromes (internal)(McNeer et al., 2011). The omission 

of NPs treatment (with or without quenching with trypan blue), and NP-

fluoresceinamine treatment without quenching, were used as controls in the 

confirmation of NP-fluoresceinamine internalisation experiments. Omission of NPs 

treatment (with or without quenching with trypan blue), miRNA- fluorescein labelled 

treatment (with or without quenching with trypan blue), NPs non-fluoresceinamine 

labelled treatment (with or without quenching with trypan blue), and NP:miRNAs- 

fluorescein labelled treatment without quenching, were used as controls in the 

confirmation of NP:miRNAs-fluorescein internalization experiments.  

 

4) For confirmation of cellular internalisation of miRNA using FACS analysis, CD34+-

derived late-outgrowth EPCs were transfected with hsa-miR-92a-1 inhibitor-FITC 

(410456-04, Exiqon, Vedbaek, Denmark) at 30nM for 4h using OF, and cells allowed to 

rest 24h in the transfection mixture supplemented with 10% FBS before carrying out the 

protocol. Treatment with OF only was used as control.  

 

Cells from experimental layouts (1-2) were then transferred into a 1.5 mL Eppendorf 

tube, and centrifuged for 10 minutes at 300g at RT. Cells were then resuspended in 80 

µL of PBS 1% (w/v) BSA with 20 µL of human FcR blocking reagent (or 100 µl PBS/BSA 

1% for non-human samples), after which 10 µL of primary antibody were added, 

according to the manufacturer’s recommendations. In the case of CD34 and CD133, the 

chosen antibodies bound an epitope different from that recognised by the CD34 and 

CD133 monoclonal antibodies used for sorting. The corresponding IgGs were used at the 

same concentration as isotype controls. Samples were kept 10 minutes at 4ºC, before 

adding 1 mL PBS 1% (w/v) BSA and centrifuging for 10 minutes at 300 g. If the primary 

antibody was not conjugated to a fluorophore, then a further incubation step with a 
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fluorescently-labeled secondary antibody was needed, for 10 minutes at RT, covered 

from light before carrying out the protocol. 

Then, cells from experimental layouts (1-4), were washed with PBS 1% (w/v) BSA and 

fixed in PFA 2% (v/v) in PBS for 10 min at RT, again protected from light. The PFA was 

then washed off, and the cells resuspended in 400 µL PBS 1% (w/v) BSA, and the cells 

transferred to FACS tubes before running them on FACS cytometer.  

For time course experiments with a total duration of several days, a small adaptation of 

the protocol was assumed. Cells were harvested at designated time points, fixed with 

PFA 2%, stored in PBS 1% (w/v) BSA at 4ºC and only batch stained on the day of running 

the samples instead.  

A total of 10,000 gated events were recorded per measurement, and each condition was 

measured in duplicate in the corresponding fluorescent channel. Data acquisition and 

analysis were performed using specific software (Cell Quest Pro software for human cells 

or FlowJo for porcine cells).  

 

2.9.2 Antigen surface density quantification 
 

CD34+ progenitor cell and late outgrowth EPC characterization also included 

determining the fluctuation of stem and endothelial lineage surface markers throughout 

the cellular differentiation process. Antigen quantitative analysis was performed as 

described before (Scolnik, Morilla, de Bracco, Catovsky, & Matutes, 2002). Briefly, the 

measurement of CD34, CD133 or KDR antigen surface densities was performed using 

Quantum Simply Cellular anti-Mouse IgG Kit. This kit contains a mixture of four types of 

polystyrene beads coated with anti-mouse IgG, with known antibody binding capacities, 

and one blank population with no specific binding capacity for mouse IgG. The beads 

bind to the fluorochrome-conjugated monoclonal antibodies and act as a set of 

standards to calibrate the fluorescence scale of the flow cytometer.  The beads and the 

human cells were incubated individually with mouse monoclonal anti-human CD34-PE, 

CD133-PE or KDR-PE antibody at the same concentration as experimental conditions, 

according to manufacturer’s protocol. Pig cells were stained with rabbit anti-porcine 

CD34 (FITC conjugated secondary) or KDR-FITC primary antibodies. Cells were then fixed 

with PFA 2% (w/v) in PBS, washed and run in the flow cytometer, using identical intensity 
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parameter settings for the samples and the quantitative beads. For time course 

experiments with a total duration of several days, a small adaptation of the protocol was 

assumed. Cells were harvested at designated time points, fixed with PFA 2% (w/v) in 

PBS, stored in PBS 1% (w/v) BSA at 4ºC and only batch stained on the day of running the 

samples instead. A total of 1,000 or 10,000 gated events were recorded per 

measurement for beads or cells populations, respectively. Host specific isotype 

immunoglobulins conjugated with PE served as negative control, allowing for auto-

fluorescence compensation. The geometric mean fluorescence intensities of the beads 

and cells were entered into the QuickCal software included in the kit, which 

extrapolates, after subtraction of isotype negative control auto-fluorescence, the 

antibody binding capacities of the cells from the standard curve.  If monovalent 

antibody-to-surface receptor binding is presumed, then the antibody binding capacity is 

equal to the number of surface receptors. Each condition was measured in duplicate in 

the corresponding fluorescent channel. 

 

2.10 Differentiation of CD34+ cells into late-

outgrowth EPCs 
 

Freshly isolated CD34+ cells were differentiated into EPCs using a published in-house 

protocol (Pedroso et al., 2011). Briefly, cells were plated onto 1% (w/v) gelatin coated 

24-well plates (2x105 cells/well). Gelatin was prepared at the desired concentration in 

milQ and allowed full dissolution at autoclaving temperature for at least 1 hour. Then 

cells were incubated in Endothelial Growth medium (EGM) with 20% (v/v) FBS and 50 

ng/mL VEGF, at 5% CO2, 37ºC. After 5 days and then every other day, half of the volume 

of the medium was replaced with fresh one, until the 3rd passage of a nascent adherent 

cell population was reached, at which point, EGM 10% (v/v) FBS medium was used for 

nurturing instead. Bright-field images during differentiation were captured using an 

inverted Axiovert 40 C optical microscope. 
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2.11 EPC culture 
 

Human late-outgrowth EPCs were cultured in the same fashion than HUVECs usually are, 

i.e., they needed to be seeded in 1% (w/v) gelatin coated vessels and incubated in EGM 

10% (v/v) FBS medium at 37ºC and 5% CO2 (see gelatin preparation method in section 

2.10). Expanding EPCs were split into new vessels by trypsinization (trypsin 0.1% v/v in 

PBS) when 80% confluency was reached, until passage 6, at which time they were 

discarded. Unless stated otherwise, experiments were performed on cells at 

approximately 80% confluency. 

 

2.12 Matrigel angiogenesis assay 
 

A tube formation assay using Matrigel is well established to demonstrate the angiogenic 

activity of vascular endothelial cells in vitro (Shao et al., 2004). This is a short-term 

culture assay in a gelatinous protein mixture obtained from Engelbreth-Holm-Swarm 

mouse sarcoma, which stimulates vascular phenotype cells to form capillary-like 

hexagonal structures within just a few hours (Figure 21). The assay was performed using 

matrigel overall according to manufacturer’s instructions, on 96 µ-Plates specifically 

designed for the angiogenesis assay. The latter uses the validated “well-in-a-well” 

feature to avoid meniscus formation in individual wells and allowing more efficient 

imaging as all cells are in one focal plane while requiring 90 % less Matrigel than 

compared to standard 96-well plate. 

 

Figure 21 | Matrigel angiogenesis assay performed in the µ-slide plate.  
Adapted from IBIDI online resources. 
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Briefly, the growth factor reduced Matrigel solution was thawed at 4ºC overnight and 

10 μL dispensed into each well of a pre-cooled 96 µ-Plate Angiogenesis well plate. The 

plate was then placed in humidified chamber at 37°C for 1 h to allow for jellification. 

Cells were dissociated with 0.1% (v/v) trypsin solution, re-suspended at 1x105 cells/mL 

in serum-free medium EBM, and 50 μL dispensed on top of the matrigel and left 

undisturbed in the incubator. For the purpose of EPC characterization, samples were left 

for 6 hours in an Incucyte Zoom incubator microscope, that allows time-lapse live cell 

and tubule-like formation imaging always at the same gridlock position. Five replicates 

were used for each experimental condition.  

 

2.13 VEGF activation of p-ERK and p-Akt signalling 
 

Pig CD34+-derived EPCs (~80% confluency) from day 21 of differentiation were starved 

in SFM for 2 hours at 37ºC, before being challenged for 10 mins with either 25 ng/mL 

VEGF, PDGF or SFM. The reactions were terminated by adding 2 ml of ice-cold PBS. 

 

2.14 miRNA and siRNA transfection 
 

miRNAs and siRNAs can silence gene expression via interaction with RISC complex. 

miRNAs are short, noncoding RNAs, that are assembled into miRNA-induced silencing 

complexes that localise to miRNA seed sites (usually in the 3’- untranslated region) of 

specific mRNAs with perfect and imperfect strand complementarity, resulting (mostly) 
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in post-translational cleavage or repression (Filipowicz et al., 2008). siRNA-induced 

silencing of gene expression after complementary mRNA base pairing is a result of the 

action of the RNaseH enzyme argonaute /slicer, which initiates nucleolytic degradation 

of the target cellular mRNA (Hammond, 2005). miRNAs and siRNAs are negatively 

charged and are, thus, not readily taken up by most cells. Liposome-like reagents such 

as Oligofectamine (OF) or cationic NPs can be used to introduce miRNAs/siRNAs into the 

cell, given their solubility in the cell membrane. Table 8 lists the used oligonucleotides 

in the transfections. 

 

Table 8 | miRNAs and siRNAs used. 
EPC – endothelial precursor cell; hsa – homo sapiens; miR- microRNA; si – siRNA. 

Oligonucleotide Specificities Concentrati
on 

hsa-miR-92a-1-5p mirVana mimic, MC12696, 4464066 Thermofisher Scientific, 
Paisley, UK 

EPCs (30 nM), 
Arteries (1 
µM) 

hsa-miR-92a-1-3p mirVana mimic, MC10916, 4464066 Thermofisher Scientific, 
Paisley, UK 

EPCs (30 nM) 

hsa-miR-92a-1-5p mirVana inhibitor, MC12696, 4464084, Thermofisher 
Scientific, Paisley, UK 

EPCs (30 nM), 
Arteries (1 
µM) 

hsa-miR-92a-1-3p mirVana inhibitor, MC109166, 4464084, Thermofisher 
Scientific, Paisley, UK 

EPCs (30 nM) 

miR scrambled mirVana inhibitor, negative control 1, 4464076, 
Thermofisher Scientific, Paisley, UK 

EPCs (30 nM), 
Arteries (1 
µM) 

si ITGA5 ON-TARGET Plus human ITGA5 SMARTpool, 3678, 
Dharmacon, UK 

EPCs (30 nM) 

si scrambled ON-TARGET Plus non-targeting siRNA #1, D-001810-01-05, 
Dharmacon, UK 

EPCs (30 nM) 

 

2.14.1 Oligofectamine EPC transfection 
 

OF reagent is a proprietary formulation for transfecting oligonucleotides into eukaryotic 

cells, used in this case for EPC and HUVECs transfection. For each transfection sample (1 

well of a 6-well plate with 80% confluent adherent cells), complexes were prepared as 

follows. First, a dilution of oligonucleotide in warm basal media Opti-MEM I was 

prepared by mixing 1,5 µL oligonucleotide (20 µM stock) with 176 µl of basal media and 
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allowed to rest for 10 minutes at RT. Simultaneously, a second dilution of transfection 

reagent in basal media was set by mixing 10 µL OF with 10 µl of Opti-MEM I and 

incubated for 10 minutes at RT. The diluted oligonucleotide with the diluted OF was 

combined for a total volume of 200 µL and incubated for 25 minutes at RT with 

occasional mixing. While the complexes were forming, cells were washed once and then 

800 µL of Opti-MEM I per well were added. The complexed oligonucleotides solution 

(200 µL) was gently added to the cells (for a total volume of 1 mL and 30nM 

oligonucleotide transfection concentration), and incubated for 4h at 37ºC. After this 

period, 500 µL of Opti-MEM I 30% (v/v) FBS were added to the well (for a final 

concentration of 10% serum), and cells allowed to rest overnight with transfection 

mixture for 24h at 37ºC. The following day, cells were washed once with EBM before 

2mL of complete medium EGM 10% (v/v) FBS were added. Cells were incubated for a 

further 24h if doing a 48h knockdown. For 96 well plate format, the transfection was 

scaled down proportionally, assuming 100 µL transfection volume per well. 

 

2.14.2 Nanoparticle-mediated EPC transfection 
 

For cell culture transfection, a total of 2×105 adherent human late-outgrowth EPCs 

plated in gelatin 1% pre-coated wells (see gelatin preparation method in section 2.10) 

were washed twice with PBS to remove any excess FBS which might adsorb and 

sequester NPs and miRNAs. Cells were incubated for 4h(Duinhouwer et al., 2015) at 

37ºC with serum free EBM containing NPs or NP:miRNA complexes at a final NP and 

miRNA concentration of 125 µg/mL and 200 nM, respectively. Different well sizes and 

cell densities were used according to prospective assay, always keeping the same NP 

mass (:miRNA molecules):cell number ratio (Table 9). Following the incubation, cells 

were gently washed 2 times with serum-free medium and left in EGM 10% (v/v) FBS 

overnight before conducting any assay. miR knockdown occurred during the assay itself. 
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Table 9 | EPC transfection protocol using nanoparticles. 
Transfection numbers used to keep same NP(:miRNA):cells ratio, irrespective of the assay; Final NP and 
miRNA (when applicable) concentration of 125 µg/mL and 200nM, respectively. IF – immunofluorescence; 
rt-PCR – real-time polymerase chain reaction. 

Well number Cell density/well Transfection 
medium 

volume/well 

Assay 

1 well (6 well plate) 

 

200.000 cells 

 

1 mL rt-PCR 

4 wells (24 well plate) 50.000 cells 250 µL Confocal microscopy, IF, 

wound healing 

10 wells (96 well 

plate) 

20.000 cells 100 µL Survival 

 

2.14.3 Nanoparticle-mediated arterial wall transfection 
 

In the in vivo setting, an intravascular delivery of the NPs or NP:miRNAs was carried out 

by exposing the external carotid artery (ECA) and performing the arteriotomy, before 

infusing intra-luminally 200 µl of a 5mg/mL NP-fluoresceinamine or 5mg/mL:1µM 

NP:miR-92a inhibitor-FITC solution in Opti-MEM I at an infusion rate of 10 µL/min. After 

a total of 20 min of occlusion time the artery was finally flushed with PBS, before 

excluding the ECA proximally and resuming blood flow. 

 

Rat carotid ring segments were used for ex vivo transfection with NPs or NP:miRNAs. 

Each ring was incubated with 200 µl of NP- fluoresceinamine (5 mg/mL) or NP:miR-92a 

inhibitor-FITC solution (5 mg/mL; 1 µM respectively) in Opti-MEM I in 96 well plates for 

4 h, at 37ºC.  

 

2.14.4 Pluronic mediated arterial wall transfection 
 

In the in vivo setting, a 30% (w/v) Pluronic F-127 solution was prepared the day before 

surgery by dissolving the powder in cold double-distilled deionized water and allw. The 

solution was placed on a windmill rotating platform overnight at 4°C to ensure the 

polymer was homogenously mixed. The common carotid artery (CCA) was separated 

from the surrounding tissue using blunt tissue scissors, and a total volume of 300 µL ice 

cold pluronic solution containing NP (5 mg/mL), NP:miRNAs (5 mg/mL:1 µM) or 1 µM 

miRNA was applied externally to the adventitial surface of the exposed carotid artery 
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with a 100 µL micropipette, overall as described elsewhere (Kee et al., 2011). The 

solution jellified as soon as it came in contact with the rat tissue. Depending on the 

experimental layout, the administration was done on uninjured arteries or immediately 

after balloon angioplasty. 

For ex vivo assays, NP-fluoresceinamine (5 mg/mL) or NP:miR-92a inhibitor-FITC solution 

(5 mg/mL; 1 µM respectively) was resuspended in Pluronic or Poly(lactic-co-glycolic acid) 

(PLGA) gel, before being applied to the rings for 24h. 

 

2.15 Mouse aortic ring angiogenesis 
 

The mouse aortic ring assay to study angiogenesis was generally performed as described 

previously (Baker et al., 2012). C57BL/6 mice were culled by schedule 1 procedure, after 

which the aortas were harvested and transferred into Opti-MEM I supplemented with 

Penicillin 100 U/mL + Streptomycin 100 µg/mL. Under a Leica M80 dissection 

microscope, fat tissue and branching vessels were removed using forceps and 

microdissection scissors. The vessel was cut into 0.5 mm thick rings with a scalpel, with 

6-12 rings being placed per well in a 24 well plate. Rings were then transfected overnight 

using OF with the miRNA of interest (at a final concentration of 30 nM and a total volume 

of 1 mL/well), at 37 ºC and 5% CO2 in Opti-MEM I supplemented with Penicillin 100 U/mL 

+ Streptomycin 100 µg/mL. On the following day, rings were transferred into a 96 well 

plate (1 ring/well) to be embedded in 50µl of a collagen matrix, obtained by adding on 

ice 0.5 mL 10X DMEM, 3.13 mL dH2O, 1.37ml collagen type I (rat tail) and 10 µL 5 N NaOH 

(measures needed per 96 well plate). After 1-hour incubation at 37 ºC, the embedded 

rings were fed with 150 µl Opti-MEM I supplemented with 2.5% (v/v) FBS, 30 ng/mL 

VEGF and Penicillin 100 U/ml + Streptomycin 100 µg/ml, again to be placed in the 

incubator (Figure 22). In each experimental condition, a non-VEGF supplemented well 

was tested as a negative control. Rings were fed on day 5 by removing 130 µL and adding 

150 µL of fresh medium, and the protocol was stopped on day 7. At this point, bright 

field pictures were captured using an Axiovert 40 C inverted optical microscope before 

culture media was removed and rings washed with PBS with CaCl2 and MgCl2. Rings were 

then processed for IF (as described in Section 2.18.3) and the concentric peripheral 
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angiogenesis network coverage area estimated (in triplicates in the red channel), using 

Image J imaging software (after digital subtraction of the ring area itself). 

 
Figure 22 | Aortic ring setup. 

 

 

2.16 Time-lapse microscopy 
 

The Incucyte Zoom (Essen Biosciences) comprises a microscope inside a tissue culture 

incubator, capable of recording live cell imaging experiments over several days while 

providing consistent standard tissue culture conditions for the growing cells (37°C, 95% 

air, 5% CO2). Bright field and fluorescent images and videos of cells were captured and 

analysed using the proprietary software.  

 

2.17 Long-term fluorescence cell labelling 
 

For certain assays, EPCs were stained using CellTracker CM-DiI lipophilic, photostable 

fluorescence compound (excitation 553 nm, emission 570 nm), according to the 

manufacturer’s protocol. Briefly, the probe was resuspended in PBS to 2 μM and 

incubated with pre-washed adherent cells in culture for 5 minutes or less at 37°C, and 

then for an additional 15 minutes at 4°C. Incubation at this lower temperature appears 

to allow the dye to label the plasma membrane but slows down endocytosis, thus 

reducing dye localisation into cytoplasmic vesicles. 

 

2.18 Fluorescence microscopy 
 

Fluorescence is a type of luminescence. When molecules with luminescent properties 

absorb light, they emit light of a different wavelength. With fluorescence, the emission 
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of light occurs extremely rapidly after the absorption of excitation light. Fluorescent 

materials give off light because of their atomic structure. Electrons are arranged in 

discrete energy levels surrounding the atom’s nucleus with each level having a 

predetermined amount of energy. When an electron absorbs the energy from a photon 

of light, it becomes “excited” and jumps to a higher, less stable energy level. The half-

life of the excited state is generally less than 10 seconds. The electron loses a small 

amount of energy as heat, and the remainder of the extra energy is given off in the form 

of a photon. The emitted fluorescence has a lower energy than the absorbed light, so 

the wavelength of the emitted light is longer than that of the excitation light. A range of 

wavelengths of light can excite the electrons of a fluorochrome. Table 10 lists the 

fluorochromes used and corresponding excitation/emission spectra. 

 
 

Table 10 | Fluorochromes used in fluorescence microscopy. 
Approximate fluorescence excitation and emission maxima are indicated (solvent-dependent) from 
corresponding manufacturers’ online resources. DAPI - 4',6-diamidino-2-phenylindole; FITC - fluorescein 
isothiocyanate; LDL – low density lipoprotein; miRNA – microRNA; NP – nanoparticle. 

Probe Fluorochrome Excitation (nm) Emission (nm) 

Prolong Gold anti-fade 

reagent 

DAPI 350 461 

Conjugated Acetylated LDL Alexafluor-488 495 519 

Conjugated miRNA FITC 494 521 

Conjugated antibody FITC 495 519 

Conjugated NP Fluoresceinamine 495 519 

Conjugated antibody Alexafluor-488 519 495 

Lipophilic carbocyanine CM-DiI 553 570 

Conjugated antibody Alexafluor-555 555 568 

Conjugated miRNA DyLight 547 557 570 

Conjugated antibody PE 565 573 

Conjugated isolectin B4 DyLight 594 592 617 

Conjugated antibody Alexafluor-594 617 590 

Conjugated antibody DyLight 649 652 647 
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2.18.1 Acetylated LDL internalisation  
 

The endothelial commitment of EPCs was evaluated by incubating cells with acLDL 

conjugated to Alexafluor-488 and determining its uptake by fluorescent microscopy, a 

feature typical of ECs and microglial cells in primary cell culture (Sunada, Masuda, & 

Fujiwara, 1993). If the lysine residues of LDL’s apoprotein have been acetylated, the LDL 

complex no longer binds to the LDL receptor, but rather is taken up by macrophage and 

endothelial cells that possess “scavenger” receptors specific for the modified LDL (Voyta, 

Via, Butterfield, & Zetter, 1984). Once the acetylated LDL complexes accumulate within 

these cells, they assume an appearance similar to that of foam cells found in 

atherosclerotic plaques. Briefly, AlexaFluor488 conjugated Ac-LDL was added directly to 

cells growing in culture in 1 mL serum-free media EBM to yield a final concentration of 

10 μg/ml and left to incubate for 4 h at 37ºC. The medium was then aspirated, and the 

cells washed twice with PBS, before analysis. Imaging was captured using Axio Vert A1 

fluorescence (human EPCs) or Incucyte Zoom microscopes (pig EPCs) in the bright-field 

and green channels, before being processed in Simple PCI or Incucyte Zoom softwares, 

respectively. 

 

2.18.2 Fluoresceinamine internalisation 

 

Rat carotid artery rings were incubated at 37ºC with either NPs-fluoresceinamine 

labelled or NPs conjugated with hsa-miR-92a-1-fluorescein labelled (410456-04 Exiqon, 

Vedbaek, Denmark) at increasing concentrations of NPs (0-5mg/mL) and miRNAs (0-

1µM) in Opti-MEM I medium (for 4h) or gel (for 24h). Treatment with non-labelled NPs 

and omission of any treatment were used as negative controls. The samples were 

observed and photographed under Leica Macrofluo fluorescent macroscope.  

 

2.18.3 Immunofluorescence 
 

IF is the visualisation of antigens in cells/tissues specifically using antibodies as 

fluorescent probes. In IF techniques, antibodies are chemically conjugated to 

fluorescent dyes, which bind (directly or indirectly) to the antigen of interest allowing 
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for antigen detection through fluorescence or confocal microscopy. The specific 

antibodies used for these assays are listed in Table 11. Advantages of direct IF include 

shorter sample staining times and simpler dual and triple labelling procedures. 

Disadvantages of direct IF include lower signal, higher cost, less flexibility and difficulties 

with the labelling procedure when commercially labelled direct conjugates are 

unavailable. Advantages of indirect IF include greater sensitivity than direct IF. There is 

an amplification of the signal in indirect IF because more than one secondary antibody 

can attach to each primary. Commercially produced secondary antibodies are available 

in an array of colours. Disadvantages of indirect IF include the potential for cross-

reactivity and the need to find primary antibodies that are not raised in the same species 

or of different isotypes when performing multiple labelling experiments. 

  

Table 11 | Antibodies used for immunofluorescent staining. 
CD – cluster of differentiation; EPCs – endothelial precursor cells; FITC - Fluorescein isothiocyanate; Ig – 
immunoglobulin; PE – Phycoerythrin; VEGFR2 – vascular endothelial growth factor receptor 2; vWF – von 
Willebrand factor. 

Target antigen Cell type Primary and secondary antibodies 

CD31 human 
EPCs 

1° = mouse monoclonal anti-human CD31 (JC70A) (1:20, M0823, Dako, 
Glostrup, Germany) 
2° = Dylight 649 donkey anti-mouse IgG (1:400, AP192SD, Milipore, 
Temecula, USA) 
Isotype control = mouse monoclonal IgG1 (NCG01, abcam, Cambridge, UK) 
 

CD34 human 
EPCs 

1° = mouse monoclonal anti-human CD34-PE (1:11, 130-081-002, Milteny 
Biotec) 
2° = Alexafluor-594 goat anti-mouse IgG (1:500, A11005, ThermoFisher 
Scientific, Paisley,UK) 
Isotype control = mouse monoclonal IgG2a-PE (130-091-835, Miltenyi 
Biotec, Bergisch Gladbach, Germany) 
 

FITC human 
EPCs 
 

1° = polyclonal rabbit anti-FITC (1:50, 71-1900, Invitrogen ThermoFisher 
Scientific, Paisley,UK) 
2° = Alexafluor-555 donkey anti-rabbit IgG (1:500, A31572, ThermoFisher 
Scientific, Paisley,UK) 
2° = Alexafluor-488 donkey anti-rabbit IgG (1:500, A21206, ThermoFisher 
Scientific, Paisley,UK) 
Isotype control = normal rabbit IgG (sc2027, Santa Cruz Biotechnology, 
Heidelberg, Germany) 
 

FITC rat 
arteries 
 

1° = polyclonal rabbit anti-FITC (1:50, 71-1900, ThermoFisher Scientific, 
Paisley,UK) 
2º = Alexafluor-555 donkey anti-rabbit IgG (1:500, A31572, ThermoFisher 
Scientific, Paisley,UK) 
Isotype control = normal rabbit IgG (sc2027, Santa Cruz Biotechnology, 
Heidelberg, Germany) 
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SMA human 
EPCs 

1° = rabbit polyclonal anti-human SMA (1:100, ab5694, Abcam, Cambridge, 
UK) 
2° = Alexafluor-488 donkey anti-rabbit IgG (1:500, A21206, ThermoFisher 
Scientific, Paisley,UK) 
Isotype control = normal rabbit IgG (sc2027, Santa Cruz Biotechnology, 
Heidelberg, Germany) 
 

SMA mouse 
aortic 
rings 

1° conjugated = mouse monoclonal Anti-Actin, α-Smooth Muscle – FITC, 
clone 1A4 (1:100, F3777, Sigma-Aldrich, Dorset, UK) 
Isotype control = mouse monoclonal IgG2a-PE (130-091-835, Miltenyi 
Biotec, Bergisch Gladbach, Germany) 
 

VECAD human 
EPCs 
pig EPCs 

1° = mouse monoclonal anti-human/pig VE-cadherin (1:50, sc9989, Santa 
Cruz Biotechnology, Heidelberg, Germany) 
2° = Alexafluor-488 goat anti-mouse IgG (1:500, A11001, ThermoFisher 
Scientific, Paisley, UK) 
Isotype control = mouse monoclonal IgG1 (NCG01, Abcam, Cambridge, UK) 
 

VEGFR2/ KDR human 
EPCs 

1° = mouse monoclonal anti-human VEGFR2-PE (1:50,130-093-598, Milteny 
Biotec, Bergisch Gladbach, Germany) 
2° = Alexafluor-594 goat anti-mouse IgG (1:500, A11005, ThermoFisher 
Scientific, Paisley, UK) 
Isotype control = mouse monoclonal IgG1-PE (130-093-188, Miltenyi Biotec, 
Bergisch Gladbach, Germany) 

vWF human 
EPCs 

1° = polyclonal rabbit anti-human vWF (1:100, A0082, Dako, 
Glostrup,Germany) 
2° = Alexafluor-488 donkey anti-rabbit IgG (1:500, A21206, ThermoFisher 
Scientific, Paisley, UK) 
2º = Alexafluor-488 goat anti-rabbit IgG (1:2000, A11034, ThermoFisher 
Scientific, Paisley, UK) 
Isotype control = normal rabbit IgG (sc2027, Santa Cruz Biotechnology, 
Heidelberg, Germany) 

 

IF for EPC surface epitope characterization 

 

At the end of the differentiation, expression of EC markers was evaluated by IF staining. 

Briefly, 6x104 EPCs (from human or pig origin) were plated in 1% gelatin coated Lab-Tek 

II chamber slides and left to rest overnight in 500 µl EGM 20% (v/v) FBS (see gelatin 

preparation method in section 2.10). The cells were fixed with PFA 4% (w/v) in PBS for 

15 min at RT and washed twice with PBS 1% (w/v) BSA.  Then, PBS/0.1% (v/v) Triton X-

100 was added to each chamber well to permeabilize the cell membrane. The solution 

was aspirated after 10 minutes at RT, and the cells were washed twice with PBS. CD34, 

KDR, vWF, VE-cadherin and SMA primary antibodies were prepared in PBS/0.1% (v/v) 

Tween-20/ 1% (w/v) BSA. After the addition of the primary antibody, the chamber slide 

was left overnight at 4°C on a shaking platform. Negative controls were obtained by 

using isotype-matched IgG control. Next morning, cells were washed 3 times with PBS. 
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The appropriate secondary antibodies were prepared in the same solution as before and 

added to the cells for 1 h at RT, protected from light. The wells were again washed 3 

times with PBS. The nuclei of the cells were counter-stained with 4',6-diamidino-2-

phenylindole (DAPI) for 5 minutes at RT, protected from light, which also functioned as 

a mounting reagent (DAPI propriatery concentration). The cells were examined and 

photographed under a Carl Zeiss Axio Vert.A1 fluorescence microscope. 

 

IF for confirmation of cellular internalisation of miRNA 

 

After miR transfection using OF or NPs, confirmation of internalisation was done by IF 

staining. Briefly, 4x105 human EPCs were seeded in coverslips pre-coated with 1% gelatin 

(see gelatin preparation method in section 2.10) inserted in 6 well plates and incubated 

overnight in EGM 30% (v/v) FBS. The following day cells were transfected with 30nM 

hsa-miR-92a-1 inhibitor-FITC (410456-04, Exiqon, Vedbaek, Denmark) using OF protocol. 

The omission of OF or incubation with the miR only were the negative controls. 

Alternatively, for NP assays, NPs-fluoresceinamine labelled (250 µg/ml) or NPs 

conjugated with miRNA-fluorescein labelled (250 µg/ml and 100nM) were the 

transfection vectors. Treatment with non-labelled NPs, treatment only with labelled NPs 

and omission of treatment were used as negative controls for NP transfections. After 

24h, cells were fixed in PFA 2% (w/v) in PBS for 15 min at RT and washed twice with PBS 

2% (w/v) BSA. Then, PBS/0.1% (v/v) Triton X-100 was added to the well to permeabilize 

the cell membrane. The solution was aspirated after 10 minutes at RT, and the cells were 

washed twice with PBS 2% (w/v) BSA. Primary anti-FITC antibody was prepared in 

PBS/0.1% (v/v) Tween-20/ 1% (w/v) BSA. After the addition of the primary antibody at 

1:50, the 6 well plate was left overnight at 4°C on a shaking platform. Negative controls 

were obtained by omission of primary antibody. Next morning, cells were washed 3 

times with PBS 0.1% (v/v) BSA. The appropriate secondary antibodies were prepared in 

the same solution as before and added to the cells for 1 h at RT, protected from light. 

The wells were again washed 3 times with PBS 0.1% (v/v) BSA. The nuclei of the cells 

were counter-stained with DAPI (proprietary concentration) for 5 minutes at RT, 

protected from light, which also functioned as a mounting reagent. The cells were 

photographed under a Carl Zeiss Axio Vert.A1 fluorescence microscope. 
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IF for confirmation of arterial wall internalisation of NP and miRNAs 

 

Carotid arteries once harvested and cleaned from the exceeding surrounding connective 

tissue were left to fix overnight in 4% PFA (w/v) in PBS at 4°C. They were then transferred 

to 70% ethanol until they were embedded in paraffin and cut perpendicularly to their 

longitudinal axis at Barts Cancer Institute pathology services, London, UK. 7µm cuts were 

performed along the arteries at 6 different levels (approximately every 1.5 mm along 

the average 1-1.2 cm total length of the artery). For rat carotid rings one cross-section 

per sample was performed at the midpoint level. Retrieved 5 µm-thick paraffin cross-

sections were dewaxed and hydrated, by sequentially passing the slides through the 

following steps: Xylene 5 min, Xylene 5 min, Xylene 5 min, absolute ethanol 5 min, 

absolute ethanol 5 min, 95% ethanol 3 min, 80% ethanol 2 min, distilled water 5 min. 

Antigen retrieval was performed by boiling in Citrate buffer pH 6.0 for 10 minutes. 

Citrate buffer was prepared by dissolving 2.94g of Trisodium citrate in 5.4 mL 1M HCl, 

topped up to 1L of milQ water. The sections were washed 3 times with PBS-Tween 20 

(PBS-T). PBS-T was prepared by dissolving 4 tablets of PBD in 2 mL of Tween 20 and 2 

mL of milQ water. A boundary was made around the tissue section using a DAKO pen. 

Non-specific antibody binding to proteins in tissue preparations was prevented by 

applying 5% donkey serum/0.5%Triton X100/PBS-T to each slide for 30 minutes at RT, 

the serum being from the species which provided the second layer antibody. The 

primary antibody rabbit anti-FITC was diluted in the same solution at 1:50 and pipetted 

on the tissue sections within the boundary (~100 µl). The slides were then placed at 4ºC 

overnight in a humidified chamber. Negative controls were obtained by omitting the 

incubation with primary antibody. Next morning, the slides were washed 3 times with 

PBS-T and the Alexafluor-555 donkey anti-rabbit IgG secondary antibody diluted 1:500 

in the same buffer was applied for 1h30m at RT, protected from light in a humidified 

chamber. Following 3 more PBS-T washes the tissue sections were counterstained and 

mounted with DAPI reagent (proprietary concentration) for 5 minutes at RT, protected 

from light. The slides were examined and photographed under a fluorescence 

microscope. 
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IF for quantification of mouse aortic ring angiogenesis 

 

After a 4% formalin fixation step for 30 minutes at RT, rings were permeabilized with 

PBS with CaCl2 and MgCl2 and 0.25% Triton X-100 for 15 minutes at RT twice and then 

blocked using 1 drop of 2x casein buffer per well for 30 minutes at RT. Overnight 

incubation at 4ºC with DyLight 594 Labelled GSL I - isolectin B4 (1:100 dilution in PBLEC; 

DL-1207, Vector Labs, Burlingame, USA) and monoclonal anti-actin alpha-Smooth 

Muscle-FITC (1:100 dilution in PBLEC) then followed. PBLEC was constituted by diluting 

10X PBS with CaCl2 and MgCl2 in dH2O and add 0.1ml of 1M MnCl2 and 1% Tween 20. 

Next day, each well was washed three times in PBS and 0.1% Triton X-100 for 15 minutes 

and then wash once more with distilled water. The gel was detached from the walls of 

the well using curved thin forceps before being carefully transferred to a slide (6 

embedded rings per slide). Fluorescence mounting medium with DAPI (proprietary 

concentration) was added, before placing a coverslip over (avoiding air bubble 

formation). The slides were examined and photographed under a Carl Zeiss AxioVert A1 

fluorescence microscope.  

 

IF for quantification of co-culture angiogenesis 

 

Co-culture samples were fixed in ethanol 100% for 2 hours at RT. After one PBS-T wash, 

cells were blocked in dry milk 5% (w/v) in PBS-T for 1h at RT on an orbital shaker. Then, 

the coculture was incubated overnight at 4ºC on an orbital shaker with 200 µl of primary 

vWF antibody (1:1000) in 5% (w/v) dry milk in PBS-T. The next day, cells were washed 

twice with PBS-T, before secondary goat anti-rabbit Alexafluor 488 conjugated antibody 

diluted in PBS-T (1:2000) was added for 60 minutes at RT, on the shaker and protected 

from light. After 2 more washes with PBS-T, samples were stored in MilQ water and 

images of the wells captured on demand using Incucyte Zoom fluorescent microscope 

at 10x magnification. 
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2.18.4 Confocal 
 

The joint application of immunofluorescent staining with confocal microscopy allows the 

visualisation of protein localisation within the cell in a single plane. For confirmation of 

cellular internalisation of miRNA, 50 000 human late-outgrowth EPCs were plated in 

gelatin 1% pre-coated coverslips (see gelatin preparation method in section 2.10) placed 

in a 24 well plate, and incubated overnight with EGM/20% (v/v) FBS at 37ºC. In the 

following day, after 2 washes with PBS, cells were transfected with dual labelled NPs-

fluoresceinamine conjugated with sham miRNA-Dy547 (CP-004500-01-05, miRIDIAN 

microRNA Mimic Transfection Control Dy547, Thermo Scientific, Surrey, UK) at 125 

µg/mL and 100 nM respectively. Exclusive NP, miRNA or no treatment were used as used 

as control conditions. Following the 4 h of treatment, cells were washed twice with PBS 

1% (w/v) BSA for 2 mins, before fixation in situ with PFA 4% (w/v) in PBS for 15 min at 

RT. Cells were gently washed twice with the coverslip inverted on top of a PBS drop, 

followed by anti-CD31 incubation for 2 h at RT and protected from light. The antibody 

predominantly displays staining of the cell membrane, with weaker cytoplasmic 

staining, according to the manufacturer. Cells were gently washed twice with the 

coverslip inverted on top of a PBS drop, before staining with the secondary antibody for 

1h at RT, protected from light. Again, cells were washed twice on a PBS drop, before 

counterstaining with DAPI mounting media (proprietary concentration) for 5 min at RT 

in the same fashion, and then placed on a microscope slide. Digital micrographs and z-

stack videos were taken on a Zeiss LSM 510 Meta confocal laser microscope using an oil 

immersion 63x objective.   

 

2.19 Immunohistochemistry 
 

Carotid arteries and rings were processed as in page 130 until the antigen retrieval step. 

Then, antigen retrieval was performed by treating the tissue sections with Pronase for 

15 minutes at RT. After 3 washes in PBS-T and 1 wash with distilled water, the sections 

were then treated with 3% (v/v) Hydrogen peroxide in milQ water for 15 minutes to 

block endogenous peroxidases. The sections were washed once with distilled water and 

twice with PBS-T before a boundary was made around the tissue section using a 



 

Results - 136 
 

hydrophobic PAP pen. The Avidin/Biotin Blocking Kit was used, according to 

manufacturer’s instruction, to block all endogenous biotin, biotin receptors, and avidin 

binding sites present in tissues. The slides were washed 3 times with PBS-T and blocked 

in 5% goat serum/0.5%Triton X100/PBS for 30 minutes at RT. The primary rabbit anti-

FITC antibody (71-1900, ThermoFisher Scientific, Paisley, UK) was applied at 1:50 

dilution and samples left overnight in a humidified chamber at 4ºC. Negative controls 

were obtained by omitting the incubation with primary antibody. Next morning, the 

slides were washed 3 times with PBS-T before adding secondary goat anti-rabbit 

biotinylated IgG (E0432, Dako, Glostrup, Denmark), at 1:100 in 5% goat 

serum/0.5%Triton X100/PBS. The slides were kept at RT for one hour. During the last 

half hour of incubation, the ABC solution was prepared as per manufacturer’s protocol 

and allowed to stand at RT for at least 30 minutes. The slides were then washed with 

PBS-T (1 wash). The ABC solution was added to the tissue sections after gently drying off 

the excess buffer. The slides were further incubated at RT for 30 min. Towards the end 

of incubation, the 3-3’diaminobenzidine (DAB) substrate solution was prepared. Briefly, 

1 golden and 1 silver tablets were dissolved in 1 ml of PBS (vortex). The slides were 

washed with PBS-T, before adding the DAB solution dropwise. The slides were allowed 

to stain for about 15 minutes under the microscope before the reaction was stopped by 

transferring the slides to PBS-T. The stained sections were counterstained for 10 seconds 

with Mayer’s haematoxylin solution (solution previously filtered) and differentiated in 

tap water. The slides were then washed one final time in PBS-T and dehydrated by 

passing through an ascending alcohol gradient, followed by 2 changes in xylene. They 

were finally mounted in DPX -  a mixture of distyrene + plasticiser (tricresyl phosphate) 

+xylene -, and covered with a slip. The slides were examined under an inverted optical 

microscope, and the appropriate primary antibody concentration was determined, after 

which all remaining slides were stained using this concentration. The slides were 

photographed for analysis in a Nanozoomer slide scanner microscope. 

 

2.20 rt-PCR 
 

The gene expression profile of specific targets of hsa-mir-92a-1-5p mirvana mimic and 

hsa-mir-92a-1-5p mirvana inhibitor were evaluated in EPCs transfected with NPs 
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complexed with miRNA at 250 µg/mL and 200 nM respectively in 6 well plates. EPCs 

transfected with NP:Dy547 (CP-004500-01-05, miRIDIAN microRNA Mimic Transfection 

Control Dy547, Thermo Scientific, Surrey, UK) served as negative transfection controls. 

Cell lysates were homogenised with QIAshredder, and total RNA was extracted with 

RNeasy Mini kit, according to the instructions of the manufacturer. Total RNA was 

quantified using Nanodrop 3300 spectrophotometer, and cDNA was prepared from 1 µg 

total RNA using QuantiTect Reverse Transcription Kit. Real-time PCR was carried out 

with the Brilliant II SYBR Green QPCR Master Mix on a Mx3000P qPCR System, following 

the manufacturer’s instructions. Each cDNA was analysed with the target gene and 

housekeeping gene primer sets that approached 100% amplification efficiency, allowing 

direct comparison of threshold cycle (Ct) values to determine relative gene expression. 

The target gene signal was first normalised to b-actin and then expressed relative to the 

value obtained with control EPCs by using the formula 2-Δ Δ Ct, as described elsewhere (X. 

Yang et al., 2005). The mean minimal Ct were calculated from triplicate reactions. Primer 

sequences, reaction conditions, and optimal cycle numbers are outlined in Table 12. 

Quality control checking included melting curve analysis after amplification of original 

template (95°C, 1min; melt ramp 30 sec from 65ºC to 95° rising by 1°C per step; 95°C, 

30 sec), and running a 1.2% pre-cast agarose gel electrophoresis of PCR products stained 

with 0.01% Ethidium bromide in E-gel iBase powersystem (Thermofisher Scientific). 

 

Table 12 | Primers for rt-PCR 
rt-PCR conditions: Initial denaturation step at 95ºC, 3min; 40 cycles of denaturation at 95ºC for 5 sec, 
primer annealing/elongation at 60ºC for 20 sec. ACTB – β actin; ITGA5 – integrin α5 subunit; rt-PCR – real-
time polymerase chain reaction. 

Target gene Sense primer sequence 

(5’->3’) 

Anti-sense primer sequence 

(5’->3’) 

Concentration (nM) 

ACTB TGTCCCCCAACTTGAGATGT TGTGCACTTTTATTCAACTGGTC 500 

ITGA5 TCTTCCCCGCCATGTTCAACCC AAGGTTGATGCAGGCCACAGGG 500 

 

2.21 Western blotting 
 

Cell lysate samples are prepared with a denaturing buffer, containing an anionic 

surfactant such as sodium dodecyl sulphate (SDS) or lithium dodecyl sulphate (LDS), and 

a reducing agent such as beta-mercaptoethanol, dithiothreitol (DTT) or Tris(2-
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carboxyethyl)phosphine (TCEP). This denaturing buffer causes the loss of native protein 

conformation by disrupting non-covalent intra- and inter-molecular protein bonds. 

Denatured cell lysate samples are run by electrophoresis through a polyacrylamide gel. 

Proteins are separated by size, as larger proteins migrate more slowly through the pores 

of the gel than smaller proteins. Proteins separated on the gel are then transferred via 

electrophoretic blotting to a protein-binding polyvinylidene fluoride (PVDF) membrane. 

After electrophoretic transfer, the membrane can be cut into strips based on the known 

molecular weight of the proteins of interest. Membranes are initially incubated in a 

protein solution such as BSA or milk to block non-specific binding sites. The specific 

protein of interest is detected by incubation with an antibody to that protein. This 

antibody is then visualised via incubation with a secondary antibody conjugated to an 

enzyme such as Horse-radish peroxidase (HRP). Upon addition of a substrate solution, 

the conjugated antibody catalyses a reaction to produce a tightly localised 

chemiluminescent product, which is then detected using a photographic film. 

Western blotting can be considered a semi-quantitative technique, as the amount of 

protein present in the cell lysate, is proportionally represented by the amount of bound 

antibody on the membrane. This, in turn, is represented by the amount of light produced 

by the chemiluminescent reaction which is detected by the photographic film. The 

intensity of the band produced is the representation of the level of the specific protein 

in the sample and can be quantified by densitometry after scanning, using software such 

as ImageJ. 

 

2.21.1 Protein extraction from EPC cultures 
 

Cells cultured in 6 well plates were washed twice with cold PBS on ice and lysed in RIPA 

buffer (50 μl per well) including complete protease inhibitor cocktail (working 

concentration 1x). The cells were scraped off the plate and the lysates transferred to 1.5 

mL tubes. The samples were centrifuged for 15 minutes at 13 000 x g at 4 °C to pellet 

the insoluble material. The supernatant containing the protein lysate was removed and 

kept on ice, or at -20 °C for longer-term storage. 
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2.21.2 Protein extraction from rat arteries  
 

Rat carotid arteries were harvested, incubated in Krebs solution (10x solution 

reconstituted in milQ water), cleared out of extraneous tissues under a 

stereomicroscope and snap frozen in liquid nitrogen. Protein extraction involved the 

sample lysis, bead-beating homogenization and retrieval of the protein lysate. Briefly, a 

solution of RIPA buffer containing Complete Protease Inhibitor Cocktail was prepared at 

4° C as per manufacturers’ recommended dosages, and 100 µl dispensed into Precellys 

ceramic beads pre-filled 0.5 mL tubes. The frozen artery was inserted into the tube, and 

the samples homogenised for 3 x 60 seconds at full speed in a Minilys tissue 

homogenizer. The tubes were kept at 4 °C for 60 seconds in between the homogenizer 

runs. The uniform sample was transferred to a 1.5 mL Eppendorf and centrifuged at 13 

000 rpm for 15 minutes at 4 °C. The supernatant was then transferred to a clean tube 

and stored at -20 °C. 

 

2.21.3 Determination of protein concentration and normalisation 
 

The Bradford protein assay allows the determination of protein concentration in tissue 

and cell lysate samples as essentially described elsewhere (Ramagli, 1999). There are 

commercially available kits for this assay. Therefore the Bio-Rad Protein Assay Kit was 

used. It is a colorimetric test based on the absorbance shift of the dye Coomassie Brilliant 

Blue G-250 under acid conditions when a redder form of the dye is converted into a 

bluer form on binding to the protein. The characteristic blue colour produced by the 

reaction has a maximum absorbance at 750 nm and the minimum absorbance at 405 

nm due to the amino acids tyrosine and tryptophan and to a lesser extent cysteine and 

histidine (from the Bio-Rad instruction manual). The amount of the blue-coloured 

complex in solution is a measure of protein concentration and can be quantified using 

absorbance reading to determine the protein concentration.  

Protein standards were prepared using BSA diluted in the same buffer in which protein 

extraction had been performed. The following dilutions of BSA were prepared – 2.0, 1.5, 

1.0, 0.5, 0.25, 0.125, 0.0625, 0.03125 and 0 mg/mL protein. Protein concentration was 

measured by taking 5 µL of cell lysate sample or standard and adding to 25 µl of the Bio-
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Rad A’ solution (alkaline copper tartrate solution) and mixing in a 96-well plate with 

200ul of the B solution (a dilute Folin reagent). The mixture was incubated at RT for 15 

minutes, shaking, protected from light. The absorbance of each well was measured at 

595 nm using a Tecan Genios plate reader. Every serial dilution or tissue sample was 

tested on two wells and the final result taken as the average. The absorbance values for 

the calibration dilutions were plotted against the standard concentrations of BSA to 

produce a linear calibration curve (Figure 23), and the protein concentration of the 

tissue samples was determined against it. Tissue samples that gave a higher absorbance 

reading than that of the highest standard (2.0 mg/mL) were re-diluted so that their 

absorbance fell within the linear range of the assay. 

 

Figure 23 | Bradford assay standard curve. 
A representative standard curve generated with BSA used to determine the concentration of protein 
extracts from EPCs and rat carotid arteries. 
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3.21.4 SDS-PAGE and immunoblotting 
 

Different volumes of protein samples normalised to the same lowest concentration, 

were added to 4x loading buffer and 10x reducing buffer and topped up with RIPA+PIC 

buffer to make up 25 µl final volume, which was then reduced by boiling at 80 °C for 4 

minutes and vortexed for 2 seconds prior to loading. The reduced samples were 

separated using SDS-polyacrylamide gel electrophoresis (SDS-PAGE), by running them 

on a 4-12% Bis-Tris Gel in 5% MOPS-SDS Running buffer alongside a molecular weight 

marker. The protein was then transferred to a 0.45-μm pore size protein-binding 

polyvinylidene fluoride (PVDF) membrane using a wet transfer apparatus in 1x NuPAGE 

transfer buffer containing 20% methanol. The transfer was carried out at 35V for 90 
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minutes. Membranes were blocked in 5% (w/v) non-fat milk made up in PBS + 0.1% (v/v) 

Tween20 (PBS-T) for an hour at RT. Membranes were incubated with appropriate 

primary antibody diluted in the 5% milk-PBST solution overnight on a rocker at 4°C. A 

list of used antibodies and corresponding titrations can be seen in Table 13. Next 

morning, membranes were given three rounds of 5-minute washes with PBST (on a 

rocker), prior to addition of the HRP conjugated secondary antibody of the appropriate 

species, in 5% milk-PBST solution. This was incubated for 1 hour with rocking at RT and 

was then subjected to three 5 minute rounds of washing in PBST (with rocking). Protein 

bands were visualised using ECL-plus western blotting detection system on Hyperfilm 

ECL. The hyper film was scanned using the HP Deskscan system. β-actin (ACTB) was 

usually probed for as a loading control in Western blotting. As this is considered a house-

keeping gene, its level can be used to determine the relative amounts of protein loaded 

in each well. Accordingly, protein expression results were then quantified by scanning 

densitometry using Image J software. 

 

Table 13 | Antibodies used for western blotting. 
ACTB – β actin; Akt – protein kinase B; CD – cluster of differentiation; eNOS – endothelial nitric oxide 
synthase; EPCs – endothelial precursor cell; ERK1/2 - Extracellular signal–regulated kinase 1/2; FITC - 
Fluorescein isothiocyanate; GAPDH - Glyceraldehyde 3-phosphate dehydrogenase; HRP – horse-radish 
peroxidase; Ig – immunoglobulin; ITGA5 – integrin α5 subunit; ITGAV – integrin αv subunit; kDa – 
kilodaltons; MKK4 - Mitogen-activated protein kinase kinase 4; PE – Phycoerythrin; SIRT1 – sirtuin 1; 
VECAD – vascular endothelial cadherin; VEGFR2 – vascular endothelial growth factor receptor 2; vWF – 
von Willebrand factor. 

Target 

antigen 

Cell type Primary and secondary antibodies 

ACTB 

42 kDa 

rat 

arteries 

 

1° = monoclonal mouse anti-rat ACTB, Clone AC-15 (1:20,000, A5441, Sigma 

Aldrich, Dorset, UK) 

2° = goat anti-mouse IgG-HRP (1:10000, SC2005, Santa Cruz Biotechnology, 

Heidelberg, Germany) 

 
ACTB 

42 kDa 

human 

EPCs 

pig EPCs 

1° = monoclonal mouse anti-human/pig, Clone AC-15 (1:106, A5441, Sigma 

Aldrich, Dorset, UK) 

2° = goat anti-mouse IgG-HRP (1:10000, SC2005, Santa Cruz Biotechnology, 

Heidelberg, Germany) 

 

Akt-p 

60 kDa 

pig EPCs 1° = rabbit anti-pig (Ser 473) (1:1000, 9271, Cell signalling, Massachusetts, 

USA) 

2° = goat anti-rabbit IgG-HRP (1:10000, SC2030, Santa Cruz Biotechnology, 

Heidelberg, Germany) 
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Akt-t 

60 kDa 

pig EPCs 1° = rabbit anti-pig (C73H10) (1:1000, 2938, Cell signalling, Massachusetts, 

USA) 

2° = goat anti-rabbit IgG-HRP (1:10000, SC2030, Santa Cruz Biotechnology, 

Heidelberg, Germany) 

 
eNOS-p 

140 kDa 

human 

EPCs 

1° = rabbit anti-human/rat (Ser 1177) (C9C3) (1:000, 9570, Cell signalling, 

Massachusetts, USA) 

2° = goat anti-rabbit IgG-HRP (1:10000, SC2030, Santa Cruz Biotechnology, 

Heidelberg, Germany) 

 
eNOS-t 

140 kDa 

human 

EPCs 

rat 

arteries 

 

1° = mouse anti-human/pig (1:3000, 610296, BD Biosciences, USA) 

2° = goat anti-mouse IgG-HRP (1:10000, SC2005, Santa Cruz Biotechnology, 

Heidelberg, Germany) 

 
ERK1/2-p 

42,44 kDa 

pig EPCs 1° = rabbit anti-pig (Thr202/Tyr204) (D13.14.4E) (1:000, 4370, Cell signalling, 

Massachusetts, USA) 

2° = goat anti-rabbit IgG-HRP (1:10000, SC2030, Santa Cruz Biotechnology, 

Heidelberg, Germany) 

 
ERK1/2-t 

42,44 kDa 

pig EPCs 1° = rabbit anti-pig (1:1000, 9102, Cell signalling, Massachusetts, USA) 

2° = goat anti-rabbit IgG-HRP (1:10000, SC2030, Santa Cruz Biotechnology, 

Heidelberg, Germany) 

 
GAPDH 

37 kDa 

Human 

EPCs 

1° = polyclonal goat anti-human/rat/mouse, V-18, HRP conjugate (1:2000, 

SC20357 Santa Cruz Biotechnology, Heidelberg, Germany) 

ITGA5 

95 kDa 

 

 

 

rat 

arteries 

 

1° = mouse monoclonal anti-human ITGA5, Clone IgG2A (2ug/mL, MAB18642, 

R&D systems, MN, USA) 

2° = goat anti-mouse IgG-HRP(1:10000, SC2005, Santa Cruz Biotechnology, 

Heidelberg, Germany) 

 
ITGA5 

114 kDa 

 

human 

EPCs 

1° = rabbit anti-human ITGA5, c-terminus, intracelular (1:1000, AB1928, 

Milipore, Temecula, USA) 

2° = goat anti-rabbit IgG-HRP (1:10000, SC2030, Santa Cruz Biotechnology, 

Heidelberg, Germany) 

 
ITGAV 

135,140 

kDa 

human 

EPCs 

1° = rabbit anti-human (1:000, 4711, Cell signalling, Massachusetts, USA) 

2° = goat anti-rabbit IgG-HRP (1:10000, SC2030, Santa Cruz Biotechnology, 

Heidelberg, Germany) 

MKK4 

44 kDa 

human 

EPCs 

1° = rabbit anti-human (1:000, 9152, Cell signalling, Massachusetts, USA) 

2° = goat anti-rabbit IgG-HRP (1:10000, SC2030, Santa Cruz Biotechnology, 

Heidelberg, Germany) 

 
SIRT1 

120 kDa 

human 

EPCs 

1° = rabbit anti-human (1:1000, C14H4 Cell signalling, Massachusetts, USA) 

2° = goat anti-rabbit IgG-HRP (1:10000, SC2030, Santa Cruz Biotechnology, 

Heidelberg, Germany) 

 
VECAD 

130 KDa 

pig EPCs 1° = mouse monoclonal anti-human/pig VE-cadherin (1:50, sc9989, Santa 

Cruz Biotechnology, Heidelberg, Germany) 

2° = goat anti-mouse IgG-HRP (1:10000, SC2005, Santa Cruz Biotechnology, 

Heidelberg, Germany) 
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2.21.5 Stripping and reprobing western blot membranes  
 

Membranes were occasionally stripped of the bound antibodies following the 

development of the western blot. Reblot Plus Strong stripping solution was used 

according to the manufacturer’s instructions to remove bound antibodies. Briefly after 

2 washes with PBS-T, the membrane was incubated with the stripping solution for 15 

minutes at room temperature in the roller (1mL of 10x Milipore solution + 9 mL of 

molecular biology grade water). Then, the membrane was washed in running milQ water 

for 1 minute. The stripped membranes were then blocked in 5% milk (w/v)-PBS-T 

solution and incubated with the relevant primary and then secondary antibodies, and 

Western blots were then developed as previously described. 

 

2.22 EPC functional assays 
 

2.22.1 Luminescence-based survival 
 

Following the miRNA transfection procedure with OF in two white-walled multiwell 96 

well plates (30,000 cells/well), human EPCs were incubated for 48 h in EGM 10% (v/v) 

FBS to allow miRNA knockdown. Survival in serum-free medium after 6h was assessed 

using a Luminescent cell viability Adenosine triphosphate (ATP)-based assay (Cell Titer 

Glo), following the manufacturer's instructions. This assay is a homogeneous method of 

determining the number of viable cells in culture based on quantitation of the ATP 

present, an indicator of metabolically active cells. The assay system utilises the 

properties of a thermostable luciferase to enable reaction conditions that generate a 

stable luminescent signal while simultaneously inhibiting endogenous enzymes released 

during cell lysis (e.g., ATPases). The ATP-based detection of cells has been shown to be 

more sensitive than other methods (Maehara, Anai, Tamada, & Sugimachi, 1987; Petty, 

Sutherland, Hunter, & Cree, 1995) and has already been used to assess endothelial cell 

viability (Logie et al., 2010).  

Briefly, one of the 96 well plates was used for the baseline reading. Cells were washed 

once, before equilibrating in 50 µl in EBM for 15 mins at 37°C, following the 

manufacturer's instructions. Then an equal volume of Cell Titer Glo reagent was added 



 

Results - 144 
 

per well and the plate inserted on an orbital shaker (to induce cell lysis) for 2 mins at RT. 

The mixture was allowed to rest for 15 minutes, covered with a lid in the dark, before 

being read in a Genios Tecan luminometer (firefly luciferase peak emission 560 nm). 

Replicates of 6 were used for each experimental condition. The medium without cells 

was used as a blank control and deducted from the values in experimental wells. As for 

the second well plate, cells were washed once and incubated in EBM serum free medium 

for 6h, before executing the luminescence assay. 

If NPs were used as the transfection vector in 96 well plates (20,000 cells/well), then 

EPCs would be incubated in EBM under normal FiO2 (21%) and the assay conducted 

using Cell Titer Glo, as described previously but using a 48h endpoint instead. The 

medium without cells was used as a blank control and deducted from the values in 

experimental wells, and treatment with only NPs was used as an internal control when 

evaluating NP:miRNA effect. Replicates of 5 were used for each experimental condition. 

An interference assay demonstrating that NPs do not block the luciferase reporter was 

conducted with the following experimental conditions: NP 125 µg/mL + ATP 50 µM in 

PBS; ATP 50 µM in PBS as a positive control and only medium as a negative control 

(Figure 24). 

 

Figure 24 | Nanoparticles were incubated with ATP revealing no luciferase reporter interference. 

 

 

2.22.2 Co-culture angiogenesis 
 

Late outgrowth EPCs were transfected using OF in 6 well plates for 4 hours with miRNA 

of interest (30nM), as described previously. After overnight rest in EGM 10% (v/v) FBS, 
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20,000 transfected EPCs in 100 µl of EGM 5% (v/v) (i.e. 2x105 cells/mL) were added to 

confluent fibroblast monolayers already in 400 µl of the same medium. The fibroblasts 

had been previously seeded in 24 well plates 3 days before at a density of 1x105 cells/mL 

and allowed to expand on DMEM 10% (v/v) FBS. Next day, medium was replaced to EGM 

1% (v/v) FBS + VEGF 25 ng/mL, and co-cultures grown for 96h. Replacement of medium 

occurred at 48h. The omission of VEGF treatment was the negative control condition. At 

the end of the assay, brightfield pictures of the coculture taken with Incucyte Zoom 

microscope, while the effects of angiogenic stimuli were assessed by IF (as described in 

section 2.18.3). Images of the wells were captured on demand using Incucyte Zoom 

fluorescent microscope. All experimental conditions were measured in triplicate. 

Angiogenesis network length, area and number of branch points based on fluorescence 

signal were automatically calculated using proprietary Incucyte Zoom software 

algorithm (Figure 25). 

 
Figure 25 | Co-culture angiogenesis network analysis algorithm run by Incucyte Zoom software. 
wWF – von Willebrand factor 

 

 

2.22.3 Luminescence-based proliferation 
 

The proliferation assay consisted in a luminescent method using Cell Titer Glo reagent 

to determine the number of viable cells in culture based on quantitation of the ATP 

present, an indicator of metabolically active cells. Following oligonucleotide transfection 
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using OF in two white opaque 96 well plates, EPCs (30 000 cells/well) were incubated 

overnight in Opti-MEM I 30% (v/v) FBS, before starting the proliferation assay itself. The 

next day, one of the 96 well plates was used for the baseline reading. Following the 

manufacturer's instructions, cells were washed once, before equilibrating in 50 µl in 

EBM for 15 mins at 37ºC. Then 50 µl of Cell Glo Titer reagent was added per well (1:1 

ratio) and the plate inserted on an orbital shaker (to induce cell lysis) for 2 mins at RT. 

The mixture was allowed to rest for 15 minutes, covered with a lid in the dark, before 

being read in a Genios Tecan luminometer (firefly luciferase peak emission 560 nm). 

Replicates of 4 were used for each experimental condition. The medium without cells 

was used as a blank control and deducted from the values in experimental wells. As for 

the second well plate, cells were washed once and incubated in EGM 10% plus or minus 

VEGF 25 ng/mL for 48 h, i.e. during oligonucleotide knockdown, before executing the 

luminescence assay. 

 

2.22.4 Cell-matrix adhesion 
 

Cell population adhesion studies, as opposed to single cell studies, involve the analysis 

of attachment events for a group of cells. In a wash assay as the one used, cells are 

cultured in static 96 multiwell plates for the cell attachment events, followed by cell 

washing, providing basic quantitative adhesion data by determining the fraction of cells 

which remains attached. Briefly, the day before running the assay, black walled 96 well 

plates were coated overnight at 4°C with 1 μg/mL FN (7 replicates per condition) or 3% 

(w/v) BSA to control for unspecific binding (3 replicates per condition). The coating was 

then blocked for one hour at RT with 3% (w/v) BSA. 72h after vital fluorescence labelling 

with CellTracker CM-DiI and 48h after oligonucleotide transfection in 6 well plates, EPCs 

were detached with trypsin (trypsin 0.1% v/v in PBS), resuspended in EBM with 0.05% 

HSA, and immediately seeded at 10 000 cells/100 μL/coated well. Cells not stained with 

DIi served as internal controls. Cells at baseline were captured using Incucyte Zoom at 

10x magnification, focused to the centre of the well, benefiting from gridlocked 

immunofluorescent imaging. After 20 mins at 37°C, nonadherent cells were washed 

away with warm EBM, and adherent cells were then photographed already in EGM 10% 

(v/v) FBS at the same gridlocked focus point. Baseline and final red object count were 

quantified using Incucyte zoom software (Figure 26), and data are expressed as mean 
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adhesion on FN minus mean unspecific adhesion on HSA.  The excitation and emission 

maxima of the fluorophore used are given in Table 10. 

Figure 26 | Incucyte red object count algorithm. 

 

 

2.22.5 Wound healing migration 
 

This method is based on the observation that, upon creation of a new artificial gap, so-

called ‘‘scratch’’, on a confluent cell monolayer, the cells on the edge of the newly 

created gap will move toward the opening to close the ‘‘scratch’’ until new cell–cell 

contacts are established again. Compared to other methods, the in vitro scratch assay is 

particularly suitable for studies on the effects of cell-matrix and cell-cell interactions on 

cell migration (Liang, Park, & Guan, 2007). EPCs grew to an 80% confluent monolayer in 

gelatin 1% coated ImageLock 96-well plates (see gelatin preparation method in section 

2.10) were transfected with 30 nM miRNA using OF (as described in section 2.14.1). After 

48h knockdown in EGM 10% (v/v) FBS cells were washed once with PBS and subject to 

2h incubation in serum-free medium (EBM). Then, an identical wound was made in the 

monolayer of each well using IncuCyte woundmaker. After washing once with warm 

PBS, the medium was replaced with EBM 0.5% (v/v) FBS (200 µL/well) ± VEGF at 25 

ng/mL. Cells were placed in Incucyte Zoom incubator time-lapse microscope, and images 

were captured every 2h at the desired magnification for a total duration of 48h. Each 

experimental condition was repeated in 6 replicates. The rate of wound closure was 

calculated using the Incucyte Zoom software and expressed as relative wound density. 

Figure 27 represents brightfield images of assay baseline and endpoint and 

corresponding masks automatically defined and used by Incucyte Zoom software to 

calculate the rate of wound closure. 

 

  

Red channel (Dii+ cells) Incucyte algorithm mask Merge (red channel + mask + phase) 
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Figure 27 | Scratch assay Incucyte algorithm. 

 

 

For EPCs that were transfected with NP:mir-92a inhibitor in 24 well plates, a manually 

performed scratch was performed as reported elsewhere (Liang et al., 2007). The day 

following transfection, the cell monolayer was scraped in a straight line to create a 

‘‘scratch’’ with a P200 pipet tip. The debris were removed by aspirating the medium. 

The remaining cells were washed with EBM and incubated without serum and VEGF over 

48 hours, under normal FiO2 (21%) content. Cells were photographed at 5x using an Axio 

Observer inverted optical microscope and the denuded area (µm2) at the end of the 

follow-up period was quantified with Axiovision 4.5 digital image analysis software. 

Duplicates were used for each experimental condition. 
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2.22.6 Chemotaxis migration 
 

A transwell assay was used to assess cellular migration through a porous membrane 

towards the chemoattractant in the lower chamber as described before (Pellet-Many et 

al., 2011; Sadahira, Ruan, Hakomori, & Igarashi, 1992). The principle of the transwell 

assay was initially developed for the study of leukocyte chemotaxis by S.V. Boyden in 

1962 and is thus also known as the modified Boyden chamber assay. Briefly, 48h prior 

to the migration assay, EPCs were transfected with different miRNAs at 30nM using OF 

in a 6 well plate. Transwell inserts with 8 μm membrane pore size were coated with FN 

2.5 µg/mL at RT for 1h, before being inserted into 24-well plate with 700 μl EBM ± 50 

ng/mL VEGF in the lower chamber (Figure 28). Cell suspensions in serum-free medium 

were then added to the upper chamber (at a density of 5x105 cells/well in 500 μl) and 

incubated at 37ºC for 5 h. Each treatment was performed in duplicate. Unmigrated cells 

were removed by scraping the upper side of the membrane with a cotton bud, and the 

migrated cells were fixed, stained with the Reastain Quick Diff and mounted onto glass 

slides. The inserts were seen and photographed under a Leica Macrofluo macroscope 

(×8 magnification). A total number of nuclei of migrated cells per insert were counted 

digitally using Image J imaging software. No VEGF was used as internal migration 

negative control, 10% FBS as positive internal control, and miRNA scrambled was used 

as transfection control.  

Figure 28 | Chemotaxis migration assay setup. 
EBM – endothelial basal medium; EPC – endothelial precursor cell; VEGF – vascular endotelial growth 
factor. 
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2.23 Rat Carotid Artery Balloon Angioplasty 
 

Male Sprague-Dawley rats (Charles River, UK)  350-400g (2-3 months) were used for the 

arterial injury, following the surgical recommendations described elsewhere (Tulis, 

2007). Male rats were preferred due to the potential impact of hormone levels on 

various cellular functions that have been identified in females (Tulis, 2007). It was 

important to use fully grown animals as vessel calibre will directly impact the severity of 

the injury from use of a standard-sized (2 French) inflated balloon catheter. Briefly, 

animals were induced by anesthesia using a combination of intraperitoneal midazolam 

(625 µg/100g animal weight) and intramuscular Fentanyl/fluanisone (40 µg/100g animal 

weight) and supported by Isoflurane 0.5-2% at 2 L/min O2 flow, following the UCL 

Cruciform Biological service unit (BSU) protocol. Other pre-operative procedures 

included placement of the animal in heating, clipping of the neck hair, topical 

disinfection of the surgical field with an antiseptic solution followed by 70% alcohol, and 

the subcutaneous + topical administration of 1:10 Bupivacaine 0.5% with epinephrine 

1:200 000 at the site of the incision. The local anaesthetic lasts up to 6 hours, has 

prolonged soft-tissue pain control for up to 7 hours, decreases the incidence of muscular 

spasm of the carotid vasculature, and offers a moderate degree of vasodilation to 

simplify insertion of the catheter through the arteriotomy incision. Following a midline 

neck skin incision, the left CCA was exposed at the bifurcation to the ECA and internal 

carotid artery (ICA) via blunt tissue dissection and the use of 3-0 mersilk sutures to 

retract the subcutaneous tissue (Figure 29). The superior thyroid artery, the first branch 

of the ECA, was identified and ligated to ensure a bloodless operating field. The ECA was 

permanently ligated cranially. Surgical micro-clips were placed on the ICA and proximal 

CCA for temporary exclusion of the ECA, followed by a transverse arteriotomy in the ECA 

3mm distally from the bifurcation produced with micro-scissors. A 2F Fogarty 

embolectomy catheter was inserted via the arteriotomy with the aid of vessel dilating, 

and the catheter advanced proximally into the CCA down to just above the aortic arch. 

The catheter was then inflated using 100 µL of air and then rotated while retracting. This 

manoeuvre was repeated three times ensuring complete endothelial denudation and 

exposure of the subendothelial ECM consisting of the internal elastic lamina. The length 

of the injured segment was similarly defined proximally by the carotid bifurcation and 



 

Results - 151 
 

distally by the edge of the omohyoid muscle. The balloon was removed from the vessel, 

and a proximal 3-0 sofsilk suture placed previously was tied to ligate the arteriotomy 

hole. The clips at the CCA and ICA were released, and the blood flow was restored. The 

subcutaneous tissue and skin were closed with continuous 4-0 vycril.  The mean total 

duration of the surgery was 30 minutes.  Post-operative procedures leading to swift 

animal recovery included top up of local anaesthesia/analgesia, the application of a 

topical antiseptic, spraying of the wound with skin moisturiser and the administration 

of supplemental fluids.  

 
Figure 29 | Rat carotid balloon angioplasty model. 
CCA – common carotid artery; ECA – external carotid artery; ICA – internal carotid artery. 
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2.24 Intravascular transplantation of EPCs 
 

In order to study the engraftment capacity of transfected EPCs at the angioplasty site, 

human late-outgrowth EPCs were previously labelled with CellTracker CM-DiI lipophilic, 

photostable fluorescence compound. The day after labelling, EPCs were transfected in 

6 well plates with the selected miRNAs using OF. After 48h of knockdown and 

immediately before rat carotid artery injury, 5x105 cells were resuspended in 300 µL of 

EBM in 1.5 mL Eppendorf. After retraction of the balloon catheter, a 26G needle catheter 

was inserted into the site of the arteriotomy. The cell suspension was gently infused into 

the clamped carotid artery over a total 10 min occlusion period. A PBS flush through the 

needle was then performed before ligating the artery. Rats were sacrificed 24h post-

transplantation of DIi-labelled EPCs, perfused with PBS and their carotid arteries 

harvested and incubated in Krebs solution. In order to quantify the number of EPC 

transplanted at the injury site, arteries were then opened longitudinally and examined 

“en face” on a fluorescent Leica macroscope (red channel), following anatomical 

references (S1- distal CCA, S2 – middle CCA, S3 – proximal CCA as displayed in Figure 30. 

Engrafted cellular area was quantified using freehand selection tool in Image J. 

 

Figure 30 | Carotid artery normal anatomy.  
Adapted from Netter atlas. 
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2.25 Harvesting of the arteries for post-mortem 

analysis  
 

Following left carotid artery exposure using forceps and small scissors, the distal end of 

the CCA at the bifurcation suture was cut, gently lifted, and the entire length of the 

artery separated from extraneous tissues in a caudal direction to the aorta. Extraneous 

tissues still attached to the vessel were gently clean, and the lumen was freed of blood 

clots, if any, gently flushing the lumen with Krebs. The suture knot allowed to maintain 

proper orientation of the vessel. The sample was placed in 1:10 Krebs Solution for 

protein, fluorescence and histomorphometric assays. Alternatively, for ex vivo 

transfection assays, the samples were placed in Opti-MEM I medium supplemented with 

Penicillin 100 U/ml + Streptomycin 100 µg/ml, before being sliced into smaller 2-5 mm 

thick rings under a Leica M80 stereomicroscope. The uninjured right carotid arteries 

were also excised as controls. 

 

2.26 Histomorphometric analysis to quantify 

intima/media ratio 
 

Four serial cross-sections (5 µm thick) of hsa-mir-92a (5p) inhibitor transfected arteries 

(using pluronic gel), were sectioned at equally spaced intervals, and stained with 

hematoxylin and eosin at Barts Cancer Institute pathology services, to quantify the 

intima/media ratios 7 days after injury. Arteries transfected with scrambled miRNA were 

used as controls. The analysis was done at UCL by examining 4 cross-sectional 

photomicrographs (NDP Nanozoomer Digital Pathology) of each carotid artery segment 

in Image J software to obtain the mean relative areas of the intimal and medial layers 

and their respective ratios. Briefly, the medial area was calculated by subtracting the 

area defined by the internal elastic lamina (IEL) from the area defined by the external 

elastic lamina (EEL), and the intimal area was determined by subtracting the lumen area 

from the area defined by the IEL. Finally, the intima to media area ratio (I/M) of each 

section was calculated. The average I/M of the six sections was used as the I/M of this 
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animal. All measurements were performed twice by the same observer, who was 

blinded to the treatment applied to the carotid artery. 

 

2.27 Double emulsion-solvent evaporation synthesis 

of NPs  
 

PLGA NPs can be synthesized using different techniques, which yield different size and 

structural characteristics accordingly. Emulsion–solvent evaporation is a common 

synthesis method, and two types of this technique can be used depending on the 

hydrophilicity of the drug to be encapsulated: the single and double emulsion. The 

emulsion is defined as the mixture of two or more entirely or partially immiscible liquids 

obtained in the presence or absence of a surface active agent. In the single emulsion–

solvent evaporation strategy, both drug (hydrophobic) and polymer are first dissolved 

in a water immiscible organic solvent, to form a single-phase oil solution. A suitable 

solvent should be able to dissolve the polymer, be poorly soluble in the continuous 

phase, and exhibit high volatility and low toxicity.  Then, the organic oil phase is 

emulsified in water containing an appropriate emulsifier (O/W emulsion). This 

surfactant should promote a considerable reduction of the interfacial free energy, thus, 

avoiding the coalescence and agglomeration of drops, leading to a stabilised emulsion. 

If the molecule to encapsulate is hydrophilic (such as Perfluoro-1,5-crown ether - PFCE), 

it is necessary to prepare two emulsions instead. The drug is first dissolved in an aqueous 

phase (Trifluoroethanol - TFE), then added to the oil phase (water-on-oil emulsion). Then 

sonication allows breaking up the primary droplets of dispersed oil into nanosized 

droplets before the solution is again added to an aqueous solution (water-oil-water 

emulsion). The subsequent removal of the organic solvent transforms droplets of 

dispersed phase into solid particles. An extra dialysis step allows selecting NPs according 

to size. If needed certain electrostatic linkers can be added to the surface of the NP to 

modify its surface charge.  
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NP synthesis 

 

Briefly, our NPs were prepared by dissolving 100 mg PLGA in a 5 mL solution of propylene 

carbonate (water immiscible organic solvent). Where required, PLGA was covalently 

conjugated to fluoresceinamine according to a protocol reported elsewhere(Horisawa 

et al., 2002). The PLGA solution was mixed with 100 mg PFCE dissolved in 1 mL TFE 

(aqueous solvent). This solution was then added dropwise to 10 mL of an organic 

stabiliser Polyvinyl alcohol solution (PVA) 1% (w/v) in milQ water, sonicated for 90 

seconds (50% amplitude, 0% pulse), diluted 1:6 in milQ water, and stirred for 3h at RT. 

The NPs were then transferred to a dialysis membrane and dialysed (Molecular weight 

cut off or MWCO of 50 kDa) against distilled water consecutively for 2 days. Then, NPs 

were coated with protamine sulphate by means of a 15-minute incubation with a 1 

mg/mL (in PBS) at a 1:1 concentration ratio under agitation, at RT. After the incubation 

period, the NPs were dialysed (MWCO of 12-14 kDa) against distilled water for 2 days, 

freeze-dried and lyophilized (Figure 31). 

 

Figure 31 | Synthesis of PLGA NP containing a fluorine compound. 
O – oil: PC – polycarbonate; PFCE - perfluoro-1,5-crown ether; PLGA - poly(lactic-co-glycolic acid); PS – 

protamine sulphate;  PVA - Polyvinyl alcohol solution; W – water; TFE – trifluoroethanol. 
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2.28 Complexation of miRNAs with NPs 
 

The complexation of miRNA to the NP surface was achieved by modifying the surface 

chemistry of the NP since the NP are overall negatively charged.  Thus, NPs were coated 

with protamine sulphate (PS), a polycationic peptide that makes the overall charge of 

the particle positive (Figure 32), permitting miRNA electrostatic adsorption and also 

facilitating cell internalisation. 

 

Complexation 
 

Briefly, for cell transfection, NPs were weighed, sterilised under ultraviolet light for 30 

min and resuspended in EBM serum-free medium to a final concentration of 500 µg/mL. 

The suspension of NPs was vortexed and dispersed by ultrasound twice for 10 seconds. 

MicroRNAs were added at 400 nM and allowed to complex electrostatically with the NPs 

for 1 hour at 37ºC, with intermittent agitation. The resulting complexes were diluted 1:4 

in the same medium. For tissue transfection, complexation was accomplished the same 

way in Opti-MEM I (ex vivo applications) or in PBS (in vivo applications) at 30 mg/mL, 

and miRNAs added at 6 µM. The resulting complexes were further diluted 1:6 in Opti-

mem for ex vivo applications, and in either PBS or a thermoreversible gel for in vivo 

applications. 

 

Figure 32 | Adsorbing miRNA to the surface of PFCE encapsulating NPs is possible using a cationic 
peptide linker. 
Overall NP charge in brackets. miR – microRNA; PFCE - perfluoro-1,5-crown ether; PLGA - poly(lactic-co-
glycolic acid); PS – protamine sulphate. 
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2.29 NP characterization by dynamic light scattering 
 

Dynamic light scattering (DLS) is a well-established method to determine the size of NP 

in solution and Polydispersity index (PdI), an indicative of the heterogeneity of NPs sizes 

in a suspension. PdI is obtained from the photon correlation spectroscopic analysis. It is 

a dimensionless number extrapolated from the autocorrelation function. A PdI of <0.1 

is expected for a near-monodisperse sample (Nobbmann et al., 2007). In the presence 

of aggregates the equipment analyses them as a large size single particle, resulting in 

higher PdI results. Additionally, DLS also allows the determination of the surface charge 

density by zeta potential. When a particle is immersed in a fluid, a range of processes 

causes the interface to become electrically charged. Some of the most commonly found 

charging mechanisms include adsorption of charged surfactants to the particle, loss of 

ions from the solid crystal lattice and ionisation of surface groups. These processes lead 

to the production of a surface charge density. The charge cannot be measured directly, 

but only via the electrical field it creates around the NP. Thus, the surface charge is 

usually characterised in terms of a voltage at the particle surface, the surface potential, 

rather than a charge density. The zeta potential occurs at a distance from the surface, 

and this will be different to the surface potential. In the simplest approximation, the 

potential decays exponentially with distance from the surface of the particle. The rate 

of decay is dependent on the electrolyte content of the fluid. 

 

Estimation of NP diameter 
 

NP size was determined by Zeta Pals light scattering analysis using Zeta Plus Particle 

Sizing Software, as described previously (Maia et al., 2011). Briefly, NPs or NP:miR 

complexes were resuspended at 125 µg/mL in 1 mM KCl pH 5.5 solution and then 

dispersed by Branson 2510 ultrasound and vortexed twice for 30 s each time. All size 

measurements were performed at 90° angle after an equilibration time of 5 min at 25°C, 

and all data was recorded following individual run times of 60 seconds (3 runs per 

measurement).   
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Estimation of NP charge 
 

The zeta-potential of NPs was determined using a Zeta PALS Zeta Potential Analyser 

software. All data were recorded with at least five runs with a relative residual value of 

0.03 (a measure of data fit quality).  

 

2.30 Statistical analysis  
 

All the experiments were performed independently at least 3 times, i.e. the definitive 

quantitative results were obtained from at least 3 different biological samples. Each 

sample generated an averaged result ± standard error of deviation following the reading 

of experimental replicates (the exact number of replicates per protocol are indicated in 

the corresponding figure legend). All data are presented as mean ± standard error of 

mean (SEM).  

Normality was checked using Shapiro-wilk test or assumed when the n number was 

insufficient to test. Multiple group comparisons (for more than two groups) on normally 

distributed data were done by 1-way (1 independent variable) or 2-way ANOVA (>1 

independent variable), using the Bonferroni's test (post-hoc) for multiple comparisons 

to locate statistical differences between conditions. Within subject or repetead 

measures analysis used when appropriate. For only two groups, these were compared 

by two-tailed student´s t-test (paired when necessary). P≤0.05 was considered 

statistically significant. The specifics of each statistical analysis performed are indicated 

in the appropriate figure legend, with the adjusted p values. Data statistical analysis was 

performed using GraphPad 5.0 from Prism software. 
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Results 

Chapter 3: Establishment of a 
primary cell culture of CD34+ -
derived late-outgrowth EPCs 
 
 

Aims: This chapter describes the results of a stepwise process to establish a human primary 

CD34+-derived endothelial precursor cells (EPC) culture in which I could study the in vitro effects 

following miR-92a inhibitor treatment. 

 

 

Objectives:  

• Isolation of CD34+ progenitor cells from human umbilical cord blood (UCB) 

• Differention in culture of the former into vascular progeny (late-outgrowth EPCs) 

• Characterization of the resulting EPCs both phenotypically and functionally to ascertain 

about the simultaneous presence of stem features and endothelial commitment.  

 

 

What is new: Optimization of a CD34+ MACS enrichment method; an original indirect labelling 

enrichment method for pig BM CD34+ progenitor cells (appendix I).  
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3.1 Enrichment of CD34+ and CD133+ cells from 

human UCB 
 

As discussed in the Introduction, CD34+ (and arguably CD133+) populations are likely 

enriched in cells with endothelial progenitor capacity. On average, using MACS 

microbeads system after technical optimization, I was successful in isolating 1.05 ± 0.12 

x106 cells from each UCB  unit sorted for CD34 (Table 14). Recovered cells were present 

at a frequency of 0.38 ± 0.07 % of total mononuclear cells (MNCs), and their mean 

viability, as determined by an automated cell counter, was 78.33 % ± 1.03. As for CD133+ 

selection, an average of 5.10 ± 1.10 x105 cells were recovered from each unit, 

corresponding to 0.16 % ± 0.02 from the total MNC fraction. Cell viability after the 

selection was maintained at a mean 76.66 % ± 5.48. 

 
Table 14 | Quantification of CD34+ and CD133+ cells obtained from human UCB. 
CD34+ and CD133+ cells were isolated from human UCB MNCs using MACS immunomagnetic separation 
system and then counted following staining with propidium iodide. Data from 9 independent (CD34+) and 
3 independent (CD133+) isolations is presented as mean values ± SEM. CD – cluster of differentiation; MNC 
– mononuclear cell; SEM - standard error of the mean; UCB – umbilical cord blood 

Enriched 
population 

MNCs (x108) Recovered cells 
(x105) 

Recovered cells (% 
of MNCs) 

Viability of 
recovered cells (% 

total cells) 

UCB CD34+ cells 3.31 ± 0.4 1.05 ± 0.12 0.38 ± 0.07 78.33 ± 1.03 

UCB CD133+ cells 3.43 ± 1.13 0.51 ± 0.11 0.16 ± 0.02 76.66 ± 5.48 

 
 

Viable and functionally active CD34+ and CD133+ cells can be used in various 

downstream applications, such as flow cytometry and cell culture, but highly pure cell 

fractions are required. After using the optimised immunomagnetic sorting protocol with 

two successive column separations, the retrieved CD34+ and CD133+ labelled cell 

populations revealed a high degree of purity (99.53 % ± 0.14 and 98.27 % ± 0.21, 

respectively) as determined by FACS using antibodies for the same epitope (Figure 33). 

When sampling flow through cells, I specifically focused on the gate region R3, 

containing cells with low granularity which included MNCs as well as progenitor cells, 

and examined the expression of CD34 and CD133. The R1 gate (used for enriched cells) 

was similar to R3 for homogeneity of results. 
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Figure 33 | CD34+ and CD133+ cell fractions isolated from human UCB were highly pure. 
To determine the purity of the populations enriched for CD34+ or CD133+ by immunomagnetic sorting, 
cells were stained with anti-CD34 or anti-CD133 antibody conjugated with PE, before being processed by 
flow cytometry. Mouse immunoglobulins of the relevant IgG subclass conjugated with PE served as 
negative controls. (A) Representative FSC-SSC dot plots (R1=R3 gate) and histograms are presented. (B) 
Enriched cells exceeding a threshold fluorescence defined by the IgG control were considered positive for 
the corresponding CD and quantified. Results are presented in a tabular format as mean antigen positive 
cells percentage ± SEM from 3 independent experiments (each condition measured in duplicate). CD – 
cluster of differentiation; FSC – forward scatter; IgG – Immunoglobulin; PE – phycoerythrin; SEM - 
standard error of the mean; SSC – side scatter; UCB – umbilical cord blood. 
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B 
Enriched population Antigen Positive cells (%) 

UCB CD34+ cells CD34 99.53 ± 0.14 

UCB CD133+ cells CD133 98.27 ± 0.21 

 

FACS analysis revealed that most cells enriched for CD34+ (86.62 % ± 2.03) also co-

expressed CD133 (Table 15). Remarkably, nearly all CD133+ cells were positive for 

surface CD34 (98.28 % ± 0.15).  

 

Table 15 | Most human UCB cells enriched for CD34+ also co-expressed CD133 and vice-versa. 
To quantify the specific CD133 and CD34 antigen in the populations enriched for CD34+ or CD133+ cells by 
immunomagnetic sorting, respectively, cells were stained with anti-CD34 or anti-CD133 antibody 
conjugated with PE, before being processed by flow cytometry. Mouse immunoglobulins of the relevant 
IgG subclass conjugated with PE served as negative controls. Enriched cells exceeding a threshold 
fluorescence defined by the IgG control were considered positive for the corresponding CD and 
quantified. Results are presented in a tabular format as mean antigen positive cells percentage ± SEM 
from 3 independent experiments (each condition measured in duplicate). CD – cluster of differentiation; 
PE – phycoerythrin; SEM - standard error of the mean; UCB – umbilical cord blood. 

Enriched population Antigen Positive cells (%) 

UCB CD34+ cells CD133 86.62 ± 2.03 

UCB CD133+ cells CD34 98.28 ± 0.15 

 

To further characterise the levels of expression of cell surface CD34 and CD133 on 

enriched populations, I used flow cytometry and commercially available microbeads 

with known antibody binding capacity (Figure 34). Assuming monovalent antibody-

receptor binding, I was able to estimate the cell surface receptor density using an 

antibody binding capacity standard curve derived from microbeads fluorescence 

analysis. The isolated CD34+ population expressed over 200,000 CD34 receptors per cell 

and only a residual density of CD133 surface molecules. On the other hand, CD133 

enriched population exhibited a higher density of CD34 membrane receptors (> 

300,000/cell). 

 

Figure 34 | Antigen surface density quantification in CD34+ and CD133+ cells isolated from human UCB. 
CD34 and CD133 antigen surface density quantification were performed in human UCB CD34+ and CD133+ 

cells by flow cytometry using Quantum Simply Cellular Kit. (A) A representative beads FSC-SSC dot plot 

and a fluorescence histogram of the distinct beads population with increasing avidity towards anti-CD34-

PE is presented. The beads fluorescence intensities were entered in QuickCal software, which 

extrapolated the CD34 antibody binding capacity standard curve. (B) A representative FSC-SSC dot plot, 
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plus CD34-PE and CD133-PE histograms of CD34+ cells are presented. (C) Box plot exhibiting the 

quantification of CD34, CD133 surface antigen density in CD34+ and CD133+ cells (mean values ± SEM, 

n=3, samples run in duplicate). CD – cluster of differentiation; FSC – forward scatter; MESF/ABC - 

Molecules of Equivalent Soluble Fluorochrome/Antibody binding capacity; SEM – standard error mean; 

SSC – side scatter; PE – phycoerythrin. 
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There is substantial evidence that progenitors expressing CD34 or CD133 include a 

population of proangiogenic cells (PACs) with a specific role in regenerative angiogenesis 

(Fadini et al., 2008). Since these cells can be harvested from a donor and transplanted 

within a few hours with minimal tissue culture-associated risks (infection, mutations), 

which contributes towards their clinical applicability, it would have been interesting to 

test these cells for miR-92a inhibitor modulation. Nevertheless, using them would pose 

significant technical problems, as their isolation is time-consuming and expensive. Blood 

donations would be needed daily. Moreover, absolute cell numbers isolated from each 

sample are heterogeneous from donor to donor and usually low (Janic et al., 2010), thus, 

it would be challenging to meet the count requirements per experimental setup. 

Moreover, MNCs have a very scarce cytoplasm, making them less ameneable to 

transfection, even with electroporation, which may result in varying efficiencies, with 

several cell lines and primary cells showing poor transfection rates and cell death (H. Yin 

et al., 2014). Adittionaly, PACs should be used with caution because of their monocytic 

nature and possible role in enhancing tissue inflammation (Medina et al., 2010), which 

could exacerbate a pre-existing pathology such as diabetic vasculopathy (Awad, Jiao, 

Ma, Dunnwald, & Schatteman, 2005). Moreover, CD34 and/or CD133 positivity is not a 

synonym of PACs. The CD34 marker can also be present in mesenchymal stem cells 

(MSCs) and other nonhematopoietic cell types including muscle satellite cells, epithelial 

progenitors, corneal keratinocytes, interstitial cells, and vascular endothelial 

progenitors (Sidney et al., 2014). In the blood, CD133 is a marker of both immature 

haematopoietic and progenitor cells (A. H. Yin et al., 1997). In other words, studying miR-
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92a inhibitor biological effects in this miscellaneous population of circulating cells would 

possibly not be very informative.  

 

Remarkably, among CD34+ progenitor cells a small minority are known to have true 

endothelial differentiation potential (Medina et al., 2010) and display postnatal 

vasculogenic activity (Yoder et al., 2007), unlike primary PACs promoting angiogenesis 

via paracrine effects. Therefore, as an alternative to using monocyte-committed PACs 

(“early EPCs”), having optimized the protocol for isolation of highly pure fractions of 

CD34+ cells from human UCB, I attempted to demonstrate that these progenitor cells 

comprehend/can be differentiated into functional late-outgrowth EPCs by culture assay. 

The rationale was that EPCs are equally fundamental (compared to PACs) in the re-

endothelialisation process, but at a later stage (Fadini et al., 2008). The ability to amplify 

EPCs by in vitro expansion, while preserving their angiogenic potential, was considered 

the single most important technical advantage of using the late-outgrowth progenitors 

instead.  Other advantages included higher transfectability and more robustness under 

tissue culture conditions compared to “early EPCs”, and a predictable EC-like phenotype 

which could be evaluated by well-established functional assays (Medina et al., 2017; 

Timmermans et al., 2007).  

 

 

3.2 Differentiation of late-outgrowth human EPCs 

from CD34+ cells 
 

Culturing UCB CD34+ cells, using a protocol established during my collaboration with 

Biocant Institute in Portugal during my first PhD year, reproducibly generated CD34+-

derived late-outgrowth EPCs. Initially, freshly purified CD34+ cells were small and round. 

After 2-6 days of tissue culture, non-adherent cells started clumping in the middle of the 

well, while showing a more elongated morphology with some spindle-shaped extensions 

(Figure 35, A), which correspond to PACs/“early EPCs”. By day 14, the cells in suspension 

were more elongated (Figure 35, B) and Endothelial cell – colony forming units (EC-CFUs) 

could be seen (Figure 35, C). CFU is defined as a cell mass composed of a central cord of 

round cells that sits on top of elongated spindle–shaped cells sprouting at the periphery 
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of the colony. These cellular clusters were first described by Asahara (Asahara et al., 

1997). Over time the clusters disappeared, revealing beneath a uniform adherent cell 

population that displayed features characteristic of more mature endothelial cells (ECs) 

(Figure 35, B). Namely, these possessed large nuclei that were deeply indented one or 

several-fold. Typically, after 14–20 days of culture, these adherent CD34+-derived EPCs 

had formed a confluent monolayer with cobblestone appearance (Figure 35, C) and 

could be expanded by tissue culture. 

 
 
Figure 35 | Late-outgrowth EPCs were successfully differentiated from human UCB CD34+ cells. 
UCB human CD34+ cells were differentiated into late-outgrowth EPCs. Bright-field images during 
differentiation were captured. (A) CD34+ cells 2-4 days after isolation tend to accumulate in the centre of 
the culture well as seen at 20x; (B) At 14-16 days post-isolation, some of the differentiating cells assume 
a cobblestone-like morphology (see arrowed, 20x). (C) Occasionally, colony forming units from which 
elongated spindle-like cells radiate in all directions were also observed at 5x. (D) After 20 days of culture, 
internalisation of Ac-LDL was confirmed by IF at 20x. (E-I) After 20 days of culture, the presence of 
endothelial lineage markers was evaluated by IF. CD34+-derived EPCs stained positive for (E) vWF (40x), 
(F) VE-cadherin (60x) and (G) KDR (60x), and negative for (H) SMA (20x). (I) Negative controls were 
obtained by using isotype-matched IgGs (20x). CD – cluster of differentiation; DAPI - 4',6-diamidino-2-
phenylindole; EPC – endothelial precursor cell; IF – immunofluorescence; IgG – immunoglobulin; KDR – 
kinase insert domain receptor; LDL - low-density lipoprotein; SMA – smooth muscle α- actin; VE – vascular 
endothelial; vWF – von Willebrand factor. 
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After having established EPC differentiation, I attempted different adaptations to the 

protocol to have a better understanding and to narrow down the source of the late-

outgrowth CD34+-derived EPCs. Starting from the observation that within 24 hours in 

culture a limited number of CD34+ cells had promptly attached to the gelatin-coated 

flasks, I transferred non-adherent CD34+ cells to fresh gelatin-coated flasks at first 

medium change. These cells did not become adherent and eventually died. It was also 

noteworthy that in the absence of the non-adherent cells, and despite the continuation 

of VEGF supplementation, the sparsely attached cells that were left in original flask also 

ultimately died. Culturing freshly isolated CD34+ cells in uncoated flasks also prevented 

cell attachment and successful differentiation. Likewise, in the absence of VEGF, all 

CD34+ cells failed to attach or proliferate and at that point died, indicating their 

dependence on exogenous vascular growth factors.  

 

The next step was to confirm the endothelial commitment of the CD34+-derived EPCs 

with IF, flow cytometry and functional assays, as other have done previously following 

their differentiation protocols (Melero-Martin et al., 2007). To do so, I initially 

performed IF analysis using a selected set of endothelial specific markers (Medina et al., 

2017; Nguyen et al., 2009). The late-outgrowth EPCs stained positively for vascular 

endothelial cadherin (VE-cad), von Willebrand factor (vWF) and kinase insert domain 

receptor (KDR) and did not stain for Smooth muscle cell (SMC)-specific α-actin, the 

negative control, as expected (Figure 35, E, F and G). Furthermore, EPCs efficiently 

incorporated Alexafluor488-conjugated ac-LDL (Figure 35, D), which is another 

important function of mature ECs (Nguyen et al., 2009), and previously described for 

BM-derived EPCs (Rafii et al., 1994). Most interestingly, CD34+-derived EPCs continued 

exhibiting the immature marker CD34 (Figure 36), suggesting a likely maintenance of 

specific progenitor cell activity, despite the acquisition of many features from terminally 

differentiated ECs during differentiation. 

 

 

Figure 36 | Late-outgrowth human EPCs maintained CD34 expression. 
After 20 days of culture, the presence of stem markers was evaluated by IF at 40x magnification. Negative 
controls were obtained by using isotype-matched IgGs (20x). The arrows represent human CD34+-derived 
EPCs which were still positive for CD34. They revealed an elongated morphology with extending filopodia. 
CD – cluster of differentiation; DAPI - 4',6-diamidino-2-phenylindole; EPC – endothelial precursor cell. IF 
– immunofluorescence; IgG – immunoglobulin. 
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The observation that cultured cells preserved progenitor features, was further 

investigated by quantifying the changes in stem-like and endothelial lineage surface 

markers throughout the cellular differentiation process, using flow cytometry. Freshly 

isolated CD34+ primary cells expressed approximately 10-fold more surface CD34 

molecules than CD133 and expressed virtually no KDR at the surface, an EC lineage 

commitment marker (Eichmann et al., 1997) (Figure 37). During the differentiation 

process CD34 antigen density decreased significantly but never ceased to be expressed 

at the surface, unlike CD133, another progenitor immaturity marker, which was absent 

by day 40 in culture. On the contrary, there was a KDR upregulation trend observed in 

CD34+-derived EPCs.  

 

Figure 37 | Late-outgrowth human EPCs maintain stemness marker CD34 while acquiring vascular 
marker KDR. 
Quantification of CD34, CD133 and KDR surface antigen density was performed in primary human UCB 
CD34+ cells and corresponding derived late-outgrowth EPCs (3rd passage) by flow cytometry, using 
Quantum Simply Cellular kit. (A) Representative FSC-SSC dot plots of cells are displayed, as well as the 
corresponding CD34, CD133 and KDR conjugated PE intensities’ histograms. (B) Box plot displaying 
quantification of surface antigen density for CD34+ primary cells vs. CD34+-derived late-outgrowth EPCs 
(mean values ± SEM; all conditions were measured in duplicate; results in this graphic are representative 
of 1-3 experiments cells, depending on cell type and markers used, and therefore preliminary except for 
CD34 surface characterization). (C) Bright-field images of CD34+ cells (top) and CD34+-derived EPCs 
(bottom) were captured at 20x. CD – cluster of differentiation; EPC – endothelial precursor cell; FSC – 
forward scatter; KDR – kinase insert domain receptor; SEM – standard error mean; SSC – side scatter; PE 
– phycoerythrin; UCB – umbilical cord blood. 
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KDR upregulation in CD34+-derived EPCs was further characterised by time course 

analysis (Figure 38). Interestingly, KDR levels rose progressively to become higher than 

mature HUVECs by the end of differentiation, a finding also reported by others (Lavergne 

et al., 2011). The increase in KDR expression was sustained despite termination of FBS 
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and VEGF supplementation by day 25, according to the protocol, suggesting definitive 

commitment.  

 

Figure 38 | CD34+-derived late-outgrowth EPCs acquire KDR expression during their differentiation. 
Quantification of KDR density was performed in human UCB CD34+ cells (non-adherent), CD34+-derived 
late-outgrowth EPCs (adherent) and mature endothelial cells (HUVECs) by flow cytometry, using Quantum 
Simply Cellular. (A) Representative FSC-SSC dot plots of cell subtypes are presented, as well as 
corresponding KDR conjugated PE intensity histograms. (B) The graphic presents the mean KDR density 
per cell for CD34+ cells versus CD34+-derived EPCs. The dashed line represents the mean surface KDR 
density expressed in HUVECs. Results in this graphic are representative of 1 (CD34+ cells and HUVECs) to 
3 (late-outgrowth EPCs) experiments (mean values ± SEM; all conditions were measured in duplicate). CD 
– cluster of differentiation; EPC – endothelial precursor cell; FSC – forward scatter; HUVEC - Human 
Umbilical Vein Endothelial Cell; KDR – kinase insert domain receptor; PBS - phosphate-buffered saline; 
SEM – standard error mean; SSC – side scatter; PE – phycoerythrin. 
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Finally, the generated CD34+-derived EPCs were able to form tube networks on Matrigel 

(Figure 39), a typical feature of endothelial commitment (Nguyen et al., 2009). Within 

just 6 hours of incubation, EPCs assembled into a capillary-like network on a Matrigel-

coated surface, indistinguishable from those formed by HUVEC under the same 

conditions. 

 
Figure 39 | UCB CD34+-derived late-outgrowth EPCs exhibit angiogenic potential. 
The angiogenesis assay was performed using a Matrigel matrix with reduced growth factor content. A set 
of representative brightfield images (10x magnification) taken at 15 min, 2h and 6h post incubation is 
presented for EPCs, revealing tubule-like formation ability. HUVECs were used as positive controls and rat 
colonic SMC as negative controls. CD – cluster of differentiation; EPC – endothelial precursor cell; HUVEC 
- Human Umbilical Vein Endothelial Cell; SMC – smooth muscle cell; UCB – umbilical cord blood. 
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Later, I replicated the strategy with a porcine BM source generating CD34+derived late-

outgrowth pig EPCs, to pave the way for future autologous transplantation pre-clinical 

experiments with miR-92a inhibitor transfected EPCs (Appendix I). 

 

 

3.3 Differentiation of late-outgrowth human EPCs 

from CD133+ cells was unsuccessful  
 

Peichev and colleagues postulated that a small subset of CD34+ cells from UCB, G-CSF–

mobilized peripheral blood (PB) and human fetal liver, co-expressing CD133 and KDR 

had EPC -potential (Peichev et al., 2000). But, in fact, triple positive CD34+CD133+KDR+ 

cells despite being proangiongenic, have an haematopoietic origin (CD45+) and do not 

represent true EPCs (Case et al., 2007) since they do not possess the postnatal 

vasculogenic profile that was originally proposed for a cell with endothelial progenitor 

properties (Estes et al., 2010). Nevertheless, some groups still reported that CD133+ cells 

can differentiate into endothelial progeny (Friedrich, Walenta, Scharlau, Nickenig, & 

Werner, 2006; Gehling et al., 2000; Nguyen et al., 2009). With the hypothesis that 

another subset of CD133+ cells could comprehend a possible EPC source, I applied the 

same culture differentiation protocol used for CD34+ cells in UCB CD133+ cells. However, 

I was unable to generate cells with endothelial phenotype, i.e. cells did not adhere and 

form cobblestone shaped cell clusters, despite VEGF supplementation and 3 weeks in 

culture (Appendix II). Hence, I studied the effects of miR-92a inhibitor in CD34+-derived 

late-outgrowth EPCs only for the entire research project. 
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3.5 Discussion 
 

Human UCB were the preferred EPC source 

 

CD34+ progenitor cells are present in different blood sources. Their collection is possible 

from mobilised PB, bone marrow blood (BMB) and UCB. The latter has been emerging 

as a valuable source (Kekarainen et al., 2006), due to some unique advantages compared 

to the counterparts. Cord blood stem cells are immunologically naïve (Slovinska et al., 

2011), present enhanced human leukocyte antigen (HLA) mismatch tolerance (Riordan, 

Chan, Marleau, & Ichim, 2007), and thus contribute to a reduced risk of graft-versus-

host disease compared to transplantation from other sources (Grewal, Barker, Davies, 

& Wagner, 2003). UCB is readily available from public/private tissue banks, which are on 

the increase, and can safely be cryopreserved without loss of cell viability (Liao, Geyer, 

Yang, & Cairo, 2011; R. Z. Lin, Dreyzin, Aamodt, Dudley, & Melero-Martin, 2011). 

Reassuringly, outgrowth EPCs obtained from culturing UCB cryopreserved MNCs are 

described to be phenotypically and functionally indistinguishable from those arising 

from freshly isolated MNCs like the ones used in this study (R. Z. Lin et al., 2011), 

including their ability to generate blood capillaries in vivo. UCB donation is painless in 

contrast to that of BM or PB. Moreover, there is a lesser risk of transmitting viral 

infections or somatic mutations compared with using adult tissues (Roura, Pujal, Galvez-

Monton, & Bayes-Genis, 2015). Strikingly, the acquisition of phenotypic and functional 

characteristics of the endothelial lineage has also already been reported for progenitor 

cells isolated from UCB (Janic et al., 2010; Pedroso et al., 2011). Compared to PB or BM, 

UCB-isolated CD34+ cells’ enhanced engraftment potential (Vormoor et al., 1994) allied 

with a faster proliferation rate in response to cytokine stimulation (Hao, Shah, 

Thiemann, Smogorzewska, & Crooks, 1995), and the generation of sevenfold more 

progeny under culture conditions (Hao et al., 1995), make the use of this progenitor 

source very promising for vascular therapy (Janic & Arbab, 2012). UCB-derived late EPCs 

are at a higher frequency (Yoder et al., 2007), display greater telomerase activity (Ingram 

et al., 2004) and are more efficient in actively forming vascular structures within 

ischaemic tissues than those derived from adult PB (Ingram et al., 2004). In fact, a longer 

stability of the vascular networks formed in vivo was described (Au et al., 2008). EPC 
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colonies from CB-MNCs emerge 5-7days earlier, were 3-fold higher in number, and 

consistently larger in size than in PB-MNCs(X. Gao, Yourick, & Sprando, 2017). Colonies 

originated from UCB progenitors can give rise to secondary and tertiary colonies, a 

property not shared by PB progenitors (Ingram et al., 2004), suggesting that these cells 

despite having undergone some degree of differentiation maintain more immature 

features, which may confer upon them greater tissue repair capacity. Indeed, the 

transcriptomic analysis shows that expression levels of progenitor markers CD34 are 

higher in UCB-derived late-outgrowth EPCs than their PB counterparts, confirming the 

apparent cell immaturity which would be consistent with their more primitive 

developmental stage (van Beem et al., 2009).  

This might explain the fact that iPSC colonies generated from CB-EPCs are 2.5-fold higher 

in number than from PB-EPCs, indicating CB-EPCs have a higher reprogramming 

efficiency than PB-EPCs (X. Gao et al., 2017). The differences in the gene expression 

pattern between CB-EPCs and PB-EPCs as revealed by the transcriptomic study by Gao 

et al. using microarrays, especially those involved in the human embryonic stemcell 

pluripotency pathway, may result in increased endogenous expression in CB-EPCs of 

someof the key transcription factors such as SOX2 and OCT4, thus promote the 

reprogramming process and ultimately lead to an increased reprograming efficiency in 

these cells compared to PB-EPCs(X. Gao et al., 2017). 

 

Consistingly, generation of EPC colonies from PB sometimes cannot be obtained from 

all donors, especially in relation to age and the presence of CVD (Meneveau et al., 2011). 

Even though the use of PB from CVD subjects would better portray EPC clonogenic and 

biological activity in patients with real restenosis risk, given the invasive nature of its 

collection, reduced circulating progenitor numbers and heterogeneous success of 

differentiation from patient to patient, I chose to pursue the isolation of CD34+ 

progenitors from UCB instead for in vitro miR-92a inhibitor proof-of-principle studies. 

Indeed, the use of cryopreserved CB products for autologous use in the presence of 

adulthood CVD might be a promising strategy for cellular angiogenic therapies in the 

future.  
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The advantage of using a mixed methodology for isolation of 

CD34+-derived EPCs 
 

If the identification of putative EPCs has been most controversial (Hristov et al., 2003; 

Medina et al., 2017), their isolation has not been any less challenging. Generally 

speaking, two primary isolation methods from MNCs are used (Fadini et al., 2012): 

(1) Cell sorting according to surface phenotype, i.e. enriching a progeny population 

(Casamassimi et al., 2007; Ott et al., 2005) 

(2) Colony assays, i.e., selecting EPCs by their ability to form endothelial-cell like 

clusters in culture, in the presence of specific differentiation growth factors 

(Fadini et al., 2012; Hill et al., 2003) 

 

The direct isolation of cell populations using surface antigen markers has the advantage 

to specifically select defined enriched populations of cells without the need for ex vivo 

manipulation, which may induce cellular senescence and impair their regenerative 

function. However, a low isolation yield and the fact that it can take some time to reach 

a minimum cell number suitable for clinic applications are possible limitations of this 

technique.  Moreover, given the absence of a unique cell signature that exclusively 

defines EPCs, a sorted population at an early state of differentiation may not reflect the 

putative EPCs (R. Z. Lin et al., 2011) exclusively. Indeed, comparing six flow cytometric 

methodologies for EPC identification using anti-CD34 and KDR markers revealed only 

poor to a reasonable agreement among strategies (Van Craenenbroeck et al., 2008). On 

the other hand, MNC culture assays have the advantage that they generate and expand 

late-outgrowth EPCs depending on protocol used (Fadini et al., 2012). However, it 

remains unclear when starting with a preparation of total unselected MNCs, how the 

interaction/plasticity of the different cells present in varying percentages 

(hematopoietic stem cells, mesenchymal stem cells, side population cells) may influence 

EPC phenotype (Rehman et al., 2003). Unselected MNCs can be stimulated by a variety 

of host growth factors that promote expression of numerous proteins, and such may 

lead to differential pathways of alternative macrophage activation. Thus, use of culture 

methods for putative EPC isolation from MNCs is fraught with complexities in identifying 

which cell may be playing a functional role. Additionally, most culture protocols used so 

far differ regarding the culture time, the type of substrate, and the positive or negative 
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selection of cellular subtypes during the assay. Particularly, to what extent the use of 

different growth factors/substrates/conditions and how the in vitro environment can 

reprogram the cells and generate an artificial phenotype, is still debatable (Muscari et 

al., 2010; Simard et al., 2017; Timmermans et al., 2009).   

In summary, both surface phenotype sorting and MNC adherent culture methods have 

considerable limitations. In fact, we should keep in mind that flow cytometrically 

isolated EPCs probably have little in common with EPCs derived from cultured MNCs. 

Two profoundly different techniques may yield profoundly different biological 

information. Exactly to circumvent these shortcomings, I used a more reliable strategy, 

combining cell sorting technology with subsequent differential attachment. By first 

enriching a primary cell population of CD34+ cells before culturing them (instead of using 

MNCs as the starting material), I reduced the complexity of cell composition and 

narrowed down possible sources for EPC generation via differential attachment, 

speeding up the process of expanding a pure cell population after two to three weeks in 

culture.  

 

Recovery 
 

The CD34+ cells recovery yields obtained using MACS system are in concordance with 

the literature, with progenitor recovery from human UCB for CD34 usually ranging from 

0.1 to 0.5% of total MNCs (Chaisiripoomkere et al., 1999; D'Arena et al., 1996; 

Kekarainen et al., 2006). The CD133+ cells recovery numbers are lower than the 0.5 to 1 

% published retrieval rates using MACS system, which follow single tagging/two-step 

enrichment and single tagging/single column enrichment (Pelagiadis, Relakis, Kalmanti, 

& Dimitriou, 2012; Slovinska et al., 2011). Instead, my methodology included an extra 

labelling step with CD133 microbeads before the second column enrichment, which 

could account for the reduced recovery. Also, a wide donor heterogeneity of progenitor 

numbers could be suspected, as other groups also reported the different percentage of 

CD133+ cells, often beyond the accepted range, resulting from each isolation procedure 

(Pelagiadis et al., 2012).  
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Viability 
 
In an attempt to optimise cell viability 20% AB human supplemented MACS buffer was 

used during the prolonged incubation with microbeads at 4ºC instead of plain buffer. 

The mean viability of recovered human CD34+ progenitors (78.33 % ± 1.03) from UCB is 

in keeping with published post-selection results obtained by others (74 % ± 4.1)(Blake 

et al., 2012). The mean human UCB CD133 progenitor viability was maintained at 76.66% 

± 5.48 after selection, which is similar to what is found in the literature (70-

80%)(Slovinska et al., 2011). The assessment of cell viability at the end of the isolation is 

essential since the downstream applications required live cells. However, the fact that 

cells are alive may not necessarily mean they will exhibit differentiation capacity. Live 

cell assays, like the propidium iodide method used, miss out on cells that are pre-

apoptotic or senescent due to the harsh separation. The colony forming assay is 

reportedly the best one to give a more relevant assessment of the ability of the 

progenitor cells to be used in downstream applications, taking into consideration 

additional factors other than whether the cells are merely alive (Tomlinson et al., 2013). 

Apparently, given the results of CD34+ cells differentiation, one would assume cell were 

alive and metabolically fit.  

 

Purity 
 
Purity is linked with the enrichment of cells of interest from a heterogeneous population 

based on defined features known to be present, such as surface markers. In the 

separated fraction, the percentage of target cells compared to isolated non-target cells 

can be calculated. According to the literature, producing highly pure progenitor fractions 

from UCB with good recovery has revealed to be a challenging task so far. Wynter and 

colleagues tested the purity after enrichment of CD34+ cells from different blood 

sources using MACS and described outputs of 73.8% from UCB (de Wynter et al., 1995). 

Other groups described even lower average purities around 60% (Melnik et al., 2001). 

Belvedere and colleagues tested a two-step enrichment, and they reported mean CD34+ 

cell purities of 41% and 85% after first and second passage through the MACS columns, 

respectively (Belvedere et al., 1999). Lately, optimised protocols have been published 

where purities after CD34+ enrichment achieved have been boosted considerably. 
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Nguyen and Kekarainen groups reported > 90% purity (Kekarainen et al., 2006; Nguyen 

et al., 2009), while Pelagiadis et al. obtained 93% (Pelagiadis et al., 2012). Regarding 

CD133 enrichment, Ma et al. also used two cell separation cycles with Mini-MACS 

columns for CD133 selection, and they reported average purity of 91% of the CD133-

enriched UCB cell products (N. Ma et al., 2006), results which are consentaneous with 

mine (98%). Other groups acknowledged wider variation in their purity results following 

their protocol, which ranged from 10% to 85% (median 60%)(Pelagiadis et al., 2012).  

To my knowledge, the purity reported in this chapter is the highest (98-99%) ever 

reported for both progenitor types.  This may be attributed to specific modifications (to 

the manufacturer protocol) introduced to increase the output target cell purity. The 

handling of UCB can be challenging due to the relatively high content of nucleated 

erythroid precursors and granulocytes, which may have a similar density to MNCs, thus 

negatively influencing their isolation (Kekarainen et al., 2006). Separation of MNCs, the 

initial step of progenitor isolation, was performed from diluted buffy coats using a 

histopaque density centrifugation method. However, there are even problems with 

specificity at this stage, as the differing densities of MNCs and granulocytes are, in some 

instances, not large enough to be separated by the histopaque. Therefore, to prevent 

unwanted cell clumping (Hering et al., 1989) and maximise single cell labelling I 

incubated the cell solution with DNAse after each following centrifugation. Plus, 30 µm 

pre-separation filters were used before injecting the cell solution into the magnetic 

column with the objective of promoting individual cell retention. Additionally, to 

increase the purity of the isolated human progenitor cells, the eluted fraction was 

labelled and enriched once more over a second magnetic column, to take further 

advantage of the antibody–antigen specificity, a methodology also applied by others 

(Kekarainen et al., 2006). Single column separation of CD34+ cells may result in low 

purity (typically <50%), yet a relatively large number of cells can be obtained. Two 

successive column separations with the additional labelling step increased the purity to 

>90%, without significantly lowering the yield recovery. It is worth mentioning that the 

choice to use QBEnd10 microbead-conjugated antibodies for human CD34 isolation was 

deemed appropriate according to literary evidence. There are over 30 monoclonal 

antibodies against CD34 selecting for different epitopes which may be sensitive to 

cleavage with neuraminidases (sialidase) and glycoproteases (Lanza, Healy, & 
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Sutherland, 2001). Their binding is dependent on sialic acid residues remaining on the 

antigen. QBEnd10 is one of the most frequently used antibodies since it has been shown 

to detect both sialylated and desialylated CD34 successfully and as the epitope is at the 

N-terminus, it is ideally suited to selection protocols such as MACS (Sidney et al., 2014). 

Also of particular note, cells were left to recover 48h in serum free medium 

supplemented with Flt3 ligand and SCF before flow cytometry phenotyping. This 

technicality was particularly important because the antibodies used for flow cytometry 

were chosen precisely to tag the same epitopes than the microbeads antibodies, to 

increase analysis specificity. The selected period was sufficient to allow the magnetic 

microbeads used for cell isolation to disintegrate from the cell surface, according to 

Miltenyi Biotec reply to my questions.  

Even after all the pursued modifications, in the end, there will always be a residual pool 

of contaminating granulocytes, but the evidence is that they do not adhere to culture 

dishes during the differentiation of EPCs in culture (M. Aoki, Yasutake, & Murohara, 

2004), and thus are easily removed for the first replacement of culture medium.  

 

The origin of CD34+-derived late-outgrowth EPCs 

 

The baseline levels of the immature marker CD133 expression (86.62 % ± 2.03) observed 

in freshly isolated UCB CD34+ cells are in keeping with the literature, as some groups 

have also highlighted that most CD34+ cells (anywhere over 80%) also expressed CD133 

(Nguyen et al., 2009; C. Zhang et al., 2014). Baseline flow cytometry also revealed that 

nearly all retrieved UCB CD133+ cells (98.28 % ± 0.15) co-expressed CD34 surface 

marker, a result also witnessed by others (Gehling et al., 2000; Herrmann et al., 2014). 

In fact, in the hematopoietic system, CD133 expression seems to be narrowed to a 

subset of CD34bright progenitor cells in human fetal liver, BM, UCB and PB (Buhring et al., 

1999; A. H. Yin et al., 1997), and the double positive cells should not be regarded as EPCs 

because they lack endothelial markers and mostly represent HPCs which are also CD45-

positive (Case et al., 2007; Gehling et al., 2000; Medina et al., 2017; Timmermans et al., 

2007).  
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I believe that the relatively small number of putative EPCs that became adherent in 

culture were not simultaneously CD34+ and CD133+ (Figure 40). According to the flow 

cytometry results, CD34+CD133+ cells were confined to the cellular suspension which 

was discarded after the first medium change. Transfering those non-adherent CD34+ 

cells to gelatin-coated flasks cells did not generate adherent EPCs, therefore possibly 

narrowing the EPC source to the originally attached CD34+ cells within the first hours in 

culture. I envision that these adherent cells were CD34+CD45-KDR+, as suggested by 

others (Timmermans et al., 2009). By attaching to the matrix within 24 hours in culture, 

the KDR+ (VEGF receptor) cells were then able to complete their differentiation driven 

by VEGF, while further benefiting from the paracrine provision of PACs in suspension. In 

fact, the supporting role of PACs cells in suspension was highlighted by the fact that their 

removal early in the differentiation protocol (despite VEGF supplementation), 

conditioned the sparsely attached cells to senesce and die. If not for the supporting role 

of PACs in the differentiation, I believe that adding CD45 (negative selection) or KDR 

(positive selection) MACS step to CD34+ enriched cells would contribute to narrow down 

even further the EPC source to CD34+KDR+ precursors.  

 

Alternatively, the possibility that late EPCs originate from a rare population of cells 

within the PACs must be acknowledged. The environment may influence the cultured 

cells’ fate and function. It is possible that a particular subset of CD34+(CD45+CD133+/-?) 

PACs might have lost CD45 positivity and gained KDR expression in culture, allowing 

them to become VEGF-responsive (Figure 40). KDR positivity then would grant the 

progenitor cells the ability to respond to the external VEGF stimuli driving further 

maturation and expansion. Remarkably, regardless of the true EPC origin, in the absence 

of VEGF, all CD34+ cells failed to attach or proliferate and at that point died, indicating 

their dependence on exogenous vascular growth factors. 

 
Figure 40 | Hypothetical origin of CD34+-derived late-outgrowth EPCs. 
KDR positivity grants the progenitor cells the ability to respond to the external VEGF stimuli driving 
differentiation and expansion. Therefore, CD34+-derived EPCs might have originated from a minuscule 
and outnumbered subset of CD34+ cells (likely CD45-KDR+) which adhere to the gelatin coating within the 
first days. Alternatively, a particular subset of CD34+CD45+ PACs might have lost CD45 positivity and gained 
KDR expression in culture, allowing them to respond to VEGF.  In both pathways, adherent CD34+ cells 
were supported paracrinally by the PACs in suspension, allowing for the acquisition of terminally mature 
EC markers and expansion of the former.  CD – cluster of differentiation; KDR – kinase insert domain 
receptor; PAC – proangiogenic cells; VEGF – vascular endothelial growth factor. 
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This theory is plausible also when interpreting the unsuccessful differentiation of 

CD133+ cells into EPCs. To understand this result, we need to go back to Timmermans’s 

experiments (Timmermans et al., 2007). He did not detect CD133 expression in 

CD34+CD45-KDR+ cells (best late-outgrowth EPC candidate to date), seconding Delorme’s 

findings (Delorme et al., 2005). He then examined whether highly purified CD133+ cells 

were able to generate cells with endothelial phenotype, but he failed to show 

endothelial commitment. Unlike CD34+ enriched cells, no CD45- cells could be 

demonstrated in the MACS-purified CD133+ population given that all CD133+ cells were 

limited to CD45+ cells (i.e PACs). Contrastingly, Gehling and Quirici reported having 

generated EPCs from CD133+ cells (Gehling et al., 2000; Quirici et al., 2001). The 

contradictory results from Gehling and Quirici may be because progenitor populations 

used in these studies were selected by highly variable protocols yielding suboptimal 

enrichment purities: 72% (range 62%-98%) and 90% ± 5, respectively. It is possible that 

contaminating CD34+CD133-KDR+ cells within the heterogeneous CD133+ enriched 

fraction might have originated the derived late-outgrowth EPCs. Alternatively, since the 

cells generated were not extensively phenotyped (using morphology, proliferative 

capacity, surface markers FACS, in vitro functionality tests), they might not be late-

outgrowth EPCs, but rather CD45+ PACs, just like the ones generated by others from 

CD34+CD45+ cells (Timmermans et al., 2007), CD14+ monocytes (Yoon et al., 2005), CD34- 

cells (Harraz, Jiao, Hanlon, Hartley, & Schatteman, 2001) and total CD45+ cells 
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(Timmermans et al., 2007). In summary, the use of higher cell purities, such as described 

in this chapter, appears to mitigate against effects of population heterogeneity and 

points to the true EPC source being a very small subset of CD34+CD45-KDR+ cells. 

However, to validate the EPC differentiation capacity of a candidate CD34+ progenitor 

cell, a single cell type study would offer the most rigorous approach. However, several 

biological and technical obstacles need to be overcome in performing such a clonal 

assay. For instance, an isolated single cell population may behave differently in the 

absence of other cells, as revealed when non-adherent cells were removed from the 

culture. Hence, culturing a single cell may not be an appropriate EPC culture assay, but 

may require the presence of supporting cells with a different phenotype or function.  

 

The phenotype of CD34+-derived late-outgrowth EPCs 

 

The culture of UCB and BM CD34+ cells yielded two cell types, as previously described 

for whole MNC assays (Fadini et al., 2012). Initially, non-adherent spindle-shaped PACs 

developed after 4–7 days in culture (Figure 35). At a later stage in culture (14-16 days 

post-isolation), CD34+-derived late-outgrowth cells appeared, fully matching the 

described EPC-defining criteria, based on morphology (monolayer with cobblestone 

pattern as seen in Figure 35) and the presence of surface markers detected by IF and 

FACS. EPCs are characterised by including hematopoietic stemness and endothelial 

commitment markers in combination (Medina et al., 2017). Hence, the expression of the 

stemness marker, CD34, was followed during the culture protocol. Research indicates a 

correlation between CD34 expression and cell plasticity, with the loss of CD34 suggestive 

of lineage commitment (J. H. Jang et al., 2007; Sidney et al., 2014). Accordingly, CD34 

antigen density was highest on early progenitors and gradually reduced as the cells 

attached and matured, but it was still detectable at the end of differentiation in contrast 

to most cultured ECs (Siemerink et al., 2012). This was demonstrated in the CD34+-

derived late-outgrowth EPCs both by IF and flow cytometry. Remarkably, most ECs are 

also negative for CD34 in vivo, particularly in larger veins and arteries (Fina et al., 1990). 

However, there is a subset of adult ECs that do express CD34, and these are more 

prevalent in smaller blood vessels (Siemerink et al., 2012). These specialised vessel 

CD34+-ECs seem to be quiescent (Siemerink et al., 2012) and when activated become 
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involved in migration and adhesion at the tip of vascular sprouts (Fina et al., 1990). They 

are more elongated, lack tight junctions, and extend filopodia (Siemerink et al., 2012), 

in contrast to the typical cobblestone ECs. The sialomucin CD34 is largely expressed on 

the filopodia at the luminal membrane of these tip cells, and evidence underlines the 

critical role of CD34 in sites of active angiogenesis (Schlingemann et al., 1990). CD34 is 

proposed to act as an anti-adhesive molecule during lumen formation in developing 

blood vessels, by maintaining or promoting the separation between contralateral apical 

endothelial cell surfaces in a luminal tube, while allowing the migration of tip cells and 

the movement and probing of their filopodia through the tissue matrix (Nielsen & 

McNagny, 2009). According to my CD34 IF images, some of the CD34+-derived late-

outgrowth EPCs seem remarkably similar to these tip cells. Thus, it is fair to assume that 

after differentiation we might end up with a mixed population of CD34bright EPCs which 

are more associated with migration/adhesion, and CD34dim to neg EPCs with more of a 

proliferative phenotype. The corresponding flow cytometry histogram in Figure 37 

seems to confirm exactly the existence of that mixed CD34 population corresponding to 

two distinct spikes. Importantly, and in agreement with others (Medina et al., 2017), the 

EPCs did not express the leukocyte markers CD133 as shown by flow cytometry (Figure 

37). Unlike cells in suspension identified as CD34+CD133+, adherent cells did not exhibit 

surface CD133.  Either all CD133+ cells were confined to cells in suspension 

corresponding to PACs (a possibility already addressed) or differentiating adherent 

CD34+ cells abolished the expression of CD133 on their surface, a phenomenon similarly 

seen in the maturation of CD133+ HSCs (Miraglia et al., 1997; Quirici et al., 2001; A. H. 

Yin et al., 1997). Regarding commitment markers, KDR is known to be involved in the 

early stages of vasculogenesis (T. P. Yamaguchi, Dumont, Conlon, Breitman, & Rossant, 

1993). The expression of cell surface KDR is inducible by VEGF (Tang et al., 2008) and 

considered to be mostly EC-specific (J. H. Jang et al., 2007). I have noted that as soon as 

the CD34+-derived EPC colonies were formed (day 14), the cells started showing (as 

expected) a progressive upregulation of KDR, which persisted beyond the withdrawal of 

VEGF supplementation, demonstrating definitive EC-commitment. Remarkably, 

CD34+derived-EPCs positively incorporated ac-LDL. Contrary to traditional belief the 

ability to uptake ac-LDL is not unique to committed ECs. Recently, it was demonstrated 

that monocytes and macrophage could also take up ac-LDL and bind lectin (Ouchi et al., 
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2001). That is one of the reasons why a combined characterization of the putative EPCs 

was sought using additional IF to identify lineage commitment markers and functional 

assays. The continuous culturing revealed de novo expression of mature EC markers. 

CD34+-derived EPCs stained positive for vWF, VE-cadherin and was negative for SMA, a 

typical EC-expression profile also obtained with other EPC differentiation attempts 

(Fujiyama et al., 2003; J. H. Jang et al., 2007). Confirmation of endothelial phenotype 

came from directly testing for endothelial angiogenesis capacity in a Matrigel assay, 

which was positive. Although Matrigel has been shown to direct ECs along the 

differentiation pathway, there is some debate as to whether tubules generated on 

Matrigel represent functional capillaries, as the presence of lumen has been shown by 

some groups using electron and light microscopy (Connolly, Simpson, Hewlett, & Hall, 

2002) and disputed by others who could not detect a lumen(Bikfalvi, Cramer, Tenza, & 

Tobelem, 1991). Moreover, it should also be noted that some non-EC types including 

primary human fibroblasts, glioblastoma cells and human prostate carcinoma cell line 

have been shown to also form ‘tubules’ on Matrigel (Donovan, Brown, Bishop, & Lewis, 

2001), thus, the results should be interpreted with caution. An alternative assay to test 

angiogenesis capacity is the organotypic co-culture model in which fibroblasts are co-

cultured with ECs, which I have used to test the functionality of miR-92a inhibitor in EPCs 

in the next chapter. The fibroblast secretes matrix components that act as a scaffold and 

enables the EC to form sprouting tubules that contain lumen, which more closely 

resemble the capillary bed in vivo (Donovan et al., 2001). However, as this assay is time-

consuming (it lasts up to 12–14 days), the results measure proliferation as well as 

differentiation.  

 

One might speculate that the mere occurrence of outgrowth is insufficient evidence to 

confirm the presence of EPCs. To make things more complicated, CECs also proliferate 

in culture (A. Solovey et al., 1997) and are CD34+KDR+ like EPCs (Cappellari et al., 2016). 

However, unlike late EPCs (Y. Lin et al., 2000), CECs (or other ECs for that matter)  bear 

low proliferative potential in culture (Blann et al., 2005) (as evidenced by the routine 

use of vessel segments as sources for endothelial culture in vitro which stop proliferating 

after a few passages). Despite EPC robustness and endurance to oxidative stress (Rossig, 

Urbich, & Dimmeler, 2004), I did not use CD34+-derived late-outgrowth EPCs for 
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experiments beyond their 6th passage in culture. At that point, EPC senescence in culture 

and transition from endothelial to other lineage cells have (rarely) been described 

(Ikutomi et al., 2015). Ikutomi and colleagues reported that older EPCs presented de 

novo staining with a fibroblast marker vimentin and CD90 compared to younger EPCs, 

which likely supports my observation that the cultivated EPCs did progressively lose their 

proangiogenic potential over time.  

 

In summary the generated CD34+-derived EPCs ticked all the the minimum requirements 

for the definition by Medina et al. of an endothelial cell forming colony (ECFC): 

unequivocal endothelial cell phenotype (depicted as positive for CD31, VE-Cadherin, von 

Willebrand factor, and VEGFR2), significant proliferative potential, and possess vascular 

network forming potential in vitro and in vivo (Medina et al., 2017), the latter condition 

not tested for time restraints. 
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Results 

Chapter 4: Post-transcriptional 
modulation of miR-92a inhibitor on 
CD34+-derived late-outgrowth EPCs 
 
 

Aims: This chapter describes the optimisation of a priming strategy capable of enhancing the 

capacity of EPCs to promote a faster re-endothelialisation in the post-injury setting. 

 

 

Objectives:  

• Transfection of human CD34+-derived late-outgrowth endothelial precursor cells’ (EPCs) 

transfection with miR-92a inhibitor using oligofectamine (OF) 

• Testing treatment with both miR-92a inhibitor strands, its optimal concentration and 

treatment duration for maximal target protein upregulation. 

• Demonstration of the post-transcriptional modulation of miR-92a inhibitor on its target 

proteins, namely Integrin alpha 5 subunit (ITGA5), and the subsequent in vitro and ex 

vivo functional repercussions on EPCs.  

• Clarification of the mechanistic pathways by which miR-92a inhibition exerts its 

functions in EPCs by co-transfection studies with si-ITGA5 

 

 

What is new: Demonstration of pro-angiogenic,-migratory,-proliferative, and -adhesive effects 

of miR-92a inhibitor treatment on CD34+-derived EPCs, which are partially abrogated by ITGA5 

knockdown (adhesion). 
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4.1 miR-92a inhibitor is efficiently internalised by 

EPCs using oligofectamine 
 

 

Bonauer et al. used Lipofectamine RNAiMAX (Invitrogen) to transfect miR-92a mimic 

and inhibitor into Human Umbilical Vein Endothelial Cell (HUVECs) (Bonauer et al., 

2009), whereas Iaconetti et al. utilised siPORT NeoFX Transfection Agent (Ambion) in rat 

aortic ECs (Iaconetti et al., 2012). Moreover, the mirVana™ miRNA manufacturer has 

validated Lipofectamine® RNAiMAX for transfection of its mimics and inhibitors in cell-

based systems. Therefore, I have attempted to use both transfection reagents in CD34+-

derived EPCs to facilitate miR-92a (mimic and inhibitor) internalisation, but with no 

success (Appendix III).  

 

 

Successful transfection of miR-92a and its inhibitor into CD34+-derived EPCs at 30 nM 

was only accomplished using OF (Figure 41), a liposomal reagent previously used to 

transfect oligonucleotides into HUVECs, bovine and human aortic endothelial cells (ECs) 

(Chamorro-Jorganes et al., 2011).  The IF staining demonstrated that internalisation of 

miR-92a inhibitor only occurred when using the liposomal transfection reagent since 

miRNAs are negatively charged particles unable to transmigrate across the cellular layer 

by themselves. 
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Figure 41 | miR-92a is internalised by CD34+-derived EPCs using oligofectamine 
After OF transfection, confirmation of FITC conjugated miR-92a internalisation was evaluated by IF 
staining at 20x. AB – antibody; DAPI - 4',6-diamidino-2-phenylindole; FITC - Fluorescein isothiocyanate; 
miR – microRNA; OF – oligofectamine; PFA – paraformaldehyde. 

 

 

The efficiency of cellular transfection using OF was 93.7 % as assessed by flow 

cytometry, i.e. almost every cell internalised the miRNA of interest using the proposed 

protocol (Figure 42). 
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Figure 42 | Internalisation of miR-92a inhibitor by CD34+-derived EPCs using oligofectamine is highly 
efficient. 
The OF transfection of human CD34+-derived late-outgrowth EPCs with miR-92a inhibitor was confirmed 
by flow cytometry.  Cells treated only with OF were used as negative transfection controls. Preliminary 
results are plotted as mean values ± SD after 1 independent experiment. FITC - Fluorescein isothiocyanate; 
miR– microRNA; SD – standard deviation. 

 

 

Mature miRNAs after exerting their biological post-transcriptional repression activity are 

degraded (Y. Lee et al., 2003). However, because there are a plethora of post-

transcriptional regulatory options to process individual miRNAs differentially, little is 

known about the half-life of individual miRNAs in specific cell types (Winter et al., 2009). 

Bonauer et al. in a seminal work published in Science demonstrated the endogenous 

expression of miR-92a in HUVECs (Bonauer et al., 2009). In their studies where 

supplemental miR-92a and its inhibitor were transfected into HUVECs to control 

angiogenesis, they opted for a 48h post-transfection duration in most in vitro functional 

experiments (Bonauer et al., 2009). Given the phenotypic similarities between ECs and 

CD34+-derived EPCs, I assumed endogenous miR-92a presence in the latter and pursued 

the ideal post-transfection period to allow for maximal target protein modulation before 

miRNA decay and normalisation of target protein levels. Therefore, I tested 24h, 48h 

and 72h with the rationale that CD34+-derived EPCs’ RNA-induced silencing comples 

(RISC) machinery should be similar to that of HUVECs. Since ITGA5 is a validated miR-

92a target protein (Abdellatif, 2012; Bonauer et al., 2009), I determined the post-

transfection change in endogenous ITGA5 expression. According to the results obtained, 

48h was considered the optimal duration for miR-92a knockdown in CD34+-derived 

EPCs, since there was no further reduction in ITGA5 protein levels past that time point 

(Figure 43). Regarding miR-92a inhibitor modulation, the maximum target protein levels 

were also obtained after 48h of processing, although in the optimisation experiment 
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overexpression was not attained. Verification of the degree of miR-92a overexpression 

and inhibition by quantitative reverse transcription–polymerase chain reaction would 

have added valuable information to the time course. In this particular experiment, one 

can hypothesise that cells could have had low baseline levels of the anti-angiogenic miR-

92a. Hence transfection with the antisense miRNA would not capture many endogenous 

sense strands and impact significantly at the protein level. Nevertheless, because of 

miRNA biogenesis and maturation complexity, the cellular concentration of mature 

miRNAs does not always reflect transcriptional changes (Kuchen et al., 2010). One single 

miRNA molecule can reversibly hybridise with several mRNA molecules before being 

degraded. Therefore, target protein levels should be regarded as the gold standard 

endpoint for biological efficacy of miRNA transfection, which is the method I used.  

 

Figure 43 |48h miR-92a (inhibitor) processing duration seems to generate the maximal target protein 
modulation in human CD34+-derived EPCs. 
Cells were transfected with either 30nM control scrambled miRNA, miR-92a-5p or miR-92a-5p inhibitor 
using oligofectamine. (A) Following a time course incubation, the cells were lysed and its proteins were 
separated by SDS-PAGE and immunoblotted with the antibodies indicated. (B) Levels of ITGA5, a direct 
miR-92a target protein, were quantified by scanning densitometry and expressed as relative units 
compared to ACTB. Results in this figure are preliminary and reflective of one experiment. ACTB - β-actin; 
ITGA5 – Integrin α5 subunit; miR – microRNA; RU – relative units. 
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Then, the working concentration of miR-92a mimic and inhibitor was selected based on 

dose-response experiments (Figure 44). Of note, all experimental control samples were 

treated with an equal concentration of a non-targeting control mimic sequence to adjust 

for non-sequence-specific effects in miRNA experiments. Our results suggested that 30 

nM was the optimal concentration for miR-92a knockdown in human late-outgrowth 

EPCs, since there was no added reduction in ITGA5 protein levels at higher 

concentrations which may result in more detrimental side effects. Also, miR-92a 

inhibitor processing seemed to yield maximum target protein levels at 30 nM. 
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Figure 44 | CD34+-derived EPC transfection using oligofectamine seems equally effective at 30 nM or 
200 nM concentration of miR-92a (inhibitor). 
Cells were transfected in 6 well plates with 30nM or 200nM control scrambled miRNA, miR-92a-5p or miR-
92a-5p inhibitor using oligofectamine. (A) Following 48h knockdown in complete medium cells were lysed, 
proteins were separated by SDS-PAGE, and immunoblotted with the antibodies indicated. (B) Levels of 
ITGA5, a direct miR-92a target protein, were quantified by scanning densitometry and expressed as 
relative units compared to ACTB. Results in this figure are preliminary and reflective of one experiment.  
ACTB - β-actin; ITGA5 – Integrin α5 subunit; miR – microRNA; RU – relative units. 

 
 

 

4.2 miR-92a inhibitor downregulates angiogenesis-

related target proteins in EPCs 
 

In the stem-loop structure of the precursor miRNA, the 5p strand is present in the 

forward (5'-> 3') position, and the 3p strand (which will be almost complementary to the 

5p strand) is located in the reverse position. Following cleavage of the stem-loop by 

Dicer, two mature strands are produced. The resulting 5p and 3p miRNA molecules are 

biologically different in terms of stability and functionality, and in general, only the more 

stable strand will be incorporated into the RISC, and guide the complex to target the 3′ 
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untranslated region (3′ UTR) of the imperfectly paired mRNAs to inhibit their translation 

or promote their degradation. The less stable partner arm, the *-strand (star or 

passenger strand), accumulates in lower levels and is presumed to be mostly degraded. 

However, in some cases, both mature strands can be functional. Therefore, to 

determine which one was the primary and minor miR-92a strands in CD34+-derived 

EPCs, I tested both synthetic miRs and its inhibitors at 30 nM and allowed 48h 

processing. The 5p mature form of mir-92a and its corresponding inhibitor had a more 

potent effect than the 3p strand in CD34+-derived EPCs according to the change in 

selected target proteins´ levels (Figure 45). The latter included Mitogen-activated 

protein kinase kinase 4 (MKK4), sirtuin1 (SIRT1), ITGA5, integrin alpha v subunit (ITGAV), 

all previously used as mir-92a targets by others (Bonauer et al., 2009). EPC transfection 

with miR-92a-1 (5p) significantly reduced ITGA5, ITAGV and total endothelial nitric oxid 

synthase (T-eNOS) protein expression, whereas its (5p) inhibitor significantly enhanced 

ITGA5 and T-eNOS levels, comparing both treatments to miR scrambled. 

 

Figure 45 | miR-92a (5p) and its inhibitor produce more potent protein levels reduction and rescue in 
CD34+-derived EPCs than the (3p) forms. 
Cells were transfected with either 30nM control scrambled miRNA, miR-92a-1 or miR-92a-1 inhibitor using 
oligofectamine. Both 3p or -5p strands of miR-92a and its inhibitor were tested. (A) Following 48h 
incubation in complete medium, cells were lysed, proteins were separated by SDS-PAGE, and 
immunoblotted with the antibodies indicated. (B-E) MKK4, SIRT1, ITGAV, ITGA5 (direct miR-92a targets) 
and T-eNOS (indirect target) protein levels were quantified by scanning densitometry and expressed as 
relative units compared to housekeeping protein ACTB or GAPDH. Combined results after up to 8 
independent experiments are plotted as means, with errors bars representing ± SEM. *P<0.05, **P<0.01, 
and ***P<0.001 compared with miR scrambled transfected EPCs (1-way ANOVA, Bonferroni´s test for 
multiple comparisons).  EPC – endothelial precursor cell; ITGA5 – Integrin α5 subunit; ITGAV - Integrin αv 
subunit; miR – microRNA; MKK4 - Mitogen-activated protein kinase kinase 4; RU – relative units; SEM – 
standard error of mean; T-eNOS – Total endothelial nitric oxide synthase. 
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Transfection with 3p strands did not produce a statistically significant change from miR-

scrambled treated cells, except for reduced ITGA5 levels with miR-92a-1 (3p) treatment. 

On the other hand, EPC transfection with miR-92a-1 (5p) significantly reduced ITGA5 and 
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ITAGV (direct miR-92a targets) protein expression, whereas its (5p) inhibitor significantly 

enhanced ITGA5 levels, compared to miR scrambled treatment. 

MKK4 and SIRT1 both predicted targets in miRbase were not specifically affected by 

treatment with miR-92a (or its inhibitor) in CD34+-derived EPCs. Curiously, despite miR-

92a downregulating ITGAV, its overexpression was not apparent following miR-92a 

inhibitor treatment. It was interesting as well to note a statistically significant miR-92a-

dependent regulation of T-eNOS when CD34+-derived EPCs were treated with the 

primary strand (5p), although eNOS was not present in miRBase as a predicted miR-92a 

candidate target. Mechanistically, ITGA5 is a crucial regulator of EC functions and vessel 

growth by mediating cell-matrix interactions, cell migration and anti-apoptotic signalling 

(Francis et al., 2002; Urbich et al., 2002; N. Yang et al., 2011). On the other hand, NO is 

equally important for EC and vessel homeostasis since it controls re-endothelialisation, 

neovascularization and vascular tone (B. Cui et al., 2011; Murohara et al., 1998; Palmer, 

Ferrige, & Moncada, 1987; Y. Zhao, Vanhoutte, & Leung, 2015). Given the essential 

functions of both these targets in ECs, we next sought the functional relevance of miR-

92a (5p) inhibitor treatment in CD34+-derived EPCs. 

 

4.3 miR-92a inhibitor -treated EPCs exhibits 

enhanced angiogenesis, migration, proliferation and 

adhesion  
 

To demonstrate the pro-angiogenic activity of miR-92a (5p) inhibitor, CD34+-derived 

EPCs were seeded with fibroblasts in a coculture system grown for 96 hours (Figure 46).  

miR-92a inhibitor exerted a statistically significant proangiogenic effect in EPCs. Cell 

treatment with miR-92a inhibitor significantly increased vascular network length (133 % 

± 3.62 vs. 100%, p < 0.05, % of controls), area (126.5 % ± 3.28 vs. 100%, p < 0.05, % of 

controls) and number of branch points (164.5 % ± 0.12 vs. 100%, p < 0.05, % of controls) 

compared to miR scrambled, whereas miR-92a seemed to have the opposite effect 

regarding the absolute reduction of network length compared to miR scrambled. 

 

Figure 46 | miR-92a (5p) inhibitor is proangiogenic in CD34+-derived EPCs. 
Suspensions of EPCs previously transfected with 30nM miR scrambled, miR-92a (5p) and miR-92a (5p) 
inhibitor using oligofectamine, were added to the fibroblast monolayer, so that an EPC-fibroblast co-
culture assay (96h) could be pursued in the presence or absence VEGF, before cells were fixed and stained 



 

Results - 197 
 

for vWF using a secondary antibody conjugated to Alexafluor-488. (A) Representative brightfield picture 
of the coculture taken at 4x magnification. (B) Representative network sprouting fluorescent images 
captured at the end of the assay at 10x magnification (C-E). Angiogenesis network length, area and 
number of branch points based on fluorescence signal are represented. All experimental conditions were 
measured in triplicate. Results after 2 independent experiments are plotted as means, with errors bars 
representing ± SEM. ***P<0.001 compared with Null VEGF-treated condition (1-way ANOVA, Bonferroni’s 
test for multiple comparisons); ^P<0.05, ^^P<0.01 compared with miR scrambled treated with VEGF (1-
way ANOVA, Bonferroni’s test for multiple comparisons). EPC – endothelial precursor cell; FBS – fetal 
bovine serum; miR – microRNA; SEM – standard error of mean; VEGF – vascular endothelial growth factor; 
vWF – von Willebrand factor. 
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The scratch assay was used to assess the effects of miR-92a inhibitor delivery on EPC 

wound closure migration (Figure 47). EPCs treated with miR-92a inhibitor managed to 

narrow the wound gap area significantly more than controls by 48 hours under VEGF 

deprivation (58.48 % ± 3.41 vs. 45.22 % ± 6.04, p<0.05, % of baseline wound area), an 

effect size which was attenuated upon VEGF co-stimulation (63.94 % ± 4.09 vs. 59.56 % 

± 5.86, p>0.05, % of baseline wound area). In contrast, miR-92a significantly delayed 

wound closure at 48h compared with miR scrambled either in the presence (47.65 % ± 

6.52 vs. 59.56 % ± 5.86, p<0.001, % of baseline wound area) or absence (35.12 % ± 6.31 

vs. 45.22 % ± 6.04, p<0.05, % of baseline wound area) of VEGF supplementation.  

 

Figure 47 | miR-92a (5p) inhibitor significantly enhances wound closure migration in CD34+-derived 
EPCs in the absence of VEGF. 
Cells were transfected with either 30 nM miR scrambled (black line), miR-92a (5p) (red line) or miR-92a 
(5p) inhibitor (green line) using oligofectamine. After a 48h knockdown, wound closure migration in EBM 
0.5% FBS was assessed in the presence or absence of 25 ng/mL VEGF by live-cell Imaging. Images were 
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captured at 10x every 2h for a total duration of 48h. (A) Representative brightfield images of wound 
closure over time in the presence of 25 ng/mL VEGF by EPCs transfected with either miR scrambled, miR-
92a or miR-92a inhibitor. (B) Relative wound closure quantification results after 9 independent 
experiments (each condition was repeated in 6 replicates) are plotted as means, with errors bars 
representing ± SEM. *P<0.05 compared with miR scrambled/no VEGF supplementation; ^^^P<0.001 
compared with miR scrambled/VEGF supplementation (2-way ANOVA, Bonferroni’s test to compare 
multiple means by row). EPC- endothelial precursor cell; FBS – fetal bovine serum; miR – microRNA; SEM 
– standard error of mean; VEGF – vascular endothelial growth factor. 
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EPC homing and engraftment into an active site of injury is essential for a prompt re-

endothelialisation and is mechanistically associated with cytokines/growth factor 

signalling. Thus, the effect of miR-92a inhibitor treatment on EPC migration towards 

VEGF was studied using an in vitro transwell assay (Figure 48). The results showed that 

EPCs transfected with miR-92a inhibitor revealed a significantly enhanced migration 

towards VEGF stimuli compared to miR scrambled-treated controls (63.67 ± 14.72 vs. 

5.67 ± 5.67, p<0.001, migrated cells after 5h/well). 

 

Figure 48 | Inhibition of mir-92a enhances VEGF-induced chemotaxis migration of CD34+-derived EPCs. 
Cells were transfected with either 30 nM miR scrambled (transfection control), miR-92a (5p), miR-92a (5p) 
inhibitor using oligofectamine. After 48h cells were transferred to transwell inserts and chemotaxis 
migration was determined as the number of migrated cells after 5h in response to 50 ng/mL VEGF or no 
treatment (internal negative control). Treatment with 10% FBS was tested as a positive internal control. 
(A) Representative images of transwell inserts are shown for each treatment, and illustrative stained cells 
are arrowed for each condition (8x magnification). (B) Quantification of migration is presented as mean ± 
SEM from 3 independent experiments, and each treatment was performed in duplicates. **P<0.001 
compared with miR scrambled; ^^^P<0.001 compared with no VEGF (1-way ANOVA, Bonferroni’s test for 
multiple comparisons). EPC- endothelial precursor cell; FBS – fetal bovine serum; miR – microRNA; SEM – 
standard error of mean; VEGF – vascular endothelial growth factor. 
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The effect of miR-92a inhibitor on EPC proliferation was determined by an ATP-based 

luminescence assay (Figure 49). The follow-up at 48h post miRNA treatment indicated 

that miR-92a inhibitor modestly enhanced VEGF-induced proliferation (168.07 ± 23.61 

vs. 162.12 ± 22.84, p<0.01, % change from baseline after 48h), while miR-92a had the 

opposite effect regardless of VEGF supplementation status (without VEGF: 137 ± 11.66 

vs. 151.10 ± 19.96, p<0.05; with VEGF: 157.87 ± 22.84 vs. 162.12 ± 22.84, p<0.05, % 

change from baseline after 48h). 
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Figure 49 | miR-92a (5p) inhibitor enhances VEGF-induced proliferation of CD34+-derived EPCs. 
Cells treated with 30nM miR scrambled, miR-92a (5p) or miR-92a (5p) inhibitor were incubated with an 
ATP quantifying luciferase reporter at baseline. For the time course, cells in a second well plate were 
incubated in enriched medium for 48h before performing the luminescence assay. Results in (A-B) are 
plotted as means, with errors bars representing ± SEM after 4 independent experiments (4 replicates for 
each experimental condition). *P<0.05, ***P<0.001 compared with baseline condition; &P<0.05 
compared with miR scrambled processed for 48h with no VEGF; #P<0.05, ##P<0.01 compared with miR 
scrambled processed for 48h with VEGF (1-way ANOVA, Bonferroni’s test for multiple comparisons). ATP 
- adenosine triphosphate; EGM – endothelial growth medium; EPC – endothelial precursor cells; FBS - 
fetal bovine serum; miR- microRNA; RLU – relative light units; SEM – standard error mean; VEGF – vascular 
endothelial growth factor. 

 

One of the most important properties of EPCs contributing to re-endothelialisation is 

their ability to adhere to ECM at denuded vascular sites.  I used an in vitro static culture 

assay to determine whether mir-92a inhibitor treatment could enhance EPC adherence 

to FN (a ligand for ITGA5), through upregulation of ITGA5 receptors (Figure 50). The 

results revealed that, indeed, miR-92a inhibitor significantly enhanced EPC adhesion to 

FN after 20 minutes compared to miR scrambled control (23.57 % ± 6.43 vs. 14.46 % ± 

5.22, p<0.05, specific adhesion to FN, % from baseline). This equated to 87% more cells 

adhering to the matrix within the designated period than the sham-treated EPCs. 

Conversely, an EPC reduced adhesion following miR-92a treatment trend was observed 

(7.47 % ± 3.71 vs. 14.46 % ± 5.22, p>0.05, specific adhesion to FN, % from baseline).  
 

Figure 50 | mir-92a (5p) inhibitor enhances adhesion of CD34+-derived EPCs to fibronectin. 
FN specific adhesion capacity was determined in fluorescently -labelled cells previously transfected with 
30nM miR scrambled, miR-92a (5p) or miR-92a (5p) inhibitor using oligofectamine. (A) Representative 
images of labelled EPCs transfected with indicated miRNAs captured at baseline and after one wash 20 
minutes past at 10x. (B) Representation of labelled and unlabeled EPCs, the latter used as an internal 
assay control, seeded on FN. (C) Baseline and final red object count were quantified, and data are 
expressed as mean adhesion on FN (7 replicates per experiment) minus mean unspecific adhesion on HSA 
(3 replicates per experiment). Results are representative of a total of 4 independent experiments and are 
plotted as means, with errors bars representing ± SEM. *P<0.05 compared with miR scrambled (1-way 
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ANOVA, Bonferroni’s test for multiple comparisons).  EPC – endothelial precursor cell; EBM – endothelial 
basal medium; EGM – endothelial growth medium; FBS – fetal bovine serum; FN – fibronectin; HSA – 
human serum albumin; miR – microRNA; SEM – standard error mean. 
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4.4 miR-92a inhibitor does not change survival of 
EPCs under starvation 

 

 

To investigate the effects of miR-92a inhibitor on the viability of CD34+-derived EPC 

subject to a starvation period (to recapitulate the oxidative stress they might experience 

on injury sites), cells were transfected with miR-92a, mir-92a inhibitor or miR scrambled 

for two days, and then starved for 6 hours. No significant relative survival benefit was 

found when compared to control, as assessed by a luminescent ATP-based assay (Figure 

51).  

 
 

Figure 51 | miR-92a (5p) inhibitor does not significantly enhance CD34+-derived EPC survival in serum-
free medium. 
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Survival of cells treated with the 30nM miR scrambled, miR-92a (5p), miR-92a (5p) inhibitor in serum-

deprived medium after 6h was assessed using a Luminescent cell viability ATP-based assay. Survival from 

baseline results are representative of a total of 6 independent experiments and are plotted as means, 

with errors bars representing ± SEM. Replicates of 6 were used for each experimental condition. Results 

in (A-B) are representative of a total of 6 independent experiments and are plotted as means, with errors 

bars representing ± SEM. ***P<0.0001 compared with baseline condition (1-way ANOVA, Bonferroni’s 

test for multiple comparisons). ATP - Adenosine triphosphate; miR- microRNA; RLU – relative light units; 

SEM – standard error mean. 

 
 

4.4 miR-92a inhibitor treated EPCs and post-

angioplasty engraftment 
 

 

To test if the observed effects of mir-92a inhibitor on EPCs could influence their 

engraftment capacity in vivo, I used a rat carotid artery balloon injury model, which 

typically causes the removal of the endothelium. To follow up transplanted human EPCs 

at the injury site for a short-term period, cells were labelled with a lipophilic, 

photostable fluorescence compound. After the injury, a needle catheter was inserted 

into the arteriotomy, and a suspension of fluorescently labelled EPCs was gently infused 

into the clamped carotid artery over a 10-minute occlusion period. The potential for mir-

92a inhibitor to enhance circulating EPCs’ engraftment potential, as initially 

hypothesised, was then investigated in vivo (Figure 52). Following balloon-induced 

injury, cell engraftment to the denuded intima was evident, as revealed by en face 

fluorescence microscopy, apparently with no discernible complications suggesting host 



 

Results - 207 
 

versus graft rejection by 24h. No intraluminal thrombosis was reported, and the animals’ 

behaviour appeared normal after transplantation. 

 
Figure 52 | miR-92a (5p) inhibitor seems to enhance CD34+-derived EPC engraftment after 
intravascular transplantation. 
To study the engraftment capacity of transfected human EPCs at a vascular injury site, cells were 
previously labelled with a vital dye. Cells treated with 30 nM miR scrambled, miR-92a (5p) or miR-92a (5p) 
inhibitor were transplanted intra-luminally in the rat carotid artery immediately after angioplasty. (A) 
Representative fluorescent macroscopy images of the rat carotid arteries taken 24h following angioplasty 
at different topographic levels at 3.2x in the red channel. These were opened longitudinally and mounted 
en face, revealing engrafted cells stained with the red cell DIi tracker dye. (B) The agglomerate of 
engrafted miR-92a inhibitor-transfected EPCs seen at higher magnification (8x). (C) Preliminary results 
following quantification of EPC engraftment area per artery after 2 individual experiments (6 rats). EPC – 
endothelial precursor cell; CCA – common carotid artery; miR – microRNA. 
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Although the difference between conditions did not reach statistical significance, a trend 

was noticed in this pilot study. miR-92a inhibitor treated EPCs were observed in higher 

numbers in the luminal arterial face. miR-92a, on the other hand, seemed to cause 

decreased EPC engraftment, though the difference was not statistically significant.  

 

4.5 ITGA5 knockdown abrogates miR-92a inhibitor 

adhesion effect in EPCs  
 

 

To determine whether the overexpression of ITGA5 (direct miR-92a target) contributed 

to the enhanced proliferation, adhesion to FN and migration exhibited by human CD34+-

derived EPCs after miR-92a inhibitor treatment, ITGA5 expression was repressed by co-

transfecting cells with the targeted siRNA.  Confirmation of successful knockdown by si-

ITGA5 was verified by western blot 48h after treatment (Figure 53). 

 
 

Figure 53 | si-ITGA5 cancelled miR-92a (5p) inhibitor-mediated ITGA5 and T-eNOS overexpression in 
CD34+-derived EPCs. 
Cells treated with either miR-scrambled, miR-92a (5p), mir-92a (5p) inhibitor, siTGA5, mir-92a (5p) + si-

ITGA5 or miR-92a (5p) inhibitor + si-ITGA5 (all at 30 nM) were lysed, proteins separated by SDS-PAGE and 

immunoblotted with the indicated antibodies. (A) Representative western blot, with (B) ITGA5, (C) T-eNOS 

and (D) SIRT1 protein expression quantified by scanning densitometry. Protein of interest levels was 

normalised to levels of the housekeeping gene ACTB. Combined results from 6 independent experiments 

are plotted as means, with errors bars representing ± SEM. *P<0.05, **P<0.01 and ***P<0.001 compared 

with miR scrambled (1-way ANOVA, Bonferroni’s test for multiple comparisons). EPC – endothelial 

precursor cell; miR – microRNA; Si – small interfering; RU – relative units; SEM – standard error of mean. 
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Co-transfection experiments revealed that ITGA5 overexpression as result of miR-92a 

inhibitor treatment (129.80 % ± 7.91 vs. 100%, ITGA5/ACTB RU, % vs control) was 

abrogated by si-ITGA5 (38.55 % ± 17.44 vs. 100%, ITGA5/ACTB RU, % vs control). 

Moreover, T-eNOS overexpression following miR-92a inhibitor treatment (140.04 % ± 

11.80 vs. 100%, T-eNOS /ACTB RU, % vs control) was also lost when EPCs were co-

transfected with si-ITGA5 (94.75 % ± 8.04 vs. 100%, T-eNOS /ACTB RU, % vs control). 

Contrastingly, SIRT1 levels remained unchanged in all experimental settings. 

 

Then, to determine the contribution of ITGA5 overexpression to the previously 

described enhanced adhesive profile of miR-92a inhibitor-treated EPCs, a new cell-

matrix assay was performed where I knocked down ITGA5 using the specific siRNA 

(Figure 54).  



 

Results - 210 
 

 

After co-transfecting cells with both miR-92a inhibitor and si-ITGA5, there was a 

significant decrease in adhesion when compared to cells treated with mir-92a inhibitor 

(41.98 % ± 1.93 vs. 49.61 % ± 0.76, p<0.001, specific adhesion to FN, % from baseline) 

and also when compared with control EPCs treated with miR scrambled + si scrambled 

(41.98 % ± 1.93 vs. 46.31 % ± 0.87, p<0.05, specific adhesion to FN, % from baseline). 

Remarkably, EPCs treated with both miR-92a inhibitor + si-ITGA5 adhered in higher 

numbers than cells treated with si-ITGA5 (41.98 % ± 1.93 vs. 35.52 % ± 1.50, p<0.05, 

specific adhesion to FN, % from baseline), revealing a still likely higher ITGA5 relative 

expression caused by miR-92a inhibitor, or that there are other players besides ITGA5 

involved in EPC adhesion which is also upregulated by miR-92a inhibitor.  

Oddly, when adding si-scrambled to miR-92a inhibitor, I failed to reproduce the 

statistically significant enhancement of adhesion caused by miR-92a inhibitor seen 

before, a topic which will be discussed later. 

Figure 54 | si-ITGA5 abrogated the miR-92a (5p) inhibitor adhesion effect in CD34+-derived EPCs. 
FN specific adhesion capacity was determined in fluorescently -labelled cells previously treated with with 
a combination of 30nM miR scrambled, miR-92a (5p) inhibitor, si-scrambled and si-ITGA5, as indicated. 
Baseline and final red object count were quantified, and data are expressed as mean adhesion on FN (7 
replicates per experiment) minus mean unspecific adhesion on BSA (3 replicates per experiment). The 
adhesion results are representative of a total of 3 independent experiments and are plotted as means, 
with errors bars representing ± SEM. *P<0.05 and **P<0.001 compared with miR scrambled + si-
scrambled; ^P<0.05 and ^^P<0.01 compared with miR-92a inhibitor + si-scrambled; #P<0.05 compared 
with miR scrambled + si-ITGA5 (1-way ANOVA, Bonferroni’s test for multiple comparisons). BSA – bovine 
serum albumin; EPC – endothelial precursor cell; FN – fibronectin; ITGA5- integrin alpha 5 subunit; miR – 
microRNA; si – small interfering; SEM – standard error mean. 
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Because we had also witnessed an enhanced EPC proliferation (under VEGF stimulus) 

resulting from miR-92a inhibitor treatment, and since integrin outside-in signalling has 

been linked to cell proliferation (Shen, Delaney, & Du, 2012), ITGA5 was downregulated 

with siRNA in miR-92a inhibitor -treated EPCs and tested as an additional experimental 

condition in a new proliferation assay (Figure 55). Remarkably, the knockdown of ITGA5 

with the siRNA did not influence EPC cumulative proliferation after 48 hours, either in 

the absence or presence of VEGF, suggesting the implication of alternative miR-92a 

targets to explain the previously described effects. Oddly enough, when adding si-

scrambled to miR-92a inhibitor, I failed to reproduce the miR-92a inhibitor 

enhancement of proliferation with VEGF seen before, a topic which will be discussed 

later. 

Figure 55 | si-ITGA5 had no effect on the proliferation of CD34+-derived EPCs. 
Cells treated with a combination of 30nM miR scrambled, miR-92a (5p) inhibitor, si-scrambled and si 
ITGA5, as indicated, were incubated with an ATP quantifying luciferase reporter at baseline. For the time 
course, cells in a second well plate were incubated in enriched medium plus or minus VEGF 25 ng/mL for 
48h before performing the luminescence assay. The results are representative of a total of 4 independent 
experiments (each condition run in replicates of 4) and are plotted as means, with errors bars representing 
± SEM. ***P<0.001 compared with baseline condition; ^^P<0.01 and ^P<0.05 compared with the VEGF-
negative condition at 48h (1-way ANOVA, Bonferroni’s test for multiple comparisons). Adenosine 
triphosphate; EPC – endothelial precursor cells; miR- microRNA;  SEM – standard error mean; VEGF – 
vascular endothelial growth factor. 
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Integrins are mechanistically involved in cell migration(Bokel & Brown, 2002). Therefore, 

one would expect to see at least a reduction of miR-92a inhibitor-induced enhancement 

on wound healing migration by si-ITGA5 co-transfection into EPCs. To test the 

hypothesis that miR-92a target protein ITGA5 is involved in the enhanced EPC wound 

healing regeneration seen after miR-92a inhibitor treatment, I performed a new scratch 

assay (Figure 56). The data exhibited represents a single experiment, thus the results 

are still preliminary, but it seemed to point towards a reduction of EPC wound closure 

migration in the conditions where si-ITGA5 was applied. When adding si-scrambled to 

miR-92a inhibitor, I failed to reproduce the miR-92a inhibitor enhancement of wound 

closure migration, hinting at a possible si-scrambled off-target effect to be discussed 

later. 

Figure 56 | si-ITGA5 could abrogate the miR-92a (5p) inhibitor effect on CD34+-derived EPC migration. 
Cells were treated with either si scramble + miR scrambled (black line), si scramble + miR-92a (5p) inhibitor 
(green line), si-ITGA5 + miR-92a (5p) inhibitor (red dashed line) and si-ITGA5 + miR scrambled (red line). 
All oligonucleotides were transfected at 30 nM concentration. After a 48h knockdown, wound closure 
migration in EBM 0.5% FBS was assessed in the presence or absence of 25 ng/mL VEGF by live-cell Imaging. 
Images were captured every 2h for a total duration of 48h. The line graphic represents the effect of 
siITGA5 on EPC migration. Each condition counted 6 replicates and data exhibited represents one single 
experiment, therefore the results are still preliminary. EPCs – endothelial precursor cell; FBS–fetal bovine 
serum; ITGA5–integrin alpha 5; Si–small interference; miR–microRNA; VEGF–vascular endothelial growth 
factor. 
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4.6 Discussion 
 

Inhibition of miR-92a for EPC priming: what grounds? 
 

Developing a miRNA priming strategy for EPCs was based on the premise that aberrantly 

expressed miR-92a contributes towards a dysfunctional EPC phenotype (Q. Zhang et al., 

2011), and that antagonising it could provide gain-of-function therapeutic benefit.  Using 

antisense sequences which sequester the mature miRNA in competition with cellular 

target mRNAs, would lead to the functional inhibition of the endogenous miRNA and 

derepression of the direct targets.  

 

The choice of miR-92a-1 inhibitor 

miRNAs with similar seed sequences are predicted in silico to target highly overlapping 

sets of genes and are usually grouped functionally in the same “seed family”. Together 

the group of highly conserved miRNAs miR-92a-1, miR-92a-2, miR 363, miR25 and miR-

92b (which is generated independently from chromossome1) constitute the miR-92 

seed family (Table 16).  

Table 16 | Sequence of the miR-92 seed family. 
The mature miRNA sequences of the miRNAs belonging to the miR-92 seed family are displayed in the 
table. The predicted seed sequence is shown in bold for both miR strands. Adapted from (Concepcion et 
al., 2012). Chr – chromosome; miR – miRNA 

3p strand miRNA Annotation Location 

UAUUGCACUUGUCCCGGCCUGU  hsa-miR-92a-1-3p  Chr. 13 

UAUUGCACUUGUCCCGGCCUGU  hsa-miR-92a-2-3p  Chr. X 

AAUUGCACGGUAUCCAUCUGUA  hsa-miR-363-3p  Chr. X 

CAUUGCACUUGUCUCGGUCUGA  hsa-miR-25-3p Chr. 7 

UAUUGCACUCGUCCCGGCCUCC hsa-miR-92b-3p  Chr. 1 

5p strand miRNA Annotation Location 

AGGUUGGGAUCGGUUGCAAUGCU  hsa-miR-92a-1-5p  Chr. 13 

GGGUGGGGAUUUGUUGCAUUAC  hsa-miR-92a-2-5p  Chr. X 

CGGGUGGAUCACGAUGCAAUUU hsa-miR-363-5p  Chr. X 

AGGCGGAGACUUGGGCAAUUG  hsa-miR-25-5p  Chr. 7 

AGGGACGGGACGCGGUGCAGUG hsa-miR-92b-5p  Chr. 1 
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I have opted to study the modulation of miR-92a-1 on EPCs (and not any other paralogs), 

since most of the literature published on the effects of miR-92 on angiogenesis, in 

particular in ECs (Bonauer et al., 2009), comes from studying the mir-17~92 cluster 

(Bonauer & Dimmeler, 2009; Concepcion et al., 2012). Despite the possibility that miR-

92a-1 inhibition can also repress other seed family paralogs being more than theoretical 

(Hinkel et al. used LNA-92a inhibitor and showed miR-25 repression in pig arteries(Hinkel 

et al., 2013)), I did not test for paralog targeting by qPCR. I have assumed high oligo 

specificity as described by the manufacturer, an assumption also made by Bonauer 

(Bonauer et al., 2009), Iaconetti (Iaconetti et al., 2012) and Daniel (Daniel et al., 2014) 

groups’ when inhibiting miR-92a in ECs and VSMCs in their critical research. Then, after 

testing the potency of both 5p and 3p strands of the mimic and inhibitor of miR-92a-1 

regarding target gene expression, I have opted to pursue the functional assays using 

solely the miR-92a-1 5p strand, which was considered the primary strand, i.e. most 

efficient and consistent in CD34+-derived EPCs.  

 

 

Suitability of oligofectamine for internalisation of miR-92a 

inhibitor 

 

AntagomiR-based therapies must overcome commonly described obstacles to nucleic 

acid delivery, including cell membrane impermeability, trafficking to the desired 

intracellular compartment (cytoplasm), recognition by the innate immune system, and 

nuclease-based degradation reducing the half-life (Sakurai, Kawabata, Sakurai, 

Nakagawa, & Mizuguchi, 2008). Efficient delivery of miRNAs mimics into cells can bypass 

the endogenous miRNA biogenesis pathway and alter miRNA abundance instantly, 

whereas inhibitors can repress the endogenous species. A variety of agents has been 

tested for non-viral miRNA transient transfection. Examples include nanoparticles (NP), 

amphiphilic polymer micelles, cell penetrating peptides and liposomes. The latter, also 

known as lipofection, is a widely used technique to transfect nucleic acids material into 

a cell using liposomes, which are vesicles that can easily merge with the cell membrane 

since they are both made of a phospholipid bilayer (Felgner et al., 1987). Lipofection 
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uses a positively charged (cationic) lipid to form an aggregate with the negatively 

charged (anionic) miRNA. Lipofection needs no specialised equipment (like 

electroporation), and it is widely available since several companies have developed 

commercial kits, with suitable experimental reproducibility. Such lipofection commercial 

kits have been previously validated for miR-92a transfection into ECs. Bonauer et al. 

used Lipofectamine RNAiMAX (Invitrogen) to transfect miR-92a mimic and inhibitor into 

HUVECs (Bonauer et al., 2009), whereas Iaconetti et al. utilised siPORT NeoFX 

Transfection Agent (Ambion) in rat aortic ECs (Iaconetti et al., 2012). Therefore, I have 

attempted to use both transfection reagents in CD34+-derived EPCs to facilitate miR-92a 

(mimic and inhibitor) internalisation, but with no success. Regarding the transfection 

results in CD34+-derived EPCs, one can argue that cells were either resistant to some of 

the miRNA cationic lipid transfection reagents previously validated for ECs due to cell 

type-specific membrane structural or endocytosis-related differences, or, alternatively, 

if the miR-92a (mimic or inhibitor) was indeed internalized, then the miRNA was not able 

to be incorporated in the RISC machinery (compartmentalization issue? liposome 

sequestration?). 

OF was one of the first lipid formulations to be examined for the in vitro delivery of 

siRNA. Since our group had significant experience in using it for siRNA transfection into 

ECs, and given that OF was previously shown to also be effective for miRNA transfection 

into ECs (Ye & Steinle, 2015), I attempted to use this methodology for the transfection 

of miR-92a (mimic and inhibitor) into CD34+-derived EPCs. The commercially available 

cationic lipid OF is a proprietary formulation able to transfer RNA interference 

oligonucleotides into eukaryotic cells. The transfection complex is thought to enter the 

cell through endocytosis, defined as the process where a localised region of the cellular 

membrane uptakes the complex by forming a membrane bound/intracellular vesicle. 

Since the RISC machinery is also located in the endosomal compartment, exogenous 

miRNA can be almost immediately processed. The transfection method is simple to 

perform and ensures consistently reproducible results. Despite some cationic lipid 

formulations eliciting inadvertent gene expression (Omidi et al., 2003), OF is reported to 

have minimal cytotoxicity in EC cells. According to the IF and FACS results, OF was shown 

to be highly efficient in miR-92a inhibitor transfection into EPCs. 
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Assessment of miR-92a inhibition 

 

Several methods can assess the effect of miRNA inhibition by antagomiR 

oligonucleotides. Approaches that directly measure changes in miRNA levels following 

antagomiR -mediated inhibition by hybridization techniques (such as qPCR or small RNA 

Northern blotting) present some limitations and should be analysed with caution due to 

possible assay interference. Firstly, the antagomiR chemistry may dictate the fate of the 

targeted miRNA. Chemically modified oligonucleotides like LNAs sequester the targeted 

miRNA in a heteroduplex (meaning that sometimes they can still be detected in 

hybridization studies), whereas lower affinity modified oligonucleotides, such as 2’-OMe 

and cholesterol-conjugated 2’-OMe antagomiRs, promote miRNA degradation 

(Stenvang et al., 2012). Secondly, the presence of excess miRNA inhibitor in the RNA 

sample may interfere with the detection step of the assay, for example, primer 

annealing or extension in miRNA-specific real-time qPCR (Stenvang et al., 2012). The 

observed readout in some settings may, thus, constitute underestimated reductions in 

the concentration of the miRNA of interest due to assay interference by the miRNA 

inhibitor. Therefore, assays that measure a functional readout of miRNA inhibition by 

antagomiRs should be preferred (Stenvang et al., 2012). These include the assessment 

of the de-repression of direct targets by real-time qPCR or Western blot analysis. In most 

cases, there is a striking correlation between mRNA and protein levels following miRNA 

disturbance (Baek et al., 2008). However, since miRNA-mediated mRNA repression 

involves both mRNA degradation and translational repression, the cellular 

concentration of target mRNAs following antagomiR treatment may not always reflect 

their true “availability to be translated”. Translationally -repressed mRNAs captured by 

miRISCs can contribute to the overestimation of target mRNAs. Hence, assessing target 

de-repression at the protein level by Western blotting seemed more in line with true 

effector concentration, which was the methodology used in this study. 

 

After having optimised the transfection conditions of EPCs in what concerns miRNA 

working concentration and processing duration, I sought proof of miR-92a inhibition at 

the protein level. According to the obtained results, inhibition of miR-92a-1-5p by the 

corresponding mirVana inhibitor led to significant upregulation of ITGA5 and T-eNOS 
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protein levels in EPCs (direct and indirect miR-92a targets, respectively) compared to the 

transfection control. Bonauer et al. in their seminal paper on miR-92a inhibition impact 

on EC biology described the same results (Bonauer et al., 2009) but using qPCR.  

Likewise, Ohyagi-Hara et al. demonstrated that miR-92a inhibitor upregulated ITGA5 

mRNA levels in non-EC cells (Ohyagi-Hara et al., 2013). More recently, Iaconetti et al. 

also confirmed the T-eNOS upregulation at the protein level in ECs following miR-92a 

inhibitor treatment (Iaconetti et al., 2012). Sadly, ITGA5 levels were not assessed by 

them. This group also described that protein expression of MKK4 (another validated 

miR-92a direct target) was up-regulated in ECs following miR-92a inhibitor treatment, a 

result we failed to see in EPCs. Of note, to the best of our knowledge, our study was the 

first to report MKK4 expression in late-outgrowth EPCs. The discrepancy regarding MKK4 

results in ECs and EPCs might be due to cell type specific variations, or as a consequence 

of the different protocoled miR inhibitor and transfection reagents used. However, one 

also needs to be aware that the degree of miRNA target de-repression can often be 

modest, with some proteomic studies reporting average changes limited to less than 

two-fold (Baek et al., 2008). In some cases, the upregulation of specific target protein 

may not be apparent or significant (like MKK4 in EPCs), and still, a cellular phenotypical 

change occur (like the gain-of-function reported in our work). This phenomenon is likely 

explained by the combined interplay between targets de-repressed.  

 

On the other hand, treatment with miR-92a-1 (5p) mimic was pursued throughout the 

thesis as a negative treatment control. Currently in microRNA research, both the 

microRNA precursor and mimic (the mature form) are commercially available. 

Theoretically, utilising the miRNA mimic should lead to clearer results, as the effects of 

the minor strand miRNA are avoided. Hence, I have chosen to use the mirVana™ mimic 

for validation of target gene repression following transfection with OF in CD34+-derived 

EPCs. The mimic is a double-stranded oligonucleotide (with two nucleotide overhangs) 

that reproduces the endogenous microRNA. These molecules do not have any loops or 

additional bases, but some proprietary chemical modifications are often operated, such 

as nucleotide changes in the passenger strands, to improve mimic stability, to facilitate 

guide miRNA loading to RISC, and to selectively exclude the passenger strand (H. Y. Jin 

et al., 2015). The observed downregulation of targets ITGA5 and T-eNOS (which have 
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been previously described as direct and indirect miR-92a target genes) obtained in 

CD34+-derived EPCs following miR-92a transfection had been previously observed by 

others in ECs, both at mRNA (Bonauer et al., 2009; Daniel et al., 2014; Iaconetti et al., 

2012) and protein level (Bonauer et al., 2009). However, while we have reported 

downregulation of ITGAV at the protein level in EPCs, the reduction of this integrin at 

mRNA level in ECs did not reach statistical significance (Bonauer et al., 2009). In contrast, 

MKK4 (Bonauer et al., 2009; Iaconetti et al., 2012) and SIRT1 (Daniel et al., 2014) mRNAs 

were significantly downregulated after miR-92a treatment in ECs, a finding that I could 

not reproduce at the protein level in EPCs. Altogether, the individual target regulation 

discrepancies pointed in our work may be cell type specific, or, simply result from the 

different synthetic miR-92a oligonucleotides and transfection reagents used by the 

various groups. However, in the overview, it appears that the miR-92a target signature 

is quite similar in both CD34+-derived late-outgrowth EPCs and mature ECs, with ITGA5 

targeting now being established as common ground for the first time, according to our 

literature review. 

 

The functional outcome of miR-92a inhibition in CD34+-derived 
EPCs 
 

Validation of exogenous miR-92a inhibitor activity in CD34+-derived EPCs at the protein 

level was considered essential before I could test the hypothesised functional outcomes 

of miR-92a inhibition priming in these cells.  

 

Angiogenesis 

 

The inhibition of miR-92a in EPCs lead to a significant pro-angiogenesis effect in vitro as 

reported by the co-culture with fibroblasts. A similar result was obtained by other 

groups after treating ECs with miR-92a inhibitor in a Matrigel model in vitro (Bonauer et 

al., 2009; Doebele et al., 2010; L. Zhang, Zhou, Qin, Weintraub, & Tang, 2014). On the 

other hand, I have observed a non-significant reduction in the angiogenic potential of 

EPCs following miR-92a treatment, which is in agreement with the results by Bonauer et 

al. also using a Matrigel assay in vitro (Bonauer et al., 2009). 
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Migration 

 

Using an automated scratch wound assay, we have noticed that miR-92a inhibitor 

treatment lead to enhanced wound closure migration in CD34+-derived EPCs (only 

statistically significant when compared to transfection control in the absence of VEGF 

stimulus). Previously, Iaconetti et al. had also reported that functional inhibition of miR-

92a on rat aortic ECs significantly enhanced wound healing migration in a 36h assay 

(Iaconetti et al., 2012). The wound healing test is well suited for the investigation of cell-

cell interactions on cell migration. However, one must recognise that the mechanics of 

cell movement are difficult to interpret. Cell population assays do not consider single 

cell locomotion or distinguish between the roles played by cell migration and cell 

growth. Often, experimental conditions will impact on both proliferative and motile 

activity. Therefore, a transwell cell culture experiment might be more informative for 

cell migration, since cells must first digest the artificial ECM before their migration, 

similarly to the in vivo context. In the modified Boyden chamber assay, CD34+-derived 

EPCs treated with miR-92a inhibitor showed significantly enhanced VEGF-induced 

chemotaxis migration ability compared to controls.  

 

On the other hand, we witnessed a reduction in EPC migration capacity after miR-92a 

treatment, albeit not reaching statistical significance. Bonauer et al. reported similar 

results, with the migration of ECs being non-significantly reduced by pre-mir92a 

treatment (Bonauer et al., 2009). Daniel et al. had also tested miR-92a treated ECs in a 

modified Boyden chamber assay and detected impaired migration compared to controls 

(Daniel et al., 2014). The results from head-to-head comparison do not necessarily 

correlate with the cells’ ability to traverse the matrix in response to a chemoattractant. 

Protocol differences, such as cell density and the size of the filter pores, could have 

influenced the migration/invasion rate significantly (Sieuwerts, Klijn, & Foekens, 1997).  

 

Proliferation 

 

By using an ATP quantifying luciferase reporter assay, it was possible to document that 

miR-92a inhibitor enhanced VEGF-induced EPC proliferation at 48h. Iaconetti et al. also 
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reported a similar significant increase in VEGF-induced EC proliferation after functional 

inhibition of miR-92a, according to a BrdU assay (Iaconetti et al., 2012). Following a 

different strategy, Liu et al. also verified increased relative proliferation under basal 

conditions (by MTT assay) of ECs infected with recombinant miR-92a inhibitor lentivirus 

(H. Liu et al., 2016). 

 

On the other hand, we have shown that miR-92a significantly reduced EPC proliferation, 

either in the presence or absence of VEGF. As expected, upregulation of miR-92a 

reduced the mitogenic effect of VEGF stimulation compared to transfection control. Our 

observation reproduced what was previously described by Iaconetti et al. for ECs 

(Iaconetti et al., 2012)  

 

 

Adhesion 

 

The critical initial event for re-endothelialisation, regarding late outgrowth progenitor 

contribution, would be the attachment of the circulating EPCs to the denuded arterial 

wall. It is hypothesised that the engraftment and differentiation of EPCs depend largely 

on their adhesion to ECM components, such as FN, and the resultant signalling cascade 

that occurs on cell binding. Hence, modulating EPC adhesion activity with miR-92a 

inhibitor, which upregulates ITGA5, was a key consideration of ours. To accomplish this, 

passive in vitro EPC adhesion to FN, under static conditions, was tested. FN had been 

previously validated for EPC cultures, in fact, with superior adhesion compared to ECs 

(Vartanian et al., 2009). In this type of assay, the initial adhesive interaction between 

the cells and the substrate are said to be driven by specific integrins-ECM ligand bonding 

pairs (Hong, Ergezen, Lec, & Barbee, 2006). In the next hours, subsequent receptor-

ligand bonds will form and quickly enhance in number, forming focal adhesions with 

increased tensile strength and flattening the cell (Khalili & Ahmad, 2015). Cells then start 

spreading beyond the projected area to reach their maximum area through expansion 

and adhesion strength will then become fully stable (Khalili & Ahmad, 2015). According 

to our results, miR-92a inhibitor significantly enhanced EPC adhesion to the FN matrix 

(a ligand for ITGA5). The expression of ITGA5 had been demonstrated by us and others 



 

Results - 221 
 

(Chavakis et al., 2005), and concordantly, ITGA5-KO ECs have shown reduced adhesion 

to FN, which can be rescued by ectopic (over)expression of ITGA5 (van der Flier et al., 

2010). Given that a short termination period for the assay was used (20 mins), it is fair 

to assume that the relatively increased adhesion was related to miR-92a inhibitor -

mediated ITGA5 upregulation. In fact, the involvement of integrin 𝛼5𝛽1 in late-

outgrowth EPCs’ interaction with ECM is in agreement with other published works 

(Angelos et al., 2010; Brown, Wallace, Angelos, & Truskey, 2009) with the cell contact 

area growing during the first 20 minutes of attachment (Brown et al., 2009).  

To our knowledge increased EPC adhesion following ITGA5 overexpression induced by 

miR-92a inhibitor has never been attempted neither in ECs nor EPCs, but our results are 

in agreement (by contrast) with the observation by Bonauer and colleagues, that 

exogenous miR-92a transfection impairs EC adhesion to FN (Bonauer et al., 2009). 

Ohyagi-Hara et al. reported to the same observation but in cancer cells, with 

transfection of precursor miR-92a reducing ITGA5 expression and inhibiting cancer cell 

adhesion (Ohyagi-Hara et al., 2013).  

 

Survival 

 

In theory, cells that successfully adhere to the ECM will have a higher chance of survival 

by avoiding anoikis, which can be defined as apoptosis caused by lack of adhesion to 

ECM. This enhanced adhesion capacity may play a major role in cell survival, particularly 

in the restenosis environment. However, our results failed to demonstrate a significant 

increase in CD34+-derived EPC survival after miR-92a inhibitor treatment in serum-free 

medium. This result contrasts with the observation by Liu et al. in ECs, where miR-92a 

inhibitor significantly reduced the apoptosis rate compared with control groups (H. Liu 

et al., 2016). Using siRNA against KLF2 or KLF4 (miR-92a direct targets), they were able 

to antagonise the miR-92a inhibitor effect on the rate of EC apoptosis, directly involving 

this pathway in EC survival. Contrastingly, Ohyashiki et al. demonstrated that anti-miR-

92a treatment increased apoptosis in human myeloid and lymphoid cells (Ohyashiki et 

al., 2010). More recently, a study in human glioma cells described an increased cell 

apoptosis outcome after antisense inhibition of miR-92a, via targeting the Bim gene (Niu 

et al., 2012). These findings suggest a differential role for miR-92a inhibitor in regulating 
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viability of EPCs, ECs and malignant cells, possibly through different target genes 

according to cell and context specificities. 

 

When we treated CD34+-derived EPCs with miR-92a, again no significant change in 

survival was seen when comparing with controls. Similarly, Bonauer and colleagues 

could not find any significant change in EC viability after miR-92a overexpression 

(Bonauer et al., 2009). Daniel and colleagues also reported no effect of pre-miR-92a 

treatment on EC apoptosis (Daniel et al., 2014). Contrastingly, there is a study by Zhang 

et al. reporting that miR-92a overexpression enhanced EC viability (under oxidative 

stress), through the release of Akt signalling, suggesting a vasculoprotective effect that 

is likely mediated through a PTEN-dependent mechanism (L. Zhang, M. Zhou, Y. Wang, 

et al., 2014). These findings suggest a differential role for miR-92a in regulating viability 

of ECs, possibly through different target genes according to context specificities, which 

still warrants further investigation. 

 

miR-92a targets which could contribute to the functional results 
 

The studies on miRNA function have been limited by several obstacles. Given the 

ubiquitous nature of miRNAs it is hard to predict all their targets accurately, but with 

the recent development of new computational algorithms, this task has become 

facilitated (John et al., 2004; Lewis et al., 2003). Molecules with distinct functions like 

ITGA5 and ITAGV (cell-matrix interaction)(Bonauer et al., 2009), SIRT1 (histone 

deacetylase)(O'Donnell et al., 2005), MKK4 (mitogen kinase)(L. Zhang, M. Zhou, Y. Wang, 

et al., 2014) and KLF2/KFL4 (flow-induced transcription factors)(Y. Fang & Davies, 2012; 

H. Liu et al., 2016; Wu et al., 2011) are some of the predicted miR-92a targets that have 

since been validated. Curiously, all of them render an embryonic lethal phenotype if 

knocked down, suggesting they have significant activities in the organism (H. L. Cheng 

et al., 2003; D. Yang et al., 1997; J. T. Yang, Rayburn, & Hynes, 1993), only to be fine 

tuned by miR-92a. 

 

We found that miR-92a inhibition enhanced VEGF-A -induced CD34+-derived EPC 

proliferation, a result previously described in ECs and thought to be at least in part 
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caused by the phosphorylating activation of mitogenic ERK and JNK signalling (Iaconetti 

et al., 2012), a pre-requisite for EC proliferation (Salameh et al., 2005). Since miR-92a 

controls MKK4 levels in ECs and JNK has been shown to be phosphorylated by MKK4 (Y. 

Fleming et al., 2000), it has been hypothesised that miR-92a inhibitor stimulates JNK 

activation through de-repressing MKK4 (Iaconetti et al., 2012). Indeed, Liu and 

colleagues also found that treatment with miR-92a inhibitor significantly upregulated 

relative EC proliferation compared to controls, an effect which could be antagonised by 

siRNA KLF2 and KLF4 (H. Liu et al., 2016), suggesting an important role of these 

transcription factors in EC proliferation. Unfortunately, we could only observe an 

enhanced MKK4 expression trend with miR-92a inhibitor treatment, suggesting that 

other pathways might be involved in enhanced proliferation. Indeed, Cui and colleagues 

described and alternative pathway that can be accountable for enhanced proliferation 

in EPCs (B. Cui et al., 2011). They have shown that in vitro gene transfer of eNOS 

improved the proliferation of EPCs. Similarly, in our study we observed a miR-92a 

inhibitor indirectly induced eNOS expression, which could, eventually, explain the 

proliferation results. 

 

Besides the pro-proliferative contribution, inhibition of miR-92a might, in theory, 

accelerate EPC-mediated re-endothelialisation (and hence attenuate experimental 

restenosis) at the injury site through additional mechanisms. SIRT1, which promotes EC 

angiogenesis, and ITGA5, which enables EC migration and angiogenesis (Potente, 

Gerhardt, & Carmeliet, 2011), are among the validated targets of miR-92a (Bonauer et 

al., 2009). Daniel and colleagues reported that both targets were strongly increased in 

arterial ECs in miR-92a inhibitor -systemically treated mice two weeks after wire-

induced injury (Daniel et al., 2014), hinting that therapeutic inhibition of miR-92a 

stimulates re-endothelialisation, at least in part, by de-repressing the two proangiogenic 

factors.  

SIRT1 per se has been shown to have an inhibitory effect on neointima formation (L. Li 

et al., 2011). SIRT1 deacetylation of FOXO1 inhibits its antiangiogenic activity in human 

vascular ECs (Potente et al., 2007) while targeting eNOS for deacetylation leads to NO 

production and corresponding enhanced endothelial-dependent vasodilation 

(Mattagajasingh et al., 2007), survival, migration and neovascularization (Aicher, 
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Heeschen, et al., 2003). Overexpression of SIRT1 prevents hydrogen peroxide-induced 

endothelial senescence suggesting that SIRT1 might prevent stress-induced endothelial 

dysfunction. In EPCs the expression and activity of SIRT1 also correlate inversely with 

senescence (Lemarie et al., 2011). However, in CD34+-derived late -outgrowth EPCs we 

were unable to demonstrate a statistically significant upregulation of SIRT1 following 

miR-92a inhibitor treatment compared to control transfection, making this contribution 

less likely to justify the observed EPC functional enhancement. 

 

The ECM is a non-cellular component that not only provides a physical scaffold for cells, 

but also triggers essential biomechanical cues that contribute towards determining EPC 

differentiation, proliferation, survival, polarity and migration (Caiado & Dias, 2012).  In 

particular, the EPC transmembrane integrin α5β1 combines with FN to form a ligand-

receptor complex that does not only mediate cell adhesion but can also promote cell 

proliferation, survival and even differentiation (Pagan et al., 2002). In 2009, Bonauer and 

colleagues demonstrated that ITGA5 (one of the subunits of α5β1) is a direct target of 

miR-92a in ECs (Bonauer et al., 2009). Ohyagi-Hara et al. came to the same conclusion 

but in cancer cells (Ohyagi-Hara et al., 2013). In our work, we have shown ITGA5 to be 

upregulated in CD34+-derived EPCs following miR-92a antagonism. Therefore, given its 

interaction with ECM components, ITGA5 is considered a necessary prerequisite for 

vascular regeneration following injury (Koyama & Reidy, 1998; Stenzel et al., 2011) since 

it facilitates the adhesion, proliferation, and migration of ECs (thus, possibly EPCs as 

well) in the process of re-endothelialisation (Daniel et al., 2014). Moreover, vascular ECs 

rely heavily on their interactions with the ECM and their neighbouring cells to avoid cell 

death. In fact, various integrins, including 𝛼5𝛽1 or 𝛼V𝛽3 have been shown to prevent 

apoptosis of ECs (Scatena et al., 1998; Z. Zhang, Vuori, Reed, & Ruoslahti, 1995), an effect 

that we were unable to see in CD34+-derived EPCs using an indirect metabolic 

luminescence assay. 

Besides 𝛼5𝛽1, the interaction of late-outgrowth EPCs with FN is also strongly dependent 

on integrins 𝛼V𝛽1, 𝛼V𝛽3 and 𝛼V𝛽5 (Kokubo, Uchida, & Choi, 2007; J. Zhao, Mitrofan, 

Appleby, Morrell, & Lever, 2016). Since we failed to see any upregulation of ITGAV in 

miR-92a inhibitor treated cells (although miR-92a successfully downregulated it), ITGAV 

contribution to enhanced EPC adhesion in our study is less likely in comparison to ITGA5 
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(which was successfully upregulated following miR-92a inhibitor treatment), although 

others have reported that direct inhibition of 𝛼V𝛽3- and 𝛼V𝛽5-integrins blocks EPC-

mediated re-endothelialisation of denuded arteries (Kokubo et al., 2007). 

 

miR-92a has also been found to target KLF2 and KLF4 (Y. Fang & Davies, 2012) (genes 

that were not unfortunately included in my WB experiments). These transcription 

factors typically exert an anti-inflammatory and atheroprotective effect in ECs after 

injury (Y. Fang & Davies, 2012), which can modulate proliferation and survival. This is 

done possibly through enhanced NO production (Boon & Horrevoets, 2009; Y. Fang & 

Davies, 2012; Hamik et al., 2007; Iaconetti et al., 2012; Parmar et al., 2006). In fact, 

although eNOS is not a direct target of miR-92a, a direct correlation to ITGA5 (Bonauer 

et al., 2009), KLF2 (Boon et al., 2011) or KLF4 (Hamik et al., 2007) expression levels has 

been shown in previous studies. Also, SIRT1 was also shown to deacetylate and thereby 

activate eNOS (Ota et al., 2007). This off-target phospho-eNOS increased expression has 

been described previously for ECs as a consequence of miR-92a inhibition (Iaconetti et 

al., 2012). Therefore, the indirect upregulation of eNOS (which we have also observed 

in our study) may represent an additional effect which could contribute to the EPC-

mediated enhanced re-endothelialisation following the knock-down of miR-92.  

 

 

Integrin α5 has a pivotal role in miR-92a inhibitor EPC priming 
 

In vessels, adhesion of EPCs to injury sites are thought to involve both cell-cell and cell-

ECM interactions. However, Zhao and colleagues demonstrated that under flow 

conditions in vitro late -outgrowth EPCs interact little with confluent ECs, but readily 

adhere to and spread where there are discontinuities in the EC monolayer, namely at 

gaps in the intercellular junctions between ECs (J. Zhao et al., 2016). Similarly, vascular 

damage in vivo is characterised by loss of endothelial integrity. Where the EC monolayer 

is disrupted, the basement membrane and its matrix components (including FN) are 

exposed to blood flow (Timpl, 1996). FN is an important regulator of various cellular 

processes including survival, differentiation, growth and migration (Hynes, 2002). FN is 

actively deposited in the ECM mainly by ECs and can be found circulating freely in the 
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plasma as well (Kaiser, Friedrich, Chavakis, Bohm, & Friedrich, 2012). FN is abundant at 

the site of vascular injury, a feature that might be expected to facilitate EPC 

incorporation (Bauters et al., 1995).  The interaction between late-outgrowth EPCs with 

FN has been previously validated (Angelos et al., 2010; Kaiser et al., 2012) and the 

generated adhesion strength estimated as very strong (J. Zhao et al., 2016). In fact, late-

outgrowth EPCs are much more adhesive to FN than to collagen IV, collagen I, and 

laminin under flow conditions (J. Zhao et al., 2016). This interaction with FN is strongly 

dependent on integrins 𝛼5𝛽1 (Angelos et al., 2010; Brown et al., 2009; Kaiser et al., 

2012; J. Zhao et al., 2016). α5β1 binds to the Arg-Gly-Asp (RGD) tri-peptide motif in FN 

(van der Flier et al., 2010), and it is composed of α5 (ITGA5/CD49e) subunit, which 

undergoes post-translational cleavage in the extracellular domain to yield disulfide-

linked light and heavy chains, that join with β1 (ITGB1/CD29) to form a FN receptor. Not 

coincidently, late-outgrowth EPCs express abundant numbers of the integrin monomers 

𝛼5, 𝛼v, 𝛽1, and 𝛽3 (Chavakis et al., 2005; J. Zhao, Bolton, Randle, Bradley, & Lever, 2014), 

which are exactly the components of the major FN ligands 𝛼5𝛽1, 𝛼V𝛽1 and 𝛼V𝛽3 

(Johansson, Svineng, Wennerberg, Armulik, & Lohikangas, 1997), densely present at the 

EPC surface (J. Zhao et al., 2014).  Concordantly, Zhao et al. tested blocking antibodies 

against integrins 𝛼5𝛽1, 𝛼v𝛽1 and 𝛼v𝛽3 and showed a significant decrease in EPC 

adhesion to FN (J. Zhao et al., 2016),  suggesting that the interaction between EPCs and 

ECM is largely mediated by these 3 integrins heterodimers. Promisingly, by using miR-

92a inhibitor in CD34+-derived EPCs we were exactly able to de-repress both ITGA5 and 

ITGAV monomers simultaneously, hence contributing to increased EPC adhesion to FN. 

Angelos and colleagues took a closer look at integrin-mediated EPC adhesion and 

concluded that, in fact, α5β1 seems to be the primary integrin responsible for initial cell 

capture to FN (Angelos et al., 2010). Their setup included adhesion experiments to FN 

under static and dynamic conditions where monoclonal antibodies against 

both α5β1 and αVβ3 were used. The adhesion of EPCs was significantly reduced relative 

to both static and flow controls when α5β1 integrins were blocked, which did not 

happen with cells blocked with anti-αVβ3. Hence, one may assume that the initial arrest 

of EPCs to FN is directly dependent on α5β1 and not αVβ3 integrin. Moreover, they 

estimated the number of α5β1 integrin receptors on the cell surface by flow cytometry 

to be 3 times higher than αVβ3’s. Thus, the greater role of α5β1 in adhesion may, 

https://en.wikipedia.org/wiki/ITGA5
https://en.wikipedia.org/wiki/CD29
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partially reflect their increased density per EPC. EPC adhesion to FN via α5β1 integrin 

was further characterized using a parallel plate flow chamber (Angelos et al., 2010). FN 

supported cell arrest and limited EPC rolling, by making multiple small attachments 

via α5β1 integrin. The integrin contact area was less than the area of the cell membrane 

within 50 nm of separation from the surface. Once attached (maximum adhesion seen 

at 1.0 dyn/cm2), EPCs adhered firmly with little subsequent detachment, even when 

exposed to 20 dyn/cm2 shear stress. Further dissecting the individual effect of α5-

blockade on EPCs compared to β1-blockade, Kaiser et al. found that α5 contribution to 

EPC adhesion is markedly more pronounced (Kaiser et al., 2012). 

 

Walter and colleagues described enhanced adhesiveness of cultured human EPCs 

following statin treatment, an effect that was associated with the drug-induced 

upregulation of ITGA5 (among other integrin monomers)(Walter et al., 2002). In vivo, 

statins have been shown to accelerate reendothelialization in balloon-injured carotid 

arteries via enhanced BM-derived EPC engraftment. Tying everything up, Walter then 

showed that this effect could be abrogated by administration of RGD peptides (Walter 

et al., 2002), which specifically block integrin receptors (including ITGA5) on EPCs (J. M. 

Muller, Chilian, & Davis, 1997). 

 

Besides anchoring cells to ECM, integrins α5β1 are known to participate in cell-surface 

mediated bidirectional signalling (Figure 57). 

 

Figure 57 | Integrin conformation-function relationships. 
Representation of the conformational changes that are associated with integrin α5β1 signalling. Inside-
out signaling is mediated by 1) an inactive conformation where the integrin adopts a bent conformation 
in which the α- and β-subunits are closely associated; 2) a primed conformation arising from intracellular 
signaling which culminates in the binding of talin to the β-subunit tail, causing relaxation of the leg 
restraints, allowing some further unbending. The latter primes the ligand-binding pocket to achieve a 
high-affinity conformation that is ready to accept FN; 3) an active extended conformation able to bind 
theFN, representing the end-point of inside-out signalling. Outside-in signalling is initiated after binding 
of talin and FN. As the cytoskeleton matures, tension is generated on integrin α5β1 across the cell 
membrane. The force applied to the integrin headpiece triggers further distancing of the heterodimer 
units, strengthening receptor-ligand binding and allowing the formation of stable focal adhesions and the 
initiation of intracellular signaling cascades which end in gene expression modulation, the end-point of 
outside-in signalling. Adapted from (Askari, Buckley, Mould, & Humphries, 2009) and (Ramjaun & 
Hodivala-Dilke, 2009). Akt - Protein Kinase B; ERK - extracellular signal-regulated kinase; FAK – focal 
adhesion kinase; FN – fibronectin; NFkB - factor nuclear kappa B; PI3K - Phosphoinositide 3-kinase; Rac1 - 
Ras-related C3 botulinum toxin substrate 1; Src - Proto-oncogene tyrosine-protein kinase. 
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Integrins can shift between high- and low-affinity conformations for ligand binding. In 

an inactivated state, the α5- and a β1- chain are connected at the cytosolic end, while 

the extracellular heads are found in a bent-down position (Askari et al., 2009). α5β1 

integrins can be activated from the cytosolic end by attachment of talin to the β1 chain. 

Upon talin activation the two subunits move apart, and their heads at the extracellular 

end assume an upright posture. Inside-out signalling allows for the interaction of α5β1 

integrins with immobilised ligands, such as FN. Upon binding, the Rho GTPase family 

(including Rho, Rac, and Cdc42) is activated which will control stress fibre formation and 

the assembly of focal adhesions, involved in cell spreading and migration (Hall, 1998). 

Several integrins then cluster at these focal adhesion complexes, which are capable of 

transmitting adhesive and traction forces to the cytoplasmic actin filaments. This way, 

clustered integrins can convert mechanical information, such as adhesion strength and 

shear stress, via specific adapter proteins, into chemical signals inducing multiple 

cellular functions, also known as outside-in signalling. Briefly, ligand binding activates 

focal adhesion kinase (FAK) through direct interaction at the cytoplasmic tail of the β1-

integrin subunit (Schaller, Otey, Hildebrand, & Parsons, 1995). FAK plays an essential 

role in several activation pathways downstream of integrins, regulating both signalling 

cascades and cytoskeleton changes. The signalling molecules initiate transcription of 

multiple genes that promote cell survival, proliferation and another key phenomenon. 

One of the targets of FAK is the protein kinase Src, which phosphorylates several other 

downstream proteins and additional sites on FAK (Ramjaun & Hodivala-Dilke, 2009). 
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Importantly, integrin-mediated pro-angiogenic Src activity has been observed in 

ECs(Zaric & Ruegg, 2005). Also, Src also plays a role in linking ECM adhesion with 

intercellular adhesion, which is achieved by regulating VE-cadherin activity and other 

components of the adherens junction (J. Wang & Milner, 2006). Another important 

target of FAK is PI3K (Sudhakar et al., 2003). In ECs, adhesion-induced PI3K activity 

signals via the Akt-mTOR-4E-BP1 pathway, leading to EC survival and proliferation 

(Sudhakar et al., 2003). Concordantly, Zhang et al. observed that inhibition of Akt 

phosphorylation by Ly294002 abrogated most of the protective effects of anti-miR-92a 

on EC-mediated angiogenesis in the setting of oxidative stress (L. Zhang, M. Zhou, G. 

Qin, et al., 2014). FOXO1, another downstream effector of the PI3K-Akt signalling axis, 

has also been implicated in angiogenesis (Ramjaun & Hodivala-Dilke, 2009). FAK can also 

bind p130Cas and PLC-ϒ following integrin activation (X. Zhang et al., 1999), both 

proteins involved in cell adhesion signalling pathways important in EC migration 

(Nagashima et al., 2002). α5β1 also plays a key role during the vascular remodelling and 

maturation of newly established vascular structures, since shear-stress has been 

reported to stimulate ITGA5 in ECs (Ramjaun & Hodivala-Dilke, 2009), which in turn,  

induces PI3K activity leading to the activation of a PLC-ϒ-PKC cascade (Sasamoto et al., 

2005). Activation of the well-characterized angiogenesis ERK signalling cascade 

following integrin activation has also been described in ECs (Short, Talbott, & Juliano, 

1998). Integrin ligation to FN induces the sequential activation of Raf, MEK and ERK 

(Sudhakar et al., 2003), regulating EC survival, migration and proliferation (Ramjaun & 

Hodivala-Dilke, 2009), although direct integrin activation of ERK has also been proposed 

(Roberts, Woods, Shaw, & Norman, 2003).  Another established signalling pathway 

employed by integrins in ECs involves the activation of the NF-kB pathway (S. Klein et 

al., 2002). Integrin-mediated NF-kB signalling triggers the expression of a specific set of 

genes (S. Klein et al., 2002), conferring protection from apoptosis to ECs (Reidy, 

Zihlmann, Hubbell, & Hall, 2006). Among them is the prostaglandin synthesis enzyme, 

cyclooxygenease-2 (COX-2), which is involved in the induction of VEGF and FGF-2 growth 

factors, which in turn can stimulate angiogenesis (Boosani et al., 2007). 

Altogether, it is easy to understand why ITGA5, the α subunit of α5β1 integrins, has been 

shown to mediate a variety of biological phenomena including mesoderm induction, 

vascular development, and neural crest development (van der Flier et al., 2010; J. T. 
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Yang et al., 1993). Concordantly, ITAG5-null mice die early in gestation (E10.5) partly as 

a result of various vascular defects (Goh, Yang, & Hynes, 1997; J. T. Yang et al., 1993). 

Similarly, FN-null mice also die at embryonic day (E) 9.5 exhibiting severe defects in 

vascular development (Francis et al., 2002). An endothelial-specific ITGA5 conditional 

knockout mouse (ITGA5-floxed mouse line and ablated ITGA5 in ECs using Tie2-driven 

expression of Cre recombinase) was specifically created to study the role of ITGA5 in 

vascular biology (van der Flier et al., 2010). Surprisingly, the ITGA5 conditional knockout 

mice were viable and lacked any immediately obvious phenotype. Characterization of 

ITGA5 knockout ECs suggested compensation by ITGAV by redistributing to focal 

adhesions, suggesting a functional overlap of these two integrins. 

 

In summary, α5β1 is involved in several essential EC functions, such as survival, 

migration, proliferation and vascular remodelling (Ramjaun & Hodivala-Dilke, 2009). It 

is likely that the same pathways are triggered upon α5β1 integrin activation in CD34+-

derived late-outgrowth EPCs treated with miR-92a inhibitor, which overexpress ITGA5. 

Since α5β1 is the primary integrin involved in the initial cell arrest (Angelos et al., 2010) 

and its subunit ITGA5 is a direct target of miR-92a (Bonauer et al., 2009), we investigated 

whether miR-92a inhibitor functional  effects on EPCs were abrogated by the knockdown 

of ITGA5. By using a siRNA interference strategy directed against ITGA5 we were able to 

successfully repress ITGA5 protein levels in miR-92a inhibitor -treated CD34+-derived 

EPCs, without interfering significantly in other target proteins, like SIRT1. This strategy 

allowed us to individualize the contribution of ITGA5 for the EPC functional effects 

following miR-92a inhibitor treatment. 

Previously, ITGA5-KO ECs have shown reduced adhesion to FN, which can be rescued by 

ectopic (over)expression of ITGA5 (van der Flier et al., 2010). In concordance, we have 

shown that miR-92a inhibitor treatment augments EPC adhesion to FN. After co-

transfecting cells with both miR-92a inhibitor and si-ITGA5, the enhanced EPC adhesion 

was abrogated when compared to cells treated with mir-92a inhibitor alone. This results 

suggests that the enhanced EPC adhesion following miR-92a inhibitor priming seems to 

be mediated by the downstream target ITGA5, in a significant proportion. 

Migration involves a coordinated sequence of adhesion and release of molecules on the 

cell surface as the cell moves along a chemotactic gradient. In this complex process, 
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ITGA5 is a critical effector. In EPCs, migration is markedly reduced when ITGA5 is blocked 

(Kaiser et al., 2012). Although the scratch assay results following EPC si-ITGA5 

knockdown are only preliminary, they could point towards a reduction of EPC wound 

closure migration following si-ITGA5 + miR-92a inhibitor co-transfection compared with 

the condition of single miR-92a inhibitor treatment. 

Remarkably, si-ITGA5 treatment had no effect on the proliferation rate of miR-92a 

inhibitor treated EPCs when compared to EPCs -treated with miR-92a inhibitor alone. 

This result suggests that ITGA5 may not be the most relevant miR-92a target when it 

comes to explaining the seen miR-92a inhibitor -enhanced EPC proliferation. 

In all si-ITGA5 functional assays, it appears that the scrambled siRNA could have had 

some potential off-target effect (such as hybridizing with miR-92a inhibitor and reducing 

its bioavailability). That is a possibility since we were unable to reproduce the increased 

EPC adhesion/migration/proliferation effect following miR-92a inhibitor treatment 

when compared to transfection control treatment (the option for si-scrambled + miR 

scrambled was made in the functional assays, whereas for gene expression miR 

scrambled was used alone). To overcome this issue, a simultaneous ITGA5 western blot 

should have been performed for each assay to quantify ITGA5 abundance in all 

conditions. EPC ITGA5 levels in si-scrambled+miR-scrambled condition should differ 

from si-scrambled+miR-92a inhibitor condition. 

A word of caution concerning ITGA5 overexpression. ITGA5 activation in some settings 

may have a negative impact. Sun et al., recently, described that atheroprone flow 

induces ITGA5 translocation into lipid rafts in ECs and hence activation to cause 

activation of NLRP3 inflammasome resulting in endothelial dysfunction in vitro and in 

vivo (X. Sun et al., 2016). Lipid rafts are plasma membrane microdomains which are 

enriched in sphingolipids, cholesterol, and a variety of signaling messengers, and that 

interact F-actin-based cytoskeleton. Knockdown of ITGA5 seems to have ameliorated EC 

dysfunction in partially ligated carotid arteries of LDLR−/− mice. Furthermore, functional 

inhibition of ITGA5 in mice improved EC function in the atheroprone area. These findings 

have revealed a mechanism by which atheroprone flow causes endothelial dysfunction 

via ITGA5 activation, possibly jeopardizing our strategy of ITGA5 overexpression in 

CD34+-derived EPCs for restenosis prevention. But if miR-92a inhibitor is to exert its 
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function only transiently following EPC transfection, long enough simply to allow for 

enhanced engraftment ability, then the dysfunction phenotype might not be apparent. 

 

 

The link between integrin α5 and nitric oxide in EPC priming 
 

Human eNOS is an enzyme that is constitutively expressed mainly in ECs,  which 

catalyses L-arginine oxidation to generate L-citrulline and NO (I. Fleming & Busse, 2003). 

NO is a potent vasodilator with a short half-life that contributes to vessel homoeostasis 

and remodelling by inducing VSMC relaxation, platelet aggregation, and leukocyte 

adhesion to ECs (Dimmeler et al., 1999; Rudic et al., 1998; Zhou, Chen, Fan, Jiang, & 

Wan, 2014). Moreover, NO production is paramount in fostering endothelial integrity 

and regeneration (Gareri et al., 2016), as well as regulating progenitor cell function 

(Chavakis et al., 2008). In fact, eNOS overexpression is known to enhance the 

vasculoprotective effect of EPCs (D. Kong, Melo, Mangi, et al., 2004), suggesting that our 

hypothesis to use a combinatorial approach with EPCs for transfer of increased NO levels 

may be an effective strategy to enhance endothelium regeneration in damaged vessels. 

This might be particularly relevant in CVD states, which are associated with reduced 

levels of NO bioavailability (Gallagher et al., 2007). The basal release of NO is reduced 

during ageing or the presence of simultaneous CVD RFs, as the activity of eNOS is 

suppressed in senescent ECs (Gerhard, Roddy, Creager, & Creager, 1996). As EC and EPC 

dysfunction cause further NO insufficiency (Ignarro, Napoli, & Loscalzo, 2002), a 

negative feedback loop is installed perpetuating vascular damage following injury 

(Evora, Baldo, Celotto, & Capellini, 2009; Ignarro et al., 2002). Moreover, impaired eNOS 

function is thought to be, in part, responsible for impaired mobilisation of EPCs from the 

BM (Padfield et al., 2010) which further contributes to the delayed vascular healing. BM 

cells treated with an eNOS transcriptional enhancer exhibit enhanced migratory and 

neovascularization capacity, when administered in a model of hind-limb ischemia, 

improved neovascularization (Thum, Fraccarollo, et al., 2007). Furthermore, this 

beneficial effect can be reversed by the use of eNOS inhibitors, strongly implicating NO 

in the process of vascular repair (Thum, Fraccarollo, et al., 2007). The reduced NO 

bioavailability can be counteracted by statins, oestrogen and EPO, all of which enhance 

eNOS expression, reduce senescence in ECs (Hayashi et al., 2006; Vasa, Breitschopf, 
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Zeiher, & Dimmeler, 2000), and are known to promote reendothelialization following 

vascular injury (Iwakura et al., 2003; Landmesser et al., 2004; Urao et al., 2006).  

 

To date, there is no convincing evidence of direct regulation of eNOS by miRNAs also 

contributing to the remodelling process. However, recently, miR-92a has been shown to 

be involved in the modulation eNOS expression and activity in ECs, by repressing it 

(Bonauer et al., 2009; Daniel et al., 2014). Conversely, miR-92a inhibitor increases NO 

bioavailability in ECs (Gareri et al., 2016; Iaconetti et al., 2012; Wu et al., 2011).  

Therefore, it seems consensual that eNOS may also play a role in EPC-mediated 

endothelium regeneration following miR-92a antagonism. The inexistence of miR-92a 

binding sites in the 3’ untranslated region of eNOS’ gene suggests that a mechanism 

other than the direct targeting of miR-92a is involved (Wu et al., 2011). In fact, miR-92a 

(indirectly) -induced eNOS downregulation has been shown to be mediated by ITGA5 

(Bonauer et al., 2009), KLF2 (Boon et al., 2011) and KFL4 (Hamik et al., 2007) in previous 

research. Furthermore, SIRT1 directly deacetylates and thereby activates eNOS and 

leads to more NO production (Ota et al., 2010; Rudic et al., 1998). All of these are miR-

92a direct targets.  

 

Because of the fundamental role of ITGA5 in EPC physiology we sought to understand 

the link between ITGA5 and eNOS in specific. As it seems, activation of eNOS can also be 

accomplished in a Ca2+-independent manner, via PI3K/Akt -dependent phosphorylation 

(at serine 1177), which has a clear beneficial role in the number and function of EPCs (B. 

Cui et al., 2011; Dimmeler et al., 1999). Akt levels are reduced in senescent ECs, causing 

reduced eNOS phosphorylation by Akt. Therefore, as the activity of eNOS is suppressed 

in senescent ECs (Gerhard et al., 1996), the basal release of NO is reduced during ageing 

and the presence of further CVD risk factors. Importantly, Akt -mediated activation of 

the eNOS in ECs depends on the integrin pathway (Dimmeler, Assmus, Hermann, 

Haendeler, & Zeiher, 1998; Dimmeler et al., 1999). Consistent with this finding, shear 

stress–induced vessel relaxation is antagonised by RGD peptides, which block α5β1 

integrins (J. M. Muller et al., 1997). Therefore, a miR-92a antagonising strategy aiming 

to enhance ITGA5 expression could presumably enhance NO bioavailability in EPCs. 

Indeed, in ECs, ITGA5 was found to interact with integrin- linked kinase (ILK) at the focal 
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adhesion which activates protein kinase B/Akt and triggers eNOS activation (Dimmeler 

et al., 1998; Goligorsky, Li, Brodsky, & Chen, 2002). As NO is necessary for vascular 

remodelling, an Akt-mediated increase in eNOS activity might represent a major 

determinant of vessel regeneration via EPCs. This EPC-derived NO production has been 

shown to exert antioxidant action and prevent further endothelial injury (L. Gao et al., 

2014). Therefore, miR-92a inhibition might promote EPC function also by improving 

eNOS activation and NO production. 

 
The indirect upregulation of eNOS seen after priming CD34+-derived late-outgrowth 

EPCs with miR-92a inhibitor, possibly, accounts for some of the reported functional 

effects. EPC proliferation in vitro has previously been shown to be enhanced by eNOS 

gene transfer (B. Cui et al., 2011). Moreover, the activation of eNOS by Akt might explain 

the relevant Akt pro-proliferative effects (Dimmeler, Haendeler, Nehls, & Zeiher, 1997). 

Akt also seems to play a positive role in VEGF-induced EC migration (Dimmeler, 

Dernbach, & Zeiher, 2000). Concordantly, eNOS is required for the basal and -VEGF-

induced migration of EPCs in vitro (Sasaki et al., 2006). In contrast, the reported 

enhanced EPC adhesion following miR-92a inhibitor treatment does not seem to be 

linked to indirectly augmented eNOS expression/activation, since adhesion experiments 

using NO donators by Kaiser et al. found no impact on adhesion of ECs (Kaiser et al., 

2012).   

 

EPC transplantation 
 

In an attempt to test the main thesis theory that miR-92a inhibitor would be a suitable 

priming strategy to enhance CD34+-derived late-outgrowth engraftment in injured 

vessels, I resourced to a rat carotid balloon angioplasty model for proof-of-principle. 

 

It would have been possible to use autologous CD34+-derived EPCs from rat BM (instead 

of human EPCs), and, thus, avoid allo-immunogenicity associated with human EPC 

transplantation (N. Yang et al., 2011). According to Yang and colleagues, cultured MNCs 

from rat BM can be differentiated into early EPC-like cells in FBS, VEGF and FGF-

supplemented M199 medium, or late EPC-like cells in EGM-2MV medium. Nevertheless, 

I have opted not to use this strategy, though, for several reasons. First, it meant 
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sacrificing many animals to harvest their bones. Given that only a few µL of BMB are 

retrieved from each bone, several samples would have to be pooled together to have 

enough volume to perform a MNC isolation by gradient density. Secondly, EPCs 

separated from MNCs exclusively by adherent culture comprise many subpopulations, 

therefore obtaining a uniform cell population that expressed CD34 homogeneously by 

MACS would be further challenging in these conditions. Thus, for the EPC 

transplantation experiments in rats, I proceeded with the well-characterized human 

CD34+-derived late -outgrowth EPCs that I had generated from UCB, a blood source said 

to have less HLA immunogenicity (Riordan et al., 2007), and because the engraftment 

output was to be read in 24h from surgery. Moreover, most reports have found little 

evidence of fusion between EPCs and cells of other lineages (Koyanagi, Brandes, 

Haendeler, Zeiher, & Dimmeler, 2005). As an example, the proportion of ECs displaying 

evidence of human–mouse cell fusion is reported to be less than 3% in previous 

mismatch transplantation studies (S. Lee & Yoon, 2013). In fact, most recent studies 

have suggested that although fusion and transdifferentiation of EPCs are possible, such 

phenomenon is not at all prevalent (S. Lee & Yoon, 2013). 

 

Also on the technical side, EPCs were often administered systemically in early 

investigations. However, more recently, experiments have tended to employ cell 

transplantation instead (i.e. injection directly into the injured artery), to overcome the 

low retention rates seen when systemically administering cells (S. Lee & Yoon, 2013). 

Hence, my choice for temporarily isolating the target arterial segment with combined 

techniques to clamp the proximal end and to ligate the distal artery against inserted 

balloon catheter before deploying the cells. Our results indicate that the transplantation 

technique appeared efficacious as proven by the fact that the DIi-labeled EPCs could be 

successfully deposited in the injured artery and seen by fluorescent microscopy 24h 

after cell administration. 

 

Although the transplantation results are only preliminary since statistical significance 

could not be reached due to limited PhD time to perform more n numbers, in the present 

experiment, the engraftment of locally delivered miR-92a inhibitor -treated EPCs 

appeared promisingly greater compared to controls. Given the previous in vitro 
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demonstration of the role of upregulated ITGA5 (following miR-92a inhibitor treatment) 

in EPC-FN adhesion assay, we are lead to believe that the in vivo trend follows the same 

integrin-ECM bonding principles. 

 

However, due to EPC scarcity in the circulation (or lack of identification parameters), 

there is a requirement for ex vivo expansion and miR-92a inhibitor treatment before 

primed CD34+-derived late-outgrowth cells could provide a useful cell therapy in vivo.  

Thus, following the indication that miR-92a inhibitor might enhance EPC adhesion to 

injured arteries, I conducted a series of preliminary experiments (Appendix IV) which 

sought to describe the initial steps towards establishing a target tissue pre-activation 

strategy by transfecting miR-92a inhibitor into injured arteries. This could maximise 

endogenous EPC capture via ITGA5 upregulation, contributing to the prevention of post-

angioplasty restenosis, instead of having to transplant pre-activated ex vivo -expanded 

EPCs. With target tissue modulation secured, I envisioned a NP-based strategy that could 

be used to transfect miR-92a inhibitor into arteries intraluminally via a stent. 
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Discussion 

Chapter 5: General Discussion 
 

 

 

New signalling molecules and cell types controlling the progress of restenosis are 

continuously being discovered. In particular, microRNAs and vascular progenitor cells 

have recently been shown to play a vital role in this pathophysiological process. In fact, 

the contribution of circulating EPCs homing to injured vessels is considered essential to 

promote re-endothelialisation and prevent neointima formation following PCI (Curcio et 

al., 2011). Moreover, it is possible that vascular wall EPCs may also contribute (Psaltis & 

Simari, 2015). However, EPC numbers and function among CVD patients are often 

intrinsically impaired leading to low engraftment rates at the target site, which could 

limit re-endothelialisation (Templin, Luscher, & Landmesser, 2011). Therefore, priming 

therapies designed to increase the ability of EPCs to engraft at the site of vascular injury 

are attractive and have the potential to improve the post-PCI clinical outcomes, similarly 

to the angiogenesis outcomes seen with primed EPCs (Table 17). 
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Table 17 | Priming strategies to enhance EPCs function. 
Adapted from (Haider et al., 2017). AAV: Adeno-associated virus; ECM: Extracellular matrix; EPC: 
Endothelial progenitor cell; HUVEC: Human umbilical vein endothelial cell; I/M: Intramyocardial; LAD: Left 
anterior descending; MI: Myocardial infarction; SDF-1: Stromal cell-derived factor-1α 

Study Cell type Preconditioning 
strategy 

Animal 
model 

Results of the study 

(Yao et 
al., 2013) 

Human 
umbilical 

cord 
blood-
derived 

EPCs 

Genetic modification 
using Ad-vector 

encoding 
for human tissue 

kallikrein 
gene 

Nude 
mouse 

model of 
MI 

by LAD 
ligation 

Decreased cardiomyocyte apoptosis 
with increased retention of genetically 
modified cells, increased capillary and 
arteriolar density and incorporation of 

the delivered cells into the blood 
vessels. There was significantly 

improved left ventricular fraction and 
fractional shortening 

(Schuh et 
al., 2012) 

EPCs 
isolated 
from rat 
spleen 

 
Genetic modification 

using lentiviral 
transduction of EPCs 

with 
SDF-1α transgene 

Rat heart 
model of 

acute 
MI by LAD 

ligation 

Significantly increased CD31+ vascular 
structures, significantly improved 

cardiac function after I/M injection of 
genetically modified cells as compared 

with intracoronary delivery 

(Zemani 
et al., 
2008) 

Human 
umbilical 

cord 
blood-
derived 

EPCs and 
HUVEC 

SDF-1α treatment of 
EPCs 

in vitro 

Mouse 
model of 
hind limb 
ischemia 

 

Intravenous administration enhanced 
limb angiography score by 60% as 

compared with the control and 25–60% 
increased blood flow 

(Sen et 
al., 2010) 

Peripheral 
blood-
derived 

EPCs 

Overexpression of 
IGF-1 

using AAV vector 

Rat heart 
model of 

MI by 
LAD 

ligation 

Reduced myocardial apoptosis, 
increased cardiomyocyte proliferation, 

enhanced capillary density in the 
peri-infarct region and improved 

cardiac function as compared with 
control group 

(Frederick 
et al., 
2010) 

EPCs 
cultured 
on ECM 
scaffold 

Growth factor (SDF-1 
α) 

treatment of scaffold 
seeded cells 

Rat heart 
model of 

MI by 
LAD 

ligation 

Enhanced VEGF expression in the 
border zone; enhanced blood vessel 

density, improved microvascular 
perfusion, attenuated remodeling, 

reduced scar formation and preserved 
cardiac function 

 

Priming EPCs may improve their survival, proliferation, mobilization, paracrine behavior 

and differentiation for enhanced repair and angiogenic potential. Various priming 

strategies have been reported and include, genetic modification, pretreatment with 

recombinant growth factor proteins, treatment with established pharmacological 

agents (Haider et al., 2017). Several vascular miRNAs have been identified in restenosis 

pathophysiology, therefore its therapeutic modulation seems feasible (Table 18). 
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Table 18 | Summary of recently identified miRNAs involved in (re)stenosis progression in animal 
models of disease and tested as targets in pre-clinical therapeutic strategies. 
Adapted from (Forte et al., 2014). LRRFIP1 - leucine-rich repeat (in Flightless 1)-interacting protein-1; 
MKK4 - MAPK kinase 4; Myl9 - myosin, light chain 9; ND - not determined. 

miRNAs Animal model Up- (↑) or 
down- (↓) 

regulation of 
miRNA in 

injured vessels 

Molecular 
targets 

Pre-clinical therapeutic 
strategy 

miR-
146a 

Carotid artery balloon 
injury in Sprague–

Dawley rats 
↑ KLF4 

Vessel transfection with 
antisense miR-146a 
oligonucleotides in 

pluronic gel (S. G. Sun et al., 
2011) 

miR-133 
Carotid artery balloon 

injury in Wistar rats 

↓ (early phase 
after injury); 

↑ (late phase 
after injury) 

Sp-1 and 
moesin 

Vessel transfection with 
miR-expressing 

adenovirus (Torella et al., 
2011) 

miR-
424/322 

Carotid artery balloon 
injury in rat 

↑ 
Cyclin D1 and 

calumenin 

Vessel transfection with 
miRNA-expressing 

adenovirus (Merlet et al., 
2013) 

miR-663 
Carotid artery ligation 

injury in C57BL/6N 
mice 

↓ JunB and Myl9 
Vessel transfection with 

miR-expressing 
adenovirus (P. Li et al., 2013) 

miR-132 
Carotid artery 

catheter injury in 
Sprague–Dawley rats 

↓ (early phase 
after injury) 

↑ (late phase 
after injury) 

LRRFIP1 

Lipofectamine+pluronic 
gel-mediated delivery of 

miR-132 mimic (Choe et al., 
2013) 

miR-195 
Carotid artery balloon 

injury in rat 
↓ 

Cdc42 and 
cyclin D1 

Vessel transfection with 
miR-expressing 

adenovirus (Y. S. Wang et al., 
2012) 

miR-
221/222 

Carotid artery balloon 
injury in rat 

↑ 
p27Kip1, 

p57Kip2and c-kit 

Vessel transfection with 
antisense 

oligonucleotides in 
pluronic gel (X. Liu, Cheng, 
Yang, Xu, & Zhang, 2012) 

miR-92a 

Carotid artery balloon 
injury 

in the rat; stent 
deployment 

in rat carotid artery 

↑ KLF4, MKK4 

Systemic infusion by tail 
vein of antagomiR-92a 
at 0, 1 and 2 days after 

injury (Iaconetti et al., 2012) 

 

miR-92a is linked to anti-angiogenic effects, via ITGA5 downregulation (Bonauer et al., 

2009). α5β1 is involved in several essential EC functions, such as survival, migration, 

proliferation and vascular remodelling (Ramjaun & Hodivala-Dilke, 2009). It is likely that 
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the same pathways are triggered upon α5β1 integrin activation in CD34+-derived late-

outgrowth EPCs treated with miR-92a inhibitor, which overexpress ITGA5.  Given that 

α5β1 is the primary integrin involved in the initial EPC arrest (Angelos et al., 2010), and 

miR-92a levels are usually high in EPCs from CAD patients (Q. Zhang et al., 2011), we 

thought that inhibiting miR-92a in EPCs would facilitate engraftment at the injured 

arterial segments by increasing its ITGA5-mediated adhesiveness to FN. EPC grafting 

would theoretically accelerate re-endothelialisation by paracrine and structural 

contribution, hence, reducing neointima formation (Walter et al., 2002).  

 

Therefore, the overarching aim of this thesis was to characterise the effect of miR-92a 

inhibition in CD34+-derived late-outgrowth EPCs, which had never been reported to the 

best of our knowledge. 

To accomplish the objectives of this research, the following milestones were reached: 

1. Differentiation and characterization of CD34+-derived late-outgrowth EPCs 

from human and porcine sources;  

2. Characterization of gene expression and demonstration of the functional 

priming following miR-92a inhibitor treatment on CD34+-derived late-

outgrowth EPCs in vitro and in vivo, correlating it to the target ITGA5 

expression; 

 

Soon after in vitro proof of concept of the EPC increased adhesiveness to FN and 

subsequent enhanced thriving following miR-92a inhibition, we tested the 

transplantation of primed human EPCs into a rat carotid injured artery for a short 

duration trial. The preliminary results evidenced a possible increase in engraftment 

capacity of the injected EPCs. Meanwhile, Iaconetti’s group, and then Daniel’s, 

attempted a systemic delivery of an inhibitor to attenuate miR-92a activity in the injured 

arteries and were the first to confirm that miR-92a inhibitor stimulated re-

endothelialisation and decreased SMC hyperplasia, at least in part, through direct pro-

proliferative effects on ECs (Daniel et al., 2014; Iaconetti et al., 2012).  

 

Thus, it seems that the in vitro results from this thesis are clinically translatable and add 

important evidence to the expanding research field of therapeutic modulation of miR-
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92a activity to rescue the damaged endothelium after coronary interventions via an 

unexplored player - EPCs.  The possible role of miR-92a inhibition in post-injury 

restenosis prevention, taking into account the overall effect in (5.1) engrafting 

circulating EPCs and (5.2) other interacting partners is discussed next. 

 

5.1 The role of miR-92a inhibitor in EPC-mediated 
regeneration of injured arteries - Direct effects in 
EPCs 

 

 

EPC mobilisation and homing to the vascular injury site is a multi-step process involving 

detachment from the BM niches, entry into circulation, rolling along vessel endothelium, 

adhesion to denuded ECM and transmigration where they participate in re-

endothelialisation (B. Cui et al., 2011; Werner et al., 2003; X. Zhao et al., 2007). However, 

a critical limitation for the therapeutic application of EPCs is their low number in the 

circulation, which is even lower in patients with CVD RFs (Fadini et al., 2006; Padfield et 

al., 2010; Vasa, Fichtlscherer, Aicher, et al., 2001). Moreover, EPCs isolated from patients 

with diabetes or hypertension exhibit a reduced activity in promoting re-

endothelialisation of denuded arteries when transplanted into nude mice (Giannotti et 

al., 2010; Landmesser et al., 2004; Sorrentino et al., 2007), highlighting a significant 

limitation of current cell therapies in these patients. The functional deficits that cause 

these reduced in vivo activities are likely associated with diminished NO availability and 

an accelerated senescence (Giannotti et al., 2010; Sorrentino et al., 2007). 

Consequently, the impaired functionality of BM-derived EPCs in specific assays, such as 

migration or colony formation capacity in vitro, has been linked with disappointing 

outcomes in cell therapy trials (Assmus et al., 2007). Remarkably, one of the major 

challenges for the therapeutic application of EPCs has been the poor engraftment and 

cell survival rates. Numerous factors contribute to the meagre cell retention, which 

include exposure of the cells to inflammation, relative hypoxia, nutrient deprivation, and 

mechanical washout of cells from the coronary vasculature (B. Cui et al., 2011). Overall, 

most cells enter apoptosis within the first few days after interacting with the injury 

site.  Therefore, an EPC priming and stabilisation strategy likely to promote longer cell 
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retention and engraftment can potentially be accomplished by manipulation of the 

integrin presentation on EPCs. Since FN, an ECM protein that may influence cellular 

migration and differentiation, accumulates rapidly at the site of balloon injury, an 

overexpression of integrins is expected to facilitate EPC incorporation (Bauters et al., 

1995). EPCs’ integrin expression profile has been previously described and includes the 

following subunits: α1, α2, α3, α4, α5, α6, α9, αv, β1, β2, β3, β5 αnd β7 (Caiado & Dias, 

2012). They have been implicated in EPC mobilisation, homing, transendothelial 

migration, invasion, and differentiation (Caiado & Dias, 2012). Integrin α5β1 is the 

primary integrin involved in the initial cell arrest (Angelos et al., 2010) and its subunit 

ITGA5 is a direct target of miR-92a (Bonauer et al., 2009). In fact, α5β1 is involved in 

several other essential EC functions, such as survival, migration, proliferation and 

vascular remodelling (Ramjaun & Hodivala-Dilke, 2009). In EPCs, we were able to 

demonstrate pro-angiogenic,-migratory,-proliferative, and -adhesive effects of miR-92a 

inhibitor treatment on CD34+-derived EPCs, which were partially abrogated by ITGA5 

knockdown. Given that ECs and EPCs share similar processing machinery, it is likely that 

our reported functional effects following miR-92a inhibitor treatment in EPCs (and 

subsequent ITGA5 upregulation) were at least partially explained by the triggering of 

same EC pathways upon α5β1 integrin activation.  

Briefly, ligand binding activates FAK through direct interaction at the cytoplasmic tail of 

the β1-integrin subunit (Schaller et al., 1995), which activates several downstream 

pathways downstream which are implicated in survival, proliferation and cytoskeleton 

changes. In fact, ITGA5 seems to even be involved in EPC differentiation to EC through 

FN-integrin α5β1 interaction (Caiado & Dias, 2012; Wijelath et al., 2004). The formation 

of VEGF/FN complexes via direct interactions with FN heparin-II domain leads firstly to 

the physical interaction between VEGFR-2 and integrin α5β1 (Caiado & Dias, 2012) and 

consequently to the activation of downstream pathways that may potentiate EPC 

endothelial differentiation. Moreover, in ECs, ITGA5 was found to interact with integrin- 

linked kinase (ILK) at the focal adhesion which activates protein kinase B/Akt and triggers 

eNOS activation (Dimmeler et al., 1998; Goligorsky et al., 2002). Ultimately, miR-92a 

inhibitor increases protein levels of serum response factor (SRF), a downstream 

mediator of VEGF signalling through the MEK–ERK pathway in ECs (Iaconetti et al., 
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2012), which is a requirement for VEGF-induced in vitro angiogenesis and endothelial 

cells migration, proliferation, actin cytoskeleton rearrangements (Iaconetti et al., 2012) 

 

Besides ITGA5 main role in EPC function which was our main focus of interest, several 

other vasculoprotective genes can be repressed by miR-92a in ECs (and in EPCs we 

extrapolate) and could potentially explain the observed results (Figure 58). 

 

Figure 58 | miR-92a target genes in EPCs implicated in the post-injury restenosis response. 
Inhibition of restenosis by miR-92a antagonism involves the de-repression of the pro-angiogenic and anti-
inflammatory factors SIRT1, ITGA5 and KLF2/4 in both EPCs and ECs which promotes their proliferation, 
migration and differentiation. Akt - Protein kinase B ; EC – endothelial cell; EPC – endothelial precursor 
cell; eNOS – endothelial nitric oxide synthase; ERK 1/2 - Extracellular signal–regulated kinase; ILK - 
Integrin-linked kinase; ITGA5 – integrin α5; ITGAV – integrin αv; JAK/STAT –Janus Kinase/Signal Transducer 
and Activator of Transcription; KLF2/4 - Krüppel-like factor 2/4; miR – microRNA; MKK4 - MAPK kinase 4; 
nF-kB – factor nuclear kappa B; (p) – phospho; SIRT1 – sirtuin 1; SOCS5 - Suppressor Of Cytokine Signaling 
5; SRF – stromal release factor; VSMC – vascular smooth muscle cell. 

 
 

SIRT1, which prevents eNOS acetylation and inactivation (O'Donnell et al., 2005), is one 

such example.  Overexpression of SIRT1 has been shown to reduce atherosclerotic lesion 

formation and to protect against neointima formation following vascular injury in mice 

(L. Li et al., 2011; C. Zhang, 2008). SIRT1 is part of the family of sirtuins (SIRT1 to 7), a 

highly conserved protein family of histone deacetylases (HDACS) that promote longevity 

and exert protective effects against age-related diseases such as cancer, CVDs and 

diabetes, through the modulation of epigenetic information by direct deacetylation of 

specific histone acetylation marks (D'Onofrio et al., 2015). Sirtuins play an essential role 
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in regulating cellular differentiation and senescence in response to nutrient availability 

(Potente et al., 2007). Among all sirtuins, SIRT1 is the most critical modulator of the 

vascular function.  At vascular level, SIRT1 is the only family member shown to regulate 

vasodilation uniquely and the regenerative functions of ECs, EPCs and SMCs through the 

modulation of eNOS, forkhead box O1 (FOXO1), p53, and angiotensin II type 1 receptor 

(AT1R)(D'Onofrio et al., 2015). Overexpression of FoxO1 inhibits EC migration and tube 

formation and represses eNOS expression (Potente et al., 2005). SIRT1 deacetylation of 

FOXO1 inhibits its antiangiogenic activity in human vascular ECs (Potente et al., 2007), 

while targeting eNOS for deacetylation leads to NO production and corresponding 

enhanced endothelial-dependent vasodilation(Mattagajasingh et al., 2007), survival, 

migration and neovascularization (Aicher, Heeschen, et al., 2003). Therefore, it comes 

as no surprise that blocking the function of SIRT1 abolishes endothelial EC sprout 

formation and migration in vitro (Yuan et al., 2014). In vivo, disruption of SIRT1 gene 

expression in zebrafish and mice also results in dysregulated vascular growth. Numerous 

studies describe the protective role of SIRT1 in endothelial senescence, and conversely, 

SIRT1 levels progressively decline during the development of endothelial senescence 

(D'Onofrio et al., 2015). SIRT1 inhibits senescence by the deacetylation of FoxO proteins, 

which are meant to upregulate antioxidant and cytoprotective enzymes, such as 

catalase and MnSOD (Yamakuchi, 2012). Pharmacological or siRNA inhibition of SIRT1 

induces premature senescence in ECs (Ota et al., 2007). Conversely, overexpression of 

SIRT1 prevents hydrogen peroxide-induced endothelial senescence suggesting that 

SIRT1 might prevent stress-induced endothelial dysfunction, a transversal component in 

several CVDs (Ota et al., 2007). In EPCs the expression and activity of SIRT1 also correlate 

inversely with senescence (Lemarie et al., 2011). Particularly, exposure to high glucose 

has been shown to reduce SIRT1 expression levels in EPCs, consequently blocking 

deacetylation of FOXO1 by SIRT1 and reducing eNOS phosphorylation levels(Balestrieri 

et al., 2008). Consistent with these findings, levels of SIRT1 protein were found to be 

decreased in EPC from individuals with diabetes and, especially, in patients with poor 

glycemic control (Balestrieri et al., 2013). In vitro and ex vivo studies revealed reduced 

EPC activity in the presence of hyperglycaemia which is associated with lower SIRT1 

protein levels (Balestrieri et al., 2013). In fact, EPC number, differentiation ability and 

SIRT1 protein levels can be enhanced in patients with ST-elevation myocardial infarction 
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undergoing PCI provided there is an intensive peri-procedural glycaemic control 

(Marfella et al., 2013). Based on these considerations, it is predictable that 

overexpression of SIRT1 (for instance via miR-92a inhibition) would not only beneficially 

affect established RFs, but would also prevent endothelial dysfunction. Because SIRT1 

targets several proteins in distinct pathways for deacetylation, overexpression of SIRT1 

could alter the biological activity of entire signalling networks and thereby enhance EPC-

mediated regeneration of injured vessels.  

 

ITGAV is also an in silico predicted target of miR-92a (Bonauer et al., 2009). Integrins 

𝛼V𝛽3- and 𝛼V𝛽5 also play a role in EPC engraftment to sites of vascular repair. 𝛼V 

integrins are known to bind different ligands, including vitronectin, FN, osteopontin, 

fibrinogen and vWF, by binding the RGD motif (Hynes, 2002). Remarkably, EPC adhesion 

seems to also be mediated by 𝛼V𝛽3- and 𝛼V𝛽5-integrins, since their inhibition with 

cyclic RGD peptides blocks EPC-mediated re-endothelialisation of denuded arteries 

(Kokubo et al., 2007).  

 

miR-92a also suppresses KLF2 and KLF4 expression by binding to their 3’ UTR (H. Liu et 

al., 2016). Endothelial flow-induced transcription factors KLF4 and KLF2 confer a vascular 

anti-oxidant, vasodilatory and antithrombotic phenotype, being implicated in protection 

against atherogenesis (Neth, Nazari-Jahantigh, Schober, & Weber, 2013). Shear stress 

with a laminar flow upregulates KLFs in ECs (Nayak, Lin, & Jain, 2011) which in turn 

modulates the expression of over 70% of the genes that are responsive to shear 

stress(Fledderus et al., 2008). In swine aortic arch endothelium, a site of 

atherosusceptibility, both KLFs are expressed at low levels relative to protected thoracic 

aorta (Y. Fang & Davies, 2012). Overexpression of KLF4 in ECs activates expression of 

anti-inflammatory eNOS and antithrombotic thrombomodulin (Hamik et al., 2007), 

while KLF2 induces eNOS expression (Boon & Horrevoets, 2009; Parmar et al., 2006). 

Additionally, endothelial expression of KLF2 reduces cocultured SMC migration capacity 

via paracrine modulation (Mack et al., 2009). Fang and colleagues demonstrated that 

the upregulation of miR-92a expression is inversely correlated with KLF2 and KLF4 

expression in atherosusceptible endothelium (Y. Fang & Davies, 2012), and then 

functionally validated two evolutionarily conserved miR-92a sites in KLF4 3'UTR and 1 



 

Discussion - 246 
 

site in KLF2 3'UTR. Atherodisruptive flow patterns are thought to increase the level of 

miR-92a, which in turn decreases KFLs. Overexpression of miR-92a inhibited the 

expression of eNOS and administration of miR-92a into mice decreased the arterial 

expression of KLF2 and eNOS (Wu et al., 2011). Concordantly, mouse carotid arteries 

receiving pre-miR-92a exhibited impaired vasodilatory response to flow (Wu et al., 

2011). Knockdown of miR-92a by using an antagomir partially suppressed TNF-induced 

endothelial proinflammatory marker expression (monocyte chemotactic protein 1, 

vascular cell adhesion molecule-1, E-selectin) and upregulated eNOS through KLF4 and 

KLF2, therefore inhibiting TNF-induced leukocyte adhesion to ECs in vitro. Altogether the 

reported studies seem to suggest that miR-92a regulates KLF4 and KLF2 expression in 

arterial endothelium and contributes to phenotype heterogeneity associated with 

regional atherosusceptibility and protection in vivo. Moreover, in addition to the 

regulation of NO and its consequent vasodilation, the mechanism involving miR-92a 

targeting KLF2 may also regulate other KLF2-regulated genes such as vWF, FLK1, and Tie-

2, which are essential for EC vascular functions (Wu et al., 2011). Moreover, KLF2 and 

KLF4 can also enhance eNOS activity, which inhibits VSMC proliferation through 

enhanced NO production (Boon & Horrevoets, 2009; Y. Fang & Davies, 2012; Hamik et 

al., 2007; Iaconetti et al., 2012; Parmar et al., 2006). In summary, several of the miR-92a 

direct targets like ITGA5 (Bonauer et al., 2009), SIRT1 (Ota et al., 2010; Rudic et al., 1998), 

KLF2 (Boon et al., 2011) and KFL4 (Hamik et al., 2007), seem to seem to downregulate 

eNOS. miR-92a inhibition also results in a reduction of activated NFκB through increased 

KLF4 expression, which probably accounts for the anti- inflammatory phenotype 

observed after miR-92a blockade (Loyer et al., 2014). These studies provide insight into 

proatherogenic functions of miR-92a under disturbed flow through suppression of 

KLF2/KLF4 and its key targets eNOS and thrombomodulin. 

 

SOCS5 expression is upregulated in the aortic arch and descending aorta of 

normocholesterolemic mice but markedly decreased in the aortic arch of 

hypercholesterolemic mice, where expression of miR-92a is reported to be highest 

(Loyer et al., 2014). SOCS5, whose expression is induced by shear stress and which 

confers anti-inflammatory properties to ECs via activation of JAK-STAT pathway (Zhuang 

et al., 2012), was recently been validated as a miR-92a target (Loyer et al., 2014). 
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Inhibition of SOCS5 by siRNA was shown to increase IL-6 and monocyte chemoattractant 

protein-1 (MCP1) release without disturbing KLF2, KLF4, and eNOS levels, suggesting 

that SOCS5 directly protects against endothelial activation and overall post-injury 

inflammation (Loyer et al., 2014). 

 

 

5.2 The role of miR-92a inhibitor in EPC-mediated 
regeneration of injured arteries: Indirect effects in 
EPC interacting players 
 

In addition to their role as a structural tissue component, EPCs express many factors that 

contribute to tissue regeneration, including the eNOS and proangiogenic or anti-

apoptotic GFs, including VEGF, hepatocyte growth factor (HGF), insulin-like growth 

factor 1 (IGF-1)(Urbich, Aicher, et al., 2005). GF release stimulates the recruitment of 

new EPCs to the injured and influences the proliferation, migration and survival of both 

EPCs and pre-existing mature ECs. ECs exposed to the increased NO produced by the 

EPCs activated by miR-92a inhibitor enhance the coverage of the injured area, while the 

rate of vascular VSMC proliferation and the level of platelet adhesion are significantly 

reduced. Thus, EPCs contribute to a surface that more closely mirrors a normal vascular 

endothelial phenotype via the interaction with different cellular players. In fact, EPCs, 

ECs and the supporting ECM exist in a state of “dynamic reciprocity” to serve and 

regulate each other. ECM not only provides a substrate for cell attachment and 

spreading, contact guidance for cell migration, and a scaffold for building tissues but also 

serves as a reservoir for growth factors (Davis & Senger, 2005). Zhao and colleagues 

found that FN provided superior adhesion for late -outgrowth EPCs compared to mature 

ECs, and Vartanian et al. revealed that EPCs deposited collagen IV, FN, and laminin to a 

greater extent than ECs (Vartanian et al., 2009). Therefore, primed late -outgrowth EPCs 

could amplify these benefits and enhance endogenous repair.  Moreover, the exocytosis 

of miR-92a inhibitor from EPCs, can have a direct effect in other cellular players (Figure 

59).  
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Figure 59 | miR-92a target genes in VSMCs and PACs implicated in the post-injury restenosis response. 
Inhibition of restenosis by miR-92a antagonism results from the de-repression of the pro-apoptotic/pro-
inflammatory MKK4 and anti-proliferative BMPR2 in VSMCs, and of the anti-inflammatory SOCS5 in PACs. 
BMPR2 - Bone morphogenetic protein receptor type II; EC – endothelial cell; EPC – endothelial precursor 
cell; ITGA5 – integrin α5; JNK – c-Jun N-terminal kinases; miR – microRNA; MKK4 - MAPK kinase 4;(p) – 
phospho; SOCS5 - Suppressor of Cytokine Signaling 5; VSMC – vascular smooth muscle cell. 

 

 

VSMC miR-92a expression is lower in comparison with ECs (Iaconetti et al., 2012), but it 

still plays an essential role in modulating restenosis since it exerts pro-proliferative and 

anti-apoptotic actions in VSMCs (L. Zhang, M. Zhou, Y. Wang, et al., 2014). miR-92a 

expression in VSMC is known to be low in the basal (quiescent) state, but its post-injury 

overexpression is protective against apoptosis induced by H2O2-mediated oxidative 

stress in VSMCs. This is explained mechanistically, since miR-92a targets MKK4 and JNK1, 

reducing their protein level. This reduction leads to attenuation of both p54 and p46 JNK 

activation and a significant decrease in the level of phospho-c-Jun implicated in cellular 

apoptosis. Moreover, JNK can also initiate TNF-α and ischemia-induced apoptosis by 

promoting Smac/Diablo release (Nijboer et al., 2010). JNK activation is also known to 

phosphorylate Bcl2 protein and hence antagonise its anti-apoptotic activity 

(Dhanasekaran & Reddy, 2008). In contrast, overexpression of MKK4 abrogated the 

antiapoptotic effects of miR-92a in VSMC under oxidative stress. In summary, MKK4 and 

JNK1 are down-regulated by miR-92a thus inhibiting VSMC apoptosis induced by 

oxidative stress. It is noteworthy that all members from the mir-17~92 cluster are 

upregulated in restenotic carotid arteries (miR-92a included) and all target (miR-18 

being the only exception) the bone morphogenetic protein receptor type II (BMPR2) 
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inhibiting the proliferation of VSMCs (T. Luo et al., 2014). It was Luo and colleagues who 

first uncovered the crosstalk between the two critical TGF-β superfamily signalling 

pathways, TGF-β1/Smad3 and BMP/BMPR2, through miR-92a. Smad3 is one of core 

transcription factors of the profibrotic cytokine TGF-β, which enhances neointimal 

formation by stimulating ECM synthesis and accumulation (FN mostly)(Ryer et al., 2006; 

Tsai et al., 2009). Simultaneously, upregulation of Smad3 can activate the transcription 

of miR-17~92 cluster by binding to its promoter region. Then, miR-17~92 family 

members, namely miR-92a, down-regulate BMPR2, an inhibitor of VSMC proliferation, 

to further promote VSMC proliferation and neointimal formation in the carotid artery 

restenosis. These observations are in agreement with Smad3 and miR-92a being 

upregulated in carotid restenosis, while BMPR2 is reduced, compared with control 

normal arteries. 

 

In inflammatory cells, the effect of miR-92a antagonism is still largely unknown. It 

appears that in macrophages miR-92a expression is blocked upon by TLR activation. The 

result is the reduction in the release of pro-inflammatory IL-6 and TNF-α, via the 

targeting of the proinflammatory MKK4. On the contrary, macrophages transfected with 

miR-92a inhibitor have been shown to produce higher concentrations of IL-6 and TNF-α 

upon LPS presentation. Moreover, in contrast to EPCs which have the expression of α5 

and β1 upregulated during differentiation and α4 markedly decreased, MNCs have a 

higher proportion of surface α4 integrin but still present α5β1 (Kaiser et al., 2012). 

Therefore, localised miR-92a antagonism via an epigenetic stent can theoretically create 

a relative increase in their adhesive profile, further promoting an inflammatory cascade 

in situ. In summary, the effect of the delivery of miR-92a on peri-injury inflammatory 

cells still warrants further characterization to ascertain for its safety. 
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5.3 Limitations 
 

The present study had some limitations that warrant discussion. The potential clinical 

translation of miR-92a inhibitor for EPC-mediated re-endothelialisation in the context of 

post-PCI injury would preferably warrant the use of EPCs from CVD patients in the pre-

clinical studies. The present research used EPCs obtained from umbilical cord blood 

(UCB) and thus may not fully represent the impaired EPC of elderly patients with 

cardiovascular disease. Nevertheless, given the fact that UCB is more widely accessible 

and possesses a bigger pool of C34+ cells when compared to peripheral blood, this 

strategy has often been used in many cell therapy studies reviewed elsewhere (Chong 

et al., 2016).  

 

Clonally expanded CD34+-derived EPCs were used for the in vitro validation of miR-92a 

inhibitor impact in cellular function. However, a major caveat to clinical translation is 

that it is not known whether cultured cells exist in circulation in vivo as such or whether 

they mainly represent an artificial phenotype generated by tissue culture conditions 

(Fadini et al., 2012). One may wonder if progenitor CD34+ cells might only give rise to 

putative EPCs depending on an exact combination of growth factors to which the cells 

have been exposed in vitro. Future efforts should be focused on the development of a 

straightforward standard protocol and source to specifically define and validate EPCs so 

that investigators can have a benchmark for comparison (Medina et al., 2017). And if it 

is an artificial phenotype is it safe to use in man or have the cells been subject to 

mutational and epigenetic modifications? Although using MNC culture-derived EPCs in 

pre-clinical models seem to be safe for the animals, particularly, for EPC-mediated 

endothelial regeneration, there are still concerns that need to be addressed before 

human therapeutic application of CD34+-derived EPCs.  

 

Another limitation of our study was the use of human EPCs delivered into rat carotid 

artery, which prevented us from conducting long-term engraftment studies due to 

rejection implications. Others have used this strategy for similar short-term (24h) 

studies, and it to be safe and effective (Kyrtatos et al., 2009).  
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Together the group of highly conserved miRNAs miR-92a-1, miR-92a-2, miR 363, miR25 

and miR-92b constitute the miR-92 seed family and share the same seed sequence used 

to design anti-miR oligonucleotides. Therefore, the used anti-miR-92a oligonucleotides 

may potentially have cross-targeted several other mature miRNAs. Based on the above, 

potential co-targeting of distinct miRNA species from the miR-92a seed family should 

have formally excluded in this study. 

 

CD34+- derived EPCs were generated and expanded in gelatin 1%, as others have also 

done (Pedroso et al., 2011). While the majority of EPC functional assays were conducted 

on gelatin (co-culture angiogenesis, proliferation, survival and wound healing assays), 

some of the EPC functional assays were performed on Fibronectin instead (cell-matrix 

adhesion and chemotaxis migration assays), since I wanted to scrutinize the upregulated 

ITGA5-FN interaction, specifically. I was unable to apply the same methodology to every 

functional assay due to pricing issues (Fibronectin ~630.00€ for 5mg vs Collagen powder 

~41.25€ for 100g, both from SIGMA). I opted for collagen whenever a higher area of 

plasticware had to be coated. This constitutes a limitation for the generalization of my 

results, since the interaction of integrin alpha 5 subunit is expected to be different with 

the different ECMs. 

Siavashi and colleagues scrutinized the possible role of three different natural 

extracellular substrates, including collagen, gelatin, and fibronectin, on multiple 

parameters of EPCs such as cell morphology, phenotype, clonogenic, and vasculogenic 

properties (Siavashi, Nassiri, Rahbarghazi, Vafaei, & Sariri, 2016). EPCs from GFP-positive 

mice were pre-expanded on each of these ECM substrates and then systemically 

transplanted into sub-lethally irradiated mice to analyse the potency of these cells for 

marrow reconstitution. Their results revealed considerable promise for fibronectin (FN) 

for EPC expansion, with maintenance of stemness characteristics, whereas gelatin and 

collagen matrices directed the cells toward a mature endothelial phenotype. Indeed, 

late EPCs pre-expanded on collagen and gelatin exhibited superior tube formation 

properties than EPCs pre-expanded on FN. Overall, the low angiogenic activity of the 

cells expanded on the FN substrate, particularly in the early stage, could be related to 

stable blockage of terminal differentiation of EPCs by FN. In support of this statement, 

we found the lowest number of CD31+ mature cells on the FN matrix compared with 
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other matrices indicating little cell differentiation on FN. Transplantation of EPCs pre-

expanded on FN resulted in widespread distribution and appropriate engraftment to 

various tissues with habitation in close association with the microvasculature. In 

addition, FN pre-expanded cells were gradually enriched in the bone marrow after 

transplantation, resulting in marrow repopulation and hematologic recovery, leading to 

improved survival of recipient mice whereas gelatin- and collagen-expanded cells failed 

to reconstitute the bone marrow. 

It is conceivable that if EPCs in different ECM substrates exhibit different proliferation 

and differentiation potential leading to different reconstitution potency after in vivo 

transplantation, then EPC functional assays can be also modulated by the supporting 

matrix. Indeed, integrin–ECM interactions, namely, via β5-integrins, can mediate EPC 

paracrine factor production (Balaji et al., 2013). EPCs plated on different matrices 

express different cytokines levels, such as SDF-1, VEGF, monocyte chemotactic protein 

1 (MCP-1), insulin-like growth factor 1, platelet-derived growth factor and macrophage 

inflammatory protein 1a (Balaji et al., 2013).   
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5.4 Future work 
 

 

Low engraftment rates of EPCs may limit vascular regeneration (Chavakis et al., 2008; 

Haider et al., 2017). To increase the engraftment of cells to the target tissue either the 

cells could be pre-treated (e.g. modified by overexpression of genes or by incubation 

with small molecules) or the target tissue could be pre-activated (e.g. induction of 

cytokines, small molecules and miRNAs). 

 

Having validated some interesting features of miR-92a inhibition in vitro in EPCs that 

could potentially translate into improved engraftment of these cells in the carotid injury 

model, we are left with some challenges for the next level - in vivo. AntagomiR delivery 

to EPCs prior to their transplantation may be quite challenging due to the need to 

harvest them and all protocols using short-term culture will, by their very nature, not 

yield sufficient numbers of EPCs for systemic therapy in the human. To treat a patient of 

80 kg with a high dose cell strategy as described in some animal studies (1 x 107 

cells/25g) would require 32 x 109 cells (adjusted to body weight)(Templin et al., 2011), 

which exceeds the number of cells used in original clinical trials by a factor of ~3000 

(Assmus et al., 2002). Therefore, progenitor cells would need to be to be expanded in 

vitro before reinjection, however, long-term culture may induce cellular senescence and 

introduce deviations in the phenotype of the EPC detrimental to their therapeutic 

efficacy. Moreover, the ideal strategy would not be to increase endogenous mobilisation 

nor provide increase BM-derived EPCs during transplantation, since that could hasten 

inflammation post-PCI or fasten the differentiation into SMC-like cells. Therefore, I 

envision the focus on EPC -mediated re-endothelialisation shifting to strategies aimed 

at maximising the recruitment and adherence of endogenous circulating EPCs to the 

sites of endothelial damage. Bearing all advantages and disadvantages in mind, I think 

that miR inhibitor delivery to the target tissue in the future might be preferred (Table 

19). 
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Table 19 | Overview of the potential advantages and disadvantages of putative EPC-based strategies 
for therapeutic re-endothelialisation and restenosis prevention. 
Adapted from (Williams & Silva, 2015). 

Strategy Advantages Disadvantages 

Systemic infusion 

of primed EPCs 

Simple preparation of cells in solution 

Ease of administration 

Lengthy ex vivo expansion 

Large number of cells required 

Poor survival of administered 

cells 

Low engraftment efficiency 

Off-target localisation of 

administered cells 

Local bolus 

injection of 

primed EPCs 

 

Simple preparation of cells in solution 
Locally delivered near site of injury 

Fewer cells required than that for systemic 
infusion 

Long ex vivo expansion of cells 
Poor survival of administered 

cells 
Low engraftment efficiency 
Low retention of cells within 

target site 

Material-based 

deployment of 

EPCs and priming 

factors 

Targeted local delivery 
Enhanced survival of cells due to dual 

delivery with small molecules 
Greater engraftment efficiency 

Fewer cells required than that for first two 
methods 

Enhanced engraftment efficiency 
Enhanced outward migration and function 

of transplanted cells 

Long ex vivo expansion of cells 
Complex preparation of cells 

within biomaterial system 
Possible immune response to 

chosen biomaterial 

Deployment of 

priming factors in 

target tissue 

 

In situ regeneration 
No ex vivo manipulation of cells 

Enhanced function of endogenous cells 
Enhanced regenerative potential by 

recruitment of endogenous EPCs 

Approach limited by capability 
and functional response 

of endogenous cells 

 

I have developed several efforts in building that strategy (Appendix IV). Future work will 

include the completion of the comparison of the Pluronic peri-adventitial delivery of 

miR-92a inhibitor to promote re-endothelialisation (as detected by vWF or eNOS IHC 

analysis and Evans blue staining) and prevent restenosis post-injury with the systemic 

administration previously validated for these purposes (Daniel et al., 2014; Iaconetti et 

al., 2012). Furthermore, to confirm the relevance of in situ miR-92a inhibitor -mediated 

ITGA5 upregulation in increasing the capture and thriving of circulating endogenous 

EPCs, I envisioned a BM transplantation models in nude rats. Briefly, lethally irradiated 
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nude rats would receive BM cells from transgenic Tie2/lacZ rats, which constitutively 

expressed β-galactosidase encoded by lacZ under the transcriptional regulation of an 

endothelium-specific promoter, Tie 2. Carotid arteries would be denuded 4 weeks after 

BM transplantation with the balloon angioplasty technique and the miR-92a inhibitor 

applied peri-adventitially using the pluronic gel. The same strategy would be used in 

miR-scrambled and miR-92a treated rats. X-gal staining would be performed on whole-

mounted vessels to visualise and quantify BM– derived Tie2/lacZ-positive endothelial 

lineage cells per square millimetre of surface area. The stent coating with NP:miR-92a 

inhibitor would have to be developed and validated within a stent in a flow chamber 

with circulating porcine EPCs (engraftment validation through electronic microscopy) 

before advancing into the pig carotid injury model. Finally, before clinical application of 

this antagomiR therapy can be contemplated, further toxicology studies need to be 

completed. 
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Appendix I – EPC differentiation from 

porcine bone marrow blood CD34+ 

cells 
 

 

Pig vascular biology appears to be relatively similar to that of humans (Zaragoza et al., 

2011). For that reason, pigs are considered a more predictive model for CVDs and 

stenting outcomes than other animal models (Tsang et al., 2016). Several studies have 

been published about biodevices in pigs, including stents, artificial prostheses, grafts, 

shunts and ventricular assist devices.  Additionally, the autologous transplantation of 

EPCs per se for the treatment of ischemic diseases (Dimmeler et al., 2008; Fadini, 

Agostini, & Avogaro, 2010; Lipinski et al., 2007) and restenosis prevention (Werner et 

al., 2003) is also an active area of translational research. However, as the pigs are usually 

immunocompetent (except for specific athymic models), human progenitor cells cannot 

be infused in these animals. Hence techniques for autologous EPC purification and 

expansion are warranted for this animal model. To date, pig cell therapy studies have 

relied on the infusion of pools of unselected MNCs or ex vivo expanded late-outgrowth 

EPCs derived from unselected MNCs (Chade et al., 2009; Doyle et al., 2008; Dubois et 

al., 2010; Tianhang et al., 2013), i.e. from heterogeneous starting populations. The use 

of phenotypically uncharacterized subsets of PACs derived from tissue culture is 

undesirable and is probably due to the fact that there are no commercially available 

magnetic sorting systems incorporating antibodies against porcine CD34. In fact, very 

few of the latter exist, and no human anti-CD34 antibody with known porcine cross-

reactivity has been published to date, which complicated the implementation of an 

effective enrichment strategy. I described an original method, using indirect labelling, 

capable of enriching a primary CD34+ population from pig BMB, and further 

differentiated them into pig CD34+-derived EPCs. This strategy will enable future 

autologous transplantation experiments with miR-92a inhibitor transfected EPCs, and 

also allow the in vitro validation of the possible benefits of deploying a miR-92a inhibitor 

coated stent capable of locally transfecting engrafted EPCs. On a larger scale this 
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enrichment methodology might lead the way for a new generation of porcine 

autologous EPC transplantation trials (using primary or expanded CD34+-derived EPCs). 

 

There is only one other study, to my knowledge, reporting the isolation of these 

progenitors from pig BM (Layton et al., 2007). Layton et al. incubated cells with (mouse) 

anti-porcine CD34 antibodies which were then cross-linked to (goat) anti-mouse IgG 

microbeads, whereas, my strategy involved the incubation of cells with a (goat) anti-

porcine CD34 biotinylated antibody instead, which was then made to bind with anti-

biotin microbeads. Considering the success in isolating BM-derived CD34+ cells, I 

consider BM to be an efficient and accessible source of CD34+ progenitor cells for 

autologous use/differentiation in the pig. 

 

 

Enrichment of CD34+ cells from porcine BM blood 

 

Since in vivo vascular restenosis studies are long (days to weeks), human EPCs cannot be 

used in pigs due to immunocompatibility issues. Fortunately, the pig is large enough to 

allow sufficient BM cells to be harvested from its iliac crest for autologous 

transplantation without having to be sacrificed (unlike collection of BM blood from 

smaller species which must be pooled from several animal femurs). So, to test the 

transplantation of autologous miR-92a inhibitor-treated CD34+-derived EPCs and 

determine the possible benefits of deploying a miR-92a inhibitor coated stent in pigs, I 

had to adapt techniques concerning CD34+ purification and EPC differentiation to this 

animal model. The results of a failed isolation attempt using MACS immunomagnetic 

separation system with the proprietary anti-human CD34 antibody microbeads working 

previously for human UCB are represented in (Figure I.1). There was no specific 

enrichment of porcine CD34+ cells. Alternatively, it is possible that there was no specific 

labelling of porcine CD34 receptor with mouse anti-human CD34-PE conjugated 

antibody. Either way, I was unable to identify CD34+ cells derived from pig BM using the 

MACS direct labelling system. 
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Figure I.1 | Inability to identify CD34+ cells from pig BM blood using MACS direct magnetic cell labelling. 
An attempt to isolate CD34+ cells from pig BM blood using MACS Immunomagnetic separation system and 
the proprietary mouse anti-human CD34 antibody microbeads was made, followed by flow cytometry 
analysis. For each set of samples, the fluorescent intensity of the isotype control was compared with the 
fluorescent intensity of the test sample and the corresponding histograms are presented. The results 
presented were obtained after one single experiment, with each condition measured in duplicate. BM – 
bone marrow; CD – cluster of differentiation; PE – phycoerythrin. 
 

 
 
 

I next attempted an indirect labelling method to enrich the primary CD34+ population 

from pig BM blood (Table I.1). By using an anti-porcine biotinylated CD34 antibody and 

matching anti-biotin microbeads instead, I was able to successfully separate 8.945 ± 1.06 

x106 CD34+ cells from each pig BM unit following the previously used two-step 

immunomagnetic enrichment method. Cell viability after sequentially passing through 

the LS + MS column averaged at 87.5 % ± 2.5. By using one enrichment step only (a single 

microbead incubation period and a single transfer through a LS column) I was able to 

optimize cell viability (97% ± 1.5) with matching yield (9.2±2.42x106 CD34+cells/BM unit). 
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Table I.1 | Quantification of CD34+ cells isolated from pig BM blood using MACS indirect magnetic cell 
labelling. CD34+ cells were isolated from 50 mL of pig BM blood using MACS Immunomagnetic separation 
system with specific modifications. For optimization purposes both single and double enrichment 
strategies were essayed. The total number and viability of freshly isolated CD34+ cells were measured 
using an automatic cell counter. Data from 2 independent (double enrichment) and 3 independent (single) 
isolations is presented as mean values ± SEM. BM – bone marrow; CD – cluster of differentiation; MNC – 
mononuclear cell; SEM - standard error of the mean.  
 

Isolation method MNCs (x108) Recovered 
CD34+ cells 

(x106) 

Recovered cells 
CD34 (% of MNCs) 

Viability of CD34+ 
recovered cells (% 

total cells) 

Two-step sorting 13.6 ± 0.9 8.945 ± 1.06 0.65 ± 0.03 87.5 ± 2.5 

Single-step sorting 3.87 ± 1.04 9.2 ± 2.42 2.55 ± 0.49 97 ± 1.5 

 

 

As for the recovery of CD34+ cells from pig BMB, the described 2.55 % ± 0.49 (from total 

MNCs) is slightly lower that the only previously published 4% incidence for this animal 

(Layton et al., 2007). One might speculate that Layton et al. by using 1-week-old 

Landrace cross pigs (as opposed to the 3-month Yorkshire pigs that were employed in 

this study) might be more enriched in progenitor cells.  

 

Pig CD34+ cells recovered from BMB following single-step enrichment were 97 ± % 1.5 

viable, revealing that the reduction of the protocol was the correct option also regarding 

cell viability (double labelling generated 87.5 % ± 2.5 viable cells only). Layton et al. did 

not publish the viability of pig BM CD34+ cells retrieved by single-step enrichment with 

IgG Mouse microbeads for comparison (Layton et al., 2007). 

 

The retrieved CD34+ fraction from pig BM blood exhibited similar purity (by flow 

cytometry) following either enrichment methods (Figure I.2). The single step labelling 

strategy yielded a highly pure fraction (92.72 % ± 1.17), as did the alternative double 

labelling (90 % ± 2.05). 

 

Figure I.2 | CD34+ cell fractions isolated from pig BM blood using MACS indirect magnetic cell labelling 
are highly pure. To determine the purity of the populations enriched for CD34 by immunomagnetic 
sorting, flow cytometry was used. (A) Representative FSC-SSC dot plots of pig BM CD34+ cells and CD34- 
flow through are presented. For each set of samples, the fluorescent intensity of the isotype control was 
compared with the fluorescent intensity of the test sample and the corresponding histograms are 
presented. (B) Cells exceeding the threshold fluorescence defined by the IgG Control were quantified and 
considered positive for CD34. Results are presented in tabular format as mean antigen positive cells 
percentage ± SEM, after three independent experiments (single enrichment) and two independent 
experiments (two-step enrichment). Each condition was measured in duplicate. BM – bone marrow; BSA 
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– bovine serum albumin; CD – cluster of differentiation; FSC – forward scatter; Flt3 - Fms-like tyrosine 
kinase 3; HSC – hematopoietic stem cell; PBS - phosphate-buffered saline; SCF – stem cell factor; SEM - 
standard error of the mean; SSC – side scatter.  

 

B 
Isolation method Antigen Positive cells (%) 

Two-step enrichment CD34 90 ± 2.05 

Single-step enrichment CD34 92.72 ± 1.17 
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Differentiation of late-outgrowth porcine EPCs from 

CD34+ cells 

 

I subjected the freshly isolated pig BM CD34+ cells to the differentiation protocol 

previously established for human samples, enabling the appearance of late-outgrowth 

EPCs in culture (Figure I.3). By day 20 of the differentiation protocol, CD34+ cells had 

assumed a cobblestone-like morphology and became adherent to the gelatin substrate. 

The phenotype was further characterized by ac-LDL internalization capacity and vascular 

endothelial cadherin (VECAD) expression, both features displayed by pig BM CD34+-

derived EPCs. 

 

 
Figure I.3| Late outgrowth EPCs were successfully differentiated from pig BM blood CD34+ cells. 
CD34+ cells from pig BM blood were differentiated into late outgrowth. (A) The bright-field image on the 
left captures freshly isolated pig BM CD34+ cells (20x). By differentiation day 7 some CD34+ cells become 
adherent and assumed a cobblestone like morphology (see arrowed), as captured in the middle image 
(20x) and in the blow out (40x). After 11 days of differentiation most of the cells at the periphery were 
adherent, as seen in the right picture (20x). (B) After 20 days of cells in culture, internalization of Ac-LDL 
conjugated to Alexafluor-488 was demonstrated at 20x magnification. HUVECs were used as positive 
controls. (C) Further confirmation of endothelial like phenotype after 20 days of cells in culture was 
evident from the VECAD western blot results. (D) After 20 days of culture, the presence of VECAD 
endothelial specific marker was evaluated in pig CD34+-derived EPCs by If at 60x. ac-LDL – acetylated low-
density lipoprotein; CD – cluster of differentiation; DAPI - 4',6-diamidino-2-phenylindole; EPC – 
endothelial precursor cell; PAECs – pig aortic endothelial cells; VECAD – vascular endothelial cadherin. 
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To further illustrate endothelial commitment, I performed a Matrigel based-

angiogenesis functional assay, which revealed that pig CD34+-derived EPCs also had the 

ability to form tubule-like structures (Figure I.4). 

 
Figure I.4| Pig late outgrowth CD34+-derived EPCs showed angiogenic potential. 
The assay was performed using a Matrigel matrix with reduced growth factor content. A set of 
representative brightfield images (10x magnification) taken at 6h post incubation in a time-lapse imaging 
incubator is presented for EPCs, revealing tubule-like formation ability. HUVECs were used as positive 
controls and colonic SMC as negative controls. CD – cluster of differentiation; EPC – endothelial precursor 
cell; HUVEC - Human Umbilical Vein Endothelial Cell; SMC – smooth muscle cell. 
 

 

 

The presence of KDR (a receptor for VEGF) in preliminary flow cytometry studies, further 

highlighted the endothelial commitment by a significant proportion of the CD34+-

derived EPCs (Figure I.5).  

 

Figure I.5 | KDR is present in pig BM CD34+-derived EPCs after their differentiation. 
The presence of KDR antigen on the surface of pig BM late-outgrowth EPCs was sought by flow cytometry. 
(A) Representative FSC-SSC dot plots of EPCs at different time points are presented, as well as 
corresponding KDR conjugated FITC intensity histograms. (B) The graphic presents the percentage of KDR 
positive cells in the adherent fraction at the different time points in culture. (C) Graphical representation 
of fluorescence geometric mean difference to control, a surrogate of antigen mean surface density. All 
results are representative of 1 experiment and are therefore preliminary; all conditions were measured 
in duplicate. BM – bone marrow; EPC – endothelial precursor cell; FITC - Fluorescein isothiocyanate; FSC 
– forward scatter; IgG – Immunoglobulin; KDR – kinase insert domain receptor; SSC – side scatter. 
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VEGF-A, the main KDR ligand, is a well described EC-specific mitogen/chemoattractant 

associated with vascular repair (Ferrara, 2001; Holmes et al., 2007), whereas PDGF-BB 

is a major growth factor released from stimulated platelets which stimulates the 

proliferation, migration and survival of VMSCs at the sites of vascular insults.  

Both serine/threonine kinase Akt and ERK1/2 are downstream kinases which get 

activated by phosphorylation upon VEGF (Fujio & Walsh, 1999) and PDGF-BB (Razmara, 
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Heldin, & Lennartsson, 2013) stimulation of their receptors. ERK 1/2 and Akt are of 

particular relevance because of their strong association with the regulation of 

mitogenesis and activation of eNOS (Gifford et al., 2004).  

ECs are rich in KDR VEGF receptor (Waltenberger, Mayr, Pentz, & Hombach, 1996). 

However, they are believed to lack PDGF receptors (usually present on fibroblasts and 

SMCs) and to be unresponsive to PDGF (Beitz, Kim, Calabresi, & Frackelton, 1991).  

So, to test the activation profile of the pig BM CD34+-derived EPCs, I challenged them 

with VEGF and PDGF (Figure I.6). Reassuringly, the EPCs exhibited Akt and ERK 

phosphorylation upon VEG stimulation, but produced no response to PDGF, which is an 

expected feature of endothelial phenotypes (KDR+PDGFR- cells). Both Akt and ERK 1/2 

are highly expressed in HUVECs (Gifford et al., 2004).  
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Figure I.6 | Pig BM CD34+-derived EPCs exhibited phosphorylation of Akt and ERK1/2 upon VEGF 
stimulation. 
Cells were challenged for 10 mins with either 25 ng/mL VEGF, PDGF or SFM before its proteins were 
separated by SDS-PAGE, and immunoblotted with the antibodies indicated. (A) The single western blot is 
shown. (B) Akt and ERK1/2 phosphorylation were quantified by scanning densitometry. Phosphoprotein 
levels were normalised to levels of the corresponding total protein and presented in relative units. Results 
in this figure are derived from 1 single experiment, and therefore preliminary. PDGF – platelet derived 
growth factor; RU – relative units; SFM – Serum-free media; VEGF – vascular endothelial growth factor 
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Appendix II – Unsucessful EPC 

differentiation from human umbilical 

cord blood CD133+ cells 
 
 
Figure II.1 |Late-outgrowth EPCs could not be successfully differentiated from human UCB CD133+ cells. 
UCB human CD133+ cells could not be differentiated into late-outgrowth EPCs Bright-field images during 
differentiation were captured at 10x. The image represents CD133+ cells still in suspension 3 weeks after 
isolation, at which time the differentiation culture was terminated. 
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Appendix III – Failed CD34+-derived 

late outgrowth EPC transfection 

attempts 
 

Figure III.1 | CD34+-derived EPC transfection of miR-92a (inhibitor) using SIPORT NeoFX was 
unsuccessful. Human late-outgrowth EPCs (~80% confluency) were transfected in 6 well plates with 80 
nM control scrambled miRNA, miR-92a-1-5p or miR-92a-1-5p inhibitor (-FITC) using SiPORT NeoFx, 
according to manufacturer’s instructions. Following 72h knockdown in complete medium cells were lysed, 
proteins were separated by SDS-PAGE, and immunoblotted with the antibodies indicated. Results in this 
figure are preliminary and reflective of one experiment.  SIPORT NeoFX was not suitable for miRNA 
transfection into CD34+-derived EPCs, since no discernible change in ITGA5 levels compared to control 
miR scrambled transfection were seen. ACTB - β-actin; ITGA5 – Integrin α5 subunit; miR – microRNA. 

 

Figure III.2 | CD34+-derived EPC transfection of miR-92a (inhibitor) using Lipofectamine RNAimax was 
unsuccessful. Human late-outgrowth EPCs (~80% confluency) were transfected in 6 well plates with 200 
nM control scrambled miRNA, miR-92a-1-5p or miR-92a-1-5p inhibitor (-FITC) using Lipofectamine 
RNAimax, according to manufacturer’s instructions. Following 72h knockdown in complete medium cells 
were lysed, proteins were separated by SDS-PAGE, and immunoblotted with the antibodies indicated. 
Results in this figure are preliminary and reflective of one experiment.  Lipofectamine RNAimax was not 
suitable for miRNA transfection into CD34+-derived EPCs, since no discernible change in ITGA5 levels 
compared to control miR scrambled transfection were seen. ACTB - β-actin; ITGA5 – Integrin α5 subunit; 
miR – microRNA. 
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Appendix IV: The effect of miR-92a 

inhibitor localised treatment on 

arteries and development of an 

nanoparticle-based delivery for EPC 

capture 
 

Following the indication that miR-92a inhibitor might enhance EPC adhesion to injured 

arteries, this appendix chapter seeks to describe my initial steps towards establishing a 

target tissue pre-activation strategy by transfecting miR-92a inhibitor into injured 

arteries, since that harvesting of EPCs and their in vitro expansion before reinjection is 

labour intensive. Besides, tissue culture conditions could alter the phenotype of these 

cells. This could maximise endogenous EPC capture and thrive, contributing to the 

prevention of post-angioplasty restenosis, instead of having to transplant pre-activated 

ex vivo -expanded EPCs. Therefore, I developed an in vivo method for localized 

transfection of miR-92a inhibitor into the arteries using a thermo-reversible gel. Then, I 

sought the functional outcome of miR-92a antagonism in the injured arteries. miR-92a 

inhibitor presence became evident across all layers of the vascular wall 24h after 

deployment of the pluronic gel, and a reduced neointima formation trend was witnessed 

just 7 days after compared to scrambled control. Unfortunately, there was not enough 

time in the PhD to validate statistically the reduction in neointima formation, nor to 

document the enhancement in re-endothelialisation on account of increased EPC 

engraftment. After the neointima reduction proof-of-principle pilot experiments using 

the gel delivered peri-adventitially, we envisioned an NP-based strategy that could be 

used to transfect miR-92a inhibitor into arteries intraluminally via a stent. The intention 

was to incorporate a coating composed of miR-92a inhibitor complexed to 

biodegradable NPs into a future stent capable of a controlled miRNA release, thus 

priming the captured EPCs (Figure IV.1). The NP -based delivery method could allow for 

a timed release of the miR-92a inhibitor, in a first instance enhancing EPC engraftment 

via ITGA5 upregulation once the rolling cells on the luminal surface were locally 
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transfected, and in a second stage enhancing re-endothelialisation and reducing 

neointima by increasing NO production. 

Figure IV.1 | Scheme of an epigenetic stent eluting NP:miR-92a inhibitor complexes. 
The diagram represents a hypothetical stent scaffold able to elute miR-92a inhibitor. This could be an 
efficient approach to enhance the endothelial regeneration through the promotion of the homing, 
survival and re-endothelialisation activity of captured EPCs (and neighbour niche), via the placement of a 
therapeutic biodegradable stent coated with miR-92a inhibitor complexed to biodegradable poly(lactic-
co-glycolic acid) nanoparticles. miR – microRNA; NP – nanoparticles.  

 

In tissue culture, miR-92a inhibitor was successfully transfected into EPCs when 

conjugated with the NPs, and as soon as the miRNA is released from the electrostatic 

bonds with the NP surface at the endosome, it seems to become available to be 

processed by the miRNA machinery only to produce (at least) pro-survival and pro-

migratory effects. In vivo, NP:miR-92a were seen across the entire vascular wall 

following intraluminal (and peri-adventitial) arterial transfection, with preliminary 

results revealing a likely upregulation of miR-92a target molecules. Although the 

reduction in neointima formation in injured arteries following miR-92a inhibitor 

treatment administered systemically has been previously established (Daniel et al., 

2014), it is the first time that peri-adventitial miR-92a inhibitor delivery was attempted. 

No publication on the functional benefits of miR-92a inhibitor transfection into EPCs 

using NPs as vectors was found in the literature. Moreover, it is the first time that 

pluronic facilitated transfection of NP:miRNAs into vessel walls is reported. Further 

optimization is warranted, hence the data is preliminary yet and hence discussion takes 

place in an appendix format only. 
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miR-92a inhibitor enhances arterial angiogenesis ex 

vivo 

 

Given that endothelial sprouting from aortic rings requires combined endothelial cell 

(EC) proliferation, migration, survival and tube formation (Iaconetti et al., 2012), this 

was considered a complete assay to extrapolate the effect of miR-92a inhibitor ex vivo. 

Therefore, endothelial-lineage cell sprouting from aortic rings embedded in a collagen 

matrix was quantified 7 days after transfection with miR-92a inhibitor (Figure IV.2). 

Compared with the scrambled control, functional inhibition of miR-92a significantly 

increased the outgrowth area of aortic rings (1.43x106 vs. 0.67x106, p<0.001, coverage 

area in pixels2). Ideally outgrowth cells should have been co-stained with CD34, but 

unfortunately, this would not distinguish endothelial precursor cells (EPCs) from 

resident proangiogenic cells (PACs), as there is no specific surface marker for EPCs. Still, 

I was satisfied with the functional output of isolectin B4 (IBL4) staining endothelial 

committed cells (which comprehend EPCs (Mieno et al., 2010; Mieno et al., 2008)) 

following antagomiR-92a, therefore I considered useful to go through with miR-92a 

inhibition in vivo with no further ex vivo characterization. 

Figure IV.2| miR-92a inhibitor enhances mouse aortic angiogenesis. Mouse aortic rings were treated 
with 30 nM of miR scrambled, miR-92a (5p) or miR-92a (5p) inhibitor,  embedded in a collagen matrix and 
cultured in supplemented medium before IF analysis. (A) Representation of a miR-92a inhibitor 
transfected ring after 7 days in culture, captured at 5x. The picture reveals peripheral angiogenic aortic 
sprouts composed of endothelial lineage ILB4+ cells, supported by a stalk of SMA actin positive cells. (B) 
Before fixation treated rings were photographed at 4x magnification, and representative brightfield 
images are shown, where one can observe apparently diminished and enhanced ex vivo aortic ring 
angiogenesis in miR-92a, and miR-92a inhibitor transfected samples, respectively, compared to miR-
scrambled. (C) Quantification of the peripheral IBL4+ angiogenesis network area in square pixels 
(subtracted digitally by the ring area itself) was performed at 2.5x IF. Results of that quantification after 3 
independent experiments (3 replicates each) are plotted as means, with errors bars representing ± SEM. 
**P<0.01 and ***P<0.001 compared with miR scrambled (1-way ANOVA, Bonferroni’s test for multiple 
comparisons). DAPI - 4',6-diamidino-2-phenylindole; IB4 – isolectin B4; IF - immunofluorescent; miR – 
microRNA; Si – short interfering; SEM – standard error of mean; SMA – smooth muscle actin.
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Peri-adventitial gel-delivered miR-92a inhibitor is 

capable of arterial wall transfection in vivo 

 

The in vivo strategy consisted in using the pluronic gel as a transfection vector for 

localised delivery of miR-92a inhibitor around the rat carotid artery to avoid possible 

systemic off-target effects, instead of delivering the microRNA (miR) via rat tail vein 

injection as previously attempted (Bonauer et al., 2009). Data from 

immunohistochemistry (IHC) and immunofluorescence (IF) demonstrated an efficient 

uptake of the FITC-tagged miR across the 3 arterial layers just 24h after periadventitial 

delivery (Figure IV.3). 

 

Figure IV.3 | Pluronic gel periadventitial delivery is efficient at promoting rat carotid artery miR-92a 
inhibitor-FITC transfection. 
An uninjured rat left common carotid artery was surgically exposed so that pluronic gel containing 1 µM 
miR-92a (5p) inhibitor-FITC conjugated could be applied peri-adventitially onto the whole length of the 
vessel.  The animals were sacrificed 24h postoperatively, and the artery samples were processed either 
by IHC or IF (anti-FITC). (A) Representative IHC image at 40x of a rat carotid artery treated in vivo with 
miR-92a inhibitor. (B) Representative IHC image at 40x of a treated artery where primary antibody staining 
was omitted (IHC negative control). (C) Representative IHC image at 40x of a non-treated artery 
(experimental negative control). (D) Representative IF image at 20x of a rat carotid artery treated in vivo 
with miR-92a inhibitor. (E) Representative IF image at 20x of a treated artery where primary antibody 
staining was omitted (IF negative control). (F) Representative IF image at 20x of a non-treated exposed 
artery (experimental negative control). DAPI -  4',6-diamidino-2-phenylindole; FITC - Fluorescein 
isothiocyanate; IHC – immunohistochemistry; miR – microRNA. 
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The immunostaining results were complemented by protein expression (Figure IV.4), 

with a pilot western blot (WB) revealing a possible relative upregulation of ITGA5 

following miR-92a inhibitor treatment after 48h compared to miR scrambled (124% vs. 

100%, n=1). On the opposite direction, preliminary results seemed to indicate that miR-

92a determined an ITGA5 downregulation just after 24h (49 % vs. 100%, n=1). 

Unfortunately, for time restraints related to my PhD leave coming to an end and having 

to return mandatorily to my clinical work as per contract, I was unable to reach the “n” 

numbers necessary to reach statistical significance. 

 

Figure IV.4 | In vivo peri-adventitial pluronic gel delivery miR-92a inhibitor seems to enhance local 
ITGA5 levels. 
The uninjured rat left carotid artery was surgically exposed, so that Pluronic gel containing 1µM mirR 
scrambled, miR-92a (5p) or miR-92a (5p) inhibitor could be applied externally. After a 24-48h post-
operative period, the artery was harvested. Protein extraction involved bead-beating homogenization and 
retrieval of the protein lysate. Following normalisation, proteins were separated by SDS-PAGE, and (A) 
immunoblotted with the antibodies indicated. (B) Levels of ITGA5, were quantified during a time course 
by scanning densitometry and expressed as relative units compared to ACTB. Results in this figure are 
preliminary and reflective of one experiment. ACTB – actin beta; ITGA5 – integrin alpha 5 subunit; miR – 
microRNA; RU – relative units. 
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miR-92a inhibitor localised delivery seems to mitigate 

post-angioplasty neointima formation 

 

One of my original research purposes, when I started my PhD, was to demonstrate that 

miR-92a inhibition could prevent neointima formation following vascular injury (an 

effect that had never been reported), with particular contribution from EPCs, which, 

hypothetically, would show enhanced engraftment and re-endothelialisation activity. 

After inducing a balloon angioplasty injury, I investigated whether periadventitial 

delivery of miR-92a inhibitor caused a reduction of neointima formation. The analysis of 

injured arteries seemed to indicate that miR-92a antagonism could mitigate neointimal 

formation 7 days following the balloon injury compared to miR scrambled controls (0.3 

vs. 0.63, n=1) (Figure IV.5). The post-angioplasty survival was rated at 100%, with the 

rats demonstrating normal behaviour and welfare after returning to their environment 

both in control and in interventional arms. There were no local or systemic 

complications to report. During the entire experimental period, the animals tolerated 

procedures well as assessed by activity level and food and water intake, which were 

normal. Body weights did not differ between three groups at the end of the experiment 

 

I was planning to reach statistical significance to demonstrate proof-of-principle, 

however, Iaconetti and colleagues confirmed one year into my PhD that, indeed, that in 

vivo administration of antagomiR-92a significantly enhances re-endothelialisation of 

injured carotid arteries and reduces neointimal formation after arterial balloon injury or 

stenting (Iaconetti et al., 2012). This was done via systemic administration of miR-92a 

inhibitor, which can potentially have undesirable off-site effects. Therefore, my focus 

changed from proof-of-principle to introducing specific modifications to the localised 

delivery of miR-92a inhibitor that could be translatable into man use and result in a safer 

more efficient delivery of the miRNA. 
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Figure IV.5 | Pluronic gel-delivered miR-92a (5p) inhibitor treatment seems to reduce post-angioplasty 
stenosis. 
Following carotid balloon angioplasty, 300 µl of 1 µM miRNA were applied peri-adventitially using  
pluronic gel. Animals were sacrificed after 7 days, and processed arteries stained with hematoxylin and 
eosin in order to quantify the intima/media ratios. (A) Representative cross-section images of miR-
scrambled treated artery (left picture) and miR-92a inhibitor (middle picture) taken at 5x and 40x 
magnification, compared to an uninjured rat carotid artery (right image). Dashed lines (arrowed) indicate 
the internal elastic lamina. (B) Neointima/media ratios were determined by morphometric analysis, with 
preliminary results from one single set of animals presented in a bar graph. miR– microRNA. 

 

 

 

The goal became developing a NP-based transfection method which would serve as a 

future stent coating capable of presenting the miRNA inhibitor on the luminal surface to 

rolling EPCs. 
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Nanoparticles for CD34+-derived EPC labelling 

 

Previously, the Portuguese group where I conducted one year of PhD had demonstrated 

that HUVECs could rapidly internalise protamine sulphate(PS)-coated Poly(lactic-co-

glycolic acid (PLGA) nanoparticles (NPs) (Gomes et al., 2013). The optimal transfection 

strategy had been defined as requiring incubation with 500 µg/mL NPs for 4 hours, 

although in concentrations up to 1 mg/mL no substantial cytotoxicity was reported 

(Gomes et al., 2013). Since EPCs share many common features with ECs, I tested the 

same strategy with the precursor cells. To quantify labelling efficiency in EPCs, FACS was 

performed on cells transfected with NP-fluoresceinamine for the same period. Trypan 

blue was used after fixation to differentiate between the signal from membrane-

associated (external) and internalised fluorochromes (internal)(McNeer et al., 2011). 

After quenching treatment, 99% of EPCs were fluorescein-positive, which establishes a 

very high transfection efficiency (Figure IV.6). 

 

After vascular injury, the vessel wall is typically a deprived milieu. One hour after balloon 

angioplasty, there are very few intact adventitial microvessels (Pels, Labinaz, Hoffert, & 

O'Brien, 1999) due to the barotrauma associated disruption, conditioning an 

environment poor in nutrients. Therefore, I wanted to mimic to some degree the same 

environment in vitro. However, my plans to subject EPCs in culture to deprivation 

conditions for longer term studies could jeopardise the feasibility of 500 µg/mL as the 

selected NP concentration. Therefore, I used a lower concentration (250 µg/mL) in the 

following experiments.  
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Figure IV.6| NPs are efficiently internalised by human CD34+-derived late -outgrowth EPCs. 
EPCs were transfected for 4 hours with 500 µg/mL NP-FITC labelled, after which cells were analysed by 
flow cytometry. External refers to Trypan blue quenched fluorescent signal, presumably membrane 
outbound NPs.  (A) Representative FSC-SSC dot plots and histograms of non-quenched samples are 
presented. (B) Labelled cells exceeding an autofluorescence threshold were quantified and considered 
positive for the internalisation of NP-FITC. Results are expressed in mean values ± SEM following 3 
individual experiments (each condition measured in duplicate), *** p<0.001 vs no transfection control (t-
Student test). EPC – endothelial precursor cell; FITC - Fluorescein isothiocyanate; FSC – forward scatter; 
NP – nanoparticles; SEM – standard error mean; SSC – side scatter. 

 

 

  



 

References - 284 
 

NPs can efficiently deliver miRNAs into EPCs 

 

Incubating NPs with miRNA produced electrostatic complexes with a mean diameter of 

219 ± 14.2 nm and a zeta potential of +1.95 ± 0.99, at intracellular pH (Table IV.1).  

 
Table IV.1 | Characterization of NPs. 

Diameter, PDI and zeta potential are properties of NPs which facilitate its internalisation. NPs were 
reconstituted at 500 µg/mL and complexed with miRNA at 800nM, before being diluted 1:4 for dynamic 
light scattering analysis in 10 mM KCl, pH 5.5. Results for the before mentioned properties are presented 
as means ± standard deviation, after 3 independent measurements from 3 different NP batches. NP – 
nanoparticle, PFCE -perfluoro-1,5-crown ether, PDI – polydispersion; PLGA – polylactic(glycol)acid, PS – 
protamine sulphate. 

 
Diameter (nm) PDI Zeta potential 

NP-PFCE 212.9 ± 14.3 0.244 -9.7 ± 0.7 

NP-PFCE-PS 218.0 ± 9.3 0.381 +7 ± 1.7 

NP-PFCE-PS-miR 219 ± 14.2 nm 0.267 +1.95 ± 0.99 

 

Compared to non-coated NPs, the miRNA overlayer did not significantly influence the 

diameter (218.0 ± 9.3 nm vs. 212.0 ± 14.3 nm, p=0.91), and so was unlikely to 

compromise the transfection strategy. As expected, the NP:miRNA complexes’ net 

charge was inferior to NPs not coated with miRNAs (+1.95 ± 0.99 vs. 7± 1.7, p=0.01), as 

a result of the conjugation with negatively charged oligonucleotides.  

 

PLGA NPs are known to be internalised by endocytosis (Gomes et al., 2013), therefore 

the fact that the NP: miRNA conjugates remained positively charged after complexation 

is essential for the transfection efficiency, which was next demonstrated by IF. EPCs 

were transfected with NPs complexed with a FITC-labelled miRNA (hsa-miR-92a-1 

inhibitor) for 4h under normoxia, and 24h after that using an anti-FITC antibody we 

documented intracellular miRNA-associated fluorescent signal only in the condition 

where miRNA delivery was facilitated with NPs (Figure IV.7) 
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Figure IV.7 | Internalisation of NP: miR complexes by human CD34+-derived EPCs. 
Cellular transfection with NP:miR-92a-FITC conjugated complexes was confirmed by IF at 60x. 24h after 
transfection with 2) NP at 250 µg/mL; 3) miR-92a inhibitor-FITC 100 nM; 4) NP-FITC 250 µg/mL; 5) NP:miR-
92a inhibitor-FITC 250 µg/mL and 100 nM respectively, cells were processed for IF. 1) No treatment and 
6) transfection with NP:miR-92a inhibitor-FITC 250 µg/mL and 100 nM but omitting primary antibody 
staining were the experimental and IF negative controls, respectively. The nuclei of the cells were counter-
stained with DAPI. DAPI - 4',6-diamidino-2-phenylindole, FITC - Fluorescein isothiocyanate, miRNA or miR– 
microRNA, NP – nanoparticle. 

 

 

NP facilitated miRNA internalisation efficiency was quantified using FACS. When EPCs 

were incubated for 4h with miRNA-fluorescein labelled complexed to NPs, 81 ± 7% of 

the cells were labelled, and virtually no miRNA was found at the external surface (Figure 

IV.7), demonstrating a high miRNA transfection efficiency. 

 

 

 

Figure IV.8 | Internalisation of NP: miR complexes by human CD34+-derived EPCs. 
Transfection with NP:miR-92a-FITC complexes was confirmed by flow cytometry.  Trypan blue is used to 
quench externally attached particles/miRNA to differentiate between the signal from membrane-
associated (external) and internalised fluorochromes (internal). Treatment with miR-92a-FITC only, non-
fluorescent NPs or NP:miR-92a-FITC without quenching, and omission of treatment were used as negative 
controls. Results are plotted as mean values ± SEM of 3 independent experiments, each condition 
measured in duplicate. ***P<0.001 compared with negative transfection controls (1-way ANOVA, 
Bonferroni's test for multiple comparisons). FITC - Fluorescein isothiocyanate, miR– microRNA, NP – 
nanoparticle. 
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miR-92a is released from NPs and mediates EPC 

post-transcriptional modulation 

 

Previous co-localization studies in HUVECs had shown that this specific PLGA NP 

formulation could present miRNAs to AGO2 and GW182 RISC proteins, which are in close 

interaction with the endosome membrane, thus likely promoting microRNA-RISC strand 

invasion (Gomes et al., 2013). Therefore, to confirm that internalised NP:miR-92a 

inhibitor complexes interact with the RISC machinery in EPCs, and that released miR-92a 

inhibitor had become readily available for processing, I conducted gene expression 

analysis on a miR-92a validated target, in particular, ITGA5. EPCs were incubated for 4 

hours with NP:miR-92a (and its inhibitor) or NP: miR scrambled treatment, followed by 

48h in serum-free culture, before evaluating mRNA levels by qRT-PCR (Figure IV.9). This 

timing, adopted by others (Bonauer et al., 2009), presumably allows for exogenously 

delivered miRNAs to reach peak biological activity. The pilot results from a single 

experiment hint that EPCs that were transfected with NP:miR-92a had a down-

regulation in the expression of ITGA5 compared to controls, whereas the inhibitor had 

the opposite effect on ITGA5 levels. 

 

Figure IV.9 | miR-92a is released from NPs complexes intracellularly. 
The gene expression profile of ITGA5 was evaluated in EPCs transfected with NP: miR complexes at 250 
µg/mL and 200 nM respectively, following a 48h knockdown incubation period under starvation 
conditions. EPCs transfected with NP: Dy547 served as negative transfection controls. (A) Representative 
amplification plots and dissociation curves of the different transfection samples are presented for the 
target (ITGA5) and housekeeping (ACTB) genes. The mean minimal Ct were calculated from triplicate 
reactions. Blue line – experimental sample; green line – no template control sample (B) The target gene 
signal was first normalised to the housekeeping gene and then expressed about the value obtained with 
control transfection EPCs by using the formula 2-Δ Δ Ct. Results shown in the bar graphic are derived from 
1 individual experiment and are therefore preliminary (C) Representative gel used to test primers. ACTB 
– actin beta; EPC – endothelial precursor cell; FITC - Fluorescein isothiocyanate; ITGA5 – integrin alpha 5 
subunit; miRNA or miR– microRNA; NP – nanoparticles.  
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 C 

 

Some cellular death was still seen with 250 µg/mL compared with untreated cells. 

Therefore I tried an alternative transfection concentration (125 µg/mL) before leaving 

EPCs in serum-free medium for 48h and conducting an ATP quantitation-based survival 

assay (Figure IV.10). The latter concentration was not detrimental (127 % ± 4 vs 100%, 

p<0.01), whereas EPCs transfected with the former concentration showed decreased 

survival (68 % ± 7 vs 100%, p<0.001). 

 
Figure IV.10 | A transfection NP concentration of 125 µg/mL is not detrimental for human CD34+-
derived EPCs. EPC survival after transfection with NPs (125 or 250 µg/mL) for 4h, followed by 48h in 
starvation medium (under normoxia or hypoxia), as measured by an ATP based assay. Results represent 
mean values ± SEM after 5 independent experiments, ** p< 0.01, *** p<0.001 vs control transfection, t-
student test).  ATP – adenosine triphosphate; NP – nanoparticle; RLU - Relative light unit. 
 

 

To track intracellular dynamics, EPCs were incubated 4 hours at 37ºC with serum-free 

medium containing NPs labelled with fluorescein amine or NPs complexed with a 
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fluorochrome-tagged miRNAs (Figure IV.11). Dy547-labeled miRNA, a transfection 

control miRNA without any known human targets, was readily internalised complexed 

to the NPs after just 4h of incubation, whereas no intracellular miRNA signal was seen 

when the vector was omitted. The NPs and miRNA seemed to co-localize in complexes 

aggregated inside cytoplasmic vesicles distributed towards the periphery of the cell.  

 

Figure IV.11| Internalisation of NP: miR complexes by human CD34+-derived EPCs. 
The intracellular distribution of NP-FITC: miR scrambled-Dy547 complexes immediately after transfection 
of EPCs was analysed via confocal microscopy. Representative images at 60x of the intracellular 
distribution of the complexes after 4h of incubation at 125 µg/mL and 100 nM respectively (top panel) 
versus incubation with individual components alone (bottom left - NP-FITC, bottom right - miR-Dy547), 
revealed that Dy547-labeled miR was readily internalized complexed to the NPs, whereas no intracellular 
miRNA signal was seen when the vector was omitted. Cells were stained with anti-CD31 plasmatic marker 
and DAPI, further evidencing that the NPs and miRNA were in close association towards the periphery of 
the cell. DAPI - 4',6-diamidino-2-phenylindole; CD – cluster differentiation; FITC - Fluorescein 
isothiocyanate; miR– microRNA; NP – nanoparticle. 
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According to the confocal microscopy data, 24 h after transfection, intracellular vesicles 

loaded with NP:miRNAs complexes seemed to have increased in number and size, 

revealing a more perinuclear distribution, presumably corresponding to the early 

endosomal compartment, as reported previously for HUVECs (Gomes et al., 2013). 

Moreover, there was a lower degree of association between NPs and miRNA signal 

overall, thus evidencing that a good portion of the miRNA had already been released by 

the NPs (Figure IV.12). 

 
Figure IV.12 | Intracellular miRNA release from NPs after 24h. 
The intracellular distribution of NP-FITC: miR scrambled-Dy547 complexes 24h after transfection of 
human late-outgrowth EPCs (125ug/mL and 100nM respectively) was analysed via confocal microscopy. 
The images at 60x revealed intracellular vesicles loaded with NP:miRNAs complexes which seemed to 
have increased in number and size, revealing a more perinuclear distribution, and with a lower degree of 
association between NPs and miRNA signal overall compared to immediately after transfection. CD – 
cluster of differentiation, DAPI - 4',6-diamidino-2-phenylindole; FITC - Fluorescein isothiocyanate; miR– 
microRNA; NP – nanoparticles.  

 
 

miR-92a inhibitor containing NPs have pro-survival 

and –migratory effects in EPCs cultured under 

ischemic conditions 

 

To demonstrate the pro-survival activity of miR-92a inhibitor, EPCs were incubated for 

4 h with NP:miR-92a inhibitor and cultured under starvation for 48 h (Figure IV.13). 

NP:miR-92a inhibitor formulation significantly increased cell survival compared to 

controls (128.33 ± 3.23 vs. 100%, p < 0.001, % of controls). 
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Figure IV.13 | NP:miR-92a inhibitor exerts a pro-survival effect in human CD34+-derived EPCs. 
Cells were transfected with 200nM miR-92a (5p) inhibitor complexed to NPs at 125 µg/mL. Survival in the 
serum-deprived medium after 48h was assessed using a Luminescent cell viability ATP-based assay. 
Results are plotted as means, with errors bars representing ± SEM, after 5 independent experiments 
(replicates of 5 were used for each experimental condition). ***P<0.001 compared with transfection 
control (t Student test). ATP - Adenosine triphosphate; EPC – endothelial precursor cells; miR- microRNA; 
NP – nanoparticle; SEM – standard error mean. 
 

 
 

The scratch assay of cell migration was used to assess the effects of NP-miR delivery on 

the migration of EPCs. After a scratch had been made on a confluent cell monolayer, 

cells were incubated for 48h in serum free medium (Figure IV.14). NP:miR-92a inhibitor 

transfected EPCs managed to narrow the gap area more than controls by 48h and re-

establish new cell–cell contacts significantly faster than controls (3.16 ± 3 % vs. 33.5 ± 

7.48 %, p<0,05, % of baseline wound area). 
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Figure IV.14 | Pro-migratory effects of NP:miR-92a inhibitor in human CD34+-derived EPCs 
Cells were transfected with NP:miR-92a (5p) inhibitor complexes at 125 µg/mL and 200 nM respectively. 
After overnight incubation in complete medium, the monolayer of cells was manually scratched, and cells 
left in serum-free medium for 48h. At the end of the follow-up, cells were photographed at 5x and the 
denuded area (µm2) was quantified digitally. (A) Representative brightfield images of EPCs transfected 
with either NP (transfection control) or NP:miR-92a inhibitor after 48h. (B) Wound area after 48h 
quantification results after 6 independent experiments are plotted as means (conditions in duplicates), 
with errors bars representing ± SEM. *P<0.05 compared with NP (Student t-test). EPC- endothelial 
precursor cellmiR – microRNA; NP – nanoparticle; SEM – standard error of the mean. 
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Peri-adventitial gel delivery of NP:miR-92a inhibitor  

complexes results in efficient arterial wall 

transfection 
 

A peri-adventitial route to deliver the NP and corresponding NP:miRNA complexes was 

pursued. Ex vivo transfection of rat carotid rings with NP-FITC (5 mg/mL) using serum 

free media (SFM), pluronic gel or PLGA gel, evidenced superior internalisation efficiency 

for medium, followed by pluronic gel, and lastly PLGA, as evaluated by a direct 

fluorescence assay (Figure IV.15). Accordingly, we chose to pursue the in vivo NP 

delivery to the rat carotid adventitial wall using the pluronic gel, since medium would 

produce heavy leaking jeopardising the localised delivery method.  
 

Figure IV.15 | NP internalisation by the rat carotid artery via peri-adventitial gel delivery. 
Rat carotid artery segments were transfected ex vivo during 24h with FITC-labelled NPs resuspended at 
5mg/mL either in Optimem medium, PLGA or Pluronic gel. The samples were then photographed under a 
fluorescent macroscope in the green channel. FITC -Fluorescein isothiocyanate; NP – nanoparticle. 

 
 

 

Using IF and IHC analysis, we were successful in showing NP-FITC (5mg/mL) 

internalisation throughout the entire vascular wall (from adventitia to intima) after just 

24h following gel deposition (Figure IV.16). 
 

Figure IV.16 | Rat carotid artery NP-FITC internalisation is efficient by pluronic gel periadventitial 
delivery. Pluronic solution containing NP-FITC (5mg/mL) was applied externally to the outer surface of 
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the exposed LCA. The animal was allowed a 24h post-operative recovery before the LCA was harvested 
and processed for IF and IHC. (A) 20x IF pictures: 1 represents a cross-section image of an LCA treated 
with NP-FITC (5mg/mL in pluronic gel) via periadventitial delivery. 2-4 are representative images of 
controls. 2- positive control ex-vivo treated rat carotid ring segment (NP-FITC 5mg/ml in the medium for 
4h); 3- negative controls non-treated rat LCA; 4- staining control ex-vivo treated rat carotid ring segment 
(NP-FITC 5mg/ml in the medium for 4h) where primary antibody incubation was omitted. (B) 10x and 40x 
magnification IHC pictures: 1-4 images represent the same conditions as in A). DAPI - 4',6-diamidino-2-
phenylindole; FITC - Fluorescein isothiocyanate; IF – immunofluorescence; LCA – left carotid artery; miR 
– microRNA; NP – nanoparticles. 

 



 

References - 296 
 

 

Transfecting the arterial wall with miR-92a inhibitor-FITC -labelled complexed to NPs 

(5mg/mL, 200nM) was also successful as indicated by IHC (Figure IV.17).  

 

Figure IV.17 | Rat carotid artery NP:miR-92a inhibitor-FITC internalisation via peri-adventitial gel 

delivery. 

A periadventitial delivery of NP:miR92a inhibitor-FITC was carried out. The animal was allowed a 24h post-
operative recovery before the LCA was harvested and processed for IHC. These are representative images 
of NP:miR-92a-FITC treated arteries via peri-adventitial pluronic gel delivery at 20x and 40x magnification. 
On the right the negative control is presented, where the primary antibody incubation was omitted.  FITC 
- Fluorescein isothiocyanate; LCA – left carotid artery; miR – microRNA; NP – nanoparticles. 
 

 
 
 

Once inside the cells, miRNA-92a inhibitor is progressively released from the NPs as 

hinted by miR-92a target gene regulation in a 24h post-transfection time course (Figure 

IV.18). ITGA5, an established miR-92a target gene should be upregulated upon miR-92a 

inhibitor transfection (Bonauer et al., 2009). Indeed, at 24h there was an upregulation 

of ITGA5 levels following miR-92a inhibitor pluronic gel delivery compared to control. 

Also, ITGA5 levels at 24h rose higher with transfection miRNA alone than with an NP-

mediated strategy, which could suggest an advantageous slow release mechanism by 

the NPs. 
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Figure IV.18 | Pluronic gel delivery of NP:miR-92a inhibitor may be efficient at upregulating arterial 

ITGA5 levels after just 24h. 

Representative western blot analysis of uninjured rat carotid arteries treated with NP:miR-92a inhibitor 
(5mg/mL, 1µM) or miR92a inhibitor (1µM) delivered by 30% pluronic gel, against no treatment control. 
The animals were sacrificed 24h after surgery. This blot represents a single set of 3 paired mice. Therefore 
results are preliminary only. eNOS- endothelial nitric oxide synthase; ITGA5 – integrin alpha 5 subunits; 
miR– microRNA, NP – nanoparticles. 

 
 
 

Intra-luminal delivered NP:miR-92a inhibitor 

complexes are capable of arterial wall transfection 

 

 

Next, the feasibility of delivering miRNA conjugated to NPs to the inner side of the 

arterial wall, via intraluminal infusion, was investigated. Rat carotid ring segments were  

used for tissue culture transfection optimisation with NP-FITC or NP:miR-92a inhibitor-

FITC resuspended in medium at different concentrations (Figure IV.19). The ex vivo 

titration strategy demonstrated that NPs in solution at 5 mg/mL were able to transfect 

the carotid segments efficiently and facilitated fluorescent miRNA delivery (1uM). 

 

Figure IV.19 | NP and NP:miR-92a inhibitor in suspension are internalised by the rat carotid artery. 

Rat carotid artery segments were transfected ex vivo during 4h in 96 well plates with increasing 
concentrations of (A) FITC-labelled NPs or (B) miR-92a inhibitor-FITC labelled complexed to NPs in 
Optimem. The samples were then photographed under a fluorescent macroscope in the green channel. 
FITC -Fluorescein isothiocyanate; miR – microRNA; NP – nanoparticle. 
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Next, intravascular delivery of the NPs to the rat carotid artery was carried out by 

infusing an NP-FITC labelled solution (5 mg/mL) through the arteriotomy hole at an 

infusion rate of 10 µl/min for a total of 20 min of occlusion time. This strategy resulted 

in efficient vascular wall internalisation of NPs, with a discernible pan-layer distribution 

pattern, as assessed 24h after infusion by IF and IHC staining (Figure IV.20).  

 

 

Figure IV.20 | Rat carotid artery NP-FITC internalisation is efficient by intraluminal infusion. 

An intravascular delivery of FITC labelled NPs was carried out. The animal was allowed a 24h post-
operative recovery before the LCA were harvested and processed for IF and IHC. (A) IF 20x pictures: 1 
represents a cross-section image of an LCA treated with NP-FITC (5mg/mL in PBS) via intraluminal infusion. 
2-4 are representative images of controls. 2- positive control ex vivo treated rat carotid ring segment (NP-
FITC 5 mg/ml in the medium for 4h); 3- negative controls non-treated rat LCA; 4- staining control ex vivo 
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treated rat carotid ring segment (NP-FITC 5mg/ml in the medium for 4h) where primary antibody 
incubation was omitted. (B) IHC 10x and 40x pictures: 1-4 images represent the same conditions as in A). 
DAPI - 4',6-diamidino-2-phenylindole; FITC - Fluorescein isothiocyanate; IF – immunofluorescence; LCA – 
left carotid artery; miR – microRNA; NP – nanoparticles. 
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Internalisation of NPs:miR-92a inhibitor complexes (NP 5 mg/mL and miR 1 µM) was also 

feasible for intravascular delivery using the same interventional procedure, as 

demonstrated by IHC staining of treated arteries 24h post-infusion (Figure IV.21). The 

future plans will be discussed in the global discussion chapter. 

 

Figure IV.21 | Rat carotid artery NP:miR-92a inhibitor internalisation via intraluminal gel delivery. 

An intraluminal delivery of NP:miR-92a inhibitor-FITC (NP 5 mg/mL and miR 1 µM) was carried out. The 
animal was allowed a 24h post-operative recovery before the LCA were harvested and processed for IHC. 
These are representative images of NP:miR-92a-FITC treated arteries via intraluminal infusion at 20x and 
40x magnification. On the right the negative control is presented, where the primary antibody incubation 
was omitted. Given the positive FITC signal present in all layers of the artery, the intraluminal delivery 
strategy seemed efficient at promoting rat carotid artery NP:miR-92a-FITC internalisation.  FITC - 
Fluorescein isothiocyanate; LCA – left carotid artery; miR – microRNA; NP – nanoparticles. 
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Discussion 

 

Restenosis prevention by miR-92a inhibitor 

Isolated aortic rings transfected with miR-92a inhibitor and cultured on Matrigel with 

endothelial growth medium showed significantly improved outgrowth of aortic ring cells 

compared with the control, as expected according to the literature (Iaconetti et al., 

2012). This result pushed us to search for the effect of miR-92a inhibitor in the injured 

artery. One year within the PhD works, Iaconetti et al. published a seminal paper 

reporting that systemic administration of miR-92a inhibitor significantly enhanced re-

endothelialisation in injured carotid arteries and reduced neointimal formation after 

balloon injury or stenting (Iaconetti et al., 2012). Later, Daniel et al. confirmed that 

systemic inhibition of miR-92a expression with LNA-modified antisense molecules 

resulted in a significant acceleration of re-endothelialisation and reduced neointima this 

time after wire-induced injury of the femoral artery in mice (Daniel et al., 2014). Our 

preliminary results regarding the reduction of neointima following the delivery of miR-

92a inhibitor after experimental balloon injury seem to agree with the findings by 

Iaconetti et al. Endothelial denudation after vascular injury, and the subsequent loss of 

local NO synthesis could be a critical factor in the pathogenesis of restenosis. The results 

from Iaconetti and colleagues suggested that miR-92a inhibitor induced an increase in 

NO bioavailability (Gareri et al., 2016), which causes a selective increase in the EC 

proliferation/migration and the inhibition of VSMC proliferation (Iaconetti et al., 2012; 

Indolfi et al., 2002). Interestingly, our in vitro results seem to hint that another vascular 

player could contribute to the reduction of neointima, i.e., engrafting/vascular wall EPCs 

that show enhanced activity upon miR-92a inhibition. Cui et al. transplanted GFP-labeled 

EPCs overexpressing eNOS gene into balloon-denuded carotid arteries and found that 

these cells engrafted at the denuded parts of the artery, which resulted in a significantly 

inhibited neointimal hyperplasia (B. Cui et al., 2011). One can speculate that the NO 

overexpressed and released at an early stage from the regenerating endothelium and 

EPCs incorporating into the injured site might participate in inhibiting VSMC 

proliferation and migration(B. Cui et al., 2011). We too have shown a possible increase 

in engraftment of (miR-92a inhibitor -primed) EPCs at the injury site after 
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transplantation. Although, we could not show enhanced endogenous EPC engraftment 

following treatment of target tissue with miR-92a inhibitor (the planned experiments 

would surpass the remaining PhD duration), we did observe a trend towards increase in 

T-eNOS expression in miR-92a inhibitor treated arteries, therefore, it is conceivable that 

the enhanced EPC activity results obtained in vitro can translate into an enhanced re-

endothelialisation response in vivo following in-situ transfection. We postulate that the 

ability of the engrafted EPCs to rapidly restore endothelial integrity at the injury site may 

restore endothelium-dependent NO bioavailability and suppress more efficiently the 

activation of VSMC proliferation and migration from the underlying media, thus 

resulting in attenuation of neointimal proliferation. Besides ITGA5-eNOS pathway, miR-

92a has also been found to target KLF2 and KLF4 (Y. Fang & Davies, 2012) (genes that 

were not unfortunately included in my WB experiments since for the time of the PhD I 

could not find antibodies that would have good resolution in CD34+-derived EPCs). 

These transcription factors can also enhance eNOS activity which inhibits VSMC 

proliferation (Boon & Horrevoets, 2009; Y. Fang & Davies, 2012; Hamik et al., 2007; 

Iaconetti et al., 2012; Parmar et al., 2006). Moreover, KLF2 and KLF4 typically exert an 

anti-inflammatory and atheroprotective effect in ECs after injury (Y. Fang & Davies, 

2012). This was elegantly shown by Hinkel and colleagues who tested leukocyte 

adhesion on an EC monolayer underflow after TNF-alpha activation and verified that 

pretreatment of either the ECs or the THP-1 cells with miR-92a inhibitor reduced 

leucocyte adhesion (Hinkel et al., 2013). miR-92a inhibition, by acting to de-repress KLF2 

and 4, may result in the downregulation of leucocyte adhesion molecules on ECs, 

therefore limiting inflammatory cell infiltration.  

 

Systemic vs. localised miR-92a inhibitor delivery to the target 

tissue 

 

The delivery approaches per se may vary according to the end application. In diffuse 

conditions, such as atherosclerosis, or for tissue targets which are not easily accessible 

by direct injection, systemic antagomiR delivery may be optimal (Salmena, Poliseno, Tay, 

Kats, & Pandolfi, 2011). Yet, one should try to minimise off-target effects by using 

localised deliveries, as information about tissue distribution and pharmacokinetics of 
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miRNAs are presently scarce and their promiscuous nature makes the side effects of 

long-term inhibition difficult to predict. Even though miR-92a knockout mice are viable 

and fertile, there are reports of increased embryonic lethality as well as growth and 

skeletal defects (Penzkofer et al., 2014). Moreover, the systemic administration also 

requires a large quantity of biomolecules.  

For local regenerative applications, incorporating the miR-92a inhibitor into biomaterial 

scaffolds or other depots for in situ sustained delivery may, therefore, be preferred. An 

added benefit is that anti-miR approaches may be integrated with conventional 

regenerative biomaterial scaffolds that can simultaneously create tissue templates and 

provide platforms for sustained/controlled release, enabling greater spatiotemporal 

control over miRNA activity. One possibility to achieve the latter is to use material 

surface immobilizing agents, such as a stent coating that simultaneously serves as a 

template for the healing template and allows for local and sustained anti-miR release.  

 

Cell-cell miR-92a inhibitor shuttle 

 

miRNAs have been found outside the cells in a surprisingly stable form (Polimeni et al., 

2013), and it has been recently demonstrated that they can exert their regulatory 

function as extracellular messengers on protein expression also in recipient cells after 

transfer (Gareri et al., 2016). Transfer of miRNAs from cell to cell occurs mostly by means 

of membrane vesicles, which can be of different type and size. Exosomes (30–100 nm), 

shedding microvesicles (≤1000 nm) or even apoptotic bodies (50–5000 nm) are the most 

common. In addition to being packed into membrane vesicles, extracellular miRNAs can 

be loaded into high-density lipoprotein (HDL), or bound by AGO2 protein outside of 

vesicles (J. Zhang et al., 2015). miRNA secretion from releasing cell and subsequent 

uptake by a recipient cell provides a mechanism for cell-to-cell communication and 

exchange of material between cells (J. Zhang et al., 2015). There are 3 mechanisms of 

interaction between exosomes and their recipient cells described. First, the 

transmembrane proteins of exosomes directly interact with the signalling receptors of 

target cells (Munich, Sobo-Vujanovic, Buchser, Beer-Stolz, & Vujanovic, 2012). Second, 

the exosomes fuse with the plasma membrane of recipient cells and deliver their 

content into the cytoplasm (Mulcahy, Pink, & Carter, 2014). Third, the exosomes are 
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internalised into the recipient cells and have two fates. In one case, some engulfed 

exosomes may merge into endosomes and undergo transcytosis, which will move 

exosomes across the recipient cells and release them into neighbouring cells. In the 

other case, endosomes fused from engulfed exosomes will mature into lysosomes and 

undergo degradation (Mulcahy et al., 2014). Examples of miRNA exchange among cells 

involved in neointima formation are emerging in the literature.  Zhou et al. recently 

showed that miR-126 is secreted by ECs in Ago2 protein complexes on atheroprone 

stimuli (Zhou et al., 2013). This miRNA is then internalised by VSMCs, where it inhibits 

the expression of proteins that normally keep the cells in a contractile and quiescent 

state.  Additional reports uncovered miR-143/145 transfer between ECs and VSMCs 

through different trafficking networks (Climent et al., 2015). It was recently reported 

that ECs could release and transfer miR-503 to pericytes via microparticle trafficking 

(Caporali et al., 2015). These data are in keeping with the hypothesis that miR-92a 

inhibitor and NP:miR-92a inhibitor actions could be propagated across the different cell 

players involved in restenosis, to exert a combined anti-proliferative effect. Iaconetti 

and colleagues had demonstrated that miR- 92a was not expressed in VSMCs at 

comparable levels to other VSMC miRNAs in carotid media and adventitia. In fact, they 

found that the expression levels of miR-92a were significantly higher in RAO-ECs than in 

RAOSMCs (Iaconetti et al., 2012).  MVBs, where miR-92a inhibitor and NP:miR-92a 

inhibitor presumably accumulate, are generated at endosomes by the inward budding 

of their delimiting membrane followed by the release of  100 nm vesicles into the 

endosomal lumen. These endosomal vesicles have a cytosolic-side inward orientation. 

Numerous MVB serve as a sorting station for endocytosed membrane cargo that need 

to be transferred to and degraded in lysosomes. As explained, other MVBs may instead 

fuse with the plasma membrane, resulting in secretion of their intraluminal vesicles as 

exosomes.  

 

The use of nanotechnology for interventional miR-92a inhibitor 

vascular delivery 

 

The therapeutic targeting of various cardiovascular conditions using miRNA has been 

emerging as a novel approach in biomedicine, but the difficulty of introducing epigenetic 
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material into cells is a serious bottleneck in the development of this method. Limited 

cell penetration, unfavourable pharmacokinetics, toxicity, stability, as well as insertional 

mutagenesis represent some of the potential obstacles to the current in vivo miRNA 

delivery vehicles, including chemical modification, liposomes, adeno-associated virus or 

lentivirus (M. A. Shi & Shi, 2010). As an example, commercial liposomal transfection 

agents are not approved by the regulatory agencies for human use, and  the viral carrier 

systems also have drawbacks, such as the risk of immunogenicity, random integration 

of oligonucleotide sequence into host chromosome, specific tissue tropism, their 

recombination with wild-type viruses, limited payload capacity, related toxicity, and 

large scale production issues (Pathak, Patnaik, & Gupta, 2009).  

 

The enhancement of EPC functions combined with advances in tissue-engineered carrier 

matrices that permit embedding of EPCs and provide optimal conditions for EPC survival 

and endothelial outgrowth can contribute to therapeutic re-endothelialisation in wound 

healing. We have envisioned the use of biomaterials to (1) enhance cellular adhesion, 

survival, and function upon transplantation and (2) appropriately provide miRNAs with 

spatiotemporal control that enable enhanced recruitment/thriving of circulating 

progenitors.  The introduction of genetic materials using nanotechnology could provide 

a practical alternative to the other delivery systems. In this study, I have described the 

development and application of biocompatible and biodegradable copolymer NPs, 

composed of PLGA, with approximately 200nm of diameter, capable of carrying miR-92a 

inhibitor on their surface for delivery into EPCs or into the arterial luminal and adventitial 

surface. NP-facilitated delivery of miRNA in the angioplasty-injured vascular wall could 

be a promising option, with several undisputed advantages over traditional transfection 

agents (Cyrus, Wickline, & Lanza, 2012; Gvili, Benny, Danino, & Machluf, 2007; Jukema, 

Ahmed, Verschuren, & Quax, 2012): (a) High internalization efficiency - small vector size 

in the nanoscale range bestows quicker and increased cellular uptake; (b) 

Biocompatibility - depending on the synthetic material, NPs can be designed to have low 

toxicity and immunogenicity; (c) Biodegradability, achieved by some polymer-based 

formulations; (d) Sustained gene delivery, which is accomplished by entrapping the 

biomolecules in their core, through RNAse protection mechanisms, or endosomal 

release modulation; (e) Targeted delivery, since NPs can be designed to target specific 
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cells, epitopes or intracellular localizations preferentially and hence tailored to the 

desired effects; (f) possibility of vector immobilization to the stent, which allows 

increased local concentration of the therapeutic agent at the targeted vascular segment 

without distal spread to non-target tissue, thereby avoiding systemic toxicity and 

increasing the chance of effecient gene transfection to adjacent cells. Stent-tethered 

vectors can better persist in tissues as they are physically protected from the shearing 

effect of blood flow. 

 

Others have also sought innovative NP-mediated drug delivery for restenosis 

prevention. Cohen-Sacks and colleagues developed PLGA nanospheres encapsulating 

platelet-derived growth factor beta receptor antisense, which were successfully used in 

a balloon-injured rat carotid artery model (Cohen-Sacks et al., 2002). Controlled release 

of oligonucleotides following polymer biodegradation was achieved over a period of 1 

month, resulting in inhibition of neointima formation. Nevertheless, since PLGA 

formulations can take long to degrade and release their encapsulated content, our 

strategy to coat the NP with the miRNA on the surface, and not inside the core, offers 

the rationale of a more rapid biological effect following post-angioplasty injury, when 

EPCs are engrafting, and re-endothelialisation is triggered.  

 

NP engineering for EPC transfection 

 

The promise of NP systems that enable spatiotemporal control of miRNAs cues has 

fuelled further investigation into the kinetic delivery profile required for optimal EPC 

transfection in vitro, influencing future recruitment/re-endothelialisation at the site of 

vascular injury. The transfection efficiency of NPs results not only from how well these 

particles overcome the membrane barrier, but also the barriers outside and within the 

cell once they are internalised. My results indicate an EPC transfection efficiency of 

NP:miRNA complexes of about 80% after  short-term incubation, a result which is largely 

related to the physicochemical optimisation performed in the NP synthesis process. 

Based on diameter, particles can be categorised as small (≤100 nm), medium (100–200 

nm), large (201–1000 nm) or giant (≥1000 nm)(Donkuru et al., 2010).  The controlled 

size nanoformulation used was designed to yield medium-sized NPs, designed to confer 
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on them a faster cell internalisation profile than large-sized particles (Pathak et al., 

2009). These NP are internalised either ex vivo in just 4h and under 24h in vivo, making 

them useful for clinical translation. NPs were coated with specific miRNAs using a PS 

linker, a polycationic peptide that has been shown to condense plasmid DNA efficiently 

(D. Luo & Saltzman, 2000). The electrostatic interactions between the NPs and miR-92a 

inhibitor result in the self-folding of the oligonucleotide against the linker surface, 

theoretically preventing extracellular RNases from degrading the miRNA before 

internalisation. Optimisation of the surface charge of the NP also plays an equally 

important role in internalisation. A cationic substrate, PS, was coated on the NP’s surface 

to electrostatically bind the negatively charged oligonucleotides, rendering an overall 

zeta potential around +2. The physicochemical properties of the resulting complex were 

determined by the optimisation of relative cation/anion amounts, preparation 

parameters (mixing speed, time, the temperature of mixing, the concentration of 

reactants) and material properties, such as hydrophobicity, charge density and 

molecular weight. The complexation masks the negative charge of the RNA molecule, 

thus enabling the miRNA complexes uptake by the cells. Additionally, the coating 

properties also dictate the electrostatic miRNA dissociation kinetics occurring at 

physiological pH, which will influence the concentration and duration of miR-92a 

inhibitor release, thereby potentially enhancing the therapeutic time window of these 

short-lived biomolecules. According to Gomes et al., about 50% of the miRNA is still 

bound to the PLGA NPs inside the endosome compartment 24 h after EC transfection 

(Gomes et al., 2013), which correlates with my qualitative confocal microscopy results 

in EPCs. 

 

NP:miR-92a inhibitor and starvation 

 

Several reasons underlay the fact that medium deprived of serum and VEGF was used 

at the different stages of the ex vivo assays. During the transfection period (4 h), by 

removing anionic proteins from the medium, we reduced the likelihood of positively 

charged NPs:miR-92a inhibitor complexes being sequestered, thus maximising cellular 

internalisation (although this might not happen in vivo). VEGF downregulates 

endogenous mir-92a expression (Iaconetti et al., 2012), which would make 
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interpretation of the effects of exogenous miR-92a inhibitor more complicated. The 

incubation period (48h) to allow time for miR-92a inhibitor processing after transfection, 

was performed under starvation also so to mimic the post-injury milieu better.  

 

NP:miRNA intracellular compartmentalization and biological activity 

 

Studies on miRNA delivery using nanoformulations have explored NPs that accumulate 

in the membrane free intra-cytosolic compartment (S. J. Shi et al., 2012), as it was 

believed that mRNA regulation occurred largely there. However, recent data reveals 

that many RNA processes may be spatially restricted to the endolysosomal 

compartment to promote specificity and kinetic efficiency, namely miRNA maturation 

and mRNA regulation (D. Gibbings & Voinnet, 2010). Curiously, another NP engineering 

property that influenced NP:miR-92a inhibitor intracellular delivery was the composition 

of the biomaterial used in the NP formulation. PLGA NPs are internalised partly through 

fluid phase pinocytosis or clathrin-mediated endocytosis and accumulate in the 

endosomal compartment (Danhier et al., 2012). The intracellular pathways of 

internalised PLGA NPs have been characterised previously, and appear to be conserved 

across different epithelia (Cartiera, Johnson, Rajendran, Caplan, & Saltzman, 2009). 

Cartiera and colleagues demonstrated by electron microscopy that PLGA NPs colocalize 

with early endosomes shortly after exposure (approximately 2 hours), later to be found, 

over a period of 4-24 h, in other compartments within the cytoplasm, notably Golgi and 

endoplasmic reticulum. Interestingly, the in-house PS-coated PLGA nanoformulation 

also was shown to be incorporated into endocytic vesicles that fuse with early 

endosome within the first 24h following transfection (Gomes et al., 2013). Gomes and 

colleagues were able to coat these NPs with miRNAs, which are rapidly internalized and 

target the endolysosomal compartment, interacting with higher frequency with AGO2 

and GW182 (proteins which are involved in the biological action of miRNAs), than 

liposome complexes formed by commercial reagents and miRNA, which in turn 

accumulate in the cell cytoplasm (Gomes et al., 2013). Interpreting the confocal 

microscopy internalisation data collected so far in the light of these considerations, one 

could speculate that PLGA copolymers also target the endosome compartment in CD34+-

derived EPCs, although the represented images are in mitosis which hampers the 
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analysis of the cytoplasmic distribution of the NPs. This may result in enhanced miRNA 

biological effect since RISC assembly and turnover also occurs at endosomes (D. 

Gibbings & Voinnet, 2010). The close relationship between RISC machinery and the 

endomembrane system seems to promote more frequent encounters between AGO2, 

one of the RISC incorporating proteins, and the exogenous oligonucleotides released 

from NPs localised in the endosome. This was demonstrated previously by Gomes et al., 

by quantifying NP:miRNA/AGO2 cluster association in NP:miRNA transfected cells, and 

comparing it to the number of AGO2/miRNA foci following liposomic delivery (Gomes et 

al., 2013). The latter seemed to be reduced, probably, due to the diffusion and dilution 

of the oligonucleotides in the cytoplasm, resulting in fewer encounters. The controlled 

release of the proangiogenic miR-132 from the NPs exerted described in their research 

had significant pro-survival and pro-angiogenic effects compared to liposomal delivery 

in HUVECs, raising the possibility that delivery within the endolysosomal compartment 

offers an excellent opportunity to enhance the biological effect of miRNAs. 

More than just promoting the localised concentration of miRNA closer to the RISC 

machinery, NPs may in fact help in bridging the contact between both. Since AGO2 

proteins are located on the cytosolic face of the endolysosomal membrane (D. Gibbings 

& Voinnet, 2010), the miRNA released from the NPs still has to cross the membrane. 

PLGA NPs are able to mediate endosome escape in a sustained manner, sometimes for 

days or weeks (Moynihan, Jones, Farrar, & Howard, 2001). This process is thought to be 

facilitated by the cationic properties of the NPs, through what is titled the “proton 

sponge effect”(J. G. L. Huang, T.; Gu, F. X, 2011). This effect is a temporary and localised 

destabilisation of the membrane resulting in the escape of NPs and/or miRNA 

translocation into the cytosol via transient holes. Alternatively, the miRNA release from 

the endolysosomal compartment may be mediated by AGO-chaperone heat shock 

proteins, such as HSP90. This HSPs are reported to interact with acidic phospholipid 

membranes to create functionally stable ATP-dependent cationic pores which could 

mediate the miRNA translocation from the endolysosomal compartment (Gomes et al., 

2013) to the cytosolic surface of its membrane, where AGO2 and the RISC machinery is 

located. Immunoprecipitation studies suggest that the NPs are able to serve as a scaffold 

or to bridge the assembly of more Ago2-HSP90 complexes resulting in increased miRNA 
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translocation, especially under hypoxia, a condition that upregulates HSP90 (J. X. Chen 

& Meyrick, 2004). 

The slow electrostatic release from the NP surface and the sustained endosome escape 

of the miRNA molecules, probably result in the depot release profile evidenced by the 

milder upregulation of ITGA5 following perivascular delivery of the inhibitor of miR-92a 

complexed to NPs, when compared to delivery without NP facilitation, an observation 

that obviously warrants a more expanded time course analysis. 

 

 

NP:miR-92a inhibitor localised delivery routes 

 

Pluronic gel periadventitial administration has been attempted before for miRNA 

transfection with success (Choe et al., 2013), but to the best of our knowledge it was the 

first time it was used to mediate the transfection of NP:miR complexes. Pluronic F-127 

is a nonionic, surfactant polyol, which consists of hydrophilic ethylene oxide (EO) and 

hydrophobic propylene oxide (PO) blocks that are polymerised in a basic A-B-A structure 

(EOx-POy-EOx) and have amphiphilic properties. The pluronic gel has been reported to 

enhance cell interactions, DNA transport, and transgene expression, since pluronics 

possess the unique ability to incorporate themselves into cell membranes in the 

presence of the hydrophobic poly(propylene oxide) chain (W. Fan et al., 2012). But, even 

when locally delivered, non-targeted drugs often do not accumulate in quantities high 

enough to achieve the desired effects at the cellular compartment where they could be 

more efficient. Accordingly, combining the transfection properties of polycationic NPs 

embedded within a surface-active gel seemed a logical way of enhancing internalisation 

and compartmentalization efficiency. In the present study, pluronic gel NP delivery 

demonstrated similar ex vivo transfection efficiency compared to incubation with NP 

solution, as assessed by macroscopic fluorescence intensity analysis, encouraging me to 

advance to in vivo delivery. There, the NP-facilitated delivery of miRNA within the 

surfactant gel to the adventitia proved to be efficient, with NP and miRNA penetration 

going deep into the intima after just 24h. Several trafficking combinations could account 

for the highly efficient miRNA tissue dissemination I have observed in such a short 

period. Either the peri-adventitial NP:miR-92a inhibitor or recently unbound miRNA use 
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a paracellular pluronic gel-facilitated route towards the intima, or they are actually 

internalised by adventitial and medial cells. MiR-92a inhibitor further makes their 

transcellular way to the innermost layer by microvesicle-mediated cell-cell 

communication after being released from the NPs, or NP:miR-92a inhibitor complexes 

travel through a typical “endocytosis–exocytosis” route. Concerning intercellular NP 

trafficking, there is microscopy evidence that PLGA NPs are actually prone to 

escape/avoid endolysosomal degradation and subsequently interact with the exocytic 

organelles of the cell over time: the ER, the Golgi apparatus, and secretory vesicles 

(Cartiera et al., 2009). In the future, a localised stent delivery could make use of an 

eluting matrix combining both PLGA NPs and pluronic polymer, as both biomaterials 

have been used in this type of platform (S. I. Jang et al., 2012; Pan, Tang, Weng, Wang, 

& Huang, 2007). The delivery of a miRNA with angiogenic activity conjugated to a PLGA 

NP delivery system which has been used in stents with good drug eluting kinetics 

(Luderer et al., 2011), provided the rationale to attempt NP:miR-92a inhibitor 

intravascular provision in the rat carotid balloon angioplasty model. No miRNA 

epigenetic stent has ever been described, but Blindt in 2006 deployed a stent 

impregnated with an integrin-binding cyclic Arg-Gly-Asp (cRGD) peptide in in vivo 

porcine models for its potential to recruit and bind EPCs to limit coronary neointimal 

formation (Blindt et al., 2006). EPCs express integrins with integrin-binding cRGD 

peptide-binding motifs on their surface. It was hypothesised that the homing and 

differentiation of EPCs depend largely on their adhesion to integrins and the resulting 

signalling cascade that occurs on cell binding. At 12 weeks, both mean neointimal area 

and mean percent area stenosis were significantly reduced in cRGD peptide-loaded 

polymer stents compared with unloaded or bare metal stents, in part by accelerating 

stent endothelialisation. One can speculate that if using integrin-binding peptides 

represents a promising target to accelerate healing after vascular injury, stents capable 

of upregulating ITGA5 in captured EPCs might have a similar effect.  
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miR-92a inhibitor and oncogenic potential 

 

A non-estimated quantity of miR-92a inhibitor, even if locally delivered, could leak into 

circulation and target multiple organs and cell types, which could alter miR-92a activity 

also in non-EPCs which at the time being could pose a risk mostly regarding 

tumorigenesis. Volinia et al. identified that miR-92a was markedly overexpressed in 

tumour tissues from a large-scale miRnome analysis (Volinia et al., 2006), while several 

experiments have already implicated miR-92a in tumorigenesis, namely by promoting 

tumour proliferation, inhibiting tumour apoptosis, and promoting tumour invasion and 

metastasis (M. Li et al., 2014). However, despite the need to gain further insights into 

the mechanisms of the miR-92a and their target genes in tumours before going into 

man, reassuringly, all experiments point towards an expected beneficial effect in tumour 

proliferation, apoptosis, and invasion/metastasis by inhibiting miR-92a. Upregulation of 

miR-92a could activate the PI3K/Akt/mTOR pathway, and inhibit cell apoptosis induced 

by chemotherapy in mantle cell lymphoma (MCL) cells; while downregulation of miR-

92a could inhibit the growth of tumours in a xenograft MCL mouse model (M. Li et al., 

2014). Tsuchida et al. demonstrated that the expression of miR-92a was increased in 

colon adenomas and carcinoma, and it could target Bim directly and inhibit colon 

carcinoma cell apoptosis, whereas miR-92a inhibitor-induced colon carcinoma cell 

apoptosism (Tsuchida et al., 2011). Transfection of miR-92a precursor reduced ITGA5 

expression in ovarian cancer cells, which was associated with inhibition of cancer cell 

adhesion, and potentiation of invasion since integrins mainly mediate cell–cell and cell–

ECM interactions (Missan & DiPersio, 2012). Furthermore, it was reported that miR-92a 

could directly target E-cadherin (CDH1), which results in lymphatic metastasis and 

invasion of oesophagal squamous cell carcinoma (Z. L. Chen et al., 2011). Altogether, 

miR-92a inhibition might be a cancer therapy strategy in the future, which is reassuring 

for those studying the strategy in the field of therapeutic angiogenesis, and not a risk. 
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