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ABSTRACT

We advance here a novel concept for characteriz-
ing different classes of RNA genes on the basis
of physico-chemical properties of DNA sequences.
As knowledge-based approaches could yield un-
satisfactory outcomes due to limitations of train-
ing on available experimental data sets, alternative
approaches that utilize properties intrinsic to DNA
are needed to supplement training based methods
and to eventually provide molecular insights into
genome organization. Based on a comprehensive se-
ries of molecular dynamics simulations of Ascona
B-DNA consortium, we extracted hydrogen bond-
ing, stacking and solvation energies of all combi-
nations of DNA sequences at the dinucleotide level
and calculated these properties for different types
of RNA genes. Considering ∼7.3 million mRNA, 255
524 tRNA, 40 649 rRNA (different subunits) and 5250
miRNA, 3747 snRNA, gene sequences from 9282
complete genome chromosomes of all prokaryotes
and eukaryotes available at NCBI, we observed that
physico-chemical properties of different functional
units on genomic DNA differ in their signatures.

INTRODUCTION

Genome annotation, the task of identifying protein coding
mRNA genes, non-coding RNA (tRNA, miRNA, snRNA,
rRNA etc.) genes, promoters/regulatory switches etc. has
been receiving extensive attention since 1997 with the first
report of sequencing of a complete genome (1). Over the
years, various computational methods have displayed a po-
tential for fast and accurate characterization of genes (2–
10). Majority of these methods are knowledge-based and in-
volve sophisticated statistical and mathematical techniques
for training and prediction (11–16). Although, such inno-
vations form the mainstay today, these are influenced by
sparse experimental data available for training thus limit-

ing their performance (17–20), making them genome de-
pendent (21) and opaque to molecular interpretations. As
a consequence, improvements to these approaches primar-
ily depend on enlarging the training data sets (22).

An alternative approach to solve this complex challenge
is based on the hypothesis that different functional units on
genomic DNA differ in their physico-chemical properties,
which, in principle, can be extracted from atomic models of
DNA (13,23–29). Presently, there exists a wide hiatus be-
tween data-driven statistical tools for genome annotation
and molecular simulation based atomic level descriptions
of oligonucleotides (30–41). Though understanding the lan-
guage of DNA at a molecular level is compelling, there will
always be a need for both the approaches. The challenge
for atomic models lies in extracting from the exponentially
growing genomic data, the hidden physico-chemical signa-
tures of function.

Of particular interest is the evolving knowledge of non-
coding RNAs. Recent findings implicate a role for ncR-
NAs in gene regulation, dosage compensation, genomic im-
printing, cell differentiation, organogenesis, development,
metabolism, homeostasis and disease (38–47).

The present work encompasses elucidation of physico-
chemical fingerprints for different functional units in
prokaryotic and eukaryotic genomes on the basis of atomic
level descriptions of oligonucleotides derived from molecu-
lar simulations.

MATERIALS AND METHODS

Data description

The genomic data for the present study is compiled from
the National Centre of Biotechnology Information (NCBI)
repository. All types of mRNA, tRNA, miRNA snRNA
and rRNA (different subunits), sequences except plasmid,
bacteriophage, BAC/YAC, cosmid, clone and viral se-
quences are considered in this study. The genome fasta file
(.fna for prokaryotes and .fa for eukaryotes) and corre-
sponding genbank (.gbk for prokaryotes and .gb for eu-
karyotes) files are downloaded from the NCBI’s ftp site
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Figure 1. Differentiation of RNA genes obtained on the basis of physico-chemical properties. Average values of hydrogen bonding energy per bp (kcal/mol),
stacking energy per bp (kcal/mol) and solvation energy per bp (kcal/mol), of ∼7.6 million RNA genes comprising ∼7.3 million mRNA (magenta, circle),
255 524 tRNA (cyan, star), 5250 miRNA (green, pentagon), 3747 snRNA (blue, square), 13 997 16S rRNA (brown, diamond), 13 745 23S rRNA (purple,
triangle) and 12 907 5S rRNA (orange, cross) genes are shown for 9282 prokaryotic and eukaryotic genomes.

Table 1. A self-consistent set of molecular dynamics derived hydrogen bond, stacking and solvation energies (kcal/mol) for double helical dinucleotide
steps

Dinucleotide Hydrogen bond Stacking energy Solvation

AA -5.44 -26.71 -171.84
AC -7.14 -27.73 -171.11
AG -6.27 -26.89 -174.93
AT -5.35 -27.20 -173.70
CA -7.01 -27.15 -179.01
CC -8.48 -26.28 -166.76
CG -8.05 -27.93 -176.88
CT -6.27 -26.89 -174.93
GA -7.80 -26.78 -167.60
GC -8.72 -28.13 -165.58
GG -8.48 -26.28 -166.76
GT -7.14 -27.73 -171.11
TA -5.83 -26.90 -174.35
TC -7.80 -26.78 -167.60
TG -7.01 -27.15 -179.01
TT -5.44 -26.71 -171.84

(ftp://ftp.ncbi.nih.gov/genomes/). The data set comprised
of 4143 completely annotated eukaryotic (protozoa, fungi,
plant, invertebrates and vertebrates) genomes and 5139
completely annotated prokaryotic (archaea and bacteria)
genomes. Coordinates which formed partial gene sequences
and genes categorized as hypothetical, predicted, probable,
putative products or peptides are avoided for maintaining
reliability of the data. Gene sequences that contain any base
other than A, T, G and C are also filtered out along with
genes classified with unknown class type. This presented a
data set of ∼7.3 million mRNA, ∼0.25 million tRNA and
5250 miRNA, 3747 snRNA sequences, 40 649 rRNA (5S,
5S-like,16S, 16S-like, 23S, 23S-like subunits) for the current
study. Complete RNA data set and computed parameters
are provided in public domain at http://www.scfbio-iitd.res.
in/software/data RNA.jsp.

Methodology

In pursuit of exploring the physico-chemical information
hidden in DNA sequences, we have considered here, three
properties viz. hydrogen bonding energy (per base pair

(bp)), stacking energy (per bp) and solvation energy (per
bp). Based on a comprehensive series of molecular dynam-
ics simulations of the Ascona B-DNA consortium on all
possible tetra-nucleotide combinations (30–34), we first ex-
tracted the hydrogen bonding, stacking and solvation en-
ergies of all combinations of DNA sequences at the trinu-
cleotide levels by averaging their total occurrences in all the
possible tetra-nucleotides. These trinucleotide energy val-
ues are further mapped into dinucleotide values. Details of
the mapping procedure (13) are provided in the supplemen-
tary information of previous work (25). Dinucleotide fre-
quencies values are given in supplementary S1 here. The hy-
drogen bonding, stacking and solvation energy values for
each dinucleotide derived from molecular dynamics simu-
lations (35–37) are provided in Table 1. The methodology
for the calculation of physico-chemical properties of gene
sequences is presented below.

Hydrogen bonding energy. Hydrogen bonding energy
(kcal/mol) is calculated from the dinucleotide hydrogen
bond energies (Table 1), by moving one base at a time, thus,

ftp://ftp.ncbi.nih.gov/genomes/
http://www.scfbio-iitd.res.in/software/data_RNA.jsp
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Table 2. Calculated averages (Avg) and standard deviations (SD) of hydrogen bonding (HB), stacking and solvation energies (in kcal/mol) for each RNA
gene

Type
Avg. HB
energy

SD for HB
energy

Avg. stacking
energy

SD for
stacking energy

Avg. solvation
energy

SD for
solvation
energy

Sample size
(Number of genes)

mRNA -7.04 0.354 -27.08 0.076 -171.98 0.423 7 295 415
tRNA -7.12 0.323 -27.04 0.066 -171.68 0.468 255 524
miRNA -6.95 0.348 -27.04 0.110 -172.22 0.776 5250
snRNA -6.81 0.184 -27.05 0.051 -172.35 0.338 3747
16S rRNA -7.04 0.224 -27.06 0.030 -171.94 0.231 13 997

Figure 2. Results of two sample t-test for comparing means of each physico-chemical property considered (hydrogen bonding, stacking and solvation
energies) for each pair of RNAs. Green represents that the separation in the mean values is statistically significant and red represents that it is statistically
insignificant.

considering all the ‘N – 1’ dinucleotide steps in a sequence
of length ‘N’. As shown in Equation (1), the total hydro-
gen bonding energy is then divided by the number of dinu-
cleotides (22).

Hydrogen bonding energy (per bp) =
Total hydrogen bond energy

No. of dinucleotides
(1)

Similarly, stacking energy and solvation energies of all
RNA genes are calculated from the dinucleotide stack-
ing and solvation energies (Table 1) and the nucleotide se-
quences.

RESULTS AND DISCUSSION

Here, we investigate the possibility of the presence of
physico-chemical signatures in genomic DNA that can con-
vey the functional role of genic sequences. In this pursuit, we
have calculated the average hydrogen bonding, stacking and
solvation energies of mRNA, tRNA, miRNA, snRNA and
rRNA genes. The average value of each property together
with the standard deviation for each type of RNA gene is
presented in Table 2.

The average values of the physico-chemical properties in
Table 2 are plotted on a 3D graph (Figure 1) where the three
coordinates represent hydrogen bonding energy, stacking
energy and solvation energy for all the major classes of
coding mRNAs and non-coding RNAs (tRNA, miRNA,
snRNA and rRNA). Different orientations of Figure 1 are
provided in Supplementary Figures S1 and S2. It is seen
clearly from Figure 1 that genes of all major classes of RNA
have different physico-chemical signatures.

To assess the statistical significance (P < 0.05) of the sep-
aration in average values of the physico-chemical proper-
ties of different RNA genes seen in Figure 1 and Table 2,
we have performed a two-sided Student’s t-test (Supplemen-
tary S1) between all the possible pairs for all the three prop-
erties. The results are shown in Figure 2. The green color
represents that the difference in the mean values of the ref-
erence physico-chemical property is statistically significant,
while red color represents that the separation of mean val-
ues is statistically insignificant. As seen clearly, the mean
values are well separated for all the RNA genes in at least
two properties if not all. More specifically, solvation en-
ergy is a significant parameter for separation of all RNA
pairs, while stacking energy separations are significant for
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all RNA pairs except miRNA from tRNA, 23s rRNA from
tRNA, 23s rRNA from miRNA and 16s rRNA from 5s
rRNA. Further, hydrogen bond energy is also a very sig-
nificant parameter for separation of all RNA types except
for 16s rRNA from mRNA. To further validate these re-
sults we have also performed Welch’s t-test (Supplementary
S2), which is an adaption of Student’s t-test. The results are
similar. Essentially the differences in averages noticeable in
Figure 1 are statistically significant.

CONCLUSION

An analysis of over 9282 prokaryotic and eukaryotic
genomes comprising ∼7.6 million genes clearly points to
the existence of physico-chemical fingerprints of the func-
tional destiny of DNA sequences (Figure 1). Earlier stud-
ies (48,49), have implicated base sequence dependent shape
and electrostatic potential in the grooves of DNA, as well as
DNA curvature and bendability (50) in molecular function.
The present study provides us with additional information
imprinted in the DNA sequences, suggestive of a plausible
physico-chemical property based mechanism of read-out of
DNA function.

AVAILABILITY

Complete RNA data set and computed parameters are
provided in public domain at http://www.scfbio-iitd.res.in/
software/data RNA.jsp.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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