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Abstract

Lung cancer is by far the leading cause of cancer-related mortality worldwide, most of them being active tobacco
smokers. Non small cell lung cancer accounts for around 85% to 90% of deaths, whereas the rest is contributed by
small cell lung cancer. The extreme lethality of lung cancer arises due to lack of suitable diagnostic procedures for
early detection of lung cancer and ineffective conventional therapeutic strategies. In course with desperate
attempts to address these issues independently, a multifunctional nanotherapeutic or diagnostic system is being
sought as a favorable solution. The manifestation of physiochemical properties of such nanoscale systems is tuned
favorably to come up with a versatile cancer cell targeted diagnostic and therapeutic system. Apart from this, the
aspect of being at nanoscale by itself confers the system with an advantage of passive accumulation at the site of

therapeutics and diagnostics.

tumor. This review provides a broad perspective of three major subclasses of such nanoscale therapeutic and
diagnostic systems which include polymeric nanoparticles-based approaches, metal nanoparticles-based
approaches, and bio-nanoparticles-based approaches. This review work also serves the purpose of gaining an
insight into the pros and cons of each of these approaches with a prospective improvement in lung cancer
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Review

Introduction

At present lung cancer accounts for 23% of total cancer-
related mortality, outnumbering breast cancer, colon can-
cer, and prostate cancer combined together [1,2]. The
extreme lethality of lung cancer is ascribed to the lack of
early diagnostic strategies as in almost 50% of the cases
the disease is confirmed in stage IV, leaving low chance of
survival [3]. The inaccessibility to the deeper portions of
the lung for conventional therapy further adds up to the
complication in the treatment process [4].

The incidence of lung cancer can be broadly classified
into two major types on the basis of histologic appear-
ance, one being small cell lung cancer (SCLC) and the
other being non-small cell lung cancer (NSCLC). SCLC
is less prominent and more aggressive with mean sur-
vival of 4 months if left untreated [5]. Its extreme lethal-
ity roots from rapid growth rate, early metastasis, and
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fast metabolism. SCLC originates from neuroendocrine
tumors and is thus studded with neurosecretory vesicles
and neurofilaments [6]. It accounts for almost 80% to
85% of the lung cancers and is not susceptible to con-
ventional chemotherapy and radiation therapy. NSCLC
can be further subclassified into epidermoid, large cell,
broncho-alveolar, adenocarcinoma, and squamous cell
carcinoma [7]. Each of these NSCLC histological sub-
types is distinct and responds in diverse means to spe-
cific therapies.

Tobacco smoking has been identified as the major
cause of both types of lung cancers (ie., SCLC and
NSCLC) owing to exposure of pulmonary system to aro-
matic mutagenic agents present in inhaled smoke [8].
The only subclass of lung cancer that is not associated
with smoking is adenocarcinoma which arises due to oc-
cupational and environmental exposure to carcinogenic
agents such as radon, asbestos, and other types of radi-
ation. Apart from this, factors such as familial predispos-
ition to lung cancer, genetic alteration (alk, met, rosl
genes, etc.), and Helicobacter pylori infection form a
minor class of lung cancer instigators [9,10].
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Current therapeutic strategies such as chemotherapy
and radiation therapy is only effective in the initial stages
of treatment of SCLC, whereas NSCLC are less sensitive
to such treatment modalities, which leaves surgery (only
in stages I, I, and some of IIIA) and gene therapy as
other possible alternative to tackle NSCLC [11] and lung
cancer stem cells. Thus, the complete eradication of lung
cancer requires a new approach such as utility of nano-
scale materials. It is by the virtue of nanoscale dimension
of lung cancer therapeutic and/or diagnostic system that
they are capable of effectively transcending bronchial
epithelium barrier and accumulating in deep lung re-
gions. Some of such nanoscale formulations that have
given promising results include nanogels or nano-sprays
which are intratracheally administered into the lungs,
and the results have confirmed that intratracheal means
of drug delivery for lung cancer therapy are much better
than the parenteral route. In one such approach, inhalable
Ex4-C16-loaded DOCA-GC nanogels were synthesized for
treatment of hyperglycemia. The therapeutic efficacy of
this nanogel formulation was monitored in type 2 diabetic
C57BL/6 db/db mice, and the cytotoxicity associated with
them was established by using A549 and Calu-3 cell lines.
The use of chitosan-based nanogels for pulmonary deliv-
ery did not instigate any immune response and prolonged
hyperglycemic effect even at lower concentration of
drug. This work establishes the possibility of using such
nanogel-based pulmonary delivery system for delivery of
anticancer drugs specifically to lung cancer cells [12].

As a prerequisite to device a nanoscale therapeutic
system, its therapeutic, diagnostic, and the delivery sys-
tem should be of nanoscale dimension. The nanoscale
lung cancer therapeutic agents encompass nanoscale
formulations of metal nanoparticles, chemotherapeutic
drugs, and herbal extract, whereas nanoscale delivery
system for lung cancer includes metal nanoparticles,
polymeric nanoparticles, liposomes, and protein cages.

The extensive research in the field of nanotechnology
has opened up a whole new range of nanomaterials for
cancer therapy and diagnosis [13,14]. The applications of
these nanoparticles in cancer therapies has been effective
to a great extent owing to their inherent small dimen-
sions which enables them to specifically accumulate in
tumor cells as they permeate through the leaky vascula-
ture in the vicinity of tumor cell mass (enhanced perme-
ability and retention effect) [15]. The poorly developed
lymphatic drainage also contributes indirectly to nano-
particle accumulation at the site of the tumor. Another
advantage of nanoscale system is that they are capable of
effectively overcoming clearance by the kidney and
thereby provide good blood circulation time for the
drugs they carry. Apart from these benefits, the most fa-
vorable property of such a system is its ability to support
high loading capacity of therapeutic and imaging agents
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owing to high surface-area-to-volume ratios of
nanoparticles [16]. Further functionalization with spe-
cific targeting molecules and stabilizing agent (e.g., PEG
(poly(ethylene glycol)) can result in fabrication of
targeted nanotheranostic agent against lung cancer cells.
The area of nanomedicine is too broad to cover all the
aspects in a single review article. Thus, here we
emphasize on nanomaterials that have shown great
promise for applications in lung cancer diagnosis and
therapy. This review is broadly divided into three sec-
tions: (1) polymeric nanoparticles-based approaches (2)
metal nanoparticles-based approaches, and (3) bio-
nanoparticles-based approaches. The schematic repre-
sentation of these approaches is depicted in Figure 1.

Polymeric nanoparticles-based approaches

Polymeric nanoparticles provide a common platform for
inclusion of a drug of therapeutic potential, an imaging
agent, and an appropriate targeting moiety to end up with
a perfect nanotheranostic drug delivery system. The versa-
tility in physiochemical modification of polymer properties
enables it to be tuned to the requirements for drug encap-
sulation. Apart from being biodegradable and biocompat-
ible, these polymeric systems are capable of giving rise to
sustained-release profile of the drugs encapsulated. In
addition to chemotherapeutic drugs, the polymer systems
have been fabricated to carry nucleic acids and proteins to
effectuate their therapeutic potential over target tumor
cells. The most commonly used polymer systems for lung
cancer therapeutics includes poly(e-caprolactone) (PCL),
polylactic acid (PLA), poly(lactide-co-glycolide) (PLGA),
alginic acid, gelatin, and chitosan. The biodegradability
and toxicity of carrier polymers are monitored closely in
case of pulmonary application, as remnant polymers can
interact with the bio-surfactants present in the alveoli
which can further lead to a cascade of events eventually
leading to severe inconvenience in breathing. Few of such
polymer-based pulmonary therapeutic approaches have
been enlisted in Table 1.

In addition, encapsulation of such nanotheranostic
systems within polymer alters bio-distribution by making
the uptake and distribution properties primarily those of
the carrier, rather than those of the neat therapeutic,
thereby increasing circulating half-life, avoiding degrad-
ation of therapeutic in transit to the delivery site.

Poly(D,L-lactide-co-glycolide)

PLGA is among the most successful Food and Drug
Administration (FDA)-approved biodegradable poly-
mers used for formulation of a nanoscale drug delivery
system. Apart from drugs, PLGA can be used for deliv-
ery of proteins and various other bio-macromolecules
such as RNA, DNA, and peptides [35-37].
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Considering the specific case of lung cancer, the poly- by emulsification-evaporation technique. This system
mer PLGA has proved to be a prospective carrier could attain the desired therapeutic effect at lower con-
molecule. In one such attempt by Wu et al. in 2001 [38], centration of drug thus avoiding predisposition of nor-
endostatin-loaded PLGA microspheres were fabricated mal healthy cells to cytotoxic drugs.
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Table 1 Polymeric formulations for pulmonary delivery of therapeutic or imaging agents
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Carrier molecule Therapeutic/imaging Model system under study References
agent
PLGA Paclitaxel Hela and NMRI mice (7]
9-Nitro-camptothecin In vitro (PBS, phosphate buffered saline) [18]
pDrive-sh AnxA2 plasmid Preclinical (mice) [19]
DNA
PEI
PEI pCMV Luc DNA Intravenous injection in mice [20]
PEG-PEI copolymer A549, Calu-3 cells, and preclinical (mice) 21
PEI p53 Plasmid Intravenous injection and aerosol inhalation in mice [22]
B16-F10 tumor-bearing mice [23]
PEG
PEG-PLGA NF-kB decoy Explanted lungs from patients with PAH and rat [24]
models
Poly-L-lysine (PLL) modified with N-terminal Genomic DNA of Escherichia Injected into mice through intranasal route [25]
cysteine-polyethylene glycol coli
PEG-substituted PLL Firefly luciferase Injected into C57BL/6 mice through intranasal route [26]
PEGylated gelatin nanoparticle pCMV B-gal Intravenously and intratumorally administered to LLC-  [27]
bearing female C57BL/6 J mice
Chitosan
Chitosan/tripolyphosphate nanoparticles Model therapeutic protein Lysozyme in PBS [28]
insulin
Chitosan oligomer polyplexes FITC-labeled pCMV-Luc HEK 293 cells [29]
Liposomes flt-1 gene-encoding tyrosine  Pulmonary arterial endothelial cells of rabbits [30]
kinase
Recombinant human Intravenously injected into anesthetized pigs [31]
superoxide dismutases
Solid lipid nanoparticles Cyclosporine A, calcitonin, Administered by parenteral routes or by oral, nasal, [32]
and somatostatin and pulmonary routes in rats
Branched polyester 5(6)-Carboxyfluorescein Rabbit lung model [33]
Others
Glycerol and poloxamer-188 T cell-specific surface Human bronchial cell line, Calu-3 cells [34]

antigen

In an approach to effectively eliminate NSCLC, simul-
taneous administration of cytotoxic and antiangiogenic
drugs was carried out to exploit their synergistic effects. In
order to accommodate such combinations in a single de-
livery formulation, a research group headed by Sengupta
et al. in 2005 [39] fabricated bi-phospholipid-coated PLGA
core nanoparticles wherein doxorubicin (doxo) is conju-
gated to PLGA while comberstatin is mixed with
phospholipid and encapsulated in the outer lipid bilayer.

In order to employ PLGA for delivery of nucleic acids
to lung cancer cells, it is necessary to introduce positive
groups to form stable polyionic complex with nucleic
acids. In a recent study to deliver nucleic acid, PLGA
coupled to the diamine derivatives of PVA (polyvinyl
alcohol), (DEAPA (3-(diethylamino)propylamine)-PVA-
g-PLGA) was used as delivery vehicles for siRNA into
H1299-EGFP cells (lung cancer cells expressing green
fluorescent protein). These lung cancer cells exhibited

energy-dependent and clathrin-mediated cellular uptake
of drug-loaded microspheres for initial 2 h. The extent
of cellular uptake of these particles was further improved
by addition of lung surfactant to the carrier molecules
[40]. In another attempt by Nguyen et al. in 2008, hu-
man lung epithelial (H1299 luc) cell lines were success-
fully transfected using tertiary-amine-modified PVA
grafted over PLGA as siRNA delivery construct [41].

A drawback of PLGA which limits its application as a
drug carrier for lung cancer therapy is its rapid clearance
from the circulatory system. In order to address this
issue, PEG-modified PLGA was adapted as and the in-
clusion of PEG moiety effectively increased the blood
circulation time of the carrier molecule [42]. PLGA-PEG
copolymeric nanoparticles were employed as a common
platform for coupling imaging agent superparamagnetic
iron oxide nanoparticle (SPION) and an anticancer drug
molecule, doxo hydrochloride, as an effective theranostic
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strategy against lung cancer. Until recent past, there has
not been any significant report of inclusion of tumor-
targeting peptide into such PLGA-based carrier for lung
cancer; thus, work related to this is under way in our
laboratory.

Chitosan

Chitosan bears number of ionisable amino group which
could be scaled easily to serve the need for the delivery of
the therapeutic agent. Its versatile nature along with its
non-toxic, biodegradable, and bio-adhesive nature has led
to its wide-scale application in drug delivery. Owing to the
cationic nature of chitosan, it is generally employed for
the delivery of nucleic acids to lung cancer cells. Chitosan
in dry powder form was evaluated as a carrier for
intratracheal delivery of pCMV-Mup-encoding murine
interferon-f in mice pre-infused with appropriated doses
of CT26 cells [43]. The system attained therapeutic levels
at the target site at lower dosage level and improved the
mean survival time of mice to a significant extent. In
another similar study, Okamoto et al. in 2003 used low
molecular weight chitosan as a vector for delivering
pCMV-Luc gene into the lung cancer cells through nasal
administration into the mice model [44]. This system
exhibited high transfection rate and higher expression of
the luciferase protein in the cells lining the walls of the
bronchioles.

Though chitosan has produced significant results in
delivery of siRNA into H1299 lung cancer cell lines, its
in vivo application is limited because of its interaction
with extracellular molecules such as hyaluronic acids.
To avoid such non-specific interactions, Varkouhi et al.
in 2010 introduced thiol groups in trimethyl chitosan
(TMC) [45]. The siRNA/thiolated chitosan polyplex sys-
tem attained 60% to 80% gene silencing activity in
H1299 human lung cancer cells and has been carried
over for in vivo evaluations.

While considering chitosan as carriers for pulmonary
delivery of chemotherapeutic drugs, a derivative of chi-
tosan with groups capable of encapsulating the drug is
to be introduced. The most common anticancer drug
administered for NSCLC is paclitaxel (PTX). A chitosan
derivative, ie., N-((2-hydroxy-3-trimethylammonium)
propyl)chitosan chloride (HTCC) was investigated as
carrier for PTX by Lv et al. in 2011 [46]. The nanocarrier
synthesized had a diameter of 130 nm (roughly) with high
PTX loading efficiency. These PTX-loaded HTCC nano-
particles (HTCC-NP:PTX) were assessed for in vitro cyto-
toxicity and they exhibited preferential accumulation in
subcutaneous tumor tissues as a result of enhanced per-
meability and retention (EPR) effect.

A second generation drug, gemcitabine, has been ef-
fective in NSCLC treatment; and in order to attain
effective delivery of gemcitabine to NSCLC cells, Ventura
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et al. in 2011 came up with chitosan-dextran-based
delivery system [47]. In this approach gemcitabine was en-
capsulated in chitosan microspheres with different amount
of dextran sulfate by spray-drying technique. The nano-
particle construct was found to have porous surface
morphology with a size range of 1 to 5 um. The addition
of dextran sulfate improved the release profile to a
prolonged duration of 30% over 4 days from 70% in 30
min. The cytotoxicity of the construct was carried out
in vitro on human lung cancer cell line A549.

Dendrimers

Dendrimers has its own significance in the field of cancer
therapeutics and diagnosis [48]. The word dendrimer has
its origin from two Greek words, the word dendron, mean-
ing tree, and meros, meaning part. It is by virtue of its
unique branched, multivalent, globular architectural design
that it has extensive medical applications such as drug de-
livery, gene transfection, tumor therapy, and diagnostics.
The feasibility of extensive range of surface function-
alization of dendrimers with targeting, therapeutic and
diagnostic molecules provides scope for effective therapy
and diagnosis of lung cancer. A schematic representation of
dendrimer-based theranostic system is depicted in Figure 2.

The dynamics of cellular entry and ibuprofen delivery
by poly(amidoamine) (PAMAM) dendrimers and hyper-
branched polyol polymers has been studied in A549 hu-
man lung epithelial carcinoma cells. It was confirmed
from the study that PAMAM dendrimer was rapidly
taken by the lung carcinoma cells (A549) as compared
to that of hyperbranched polyol. Encapsulation of drug
inside these polymers led to considerably lower inflam-
matory response and resulted in increased cellular up-
take by the cells [49].

It came to news in recent past that a pharmaceutical
company named Starpharma Holdings Ltd has come
up with dendrimer-doxorubicin formulation which on
intratracheal administration to rats appears to yield
substantially higher efficacy in overcoming lung metas-
tases as compared to that of the drug alone [50].

A new class of biocompatible polyester dendrimer called
as PGLSA (poly(glycerol-succinic acid)) has also been
investigated as a carrier for water-insoluble drugs such as
camptothecin, 10-hydroxycamptothecin and 7-butyl-10-
aminocamptothecin in four different lung cancer cells. The
therapeutic potential of such system was validated against
human colorectal adenocarcinoma, breast adenocarcinoma,
non-small cell lung carcinoma, and glioblastoma cells. An
improved cellular uptake and retention of these anticancer
compounds were observed in cancer cells [51].

A new approach to deliver nucleic acids by means of
dendrimers came into existence when a research group
reported enhanced penetration efficiency and improved
stability of small interfering RNA (siRNA) by utilizing
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surface-engineered poly(propyleneimine) (PPI) dendrimers.  delivery system. In addition to these, a synthetic analog of
The siRNA nanoparticles were covered by a dithiol con-  luteinizing hormone-releasing hormone (LHRH) peptide
taining cross-linker molecules, followed by a layer of PEG ~ was attached at the distal end of PEG polymer which aided
polymer in order to confer lateral and steric stability to the in cancer cell-specific delivery of siRNA. The high
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specificity and efficacy of these nanoparticles were further
reinforced by in vivo experiments [52].

Apart from polycationic polymer such as poly
(ethyleneimine)(PEI) and chitosan, PAMAM is one an-
other emerging polycationic polymer used for interference
RNA (iRNA) delivery. The additional edge that reducible
hyperbranched (rHB) PAMAM could provide over PEI is
that it carries variable ratios of reducible and non-
reducible disulfide linkages. A group led by Rahbek in
2010 successfully transfected H199 human lung cancer
cell line with pre-miRNA EGFP by a similar rHB-based
formulation [53].

In recent past, Liu et al. in 2010 have successfully
conjugated lung cancer-targeting peptide (LCTP) and
fluorescent-labeled molecule (FITC) on the surface of
acetylated derivative of PAMAM (4G) dendrimer [54].
This system demonstrated time- and concentration-
dependent cellular uptake under in vitro conditions and
in athymic mice, it was thus established as a promising
drug carrier for targeted cancer nanotheranostics.

Poly(N-2-hydroxyethyl)-D,L-aspartamide

The need for delivery of combinational drugs to overcome
lung carcinoma has introduced new class of polymers
such as poly(N-2-hydroxyethyl)-D,L-aspartamide (PHEA).
A research group headed by Licciardi et al. in 2012 synthe-
sized PHEA copolymer carrier in a two-step synthesis
mechanism [55]. The spherical PHEA microparticles had
an average diameter of 1 to 3 pm which were loaded with
beclomethasone dipropionate (BDP) and flutamide. The
system was investigated under in vitro conditions for
studying its release profile, extent of mucoadhesion and
enzymatic degradation over bronchial epithelial cells
(16HBE) which further showed a considerable extent of
success as compared to conventional carrier molecules.

Poly(ethyleneimine)

In regard with gene therapy for cancer cells, the polymer
under extensive use for this purpose is PEI due its ability
to form highly stable polyplexes with nucleic acids. In
order to improve the hydrophobicity of PEI-based deliv-
ery system and thereby enable its easier transit across
the membrane, cholesterol molecule has been linked to
PEIL. The lung cancer cell line, A549 was successfully
transfected with green fluorescent protein by this PEI-
Cho I/DNA complex. This gene delivery system could
overcome interaction with plasma proteins which further
contributes to the improvement of its efficacy. Owing to
mucoadhesive nature of PEI, a research group investi-
gated PEI-derived aerosol system for topical gene deliv-
ery (p53) to the lungs of B16-F10 murine melanoma
mice model [23]. An increment of 50% in mean length
of survival of the in vivo model was observed. The sys-
tem was found to transfect mainly epithelial cell lining
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in the airways, with diffuse transfection in alveolar lining
cells and the tumor foci.

The most effective PEI-based gene delivery strategy
would be to target the lung cancer stem cells, the reason
being the fact that they are responsible for frequent re-
currence of lung cancer after chemotherapy or radio-
therapy. Such targeted delivery of microRNAs (miR145)
to CD133 marker screened lung adenocarcinoma stem
cells was reported by Chiou et al. in 2012. They adapted
polyurethane-short branch-polyethylenimine (PU-PEI)
as favorable carrier for microRNAs. The delivered
miR145 specifically suppressed the stem cell-like prop-
erties and render them susceptible to chemotherapy or
radiotherapy [56].

A PEl-based carrier for delivery of therapeutic gene
which suppresses the expression of metastatic signals by
lung cancer cells was investigated by Zhou et al. in 2011.
They used heparin-conjugated PEI for the delivery of
therapeutic gene pIL15 (encoding interleukin-15) in mur-
ine models of lung metastasis. The post-treatment thera-
peutic assessment indicated apoptosis and inhibition of
cell proliferation in lung tumor foci, which could curb the
growth of cancer cell mass to a great extent [57].

Though PEI-based gene delivery systems exhibit high
transfection efficiency in lung cancer models, they have
been associated with toxicity which limits their in vivo
application. In search of an alternative, Hong et al. in
2012 developed glycerol triacrylate-spermine (GT-SPE),
a polyspermine as a nanosized gene carrier for transfec-
tion of lung cancer cells with small hairpin Aktl
(shAktl) RNA. The delivery of shAktl in a K-ras (LA1)
lung cancer mice model was found to induce apoptosis
in target lung cancer cells [58].

Poly(ethylene glycol)

PEG is a biocompatible hydrophilic polymer, which is in-
culcated in polymeric drug carriers to prolong their resi-
dence time in body to decrease their susceptibility to
metabolic enzymes and lower their immunogenicity.
Only in rare instances, it has been used as such for de-
livery of therapeutic drugs to pulmonary cells, whereas
most of the time it forms a component of a copolymeric
carrier molecules.

In a recent study by Guthi et al. in 2010, a multi-
functional PEG-b-PDLLA (poly(D,L-lactide) micelle system
grafted with LCTP was loaded with SPIONs and doxo
[59]. The formulation exhibited a,Bs-dependent cell
targeting towards H2009 lung cancer cells with very good
specificity. The integrated multifunctional micelle (MFM)
theranostic design enables image-guided targeted delivery
of therapeutic agents to lung cancer. Considering the pit-
fall such as stability of such micellar systems, Tan et al. in
2012 used diblock copolymers of PEG and PE to encapsu-
late hydrophobic drug molecules such as quercetin. The



Sukumar et al. International Nano Letters 2013, 3:45
http://www.inl-journal.com/content/3/1/45

stand out aspect of such a system from other conventional
ones is that it is sensitive to overexpression of lactose de-
hydrogenase enzymes which is a characteristic feature of
human lung cancer cell lines (A549). The incorporation
efficiency of the drug quercetin was estimated to be
around 89% in the nanomicelles. The other significant as-
pect of this micellar nanoparticle formulation is its unique
stability at both highly acidic pH (1.2) and at pH of 7.4
which further channelizes the drug specifically to lung
cancer cells [60].

PEGylated phospholipid-polyaminoacid conjugate co-
polymer has also been used for efficient delivery of
Beclomethasone dipropionate (BDP) to lung carcinoma
cells. The amphiphilic nature of this polymer enabled it
to form micelles in an aqueous solution with BDP once
the polymer concentration attains critical micelle con-
centration of 1.23 x 10”7 M. The formulation with drug
(3.0 wt.%) loaded within it was evaluated on human
bronchial epithelium (16HBE) for its cytotoxicity and
drug release profile. In another similar study, cross-
linked PEG thiol with 1,6-hexane-bis-vinylsulfone
(HBVS) was verified as a stable nanogel for pulmonary
cancer cell-targeted therapy. The construct was validated
with a fluorescent dye HiLyte Fluor 750 (AnaSpec Inc.,
Fremont, CA, USA) and was confirmed by a suitable im-
aging system [61].

PEG-based copolymeric systems for lung cancer therapy
Of the few PEG-based copolymeric drug delivery systems,
the most successful ones have been PEG-PCL and PEG-
PEI. A marked improvement in the transfection efficiency
of PEl-based gene delivery polymers against the lung
tumor cells was attained by Kleemann et al. in 2005 when
they conjugated protein transduction domain, i.e., HIV-1
TAT over PEI through heterobifunctional PEG spacer
molecules [62]. The efficacy of TAT-PEG-PEI composite
was tested by the level of expression of luciferase in A549
cells and in mice after intratracheal instillation. The
in vivo study provided significant expression of reporter
genes in bronchial and alveolar tissues. A novel biodegrad-
able polymeric carrier molecule consisting of PEI-PEG co-
polymer was employed for Aktl shRNA delivery in lung
cancer cells by Dhananjay et al. in 2008. The Aktl
shRNA-mediated silencing of oncoprotein Aktl induced
specific apoptosis in lung cancer cells. It was established
from their study that the new system under investigation
demonstrated nearly 1.5 times higher level of transfection
as compared to that of standard PEI [63].

A customizable polymer carrier based on PEG and PCL
microparticles was initially studied for its ability to be
tuned to deliver a wide range of drug molecules. A bio-
compatible side chain is grafted on this PEG-PCL core mi-
croparticle depending upon the nature of drug to be
incorporated. The addition of stearic acid to the construct
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enabled sustained and prolonged delivery of 10-
hydroxycamptothecin to A549 cell line. In the same man-
ner, a PEG-PCL copolymer micelle with norcantharidin
entrapped within was fabricated by self-assembly and was
supplemented to A549 cell line. The same construct was
infused into mice bearing S180 sarcoma and was found to
have high efficacy [64]. At times when PCL alone would
serve the purpose, a PCL loaded with zinc phthalocyanine
(ZnPc) nanoparticles of 187.4 + 2.1 nm diameter was fabri-
cated by Fadel et al. in 2010 with a purpose to evaluate its
photodynamic therapy against human lung adenocarcin-
oma. The carrier was investigated for this efficacy against
A549 cells and demonstrated encapsulation efficiency of
67.1% + 0.9%. Exposure of the treated cells to red light
(600 nm) for a time period of 24 h eliminated about
95.9% + 1.8% of A549 cells [65].

Paclimer
A standard formulation called paclimer (Guilford Pharma-
ceuticals Inc., Baltimore, MD, USA) was developed to pro-
vide gradual and sustained systemic levels of the PTX for
a prolonged period. In this formulation, polilactofate poly-
mer was loaded with PTX (10%) drug (Paclimer). This for-
mulation was developed by Harper et al. in 1999 who later
assessed its efficacy in treatment of NSCLC. The two crit-
ical factors about paclimer microspheres which has
endowed them with distinct recognition are their nano-
scale dimension (in the range of 20 to 200 nm) and the
other is their slow and sustained-release profile (approxi-
mately 1% to 2% per day for around 90 days) [66].
Another such standard nanoparticle formulation spe-
cific for lung cancer cells, called expansile, was devel-
oped by Griset et al. in 2009. It was validated against
Lewis lung carcinoma cells in murine models. It was en-
abled with a unique potential to release drug payload in
response to highly acidic pH present in the vicinity of
cancer cells [67]. Once the nanoparticle arrives at
endosomes following uptake by the cells, the acidic con-
ditions that prevail therein degrade the acid-labile
hydrophobic protecting groups on the polymer, which
leads to swelling of the polymeric nanoparticle and re-
lease of its payload. This system thus attained effective
reduction in bystander effects of drugs. In another simi-
lar work by Zubris et al. in 2012, a pH-responsive hydro-
gel loaded with PTX expansile was synthesized and was
concluded to be a promising system for targeted delivery
to pulmonary lung adenocarcinoma cell lines (A549)
[68].

Metal nanoparticles-based approaches

In the present world, we regularly come in contact with
metal nanoparticles through various means, such as
water, food, cosmetics, and medicine, as they are widely
used in a variety of everyday appliances. Some of these
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nanoparticles have showed cytotoxic effects on lung
cells. However, their cytotoxicity depends on various fac-
tors, including size, concentration, and time of exposure.
A precise control over these parameters can enable their
application in lung cancer therapy and diagnosis. Some
of the commonly used metal nanoparticles in lung can-
cer therapy and diagnosis are as follows (Table 2):

Gold nanoparticles

Among all nanoparticles, gold nanoparticles (Au NPs)
have been extensively studied for lung cancer therapy and
diagnosis. Au NPs either alone or in conjugation with
other molecules are widely used in medicines, biomedical
applications, bioimaging, and photothermal therapy.

A photothermal therapeutic agent has been developed
using hollow Au/Ag nanostructures with a dendritic
morphology for the destruction of A549 lung cancer cells
[82]. Similarly, studies had been done to find out the com-
parative efficiency of Au-based nanomaterials (silica@Au
nanoshells conjugated with antibody, Au/Ag hollow
nanospheres, and Au nanorods) for the photothermal de-
struction of various tumor cells including A549 lung can-
cer cells using a continuous-wave near-infrared laser [83].
Moreover, Au NPs in conjugation with methotrexate, an
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analog of folic acid, also produced a cytotoxic effect in
LL2 (Lewis lung carcinoma) [84].

Most of the conventional diagnostic strategies available
for lung cancer are expensive and less accurate. So a
novel technique has been developed for the diagnosis of
lung cancer from exhaled breath sample by using an
array of sensors based on Au NPs. The composition of
volatile organic compound in exhaled breath is different
in healthy human being as compared to lung cancer pa-
tient. About 42 volatile organic compounds have been
identified, which are used as lung cancer biomarkers
[85]. Similarly, hollow gold nanospheres (HGNs) have
been used to develop a highly sensitive and fast im-
munoassay technique for the lung cancer detection
which is 100 to 1,000 times more sensitive than enzyme-
linked immunosorbent assay having a limit of detection
1 to 10 pg/mL. This surface-enhanced Raman scattering
(SERS)-based immunoassay technique utilizes the HGNs
for the immunoanalysis of lung cancer marker, carci-
noembryonic antigen, while magnetic beads are used as
an immunocomplex-supporting substrate [86].

An electrochemical-based immune sensor technique
has been developed to quantitatively test human lung
cancer-associated antigen by using a (alpha-enolase)

Table 2 Metal-based nanoparticles for pulmonary delivery of therapeutic or imaging agents

Carrier molecule Therapeutic/imaging agent Model system under study Ref
CNT
CNT-gold hybrid Doxorubicin-HCI A549 cell line [69]
SWCNT HDL-stabilized semiconducting SWCNT NCI-H460 cell line [70]
(photodynamic and photothermal effect)
DEX-MWCNTs Doxorubicin-HCl A549 lung epithelial cancer cell line [71]
SWCNT-graphene oxide Paclitaxel A549 and NCI-H460 cell lines [72]
Amino-functionalized MWCNT SiRNA Human lung xenograft model [73]
Calcium phosphate
Dicalcium phosphate dihydrate (DCPD) Magnetic dicalcium phosphate dihydrate A549 and HFL1 (human lung fibroblast) cell lines [74]
(hyperthermia cancer therapy)
PeGylated calcium phosphate siRNA, doxorubicin Human small airway epithelial cells (SAEC), A549, [75]
nanoparticles H520, H292, and SKLU-1 (human NSCLC) cell lines
Lipid/calcium/phosphate nanoparticle Gemcitabine triphosphate H460 (human NSCLC cells) and female nude mice [76]
platform
Lipid-coated calcium phosphate SIRNA NCI-H-460 human lung cancer cells line, Female [77]
nanoparticle athymic nude.
B16F10 melanoma cells, C57BL/6 mice [78]
DOPA-coated calcium phosphate SIRNA Human H460 lung cancer cells [79]
nanoparticle
Magnetic nanoparticles
Fe304 Lac Z and enhanced green fluorescence Mice osteoblast and He99 lung cancer cell line [80]

Thermally cross-linked
superparamagnetic iron oxide
nanoparticles (TCL-SPIONs)

protein gene (EGFG)
Doxorubicin, Cy 5.5

Tumor-bearing mice

CNT, Carbon nanotubes; SWCNT, Single-wall carbon nanotubes; MWCNT, Multiwall carbon nanotubes; HDL, High-density lipoprotein; DEX, Dexamethasone; DOPA,

Dioleoylphosphatydic acid.
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ENOI1 antibody conjugated to Au NPs for lung cancer
diagnosis [87]. Similarly, based on electrochemical and
contact angle measurements, a highly sensitive and rap-
idly identifying method has been demonstrated for de-
tection of different cancer cells including lung cancer
[88]. Moreover, Medley et al. in 2008 utilized the Au
NPs - conjugated aptamer for the calorimetric assay for
the direct visualization/detection of cancerous cell in-
cluding lung cancer cell [89].

Recently, Barash et al. in 2012 proposed a nanodevice
based on gold NPs sensors that classify the lung cancer
histology by detecting the lung cancer-specific patterns of
volatile organic compound profiles. It is capable to differ-
entiate between healthy and lung cancer cell, small and
non-small cell lung cancer and subtypes of NSCLC [90].

Silica nanoparticles

Silica nanoparticles are widely used in various biomedical
applications, such as biosensors for biomolecular assay,
biomarkers for tumor identification, and drug/DNA deliv-
ery agents in cancer therapy because of its biocompatibil-
ity and rapid renal clearance. It has been reported that the
A549 lung cancer cells specifically taken up the multifunc-
tional magnetic nanoparticles such as cobalt ferrite, encap-
sulated inside silica shell along with imaging agent, i.e.,
organic dye (FITC), and a tumor-targeting antibody (Ab
CD-10) [91]. Similarly, Zhang et al. in 2010 developed a
molecular imaging agent to detect a single miRNA in lung
cancer cells. In this work, Ru(bpy)%+ fluorescent metal
complexes were encapsulated in silica sphere with thin sil-
ver shell to enhance emission intensity and photostability
of the complex [92].

Inorganic layered metal hydroxide nanopatrticles

Layered metal hydroxide (LMH) nanoparticles having
diameter of 200 nm is made up of anionic clay coated
with positively charged metal hydroxide. It can be used
as an efficient drug/gene delivery system in tumor ther-
apy because of its biocompatibility and efficient cellular
uptake via clathrin-mediated endocytosis and EPR.
These LMH nanoparticles below 250 pug/mL concentra-
tion for a time duration of 48 h is more cytotoxic to
lung cancer cells as compared to normal lung cells,
whereas at higher concentration of LMH, i.e., 250 to 500
pg/mL for a span of 72 h, tumor cells were observed to
suffer from oxidative stress and membrane damage [93].

Neodymium oxide nanoparticles (rare earth elements)

Neodymium, one of the rare earth elements, is found to
be cytotoxic against cancer cells [94]. The micromolar
concentration of this nanosized neodymium oxide (nano
Nd,O3) has been found to induce extensive autophagy
and massive vacuolization in NSCLC cells (NCI-H460).
Apart from this, it also arrests cell cycle in S phase by
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perturbing the mitochondrial membrane potential and
ceasing the activity of proteasome [95].

Silver nanopatrticles

The cytotoxicity of silver nanoparticles (Ag NPs) to vari-
ous cell lines is effectuated by apoptosis and necrosis
mechanisms, which are in turn fostered by altering mem-
brane structure and up-regulating apoptotic signaling
molecules [96,97]. The cytotoxicity of these nanoparticles
depends on their shape, size, surface chemistry, etc., as
spherical silver nanoparticles and microparticles are
almost non-toxic to human alveolar epithelial cells, while
silver wires shows strong cytotoxicity against it [98].

The only drawback that withholds extensive applica-
tion of silver nanoparticle is its poor biocompatibility to
the in vivo system. In one recent work to overcome this
problem, a significant improvement in biocompatibility
of silver NPs was observed when they were organically
modified by capping them with stem latex from medi-
cinal plant, Euphorbia nivulia. These NPs are found to
be cytotoxic against human lung carcinoma cells (A549)
in a dose-dependent manner [99]. The peptide and ter-
penoid contents of the latex help in the synthesis of
latex-capped silver nanoparticles (LAg NPs), which
transverse the cell membrane and can be used as a bio-
compatible carrier for the NPs.

Nanodiamond

Nanodiamond (ND), a carbon nanomaterial, is non-toxic
and biocompatible as it does not induce cytotoxicity in
lung cells and can be used in biomedical application such
as labeling and tracking of cancer cells [100,101]. These
NPs get conjugated with various chemicals, biomolecules,
and anticancer drugs via covalent or non-covalent bonds.
ND is used in lung cancer therapy, by covalently conjugat-
ing it with the PTX. This complex, when infused into
xenograft of severe combined immunodeficiency mice,
inhibited tumor growth and lung cancer cell formation by
inducing mitotic arrest and apoptosis [102].

Iron oxide nanoparticles

Supermagnetic iron oxide is widely used as a MRI con-
trasting agent, which, if combined with a suitable carrier
and targeting agents, can be used for cancer theranostic
applications. In an attempt to develop such a theranostic
system for lung cancer, these NPs, along with the antican-
cer drug doxo, were encapsulated within MFM system. In
order to achieve lung cancer cell specific delivery of these
micellar complex, LCTP was grafted onto its surface [59].
Similarly, a biocompatible and water-soluble theranostic
anticancer drug delivery carrier has been prepared by
conjugating fluorescent polymer chain (polymethacrylic
acid) and folic acid with magnetic silica/iron oxide
nanocomposites. The folic acid introduced into the system
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aids in targeted delivery of drugs, whereas the
polymethacrylic acid serves as imaging agent [103].

Other metal-based anticancer drugs

Cisplatin is a transition metal complex containing plat-
inum metal ion in its center. This metal complex is widely
used as an effective anticancer drug [104,105]. The anti-
cancer drug cis-diamminedichloroplatinum(Il) (DDP, cis-
platin) is used against different types of tumors, but its use
is limited as it lacks tumor-specific targeting and leads to
severe side effects in post-administration phase. Peng et al.
in 2011 reported the synthesis of biocompatible epidermal
growth factor receptor (EGFR)-targeted heparin-DDP
nanoparticles by conjugating single-chain variable frag-
ment anti-EGFR antibody (ScEVEGEFR) to it as targeting
ligand for lung cancer [106]. Moreover, it had been found
that the anti-microtubule agents, noscapine (nos), syner-
gistically enhance the anticancer activity of cisplatin for
the treatment of A549 and H460 lung cancer cells and
in vivo in murine xenograft model by increasing the ex-
pression of apoptotic-related proteins, which suggests its
application for lung cancer therapy [107].

Recently, ruthenium complexes have emerged as a
new class of metal-based anticancer drugs because of
their low toxicity and more effectiveness than platinum-
based drugs. A small number of such ruthenium-based
anticancer drugs have passed phase I clinical trials. In
one such instance, hexanuclear self-assembled arene-
ruthenium nano-prismatic cages were synthesized which
showed cytotoxicity against A549 cell line by interfering
the cell cycle regulatory pathways via apoptosis [108].

Bio-nanoparticles-based approaches

Though metal-based nanotherapeutic system has been
the major subject of research, when it comes to their
in vivo application for lung cancer treatment, its toxicity
and biocompatibility remain a concern to be addressed.
In order to overcome these two issues, current re-
searchers have shifted their focus towards utilizing the
bio-nanotechnology-based therapeutic system, wherein a
pre-existing biological system/component is integrated
to the therapeutic nanoparticles. Inclusion of such bio-
logical system/component renders the system with im-
proved stability and biocompatibility. In the recent past,
such systems have been successfully devised and
targeted specifically to lung cancer cells, few of those
which deserve mention are as follows (Table 3):

Apoferritin

Ferritin is a protein nanocage composed of self-
assembling 24 polypeptide subunits having internal and
external diameters of 8 and 12 nm, respectively. When the
iron core is removed, the hollow protein cage left is called
as apoferritin which undergo assembly and disassembly

Page 11 of 17

with the change in pH. This property is further exploited
for its use as a template for the synthesis of variety of
nanoparticles which would be used for various cancer
theranostic applications. These apoferritin-encapsulated
nanoparticles enter into target tumor cell by receptor-
mediated endocytosis [123], clathrin-mediated endocyto-
sis, and macropinocytosis process [124]. In course with
such findings, Li et al. in 2012 constructed a ferritin-based
multifunctional nanostructure that would be used for the
diagnosis of human lung adenocarcinoma A549 cells by
fluorescence and MR imaging [116].

The antioxidant enzymes present inside the human
body, such as superoxide dismutase (SOD), are not cap-
able in protecting the cells from sudden oxidative damage.
So, in recent years research has been focused in the devel-
opment of artificial antioxidants that can be used to re-
duce oxidative stress and can be utilized for lung cancer
therapy. In the recent past, Liu et al. in 2012 reported that
apoferritin-CeO, nano-truffle can be utilized as artificial
redox enzyme as it mimics the SOD activity [124]. Similar
results were obtained by using apoferritin-encapsulated Pt
nanoparticles that can act as artificial antioxidant as they
mimic the biological enzymes such as catalase, peroxidase,
and SOD that can be exploited in fighting against the
ROS-mediated disease by scavenging hydrogen peroxide
and superoxide [125,126].

Viral nanoparticles

Viral nanoparticles (VNPs) emerged as an interesting
topic of research in the field of biomedical applications
specifically for drug delivery owing to their biocompatible
nature, wide range of shapes and sizes, and ease in
supporting surface modification by a variety of functional
moieties [127,128]. VNPs obtained from different sources
such as plant viruses, animal viruses, and bacteriophages
have been used in variety of biomedical applications ran-
ging from biosensing, bioimaging, to drugs/gene delivery
system and also in vaccine development [127-130].

Lung cancer developed an intrinsic and acquired drug
resistance for most of the current small molecule-based
anticancer drugs. This has shifted the focus of current
researchers to employ conventional therapies in tandem
with immunotherapeutic approaches. Such multi-faceted
therapeutic approaches have significantly reduced the
chances of developing drug resistance. One such attempt
was made by Veljanski et al. in 2012, wherein they used
conventional chemotherapeutic drug along with genetic-
ally modified oncolytic viruses (OVs) for lung cancer ther-
apy. The inability of chemotherapeutic agents to kill
cancer stem cells is well complemented by OVs-mediated
gene therapy [131].

In course with similar approach, a research group
headed by Robertson in 2011 has demonstrated the use of
engineered T4 viral nanoparticles as a molecular probe
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Table 3 Bio-nanoparticles-based carriers for pulmonary delivery of therapeutic or imaging agents

Carrier molecule Therapeutic/imaging agent Model system under study Ref
Albumin
Albumin nanoparticles Paclitaxel Phase /Il trials on patients with stage IV or recurrent [109]
NSCLC
ABI-007 (albumin-bound) Paclitaxel Phase | and pharmaco-kinetic study on patients [110]
Abraxane (albumin-bound) Paclitaxel Patients having NSCLC [111]
Hematoporphyrin-linked albumin Gamma-emitting nuclides ™T¢) A549 (human alveolar epithelial cancer cell line) [112]
nanoparticles (HP-ANP)
Albumin nanoparticles Paclitaxel, carboplatin, and Phase Il trial, patients with advanced (stage IIIB or V) [113]
bevacizumab non-squamous NSCLC
Albumin nanoparticles Paclitaxel, carboplatin Patients with stage IlIB to IV NSCLC [114]
Elderly patients with advance NSCLC [115]
Other
RGD-functionalized apoferritin Green fluorescent protein (GFP), Human lung adenocarcinoma A549 cells [116]
ferrimagnetic iron oxide nanoparticles
Gelatin nanoparticles (GPs) Biotinylated epithelial growth factor A549 and HFL1, CB-17/lcrCrl-scid-bg mice [117]
(EGF) molecules
Cholesterol (attached with cell SIRNA against p38 MAP kinase mRNA  Mouse fibroblast L929 cell line, male BALB/c mice [118]
penetrating peptide TAT(48-60), and
penetratin)
Tail-less T4 viral nanoparticles heads Cy3 and Alexa Fluor 546 A549 lung cancer epithelial cells [119]
Dimerized HIV-1 TAT peptide-based Luciferase or angiotensin Il type 2 Lewis lung carcinoma (LLC) cells cultured in vitro or [120]
nanoparticle vector (dTAT NP) receptor (AT2R), plasmid DNA (pDNA) in vivo in orthotopic tumor grafts in syngeneic mice
Dual lectins-based system N-glycopeptides (profiling as lung Serum from lung cancer patient and normal healthy [121]
cancer biomarker) person
Lactose-based spray-dried powders GPs Fine particle fraction (FPF) and mass median [122]

aerodynamic diameter (MMAD) studies

and has used the same to study uptake mechanism in lung
cancer cell (A549) [132]. They have also demonstrated its
cellular imaging and flow cytometric applications, by
bioconjugating the fluorescent dyes (Cy3 and Alexa Fluor
546) with the 100 nm-sized head of the T4 bacteriophage.
The inclusion of T4 bacteriophage provided larger surface
area for the accumulation of about 19,000 dyes/viral
nanoparticles that lead to the enhancement in the fluores-
cence of about 90% in the case of Cy3 dye.

Protein-based nanoparticles
Protein nanoparticles have been used for the drug deliv-
ery purposes either alone or in combination with bio-
degradable polymers. These nanoparticles are basically
prepared from naturally occurring protein, such as albu-
min, gelatin, gliadin, and legumin [133,134]. It had been
demonstrated that the protein-based nanoparticles
(porcine gelatin, human serum albumin) can be used as
a suitable drug and gene delivery carrier because of
their biocompatibility, high cellular uptake efficiency,
and lack of inflammation in human bronchial epithelial
cells [135].

Wiley et al. in 2009 developed a immunoprophylactic
strategies by utilizing protein cage nanoparticles (PCN)

obtained from small heat-shock protein (sHsp 16.5) of
hyperthermophilic archaeon Methanococcus jannaschii
[136].The exposure of pulmonary cell with these PCN
enhances the protective immune responses by increasing
the formation of inducible bronchus-associated lymph-
oid tissue (iIBALT) against the primary viral infection of
the lung caused by various respiratory viruses and also
restricts the pulmonary damage caused due to these im-
mune responses.

Liposomes

Oral drug delivery to pulmonary system has been ham-
pered because of low bioavailability of drugs. To over-
come this problem, a layer-by-layer assembly of
polyelectrolytes over liposomes was designed by Jain
et al. in 2012 for the administration of PTX. The PTX-
coupled stearyl amine formed the core of the nanoparti-
cle which was further overlaid with subsequent layers of
anionic poly(acrylic acid) (PAA) and then cationic poly
(allylamine hydrochloride) (PAH). Lung adenocarcinoma
cells (A549) were used to verify the efficacy of the
designed system for lung cancer treatment [58]. Another
PTX-based liposomal system was devised by solid lipid
nanoparticles (composed of glycerol palmitostearate and
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50% (w/w) polysorbate 80 to target tumors in a murine
lung cancer model. This system enabled attainment of
high PTX concentration in the target lung cancer cells
with reduced systemic toxicity and increased therapeutic
index. PTX and doxo are the most effective drugs
against lung cancer, and a range of carrier molecules has
evolved around them for effective targeted delivery [59].
Liposome-mediated drug delivery is rendered with in-
herent ability to transit across membrane barriers more
efficiently. In one such attempt to fabricate liposome-
based drug delivery system for lung cancer therapy, a
group led by Zhao L in 2011 fabricated Tween-80/
HSPC/cholesterol liposomes of 501.60 + 15.43 nm dia-
meter loaded with PTX. This system exhibited 15-fold
higher concentration of PTX as compared to when PTX
alone was administered intravenously [60].

Gene delivery to lung cancer cells has been successful
with DOTAP/cholesterol-based lipoplexes; but due to
the presence of hydrophobic moieties in such systems,
they have been associated with extensive interaction with
blood components, which leads to lower efficacy in lung
cancer treatment. In order to overcome such drawbacks,
they were grafted with PEG which stabilized and
shielded them from the blood components. The study
carried out by Gjetting et al. in 2010 established PEG-
modified DOTAP/cholesterol lipoplexes as the much
better gene delivery system as compared to that of non-
PEGylated counterpart [61].

Solid lipid nanoparticles

Solid lipid nanoparticles (SLNs) are natural or synthetic
lipid-based drug delivery system of submicron size (50
to 1,000 nm) [137]. Some common solid lipids used to
make SLNs include triglycerides (e.g., Compritol 888
ATO and Dynasan 112), carnauba wax, beeswax, cetyl
alcohol, emulsifying wax, cholesterol, and cholesterol
butyrate [138,139]. In realizing the promises and scope
of SLNs in the field of drug delivery, a detailed review
article has been published by Mehnert and Muller et al.
on SLN syntheses and characterization [140,141]. Owing
to the inherent ability of SLN to render improved bio-
availability for water insoluble drugs, they have been
successfully designed as carrier for delivery of various
anticancer drugs, such as doxorubicin, idarubicin, pacli-
taxel, camptothecins, and etoposide [142].

The lungs offer a high surface area by avoiding first-pass
effects. It also facilitates rapid drug absorption of
aerosolized drugs (in the 1 to 3 um size range) as the walls
of alveoli in the deep lung are extremely thin [143,144].
Apart from the delivery of anticancer drug by SLNs, they
have been used as efficient gene delivery system in
in vitro lung cancer cells (A549). In this work cationic
SLN was formed by mixing tricaprin (TC), 3B-[N-(N,N-
dimethylaminoethane)-carbamoyl] cholesterol (DC-chol),
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dioleoylphosphatidylethanolamine (DOPE) and Tween 80.
The fabricated SLNs were loaded with anti-microRNA for
suppression of microRNA-21 functions in human lung
cancer cells. In the recent past antitumor efficacy of SLNs-
encapsulated phospho-sulindac was examined in human
lung cancer xenograft models. The solid lipid particle
(SLP) used in this work was fabricated by variable propor-
tions of stearic acid, lecithin and phosphatidylserine [145].

SLNs have also been used to deliver radioactive con-
trast agents to diagnose any abnormality in lungs. A
group headed by Videira has synthesized **™Tc radio-
labeled SLP aerosols which were administered to adult
male Wistar rats. The radiation emitted by **™Tc was
acquired and quantized by gamma camera which was
further analyzed to arrive at the extent of **™Tc bio-
distribution. The results confirmed the feasibility of SLP
as colloidal carriers for lymphoscintigraphy or therapy
upon pulmonary delivery [146].

The feasibility of SLN as nanocarriers for delivery of
therapeutic drug and diagnostic contrast agents has been
well complemented by a study of cytotoxic effect of
SLNs on A549 cells. It has been estimated from a study
that SLN of homogenized triglycerides and phospho-
lipids on repeated inhalation exposure to BALB/c mice
were safe at concentrations lower than a 200 pg [147].

Conclusions

In spite of developing varied therapeutic and pulmonary
drug delivery strategies for lung cancer, it still remains a
leading cause of cancer-related deaths. The major draw-
backs of current lung cancer treatment procedures which
are in practice as of today are lack of tools for early diag-
nosis and ineffective drug targeting and delivery. Thus im-
provement in these aspects can help in realizing improved
lung cancer management. As evident from the discussion
in this article, material of nanoscale regime holds promis-
ing results for devising better lung cancer theranostic sys-
tems. In search of such nanoscale theranostic systems for
lung cancer, materials such as polymers, metal composites,
and other bio-nano approaches have been sought after.
Polymers form a major share of carrier molecules for pul-
monary drug delivery due to their versatile fabrication,
modification, and drug-loading ability. Metal nanoparticles
have a wide application in treatment of SCLC, specifically
in theranostic approaches, as they are capable of simultan-
eously serving the purpose of in vivo imaging agent and
carrier molecule. A critical aspect of such metal-based
nanoparticles is the toxicity associated with such formula-
tions. Considering the issue of toxicity, bio-nano ap-
proaches have gained the attention of researches in recent
past. As obvious from examples cited in this review work,
it could be easily stated that polymers still hold better
scope as a carrier for therapeutic agents. As of most effect-
ive therapeutic strategies, gene therapy-based approaches



Sukumar et al. International Nano Letters 2013, 3:45
http://www.inl-journal.com/content/3/1/45

have demonstrated the induction of carcinoma (NSCLC)
cell-specific apoptosis induction. Such gene therapy-based
approaches also lead to apoptosis of lung cancer stem cells
(chemo- and radio-tolerant cancer progenitor cells) and
thereby overcome the occurrence of tumor resurrection
after therapy. In the current scenario, lack in knowledge of
the mechanism undermining instigation and prognosis of
lung cancer eludes the researches from attaining success
at the clinical level. So, future lung cancer theranostics
would relay to a great extent on employing these unchal-
lenged mechanisms as targets for therapeutic agents.
Apart from such concerns additional aspects like
nanotoxicological issues remains to be resolved in order to
foresee effective lung cancer theranostics.
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