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Abstract. We consider a nonlinear filtering problem whereby the signal obeys the stochastic
Navier–Stokes equations and is observed through a linear mapping with additive noise. The setup is
relevant to data assimilation for numerical weather prediction and climate modeling, where similar
models are used for unknown ocean or wind velocities. We present a particle filtering methodology
that uses likelihood-informed importance proposals, adaptive tempering, and a small number of
appropriate Markov chain Monte Carlo steps. We provide a detailed design for each of these steps
and show in our numerical examples that they are all crucial in terms of achieving good performance
and efficiency.
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1. Introduction. We focus on a stochastic filtering problem where a space-
time–varying hidden signal is observed at discrete times with noise. The nonlinear
filtering problem consists of computing the conditional probability law of the hid-
den stochastic process (the so-called signal) given observations of it collected in a
sequential manner. In particular, we model the signal with a particular dissipative
stochastic partial differential equation (SPDE), which is the stochastic Navier–Stokes
equation (NSE). This model, or a variant thereof, is often used in applications to
model unknown quantities such as atmosphere or ocean velocity. In the spirit of data
assimilation and uncertainty quantification, we wish to extract information for the
trajectory of the hidden signal from noisy observations using a Bayesian approach.
Typical applications include numerical weather forecasting in meteorology, oceanog-
raphy and atmospheric sciences, geophysics, hydrology, and petroleum engineering;
see [2, 36, 6] for an overview.

We restrict to the setting where the state of interest is the time-varying velocity
field, V (x, t), in some two-dimensional bounded set Ω. The unknown state is modeled
using the stochastic NSE

(1) dV (x, t)− ν∆V (x, t)dt+B(V, V )(x, t)dt = f(x, t)dt+Q
1
2 dW (x, t),

where ∆ is the Laplacian; ν a viscosity constant; B a nonlinear operator due to
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PARTICLE FILTERING FOR STOCHASTIC NAVIER–STOKES A1545

convection; Q a positive, self-adjoint, trace class operator; f a determistic forcing;
and W (x, t) a space-time white noise as in [13]. This might appear as a restrictive
choice for the dynamics, but the subsequent methodology is generic and could be
potentially applied to other similar dissipative SPDEs, such as the stochastic Burger
or Kuramoto–Sivashinski equations [26, 9].

The evolution of the unknown state of the SPDE is observed at discrete times and
generates a sequence of noisy observations Yn = (Yt1 , . . . Ytn). In order to perform
accurate estimation and uncertainty quantification, we are interested not just in ap-
proximating a single trajectory estimate of the hidden state but also in the complete
filtering distribution,

(2) πn(•) = P [V (·, tn) ∈ •| Yn] ,

that is, the conditional distribution of the state given all the observations obtained
up to current time tn. The main objective is to compute the filtering distribution as
it evolves with time, which is an instance of the stochastic filtering problem [1]. The
solution of the problem can be formulated rigorously as a recursive Bayesian inference
problem posed on an appropriate function space [33]. In contrast to standard filtering
problems, the problem setup here is particularly challenging: The prior consists of a
complicated probability law generated by the SPDE [13], and observation likelihoods
on the high-dimensional space of the signal tend to be very informative.

The aim of this paper is to propose sequential Monte Carlo (SMC) methods
(also known as particle filters (PF)) that can approximate effectively these condi-
tional distributions. Computing the evolution of the filtering distribution πn is not
analytically tractable, except in linear Gaussian settings. SMC is a generic Monte
Carlo method that approximates the sequence of πn’s and their normalizing con-
stant P[Yn] (known in statistics as marginal likelihood or evidence). This is achieved
by obtaining samples known as particles and combining Importance Sampling (IS),
resampling, and parallel Markov chain Monte Carlo (MCMC) steps. The main ad-
vantages of the methodology are (i) it is sequential and online in nature; (ii) it does
not require restrictive model assumptions such as Gaussian noise or linear dynam-
ics and observations; (iii) it is parallelizable, so one could gain significant speedup
using appropriate hardware (e.g., GPUs, computing clusters) [35]; and (iv) it is a
well-studied principled method with an extensive literature justifying its validity and
theoretical properties; see, e.g., [15, 14]. So far, SMC has been extremely successful in
typically low to moderate dimensions [18], but its application in high-dimensional set-
tings has been very challenging mainly due to the difficulty to perform IS efficiently in
high dimensions [44]. Despite this challenge, a few successful high-dimensional SMC
implementations have appeared recently for applications with discrete time signal
dynamics [39, 49, 48, 50, 6, 10, 3].

We will formulate the filtering problem with discrete time observations and con-
tinuous time dynamics. This setup has appeared previously in [43, 42] for signals
corresponding to low-dimensional stochastic differential equations (SDEs). The aim
of this paper is to provide a novel, accurate, and more efficient SMC design when the
hidden signal is modeled by an SPDE with linear Gaussian observation. To achieve
this challenging task, the particle filter will use computational tools that have been
previously successful in similar high-dimensional problems, such as tempering [31] and
preconditioned Crank–Nicholson MCMC steps [25, 11]. Using such tools, we propose
a particle algorithm that can be used to approximate πn when the signal obeys the
stochastic NSE and the observations are linear with additive noise. On a general level,
the proposed algorithm has a similar structure to [29], but here we additionally adopt
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A1546 LLOPIS, KANTAS, BESKOS, AND JASRA

the use of IS. We will provide a detailed design of the necessary likehood informed
importance proposals and the MCMC moves used. We extend known IS techniques
for SDEs [24, 51] and MCMC moves for high-dimensional problems [46, 25, 11] to
make them applicable for filtering problems involving the stochastic NSE or other
dissipative SPDEs. In the context of particle filtering, our developments lead to an
SMC algorithm that performs effectively for the high-dimensional problem at hand
using a moderate amount of particles.

The material presented in this paper can be viewed as an extension of some ideas
in the authors’ earlier work in [31]. In [31] we considered the deterministic NSE with
more general observation equations. In the present paper the model for the signal
contains additive noise, and we assume linear observation schemes. This allows for
the possibility of using likelihood-informed importance proposals, and the MCMC
steps need to be designed to be invariant to a more complicated conditional law due
to the SPDE dynamics. The organization of this paper is as follows. In section 2
we present some background on the stochastic NSE, and in section 3 we formulate
the filtering problem of interest. In section 4 we present the SMC algorithm, and
in section 5 we prsesent a numerical case study that illustrates the performance and
efficiency of our method. Finally, in section 6 we provide some concluding remarks.

2. Background on the stochastic NSE. We present some background on the
two-dimensional stochastic NSE defined on an appropriate separable Hilbert space.
We restrict the presentation to the case of periodic boundary conditions following the
treatment in [20]. This choice is motivated mainly for convenience in exposition and
for performing numerical approximations using fast Fourier transforms (FFT). The
formulation and properties of the stochastic NSE can allow for the more technically
demanding Dirichlet conditions on a smooth boundary [21, 25]. We stress that the
subsequent particle filtering methodology is generic and does not rely on the choice
of boundary conditions.

2.1. Preliminaries. Let the region of interest be the torus Ω := [0, 2π]2 with
x = (x1, x2) ∈ Ω being a point on the space. The quantity of interest is a time-space–
varying velocity field v : Ω × [0, T ] → R2, v(x, t) = (v1(x, t), v2(x, t))′ and v(·, 0, t) =
v(·, 2π, t) due to the periodic boundary conditions; here ·′ denotes vector/matrix
transpose. It is convenient to work with the Fourier characterization of the function
space of interest,

(3) H =

u =
∑

k∈Z2\{0}

uk ψk(x)
∣∣ u−k = −uk,

∑
k∈Z2\{0}

|uk|2 <∞

 ,

using the following orthonormal basis functions for H:

ψk(x) =
1

2π

k⊥

|k|
ei k·x, k ∈ Z2\{0}, k⊥ := (−k2, k1)′.

The deterministic NSE is given by the following the functional evolution equation:

(4) dv + νAv dt+B(v, v) dt = f(t) dt, v(0) ∈ H,

Following standard notation, we denote P : (L2
per(Ω))2 → H for the Leray projector

(L2
per(Ω) is the space of squared-integrable periodic functions), A := P (−∆) = −∆

for the Stokes operator, B(u, v) = P
(
(u · ∇)v

)
for the convection mapping, and

f ∈ L2(0, T ;H) for the forcing.
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One can introduce additive noise in the dynamics in a standard manner. First,
we define the upper half-plane of wavenumbers

Z2
↑ =

{
k = (k1, k2) ∈ Z2\{0} : k1 + k2 > 0

}
∪
{
k = (k1, k2) ∈ Z2\{0} : k1 + k2 = 0, k1 > 0

}
.

Let
Zk(t) = Zrek (t) + i Zimk (t), k ∈ Z2

↑ ,

where {Zrek , Zimk } are (independent) standard Brownian motions on [0, T ]. In the
spirit of [13, section 4.1], consider a covariance operator Q such that Qψk = σ2

kψk for
σ2
k > 0, σ−k = σk. Then we can define the Q-Wiener process as

(5) Q
1
2W (t) :=

∑
k∈Z2\{0}

σkZk(t)ψk(x)

under the requirement Z−k ≡ −Zk, k ∈ Z2
↑. Thus, we are working with a diagonal

covariance matrix (w.r.t. the relevant basis of interest), though other choices could
easily be considered. We will also work under the scenario that σ2

k = O(|k|−2(1+ε))
for some ε > 0, so that

∑
k∈Z2\{0} σ

2
k <∞, i.e., Q, is trace-class operator. Finally, we

will use W(·) to denote the Q-Wiener measure on [0, T ].
Having introduced the random component, we are now interested in weak solu-

tions V =
(
V (t)

)
t∈[0,T ]

of the functional SDE,

(6) dV (t) + νAV (t) dt+B(V (t), V (t))dt = f(t) dt+Q
1
2 dW (t), V (0) = v0,

with the solution understood pathwise on the probability space (Ω,F , (Ft)t≥0,P).
More formally, following [20], we define the spaces

Vs :=

u =
∑

k∈Z2\{0}

uk ψk(x)
∣∣ u−k = −uk,

∑
k∈Z2\{0}

|k|2s|uk|2 <∞

 , s ∈ R.

Since the operatorQ1/2 is linear and bounded inH and Im(Q1/2) ≡ V1+ε [20, Theorem
6.1] implies that for v0 ∈ V1 and f ∈ C([0, T ];V1), there exists a unique solution for (6)
such that V ∈ C([0, T ];V1). In [20, 21] one may also find more details on the existence
of an invariant distribution, together with irreducibility and Feller properties of the
corresponding Markov transition kernel.

2.2. Galerkin projections and computational considerations. Using the
Fourier basis (3), we can write the solution as

V (t) =
∑

k∈Z2\{0}

uk(t)ψk(x), u−k(t) ≡ −uk(t),

uk(t) = 〈V (t), ψk〉 =

∫
Ω

V (t) · ψk(x) dx.

Hence, it is equivalent to consider the parameterization of V via {uk(t)}k∈Z2\{0}. By
taking the inner product with ψk on both sides of (6), it is straightforward to obtain
that the uk’s obey the infinite-dimensional SDE

duk(t) = −ν|k|2uk(t) dt

−
∑

m,p∈Z2\{0}

bk,m,pum(t)up(t)dt+ fk(t) dt+ σkdZk(t), k ∈ Z2
↑(7)
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A1548 LLOPIS, KANTAS, BESKOS, AND JASRA

with
bk,m,p = 〈B(ψm, ψp), ψk〉 , fk(t) = 〈f(t), ψk〉.

Recall that due to V (t) being a real field, u−k(t) ≡ −uk(t), k ∈ Z2
↑. This parameteri-

zation of V is more convenient, as it allows performing inference on a vector (even if
infinitely long), with coordinates evolving according to an SDE. For numerical pur-
poses one is forced to use Galerkin discretisations, using projections of V onto a finite
Hilbert space instead. Consider the set of wavenumbers in

L =
{
k ∈ Z2

↑ : (k1 ∨ k2) ≤ L
}

for some integer L > 0, and define the finite-dimensional subspace HL via the projec-
tion PL : H → HL so that

PLv =
∑
k∈L
〈v, ψk〉ψk.

Then, infering the Galerkin projection for V corresponds to inferring the vector
{uk(t)}k∈L that obeys the following finite-dimensional SDE:

(8) duk(t) = −ν|k|2uk(t)−
∑
m,p∈L

bk,m,pum(t)up(t)dt+ fk(t) dt+ σkdZk(t), k ∈ L.

This high-dimensional SDE will provide an approximation for the infinite-dimensional
SPDE. Such an inference problem is more standard but is still challenging due to the
high dimensionality of L and the nonlinearities involved in the summation term of the
drift function in (8). Since (8) is only an approximation of (7), it will induce a bias in
the inferential procedure. In our paper, we do not study the size of this bias. Instead,
we concentrate our efforts on designing an algorithm to approximate πn (in (2)) that is
robust to mesh refinement. This means our method should perform well numerically
when one increases L (and, indeed, reducing the bias in the numerical approximation
of (7)). Naturally this would be at the expense of adding computational effort at a
moderate amount, but this will depend on the particular numerical scheme used to
approximate the solution of (8). For instance, for the FFT-based numerical schemes
used in section 5, the computational cost is O(L2 logL).

2.3. The distribution of v0. We assume that the initial condition of V is
random and distributed according to the Gaussian process prior

(9) π0 = N (µ, β2A−α), α > 2, β > 0, µ ∈ V1

with hyperparameters α, β affecting the roughness and magnitude of the initial vector
field. This is a convenient but still flexible enough choice of a prior; see [13, sections
2.3 and 4.1] for more details on Gaussian distributions on Hilbert spaces. Notice that
π0 admits the Karhunen–Loève expansion

π0 = Law

 ∑
k∈Z2\{0}

(
µk + β√

2
|k|−α ξk ψk

)
with µk = 〈µ, ψk〉, k ∈ Z2

↑ (so, necessarily, (µ−k = −µk, k ∈ Z2
↑) and

Re(ξk) , Im(ξk)
iid∼ N (0, 1), k ∈ Z2

↑ ; ξ−k = −ξ−k, k ∈ Z2
↑.

Since the covariance operator is determined via the Stokes operator A, one can easily
check that the choice α > 2 implies that for v0 ∈ V1, π0-a.s.; thus, the conditions for
existence of weak solution of (6) in [20, Theorem 6.1] are satisfied a.s. in the initial
condition. Notice that sampling from π0 is straightforward.
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3. The stochastic filtering problem. In section 2 we defined the SPDE pro-
viding the unknown signal, i.e., the object we are interested in performing Bayesian
inference upon. In this section we present the nonlinear filtering problem in detail.
We begin by discussing the observations. We assume that the vector field V is un-
known but generates a sequence of noisy observations Yn = (Yt1 , . . . Ytn) at ordered
discrete time instances (tp)p=1,...,n with tn < tn+1 < T for all n, with Yti ∈ Rdy , for
dy ≥ 1. Each observation vector Yti is further assumed to originate from the following
observation equation:

(10) Ytn = FV (tn) + Ξn, Ξn ∼ N (0,Σ),

where F is a bounded linear operator F : H → Rdy and Σ ∈ Rdy×dy is symmetric
positive-definite. One can then write the observation likelihood at instance tn as

p(Ytn |V (tn)) =

exp

(
− 1

2

∣∣∣Σ− 1
2 (Ytn − FV (tn))

∣∣∣2)
(2π)dy/2 |Σ|1/2

.

Using a linear observation model is restrictive, but it does include typical observation
schemes used in practice. We focus our attention on the case when Ytn is a noisy
measurement of the velocity field at different fixed stationary points xl ∈ Ω, l =
1, . . . , p. This setting is often referred to as Eulerian data assimilation. In particular,
we have that

F = (F ′1, . . . , F
′
p)
′

with Fl denoting a spatial average over a (typically small) region around xl, l =
1, . . . , p, say Bxl

(r) = {x ∈ Ω : |x− xl| ≤ r}, for some radius r > 0; that is, Fl is the
integral operator

(11) FlV (t) =
1

|Bxl
(r)|

∫
Bxl

(r)

V (t, x)dx

with |Bxl
(r)| denoting the area of Bxl

(r). In what follows, other integral operators
could also be similarly used, such as FlV (t) = (

∫
Ω
V (t, x)wxl

(x)dx)/(
∫

Ω
wxl

(x)dx),
with wxl

∈ L2(Ω) being appropriate weighting functions that decay as |x− xl| grows.
Earlier in the introduction, the filtering problem was defined as the task of com-

puting the conditional distribution πn(·) = P[V (tn) ∈ ·|Yn]. Due to the nature of
the observations, it is clear we are dealing with a discrete time filtering problem. A
particular challenge here (in common with other typical nonlinear SPDEs) is that the
distribution of the associated Markov transition kernel, P[V (tn) ∈ ·|V (tn−1) = v], is
intractable. Still, it is possible to simulate from the unconditional dynamics of V (t)
given V (tn−1) = v using standard time discretization techniques. (The simulated
path introduces a time discretization bias, but its effect is ignored in this paper.)

We aim to infer the following posterior distribution based on the continuous time
signal

Πn(·) = P [V n ∈ ·| Yn] , V n := (V (t))t∈[0,tn] ;

we also denote

V nn−1 = (V (t))t∈(tn−1,tn].
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This data augmentation approach—when applying importance sampling on continu-
ous time—has appeared in [25] for a related problem and in [43] for filtering problems
involving certain multivariate SDEs. We proceed by writing the filtering recursion for
Πn. We denote the law of V in (6) for the time interval between tn−1 and tn as

Vnn−1( · |v) := P
[

(V (t))t∈(tn−1,tn] ∈ ·
∣∣V (tn−1) = v

]
.

Then one may use Bayes’s rule to write Πn recursively as

(12)
dΠn

d
(
Πn−1 ⊗ Vnn−1

) (V n) =
p (Ytn |V (tn))

p(Ytn |Yn−1)
,

where p(Ytn |Yn−1) =
∫
p(Ytn |V (tn))[Πn−1 ⊗ Vnn−1](dV n).

In addition, one can attempt to propose paths from an appropriate SPDE different
from (6), say

dṼ (t) + νAṼ (t)dt+B(Ṽ (t), Ṽ (t))dt

= Q
1
2 g(t, Ṽ (t))dt+ f(t) dt+Q

1
2 dW (t), t ∈ (tn−1, tn],(13)

where g : [0, T ]×H 7→ H and Q
1
2Wt is a Q-Wiener process on (tn−1, tn]. We define

Qnn−1( · |v) := P
[
Ṽ nn−1 ∈ ·

∣∣Ṽ (tn−1) = v
]
.

One needs to ensure that the change of drift g is appropriately chosen so that a Gir-
sanov theorem holds and Vnn−1(·|v) is absolutely continuous with respect to Qnn−1(·|v)
for all relevant v with the recursion in (12) becoming

(14)
dΠn

d
(
Πn−1 ⊗Qnn−1

) (V n−1, Ṽ nn−1) ∝ p(Ytn |Ṽ (tn)) ·
dVnn−1

dQnn−1

(Ṽ nn−1|V (tn−1)).

Here (V n−1, Ṽ nn−1) are assumed to be typical elements of the sample space of either
of the two probability measures above (e.g., all such paths are assumed to possess
relevant continuity properties at tn−1).

In the context of particle filtering and IS, one aims to design g in a way that the
proposed trajectories are in locations where Πn is higher. This in turn implies that
the importance weights in (14) will exhibit much less variance than the ones from the
prior signal dynamics; hence, the design of g is critical for generating effective Monte
Carlo approximations.

4. Particle filtering. We are interested in approximating the distribution Πn

using a particle filter approach. We present in Algorithm 1 a naive particle filter
algorithm that provides the particle approximations:

ΠN
n =

N∑
j=1

W i
nδV i or Π̄N

n =
1

N

N∑
j=1

δV̄ i .

Such a particle filter will be typically overwhelmed by the dimensionality of the prob-
lem and will not be able to provide accurate solutions with a moderate computational
cost. When g = 0 in 13, the algorithm corresponds to a standard bootstrap particle
filter. For the latter, it is well known in the literature [6, 44] that it exhibits weight
degeneracy in the presence of large dissimilarity between Πn−1⊗Vnn−1 and Πn, which
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Algorithm 1. A Naive Particle Filter.

• Initialize V i0 ∼ π0, 1 ≤ i ≤ N .
• For n ≥ 1

1. For i = 1, . . . N : sample independently:

Ṽ n,in−1 ∼ Qnn−1( · |V (tn−1)i).

2. For i = 1, . . . N : compute importance weights:

W i
n ∝ p(Ytn |Ṽ (tn)i) ·

dVnn−1

dQnn−1

(V n,in−1|V (tn−1)i), s.t.

N∑
i=1

W i
n = 1.

3. For i = 1, . . . N : resample:

V n,i ∼
N∑
j=1

W j
n δ(V n−1,j ,Ṽ n,j

n−1)( · ).

can be caused in our context by the high dimensionality of the state space and the
complexity of the SPDE dynamics. When g is well designed, the particles can be
guided in areas of larger-importance weights, and the algorithmic performance can be
considerably improved, but this modification may still not be sufficient for obtaining
a robust and efficient algorithm.

In the remainder of this section, we will discuss how to improve upon this first
attempt to tackle the high-dimensional filtering problem at hand using the follow-
ing ingredients: (i) specifying a particular form of g in (13) that results in gains of
efficiency, (ii) using adaptive tempering, and (iii) MCMC moves. Guided proposals
and tempering are employed to bridge the dissimilarity between Πn−1 ⊗ Vnn−1 and
Πn. The MCMC steps are required for injecting additional diversity in the particle
population, which would otherwise diminish gradually due to successive resampling
and tempering steps. The method is summarized in Algorithm 2. In the following
subsections, we explain in detail our implementation of (i)–(iii) mentioned above.

4.1. Likelihood-informed proposals. In the importance weight of (14) we are
using a Girsanov theorem and assume absolute continuity between SPDEs (13) and
(6) when started at the same position. Under the assumption

(15) P
[ ∫ T

0

‖g(t, V (t))‖2 dt <∞
]

= 1,

absolute continuity indeed holds, and we have Radon–Nikodym derivative

log
dVnn−1

dQnn−1

(Ṽ nn−1|V n−1(tn−1))

= −
∫ tn

tn−1

〈Q 1
2 g(t, Ṽ (t)), Q

1
2 dW (t)〉0 − 1

2

∫ tn

tn−1

∥∥∥Q 1
2 g(t, Ṽ (t))

∥∥∥2

0
dt,

where
〈u, v〉0 := 〈Q− 1

2u,Q−
1
2 v〉 ≡

∑
k∈Z2\{0}

1
σ2
k
〈u, ψk〉〈v, ψk〉;
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Algorithm 2. Adaptive Particle Filtering Algorithm.

• At n = 0. For i = 1, . . . , N , sample i.i.d. V i0 ∼ π0, and set W i
0 = 1/N .

• At time n ≥ 1.
1. For i = 1, . . . N : sample independently

Xi
n ∼ Qnn−1( · |V n−1,i(tn−1))

2. Set l = 0, Xi
n,0 = Xi

n, Πn,0 = Πn−1 ⊗Qnn−1, φn,0 = 0.
3. While φn,l < 1

(a) Set l← l + 1
(b) Specify Πn,l, φn,l based on the ESS computation in (19)
(c) For i = 1, . . . N

i. Compute weights W i
n,l as in (18)

ii. Resample and move particles:

Xi
n,l

i.i.d.∼
N∑
j=1

W j
n,l∑N

k=1 W k
n,l

Kmn,l( · |X
j
n,l−1)

4. If φn,l = 1 return V n,i = (V n−1,i, Xi
n,l), τn = l; otherwise go back to Step 3.

see [13, Theorem 10.14] and [13, Lemma 10.15] for details. It remains to provide
an effective design for g. One can use proposals developed for problems whereby a
finite-dimensional SDE generates linear Gaussian observations and one is interested
in performing a similar IS method; see, e.g., [24, 51, 40, 41, 47]. In this paper we use
the proposal employed in [24] and set

(16) g(t, V (t)) = Q
1
2F ∗(Σ + (tn − t)FQF ∗)−1(Ytn − FV (t)), t ∈ (tn−1, tn],

where F ∗ denotes the adjoint of F . The guiding function g could be interpreted as
a one-step Euler approximation of the h-tranform needed to evolve V (t) conditional
on the acquired observation Ytn within the interval (tn−1, tn]. It is not hard to verify
(15) for this choice of g. Since Σ,Q are invertible, (Σ+(tn− t)FQF ∗)−1 exists via the

Sherman–Morrison–Woodbury identity and Q
1
2F ∗(Σ+(tn− t)FQF ∗)−1 is a bounded

linear operator. Then (15) holds from [13, Proposition 10.18] and [32, Proposition
2.4.9], which imply that there exists a δ > 0 such that

sup
t∈[0,T ]

E
[
exp

(
δ ‖g(t, V (t))‖2

)]
<∞,

which implies (15).
For the finite-dimensional SDE case, more elaborate guiding functions can be

found in [51, 47], and some of these could be potentially extended so that they can
be used in the SPDE setting instead of (16). The advantage of using g in (16) is that
it provides a simple functional and can perform well for problems where tn − tn−1 is
of moderate length, as also confirmed in the numerical examples of section 5.

4.2. Bridging Πn−1 and Πn with adaptive tempering. Guided proposals
aim to bridge the dissimilarity between Πn−1⊗Vnn−1 and Πn by considering a Bayesian
update from Πn−1 ⊗ Qnn−1 to Πn. In a high-dimensional setting, even using well-
designed likelihood-informed proposals is not sufficient to bridge the dissimilarity

D
ow

nl
oa

de
d 

11
/2

7/
18

 to
 1

28
.4

1.
61

.2
11

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

PARTICLE FILTERING FOR STOCHASTIC NAVIER–STOKES A1553

between the informed proposal Πn−1 ⊗ Qnn−1 and the target Πn. As a result, the
importance weights could still degenerate. To avoid this, more effort is required.
One possibility is to allow for a progressive update via a sequence of intermediate
artificial distributions between Πn−1 ⊗ Qnn−1 to Πn, which we will denote as Πn,l

with l = 1, . . . , τn and require that Πn,0 = Πn−1 ⊗ Qnn−1 and Πn,τn = Πn. This is
a well-known strategy to improve particle filters; see [38, 23] for some early works in
this direction for low-dimensional problems.

To construct the sequence, we will use a standard tempering scheme [37]. Each
Πn,l can be defined using

(17)
dΠn,l

d
(
Πn−1 ⊗Qnn−1

) (V n−1, Ṽ nn−1) ∝
(
dVnn−1

dQnn−1

(Ṽ nn−1) · p
(
Ytn |Ṽ (tn)

))
φn,l

for inverse temperatures 0 = φn,0 < φn,1 < · · · < φn,τn = 1. Note that each Πn,l is
defined on the same state space of V n and there are no natural stochastic dynamics
connecting each Πn,l. As a result, we will follow the framework of [16, 8] and use
artificial dynamics provided by a MCMC transition kernel that is invariant to Πn,l.
The details are provided in the next section. Using these MCMC proposals will result
in the weights at iteration (n, l) being W j

n,l ∝
dΠn,l

dΠn,l−1
, which depends on φn,l−φn,l−1

and the proposed V n from the MCMC kernel.
The main issue that needs addressing for this scheme to be successful is how to

determine the temperatures φn,l and their number τn. We propose to set these on-
the-fly using an adaptive procedure introduced in [27]. Assume we are at the nth step
of the algorithm, have completed l − 1 tempering steps, and have equally weighted
particles. The next temperature is determined by expressing the weights as a function
of φ,

W j
n,l(φ) ∝

(
dVnn−1

dQnn−1

(Ṽ n,jn−1)p
(
Ytn |Ṽ (tn)j

))
φ−φn,l−1 , φn,l−1 < φ ≤ 1,(18)

N∑
i=1

W i
n,l(φ) = 1,

and determining φn,l via a requirement based on a quality criterion for the particle
population. We use here the effective sample size (ESS) and set

(19) φn,l = inf

{
φ ∈ (φn,l−1, 1] : ESSn,l(φ) := 1∑N

j=1{W
j
n,l(φ)}2

≤ αN
}

(under the convention that inf ∅ = 1) with a user-specified fraction α ∈ (0, 1). Equa-
tion (19) can be easily solved numerically using, for instance, a standard bisection
method. This approach leads to a particle approximation for Πn,l, say

ΠN
n,l =

N∑
i=1

W i
n,l(φn,l)δV n,i ;

we then propose to resample from ΠN
n,l so that one ends up with equally weighted

particles.
The adaptive tempering procedure is presented in step 3 of Algorithm 2. In

steps 3(a)–3(c), (18)–(19) are followed by resampling and MCMC steps and the steps
are iterated until φn,l = 1. The MCMC dynamics are denoted by Kmn,l and will be
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A1554 LLOPIS, KANTAS, BESKOS, AND JASRA

discussed below. For every n, the output of step 4 of Algorithm 2 provides a particle
approximation ΠN

n = 1
N

∑N
i=1 δV n,i targeting Πn. The interesting feature of this

algorithm is that when moving from Πn−1 to Πn, it does not require a user-specified
intermediate sequence of target distributions (Πn,l)l=0,...,τn , but these are adaptively
set according to the locations of the particles and (19). The number of steps required,
τn, will be determined according to the difficulty in assimilating Ytn .

Remark 4.1. The convergence of Algorithm 2 has been studied in [4, 22].

Remark 4.2. In Algorithm 2, for simplicity we always resample once φn,τn = 1.
This can be avoided, but then in the next time-step of the algorithm one should use

W j
n+1,0(φ) = W j

n,τn ·
(
dVn+1

n

dQn+1
n

(Ṽ n+1,j
n ) · p(Ytn+1

|Ṽ (tn+1)j)

)
φ.

4.3. Adding particle diversity with MCMC kernels. Successive resam-
pling due to the tempering steps leads to sample impoverishment unless the method
reinjects sampling diversity. To achieve this, we propose using a small number of
iterations from a MCMC procedure that leaves Πn,l invariant. This is not the only
possible choice, but it does lead to a simple weight expression seen above; see [16] for
extensions and more details. We use a particular MCMC design similar to [25] that is
well defined on function spaces (based on theory for MCMC on general state spaces
[46]). The design is often referred to as preconditioned Crank–Nicolson, abbreviated
here to pCN; see [45, 11] for a detailed review.

We begin with a basic description of the pCN scheme for a given target distri-
bution Π; for simplicity, we will drop the subscripts n, l here. We will denote the
one-step Markov probability kernel obtained from the MCMC procedure as

(20) K [V ′ ∈ ·|V ] = α (V, V ′)Q [V ′ ∈ ·|V ] + δV (·)
(

1−
∫
α (V, V ′)Q [dV ′|V ]

)
with Q denoting the proposal kernel and α the acceptance probability in a standard
Metropolis–Hastings framework. Let Λ be a probability measure that is absolutely
continuous with respect to Π with Radon–Nikodym derivative

dΠ

dΛ
(V ) =: ϑ(V ).

Similar to [45, 11, 25] we specify the proposal kernel Q to satisfy detailed balance
with respect to Λ, i.e., Q(dV ′|V )Λ(dV ) = Q(dV |V ′)Λ(dV ′). Then using

α(V, V ′) = 1 ∧ ϑ(V ′)

ϑ(V )

provides a kernel K which is Π-invariant (by [46, Theorem 2]).
Next we discuss implementing the pCN design for our problem. At iteration (n, l)

the target distribution for the MCMC kernels is Πn,l, so let Kn,l, Qn,l, and αn,l denote
the corresponding MCMC kernel, proposal, and acceptance ratio, respectively. Note
that the state space of Πn,l is the space of paths V n, which is growing with each
observation time n. We stress that for the purpose of particle filtering we are mainly
interested in the invariance property of Kn,l (to Πn,l) and not necessarily its ergodic
properties on the full space. With this in mind Qn,l can be a Markov kernel that
generates proposals V ′ with V ′s = Vs for s ≤ tn−1. This allows for online computation
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PARTICLE FILTERING FOR STOCHASTIC NAVIER–STOKES A1555

at each n, l. At the same time reversibility holds, as Proposition 1 and Theorem 2 in
[46] still hold for such proposals. From a practical perspective, we are adding noise
to the path of the hidden signal only within (tn−1, tn].

Then we need to specify Λn and Qn,l. Recall that for a fixed n the state space
of each Πn,l is the same for different l, so Λn needs not vary with l. One possibility
is to let Λn = Πn−1 ⊗Qnn−1 and suppose V nn−1 = V nn−1(W ) with W being the driving
noise that generated V nn−1. Note that we can assume that W (tn−1) = 0 without loss
of generality since the V -path uses the increments of W . Suppose also that both V nn−1

and W are stored in the computer’s memory so that

ϑn,l(V
n−1, Ṽ nn−1) =

dΠn,l

dΛn
(V n−1, Ṽ nn−1) =

(
dVnn−1

dQnn−1

(Ṽ nn−1) p
(
Ytn |Ṽ n(tn)

))
φn,l .

To simulate from a Λn-preserving proposal one first generates a new noise sample W ′:

(21) W (s)′ = ρW (s) +
√

1− ρ2 ξ(s), tn−1 < s ≤ tn, ξ ∼W,

where W (s) is the noise driving V and W is the Q-Wiener measure. To return to the
original space, we use the new noise W ′ to solve for V ′ in (13). A standard calculation
can show that W ′ ∼W, which in turn implies that for the part of the proposal V ′ in
(tn−1, tn], (V nn−1)′ ∼ Qnn−1 holds. Reversibility with respect to Λ is ensured using a
simple conditioning and marginalization argument.

In Algorithm 2 we use m iterations of (20) with Qn,l specified as above. The
corresponding m-iterate of the MCMC transition kernel is denoted as Kmn,l and is
presented in Algorithm 3 in an algorithmic form. To simplify exposition, in Algorithm
2, for each iteration (n, l) the simulated tempered path Ṽ nn−1 for particle i is denoted
as Xi

n,l, and the MCMC mutation is presented jointly with resampling in step 3(c)ii.

Algorithm 3. An MCMC Procedure for X̄i
n,l ∼ Kmn,l(·|Xi

n,l).

• Initialize: Set V (0) = Xi
n,l, and let W (0) = W i

n,l be the Wiener process generating

Xi
n,l.

• For k = 1, . . . ,m: Let V = V (k−1), W = W (k−1).
– Sample a new noise:

W (s)′ = ρW (s) +
√

1− ρ2 ξ(s), s ∈ (tn−1, tn], ξ ∼W.

– Obtain solution of SPDE (13) with W ′ the driving noise, i.e.,

dV ′(s) = (−νAV ′(s)−B(V ′(s), V ′(s))) dt+Q
1
2 g(s, V ′(s))ds+Q

1
2 dW ′(s),

t ∈ (tn−1, tn].

– Compute acceptance ratio:

αn,l = 1 ∧

(
dVn

dQn (V ′)p (Ytn |V ′(tn))
)
φn,l(

dVn

dQn (V )p (Ytn |V (tn))
)
φn,l

.

– With probability αn,l set V (k) = V ′, W (k) = W ′; otherwise, reject proposal,
and set V (k) = V , W (k) = W .

• Return X̄i
n,l = V (k) and W̄ i

n,l = W (k).
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4.3.1. Extensions. First, similarly with [17] one can extend the proposals by
reducing the lower bound on the time we start adding noise (here tn−1). This could
be made smaller, and this can be beneficial in terms of adding diversity, but for the
sake of simplicity we do not pursue this further.

It is important to note that Kn,l is based on adapting a very basic version of
pCN-MCMC as outlined in [45, 11, 25]. There, typically Λ is chosen to be a Gaussian
measure that concides with a prechosen prior for a static Bayesian inference problem.
The resulting MCMC kernel often exhibits slow mixing properties. This can be ad-
dressed by allowing a few selected coordinates to be proposed from a kernel invariant
to a Gaussian approximation of the posterior distribution. The remaining coordinates
are sampled as before (using kernels invariant to the prior), so that the scheme is valid
for arbitrary dimensions. This results in more advanced pCN-MCMC algorithms with
likelihood-informed proposals for Qn,l such as the ones described in [12, 34]. In the
context of SMC one has the added benefit of using particle approximations for the
mean and covariance to construct likelihood-informed proposals for Qn,l, and this
results in a simple and effective approach, as illustrated in [31, 5].

A natural question to pose is how these ideas can be extended to construct more
efficient Kn,l. Note that the filtering problem is more complicated, as the variables of
interest are SPDE paths. Still more advanced proposals can be implemented after a
change of measure. For the MCMC above we chose Λn = Πn−1 ⊗Qnn−1. This choice
was because of its simplicity in implementation and its effectiveness in the numerical
examples we considered, where the MCMC kernel in Algorithm 3 mixed well. When
facing harder problems, one can extend the construction of Λn and use instead of
Qnn−1 any measure that admits a Radon–Nicodym derivative w.r.t it. For example,
one could use instead of (21) a proposal like

(22) V (s)′ = ρ V (s) +
√

1− ρ2W ′(s), tn−1 < s ≤ tn, W ′ ∼W

with ϑn,l =
dΠn,l

d(Πn−1⊗Wn
n−1) , where the Girsanov tranformation between (tn−1, tn] can

be established rigourously as in [7, Propositions 4.1 and 4.2]. This construction is
an alternative to Algorithm 3, which is more ameanable to extensions along the lines
of [31, 5], as the reference measure is Gaussian. To follow [31, 5] one should use a
Gaussian measure whose covariance operator should take into account the likelihood
for low frequencies. This means one should use in (22) a different Gaussian measure
than W, which is identical to W for high |k|, and for low |k| the diffusion constants are
computed from particle approximations for the posterior mean and covariance (given
Yn) of a sequence (Wti ; ti = tn−1, . . . , tn) obtained just before the MCMC mutation.

5. Numerical examples. We solve SPDE (6) for ν = 0.1 and f = 0 numerically
using the exponential Euler scheme [28] for the finite-dimensional projection (8). For
(8), we use a Fourier truncation with L = 64, i.e., −64 ≤ k1, k2 ≤ 64. For π0 we use

β = 0.5, α = 3, and µ = v†0, with v†0 being a random sample from N (0, A−α) that
is also used as the true signal to generate the observations. To determine Q we use
σk =

√
2δν|k|−3 with δ = 1. For the observation equation in (10) we use Σ = 0.8I,

and for the observer in (11) we place the observers’ locations xl on a uniform square
grid with equal spacing and set r to be small (smaller than 2π/L). Thus, we can make
the likelihood more informative by decreasing the observation noise or by increasing
the grid size. As the information in the likelihood increases, one expects a larger
number of tempering steps (and slower total execution times). When no tempering
is used, this will lead to a much lower value for the ESS.
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Table 1
Average results for number of tempering steps, ESS, and L2-errors (with standard deviations

in parentheses) obtained from 10 independent runs of each algorithm. IS-PF-T denotes using the
guided proposal with tempering, and PF-T is bootstrap with tempering. The other two methods follow
similarly and do not use tempering and MCMC steps. In all cases we use N = 100, δtn = 0.4. For
the PF-T we use m = 20 MCMC steps (in Algorithm 3) with ρ = 0.9, and for IS-PF-T we use
m = 10 and ρ = 0.5. For n = 1 we also use a pCN proposal for V (0) that is invariant to π0 with
the step sizes being ρ0 = 0.98 for PF-T and ρ0 = 0.9 for IS-PF-T.

Tempering steps ESS
n = 1 2 3 4 5 1 2 3 4 5

IS-PF-T 5.6 4.7 4.4 4 4.3 64.87 73.88 63.02 57.01 53.03
PF-T 10.1 7.7 7.4 7.6 8.1 77.73 70.62 68.50 75.88 82.02
IS-PF n/a 1.16 1.92 1.56 2.11 1.90

PF n/a 1.00 1.00 1.01 1.13 1.06

L2 -errors
n = 1 2 3 4 5

IS-PF-T 0.19 (0.0012) 0.26 (0.0002) 0.21 (0.0003) 0.16 (0.0001) 0.27 (0.0005)
PF-T 0.43 (0.0110) 0.32 (0.0029) 0.25 (0.0054) 0.23 (0.0023) 0.38 (0.0137)
IS-PF 0.31 (0.0033) 0.45 (0.0166) 0.42 (0.0062) 0.33 (0.0062) 0.46 (0.0023)

PF 0.85 (0.0185) 1.13 (0.1493) 0.86 (0.0810) 0.96 (0.0260) 1.15 (0.0467)
EnKF 0.66 (0.1151) 0.60 (0.0108) 0.65 (0.0194) 0.63 (0.0245) 0.74 (0.0138)

We present results from two types of experiments with simulated observations.
In the first case we will look at a batch of n = 5 observations from a dense grid
(16 × 16). We use this short run to illustrate the efficiency and performance of the
methodology. The length of the data set allows using multiple independent runs for
the same observations. In the second experiment we use a large number of observations
(n = 100) obtained from an 8×8 grid using both Gaussian and Student t–distributed
additive noise. We show that the method performs well for the longer time and that
performance is similar for both Gaussian and non-Gaussian observations.

We begin with the case of n = 5 and dense observation grid (16× 16). In Table 1
we present results for N = 100 and δtn = 0.4 comparing a naive bootstrap PF, a
PF that uses the informed proposal (13) for IS but without tempering (both based
on Algorithm 1), a PF that uses tempering when sampling from the stochastic NSE
dynamics in (6), and a PF that uses both tempering and (13) for IS. We show the
number of tempering steps per batch of observations, the ESS at each observation
time tp, and L2-errors between the true signal vorticity w† and the estimated posterior
mean ŵ at each epoch, i.e., ∫

Ω

∥∥ŵ(x, ti)− w†(x, ti)
∥∥2
dx.

For the L2-errors we also include in Table 1 results from a standard ensemble Kalman
filter (EnKF) [19]. It should be noted that the EnKF is computationally cheaper, and
usually it is used with lower values for N than here. We include it not for the sake of
a direct comparison but to provide a benchmark for performance.

When tempering is used, we present in Figure 1 selected typical estimated PDFs
and scatter plots for a few chosen frequencies k’s. In the scatter plots the advantage of
using (13) (in the bottom plot of Figure 1) results in higher dispersion of the particles
relative to sampling from (6) (top plot). This is also apparent in the tails of the
estimated PDFs. In Table 1 it is evident that when using tempering, IS resulted in
about half of the tempering steps than when sampling from (6). In both cases, the
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Fig. 1. PDF and scatter plots for Real(uk)|Yn at n = 5 for k = (1, 0), (1, 1), (1,−1), (2, 5), (9, 9).
Top is boostrap (sampling with (6)), and bottom is IS (with (13)), and both use tempering. Vertical
lines in PDF plots are true signal values used to generate the observations.

tuning of the MCMC steps lead to the same acceptance ratio (around 0.2 at the final
tempering step). We use m = 20 MCMC iterations per tempering for n = 1. For
n > 1, plain tempering usesm = 20, and IS with (13) usesm = 10. In addition, the IS-
tempering case uses a larger step size (smaller ρ) for the MCMC (with ρ = 0.5 rather
than 0.9). This results in lower total computational cost and runtimes when IS is used
despite the added computations imposed by computing g in (13). We also note that a
lower number of tempering steps is beneficial in addressing potential path degeneracy
issues. In Table 2 we present results when δtn = 0.16, 1 and Σ = 0.16I, 0.4I to
illustrate the robustness of Algorithm 2 w.r.t spacing of observation times and signal
to noise ratio. As expected, more tempering steps are needed in the more informative
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Table 2
Average results of Algorithm 2 (IS-PF-T) when varying Σ and δtn. Results are from 10 inde-

pendent runs and presented similarly to Table 1. For the MCMC step sizes we use ρ0 = 0.9 (for π0)
and ρ = 0.5, 0.5, 0.9, 0.5, 0.9 for each case from top to bottom.

Tempering steps ESS
n = 1 2 3 4 5 1 2 3 4 5

δtn = 0.4,
Σ = 0.8I

5.6 4.7 4.4 4 4.3 64.87 73.88 63.02 57.01 53.03

δtn = 0.16,
Σ = 0.8I

5.9 4.3 4.0 4.0 4.1 54.16 53.79 40.29 90.06 54.53

δtn = 1,
Σ = 0.8I

5.1 4.6 4.6 4.6 5.1 65.25 45.23 80.27 99.78 82.45

δtn = 0.4,
Σ = 4I

4.6 3.7 3.2 3.1 3.9 39.97 88.61 48.99 49.21 80.08

δtn = 0.4,
Σ = 0.16I

7.2 6.0 5.9 5.7 6.1 65.27 74.57 51.94 54.57 50.26

L2-errors
n = 1 2 3 4 5

δtn = 0.4,
Σ = 0.8I

0.19 (0.0012) 0.26 (0.0002) 0.21 0.0003) 0.16 (0.0001) 0.27 (0.0005)

δtn = 0.16,
Σ = 0.8I

0.24 (0.0004) 0.22 (0.0018) 0.29 (0.0013) 0.26 (0.0019) 0.24 (0.0015)

δtn = 1,
Σ = 0.8I

0.27 (0.0004) 0.28 (0.0005) 0.24 (0.0004) 0.15 (0.0001) 0.17 (0.00004)

δtn = 0.4,
Σ = 4I

0.31 (0.0034) 0.61 (0.0057) 0.50 (0.0027) 0.38 (0.0021) 0.56 (0.0009)

δtn = 0.4,
Σ = 0.16I

0.12 (0.0003) 0.10 (0.00009) 0.08 (0.00006) 0.07 (0.00001) 0.12 (0.0001)

observation case (Σ = 0.16I), but at the same time accurate observations result in
lower L2-errors. In addition, our method seems to perform comparatively better
when δtn = 1. This can be attributed to the guided proposal being given more time
to evolve and guide the particles to better regions of the state space.

We proceed with the second numerical experiment, where we use only a single
run of a PF with both tempering and IS for N = 100 and n = 1, . . . , 100. The
dynamics for the state and true signal are as before, but for the observations we use
an 8× 8 equally spaced observation grid and look at two different generated data sets
with different distributions for the noise Ξn: a zero mean Gaussian and zero mean
Student t distribution with 4 degrees of freedom. In both cases Σ = 0.8I. For each
case, different PFs are implemented, each with the correctly specified likelihood. In
Figure 2 we plot the estimated vorticity posterior mean for n = 10, 50, 100 in each
case together with the vorticity of the true signal. The estimates seem accurate with
small deviations between the posterior mean and the true signal. The latter is sensible
given the coarseness of the grid and the moderate number of observations. We also
provide in Figure 3 a plot of the ratio of the posterior variance of the vorticity of
Vtn over the unconditional variance when obeying the probability law determined by
the stochastic NSE dynamics in (6). The information gain appears as a reduction
in the posterior variance for low |k| relative to the prior, which is to be expected, as
the spatial grid cannot be informative for higher wavenumbers. In Figure 4 we plot
ESS, L2-errors as before, and number of tempering steps per iteration. In both cases
the performance is fairly stable with time, and the algorithm provides good posterior
mean estimates. For completeness, in Figure 5 we include a comparison with the
EnKF in terms of L2-errors. The PF with IS and tempering performs much better.
Finally, in Figure 6 we present some estimated PDFs. These plots capture Πn for

D
ow

nl
oa

de
d 

11
/2

7/
18

 to
 1

28
.4

1.
61

.2
11

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A1560 LLOPIS, KANTAS, BESKOS, AND JASRA

Fig. 2. Vorticity plots showing posterior mean of p(∇ × Vt|Yn) and true signal: top row
n = 10, middle n = 50, bottom n = 100. The left column contains posterior means from Gaussian

observation noise and the right one from Student t noise, and in the middle is w†t (true signal
vorticity).
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Fig. 3. Variance plots: top row n = 10, middle n = 50, botton n = 100. We present heat maps
of the ratio of the posterior variance of πtn over the variance for the law of the signal dynamics
against k; left part is for Gaussian noise and right for Student t.
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Fig. 4. Results for single run of PF with tempering and IS for 8 × 8 grid. Top panels are
L2-errors (left) and number of tempering steps against n (right). Dotted lines are for Gaussian
observation noise and solid for Student t. In the bottom panels we present ESS against SMC
iteration for Gaussian (left) and Student t (right) errors. Execution times were 4.8018 × 105 and
4.17196× 105 seconds, respectively.
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different k. Notice that the true parameter (displayed as a vertical line) lies in regions
where the mass of the estimated posterior density is high and the posterior variance
for the t-distributed case is higher for low k.

6. Discussion. We have presented a particle filtering methodology that uses
likelihood-informed IS proposals, tempering, and MCMC moves for signals obeying
the stochastic NSE observed with additive noise. The approach is computationally
intensive and requires a significant number of particles N , but we believe the cost
is quite moderate relative to the dimensionality of the problem. The use of temper-
ing and MCMC steps is crucial for this high-dimensional application. The inclusion
of likelihood-informed proposals results in higher efficiency and ESS, less tempering
steps, and higher step sizes for the MCMC steps and thus, overall, in lower computa-
tional cost. The IS proposals were designed using a Gaussian noise assumption for the
observations, but we demonstrated numerically that they are still useful and efficient
for observation noise obeying a Student t distribution with heavier tails. In addition,
as δtn increases, using proposals as in (13) will be more beneficial.

In the experiments presented in section 5 the effective dimensionality of the prob-
lem is determined by ν,Σ and σk. More challenging parameterizations than the ones
presented here could be dealt with by increasing N or via a more advanced numerical
method for the solution of the SPDE. These can be addressed using the extensions
discussed in section 4.3.1. Another potentially useful extension is to use different
number of particles for different ranges of k following [30]. Furthermore, we note that
we did not make use of parallelization, but this is certainly possible for many parts
of Algorithm 2 and can bring significant execution speedups in applications.

Future work could aim to extend this methodology by designing suitable IS pro-
posals for nonlinear observation schemes or observations obtained from Lagrangian
drifters or floaters. Finally, an interesting question is whether an error analysis
along the lines of [14, section 7.4] can be reproduced. The simulations presented
here seem to indicate roughly constant errors with time, but a rigorous treatment
would need to establish the stability properties of the filtering distribution w.r.t the
initialization.

Appendix A. More simulation results. We present some negative numerical
results to illustrate that tempering is necessary. We will consider a perfect initial-
ization for each particle with v†0. While this is an extremely favorable scenario that
is unrealistic in practice, it shows a clear benefit in using IS and tempering. For
N = 200, ν = 0.01, and δtn = 0.2, we present some scatter plots in Figure 7 for the
experiment with n = 5 seen earlier with a 16 × 16 block of observations. Notably,
the estimated posterior means for the vorticity seem to exhibit good performance;
see Figure 8. Indicatively, the ESS here is 34 for IS and 3 for the bootstrap case.
Even in this extremely favorable scenario, the ESS is low, and this strongly mo-
tivates the use of tempering to improve the efficiency of the particle methodology.
In results not shown here, we have also experimented with the size of the time in-
crement δtn = tn − tn−1 for what a näıve particle filter (Algorithm 1) can handle.
When the likelihood-informed proposals in (13) are used, the method produces accu-
rate point estimates for δtn up to 0.2 − 0.25. This is in contrast to when sampling
from the dynamics, where the bootstrap version of Algorithm 1 can handle only up
to 0.15.D
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Fig. 7. Scatter plots at n = 5 for perfect initialization k = (1, 0), (1, 1), (1,−1), (2, 5), (9, 9).
Top is boostrap, and bottom is IS with (13).

Fig. 8. Vorticity plots for n = 5 and perfect initialization: Left is posterior mean from bootstrap

PF, middle is real signal v†t , and right is posterior mean of PF of Algorithm 1 and IS with (13).
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