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Abstract: The general problem of asset pricing when the discount rate differs from the rate at which
an asset’s cash flows accrue is considered. A pricing kernel framework is used to model an economy
that is segmented into distinct markets, each identified by a yield curve having its own market,
credit and liquidity risk characteristics. The proposed framework precludes arbitrage within each
market, while the definition of a curve-conversion factor process links all markets in a consistent
arbitrage-free manner. A pricing formula is then derived, referred to as the across-curve pricing formula,
which enables consistent valuation and hedging of financial instruments across curves (and markets).
As a natural application, a consistent multi-curve framework is formulated for emerging and developed
inter-bank swap markets, which highlights an important dual feature of the curve-conversion factor
process. Given this multi-curve framework, existing multi-curve approaches based on HJM and rational
pricing kernel models are recovered, reviewed and generalised and single-curve models extended.
In another application, inflation-linked, currency-based and fixed-income hybrid securities are shown
to be consistently valued using the across-curve valuation method.

Keywords: pricing kernel approach; rational pricing models; multi-curve term structures; OIS and
LIBOR; spread models; HJM; multi-curve potential model; linear-rational term structure models;
inflation-linked and foreign-exchanged securities; valuation in emerging markets

1. Introduction

The fundamental problem that we consider is the valuation of a financial instrument using a
discounting rate that differs from the rate at which the instrument’s future cash flows accrue. Since such
financial instruments are synonymous with fixed income assets, we will focus thereon. Nonetheless,
we have no reason to believe that the framework that we develop cannot be extended to the valuation
of a generic financial asset. The financial crisis brought this valuation problem to the foreground when
substantial spreads emerged between inter-bank interest rates that were previously bound by single
yield curve consistencies, culminating in a new valuation paradigm of multiple yield curves: one used
for discounting (the overnight indexed swap (OIS) yield curve) and others used for forecasting of cash
flows (the y-month inter-bank offered rate (IBOR) curve, y = 1, 3, 6, 12). However, this problem was also
prevalent pre-crisis when an economy is considered, which has an inter-bank swap market, a government
bond market and trades in the global economy via the foreign exchange market, resulting in three
different curves: the nominal swap curve, the government bond curve and the foreign exchange basis
curve. The valuation of any financial instrument that is issued in one of these markets, but has cash flows
that are determined by any of the other markets, once again manifests the fundamental problem.

In this paper, we directly address the fundamental problem, articulated above, in a general sense.
Considering the aftermath of the financial crisis; however, academic literature on multi-curve interest
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rate modelling (in the context of the developed inter-bank swap market) has evolved rapidly. Here,
we classify this literature into four categories or modelling approaches and provide a non-exhaustive
list of references and a brief summary of the main contributions therein.

The first category is short-rate models. Kijima et al. (2009) propose a three-yield curve model
(discount, swap and government bond curve) for an economy with the respective short-rates governed
by Gaussian, exponentially quadratic models. Kenyon (2010) and Morini and Runggaldier (2014)
consider Vasicek, Hull–White (HW) and Cox–Ingersoll–Ross (CIR) short-rate models for the OIS,
IBOR and/or OIS-IBOR spread curves. Filipović and Trolle (2013) propose a Vasicek process with
stochastic long-term mean as the OIS short-rate model with explicit models for default and liquidity
risk. Alfeus et al. (2017) adopt a novel approach of modelling “roll-over risk” explicitly in a structural
setup and as a specific example consider multi-factor CIR-type processes for this and the OIS short-rate.
Their structural approach is more general than that and can be applied in other settings.

Heath–Jarrow–Morton (HJM) models constitute the second category. Pallavicini and Tarenghi (2010),
Fujii et al. (2011), Moreni and Pallavicini (2014), Crépey et al. (2015) and Miglietta (2015) all focus
on a hybrid HJM-LMM (LIBOR market model) approach where the OIS curve is modelled
using the classical HJM model, while the IBOR forward rates are modelled in an ad hoc
manner. Crépey et al. (2012) pioneered the use of the HJM framework via a credit risk analogy,
while Miglietta (2015) and Grbac and Runggaldier (2015) do the same using a foreign
exchange (FX) analogy. Pallavicini and Tarenghi (2010) focus on aspects of calibration,
while Moreni and Pallavicini (2014) propose a specific Markovian factor representation which expedites
calibration. Crépey et al. (2015) consider Lévy-driven models, while Cuchiero et al. (2016) consider a
general semimartingale setup with multiplicative OIS-IBOR spreads.

Category 3 is the class of LIBOR market models (LMMs). Morini (2009), Mercurio (2009, 2010a, 2010b)
and Bianchetti (2009) were the first to extend the LMM to a multi-curve setting, with the latter doing so
via an FX analogy. Mercurio (2010a) and Mercurio and Xie (2012) formalised the first approach utilising
an additive spread between OIS and IBOR forward rates that were modelled as martingales under the
classical forward measure, while Ametrano and Bianchetti (2013) formalised the associated multi-curve
bootstrapping process. Grbac et al. (2014) provide an alternative to the aforementioned approach using a
class of affine LIBOR models, first proposed by Keller-Ressel et al. (2013).

The fourth and final category are pricing kernel models. At the present time, we are only aware
of Crépey et al. (2016) and Nguyen and Seifried (2015) who have formulated multi-curve systems with
pricing kernels. We highlight here that, in our opinion, both of these papers adopt a hybrid pricing
kernel-LMM approach since the OIS curve is modelled with a pricing kernel, while the IBOR process
is modelled in an ad hoc fashion; we will expand on this in Sections 3 and 5. In this paper, we develop
a pure pricing-kernel based approach, which we believe to be the first of such a modelling class.

For a detailed review of the post-crisis multi-curve interest rate paradigm from both a theoretical and
practical perspective, we refer the reader to Bianchetti and Morini (2013), Grasselli and Miglietta (2016),
Grbac and Runggaldier (2015) and Henrard (2014).

The solution that we propose rests on a pricing formula, which we call the across-curve
pricing formula. This formula has a pricing kernel-based model for the economy as its foundation.
More specifically, the pricing kernel framework models the set of yield curves associated with the
respective economy under consideration. This enables us to link the set of yield curves in a consistent
arbitrage-free manner through the definition of a curve-conversion factor process. This conversion
process plays an important dual role, giving rise to the across-curve pricing formula that enables
consistent valuation and hedging of financial instruments across curves. It turns out that the
curve-conversion factor process is consistent with an FX process in multi-currency modelling in a
pricing kernel framework, and therefore our approach is also consistent with the FX analogy first
proposed by Bianchetti (2009) for interest rate derivatives (or the developed inter-bank swap market) in
an LMM setting. In our work, we are interested in more than developed markets or the inter-bank swap
market and endeavour to build consistent relations among a wide variety of developed and emerging
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market fixed-income assets including inflation-linked notes, FX contracts, and hybrid products such as
inflation-linked FX instruments. Here, we mention Flesaker and Hughston (1996b) for an arbitrage-free
pricing kernel approach to the valuation of FX securities, and to Frey and Sommer (1999) if one were
to consider extending classical short rate models, based on diffusion processes with deterministic
coefficients, for FX-rates. The approach by Jarrow and Yildirim (2003), based on the HJM-framework,
might be treated as in Section 4 and used for inflation-linked pricing as shown in Section 6, later in this
paper. We note here the early work in 1998 by Hughston (1998) who produced a general arbitrage-free
approach to the pricing of inflation derivatives, in which (to our knowledge) a foreign exchange analogy
was used in such a context, for the first time. In Hughston’s work, the Consumer Price Inflation (CPI)
index is treated like a foreign exchange rate that links the nominal and the real price systems as if they
were domestic and foreign currencies, respectively. The work by Pilz and Schlögl (2013) on modelling
commodity prices re-interprets a multi-currency LMM approach. Similarities can be seen when applying
our approach to multi-currency and multi-curve LIBOR models, as developed in Section 6.3, where an
FX-LIBOR forward rate agreement is priced. In all that follows, we refer to the discounting curve as the
x-curve and the forecasting curve as the y-curve. Therefore, when describing our framework, we speak
of the xy-formalism, while we refer to the application thereof as the xy-approach.

With regard to the multi-curve system adopted by developed market practitioners for their inter-bank
swap market, we will show that there is a natural formulation of such a system within our framework.
Moreover, we will show that this natural formalism is not adopted by practitioners, or the market in a
strict sense in general. Rather, practitioners have adopted a more rigid version of the flexible multi-curve
system we propose, the choice of which results and ensures simpler specifications for fundamental interest
rate products, i.e., forward rate agreements (FRAs) and interest rate swaps (IRSs). We will also formulate
a multi-curve system for emerging markets, one that is remarkably consistent with the corresponding
developed market system, this feature being entirely attributable to the critical dual role played by the
curve-conversion factor process. We will expand on this in Sections 2 and 3.

The remainder of this paper is structured as follows: Section 2 introduces the curve-conversion
factor process and the across-curve pricing formula. Section 3 introduces consistent multi-curve interest
rate systems for developed and emerging inter-bank swap markets. Section 4 reviews and reformulates
existing HJM multi-curve modelling approaches within the context of the xy-approach and introduces
a new framework that we call the xy-HJM framework. Section 5 introduces a generic class of rational
multi-curve models and revisits recent rational multi-curve approaches based on pricing kernels in
light of the xy-framework. Moreover, the linear-rational term structure models are shown to belong to a
more general class of pricing-kernel-based (rational) models and are extended to the multi-curve setup.
In Section 6, the across-curve pricing approach is adopted to price inflation-linked and FX securities,
including hybrid contracts. In Section 7, we draw various conclusions and take the opportunity to
summarise our findings.

2. Across-Curve Pricing Formula

In this section, we define the curve-conversion factor process and deduce what we term
the across-curve pricing formula. At the basis of the curve-conversion factor process lies the
assumption that, within a given economy, there is a distinct market associated with each curve.
Each of these markets are characterised by its own set of market, liquidity and credit risk factors.
In turn, each set of market, liquidity and credit risk factors may be systematic or idiosyncratic
in nature. The curve-conversion factor process plays a dual role: (i) it provides a mechanism
(akin to a ladder) that enables one to transit consistently from one discount curve system to
another; and (ii) it facilitates the equivalent representation of cash flows across markets (or curves),
no matter what financial instrument is implicitly being priced or interest rate system being modelled.
This feature enables consistent valuation across different curves (or markets). The paradigm we
shall adopt for the development of the across-curve pricing approach is one based on pricing
kernels. Previous works developing and applying the pricing kernel paradigm comprise, e.g.,
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(Constantinides 1992; Flesaker and Hughston 1996a, 1996b; Rogers 1997; Jin and Glasserman 2001;
Hughston and Rafailidis 2005; Akahori et al. 2014; Macrina 2014; Filipović et al. 2017). Next,
we introduce the stochastic basis and the pricing kernel system.

We consider a filtered probability space (Ω,F , (Ft)t≥0,P), where (Ft)t≥0 denotes the filtration
and P the real-world probability measure. We introduce an (Ft)-adapted pricing kernel process
(ht)t≥0, which governs the inter-temporal relation between asset values at different times in a financial
market. It is a fundamental ingredient in the so-called standard no-arbitrage pricing formula, for a
non-dividend-paying financial asset H, given by:

Ht =
1
ht
E [hT HT | Ft] . (1)

The no-arbitrage asset price process (Ht)t≥0 is obtained by taking the conditional expectation
of the random cash flow HT , occurring at the fixed future date T ≥ t ≥ 0, that is discounted by the
pricing kernel. Standard references, in which asset pricing using pricing kernels is discussed, include,
e.g., (Hunt and Kennedy 2000; Duffie 2001; Cochrane 2005; Grbac and Runggaldier 2015).

In order for us to deduce the across-curve pricing formula, seen as an extension to the pricing
formula (1), we assume the existence of a set of (continuous-time) (Ft)-adapted pricing kernel processes
(hy

t )t≥0, where y = 0, 1, 2, . . . , n, each linked to a distinct y-market. The price Hy
t at t ∈ [0, T] of a

non-dividend-paying financial asset H, with (random) cash flow Hy
T at the fixed future date T, is then

given by:

Hy
t =

1
hy

t
E
[

hy
T Hy

T | Ft

]
. (2)

The superscript y emphasises that the pricing formula (2) holds for the valuation of assets in the
y-economy (or in the y-market). In fact, the pricing kernel process (hy

t ) governs the inter-temporal
relation between the present value of financial assets and their future cash flows in the associated
y-economy. It then follows in a straightforward manner, that the price process (Py

tT)0≤t≤T of a zero
coupon bond (ZCB), with payoff Hy

T = Py
TT = 1 at the fixed maturity T and quoted in the y-market,

is given by:

Py
tT =

1
hy

t
E
[

hy
T | Ft

]
.

The discount bond system, spanned in theory by a continuum, but in practice a finite number
of maturities T = T1, T2, . . . , Tn, generates a term structure curve. Since this curve is indexed by the
particular market y, we refer to it as the y-curve. In all that follows, we single out one of the set of
the y-markets (and thereby its associated y-curve) and refer to it as the x-market (and its associated
term structure curve as the x-curve); of course, then this market also has an associated (Ft)-adapted
pricing kernel (hx

t ). The x-market is the market within which pricing (or discounting) occurs, while the
y-market will denote the market within which the cash flows of the financial instruments are forecasted
(or accrued).

The fundamental pricing problem that is considered in this paper is one where a financial
instrument accrues cash flows at a rate of interest that differs from that used for discounting. First,
we consider the problem of cash flow forecasting and equivalent representation under different
curves (or markets), before we tackle the problem of valuation (or discounting). An equivalent
cash flow representation across curves (or markets) is justified in Appendix A using no-arbitrage
portfolio-based strategies. These findings are formalised in the following definition that introduces the
curve-conversion factor process.



Risks 2018, 6, 18 5 of 39

Definition 1. Consider an economy with n distinct markets characterised by a set of pricing kernel processes
(hy

t ) and associated discount bond systems (Py
tT), where y = 0, 1, 2, . . . , n and 0 ≤ t ≤ T. The converted value

Cx
t in the x-market at time t of any spot cash flow Cy

t determined in the y-market is given by:

Cx
t =

hy
t

hx
t

Cy
t ,

where x, y = 0, 1, . . . , n. The converted value Cx
t (t, T) at time t in the x-market of any forward cash flow

Cy
t (t,T), measurable at time t but payable at time T, determined in the y-market is given by:

Cx
t (t, T) =

hy
t Py

tT
hx

t Px
tT

Cy
t (t, T) ,

where x, y = 0, 1, . . . , n. These two relations are combined by the definition of the (Ft)-adapted curve-conversion
factor process:

Qxy
tT =

E
[

hy
T | Ft

]
E
[
hx

T | Ft
] =

hy
t Py

tT
hx

t Px
tT

, (3)

where t ∈ [0, T] is the time until which the cash flow being converted is measurable and T > 0 is the
payment date.

We note that the cash flows Cx
t (t, T) and Cy

t (t, T) are linked by the identity Cx
t (t, T) = Qxy

tT Cy
t (t, T),

for t ∈ [0, T]. With this definition at hand, we now have the necessary tool to resolve the fundamental
pricing problem considered in this paper, i.e., valuing a generic financial instrument that accrues cash
flows under one curve, the y-curve, but is priced under another curve, the x-curve. Our approach is
consistent with the FX analogy proposed by Bianchetti (2009), but formalised in an economy modelled
by a set of pricing kernels; we describe our approach as the xy-formalism. At the heart of this formalism
is the pricing formula presented next. We refer to this formula as the across-curve pricing formula.
The relation of this novel formula to the fundamental pricing formula (1) is shown in the proof of the
following proposition.

Proposition 1. Let 0 ≤ s ≤ t ≤ T. Consider a generic financial asset H that has a single Ft-measurable cash
flow Hy

t (t, T) occurring at the fixed time T ≥ t and determined by the y-curve (or the y-market). It is noted
that in the time interval [t, T], the quantity Hy

t (t, T) is fixed at the value observed at time t ≥ 0. Within the
xy-approach, the price process (Hxy

sT )0≤s≤T of a financial instrument, determined by the x-curve (or x-market)
and contingent on the asset H, is given by:

Hxy
sT =


1
hx

s
E
[

hx
t Px

tT Qxy
tT Hy

t (t, T) | Fs

]
, 0 ≤ s < t,

Px
sT Qxy

tT Hy
t (t, T), t ≤ s ≤ T.

(4)

The curve-conversion factor process (Qxy
tT )0≤t≤T is introduced in Definition 1.

Proof. For information, we note that, by an application of the relation (2), the price process (Hy
t )0≤t≤T

of the financial asset H is deduced to be:

Hy
t =

1
hy

t
E
[

hy
T Hy

t (t, T) | Ft

]
= Hy

t (t, T)Py
tT , (5)
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since the cash flow Hy
t (t, T) is Ft-measurable and it occurs at T. At time t ∈ [0, T], we convert Hy

t (t, T)
to the corresponding value Hx

t (t, T) in the x-market by use of the conversion factor Qxy
tT :

Hx
t (t, T) = Qxy

tT Hy
t (t, T). (6)

Now, we insert the converted cash flow Hx
t (t, T) in the standard no-arbitrage formula (1) (or formula (2),

where y = 0 is taken to be the x-curve) where ht = hx
t is assumed. We have,

Hx
sT =

1
hx

s
E [hx

t Hx
t (t, T) | Fs] . (7)

Given that Hx
t (t, T) is Ft-measurable, we deduce the following by the tower property of

conditional expectation:

Hx
sT =

1
hx

s
E [E [hx

T | Ft] Hx
t (t, T) | Fs] =

1
hx

s
E [hx

t Px
tT Hx

t (t, T) | Fs] , (8)

for 0 ≤ s < t. In addition, for t ≤ s ≤ T, we have Hx
sT = Px

sT Hx
t (t, T). Recalling that

Hx
t (t, T) = Qxy

tT Hy
t (t, T), and by choosing to write Hxy

sT for Hx
sT in order to emphasise the interaction

between the x- and the y-curves, the proof is complete. We add that the one-to-one across-curve
extension to the standard pricing formula (1) is recovered by setting t = T in the relation (4).

Remark 1. When t = T and Hy
TT = 1, using Proposition 1, we may define the ZCB:

Pxy
sT =

1
hx

s
E
[

hy
T | Fs

]
= Qxy

ss Py
sT = Px

sTQxy
sT , (9)

for s ∈ [0, T], which has two representations using the definition of the conversion factor (3).

Given Proposition 1, we can now present the dual role played by the curve-conversion factor
process, within the xy-formalism, which is described in the following corollary.

Corollary 1. Within the xy-formalism, if the cash flow Hy
t (t, T) is directly observable in the economy, then the

curve-conversion factor process enables valuation by acting at the level of the discounting curve as follows:

Hxy
sT =

1
hx

s
E
[

hx
t Px

tTQxy
tT Hy

t (t, T) | Fs

]
=

1
hx

s
E
[

hy
t Py

tT Hy
t (t, T) | Fs

]
. (10)

However, if the curve-converted cash flow Hxy
tT is directly observable in the economy, then the

curve-conversion factor process enables valuation by acting at the level of the cash flow as follows:

Hxy
sT =

1
hx

s
E
[

hx
t Px

tTQxy
tT Hy

t (t, T) | Fs

]
=

1
hx

s
E
[

hx
t Hxy

tT | Fs

]
, (11)

where (Hxy
sT )0≤s≤t is the x-market value of Hy

t (t, T), for s ≤ t ≤ T.

Proof. If Hy
t (t, T) is determined in the y-market and directly observable (i.e., quoted) within the

economy, then according to Proposition 1, the value of such a payoff within the x-market, at the future
terminal time T, is given by:

Hxy
TT = Qxy

tT Hy
t (t, T), (12)

which is model-implied, since the curve-conversion factor process Qxy
tT is determined by the specific

forms of the pricing kernels (hx
t ) and (hy

t ), respectively. Therefore, since Hxy
TT is not directly observable

in the economy due to Qxy
tT , the curve-conversion factor process is subsumed into the discounting

process in Equation (4) for 0 ≤ s < t, by observing that hx
t Px

tTQxy
tT = hy

t Py
tT , which yields Equation (10).
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Conversely, if Hy
t (t, T) is determined in the y-market, but the converted quantity Hxy

TT is directly
observable within the economy, then:

Hy
t (t, T) =

Hxy
TT

Qxy
tT

, (13)

is model-implied, which is subsumed into the cash flow process by observing that
Hxy

sT = Px
sTQxy

tT Hy
t (t, T) for t ≤ s ≤ T from Equation (4), which yields Equation (11).

Remark 2. Corollary 1 proves to be critical in Section 3, where consistent multi-curve systems are derived
for both developed and emerging inter-bank swap markets. With regard to FRAs (the fundamental inter-bank
swap market derivative), which has an IBOR process as its underlying process, it turns out that the y-market
determined IBOR process is directly observable in the emerging market, but its curve-converted equivalent is
directly observable in the developed market. In this instance, the dual nature of the curve-conversion factor process
caters for this apparent cross-economy market inconsistency, resulting in one consistent modelling framework.

In Appendix B, we provide the consistent set of changes of numeraire assets and associated
equivalent probability measures, which ensure that no arbitrage is produced when the across-pricing
formula is applied using an equivalent martingale measure.

3. Pricing Kernel Approach to Multi-Curve Systems

First, we consider the definition of a spot IBOR, i.e., a deposit rate that is offered at a fixed time
t ≥ 0 by a set of suitably credit-rated banks within a given economy. We assume that the maturity
of said IBOR is t + δ > t, so that the associated tenor is given by δ > 0. Then, we may define (or
represent) the spot IBOR process via ZCB instruments by:

Lt(t, t + δ) =
1
δ

(
1

Ptt+δ
− 1
)

, (14)

where t ≥ 0, δ > 0, and where Ptt+δ is the price at time t of a ZCB, with tenor δ, that matures at time
t + δ. In the classical single-curve framework, where IBORs are considered an appropriate proxy for
risk-free rates and where a tradable discount bond system is assumed, one can then proceed to define
the forward IBOR process via the canonical no-arbitrage pricing relation:

Lt(Ti−1, Ti) =
1

htPtTi

E
[
hTi−1 PTi−1Ti LTi−1(Ti−1, Ti)

∣∣Ft
]

, (15)

for 0 ≤ t ≤ Ti−1, and where δi = Ti − Ti−1 is the IBOR tenor and (ht)t≥0 is the pricing kernel
process. By use of the relation (14) with t = Ti−1 and δ = δi, and the ZCB pricing relation
htPtTi = E[hTi−1 PTi−1Ti | Ft], one obtains the forward IBOR process:

Lt(Ti−1, Ti) =
1
δi

(PtTi−1

PtTi

− 1
)

, (16)

for 0 ≤ t ≤ Ti−1. We note that the product of the pricing kernel process and the discounted forward
IBOR process (htPtTi Lt(Ti−1, Ti))0≤t≤Ti−1 is an ((Ft),P)-martingale, which is analogous to the forward
IBOR process being a martingale under the QTi -forward measure in the classical single-curve theory.

The classical relation (16) states that the forward IBOR value at time t can be replicated by a linear
combination of zero-coupon bonds, i.e., by one maturing at the IBOR reset date Ti−1 and another ZCB
maturing at the IBOR settlement date Ti. In a market where the spread between an overnight indexed
swap (OIS) rate and the corresponding IBOR is non-zero, relation (16) is no longer acceptable. That is,
the now risky IBOR can no longer be replicated using risk-free ZCBs. In other words, the IBOR market
is exposed to risk factors which are not necessarily affecting the risk-free ZCB market, while the risk
exposure also varies depending on the IBOR tenor δi = Ti − Ti−1 one is investing in. Hence, one needs
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to assume that holding a financial contract written on a three-month IBOR exposes an investor to a
different risk profile than when holding an instrument written on a six-month IBOR. It follows that
assuming risk-free ZCBs can replicate the same risk exposures as contracts written on an IBOR is
wrong because: (a) an IBOR may be subject to more risk sources than the risk-free ZCBs; and (b) the
number of risk factors affecting an IBOR contract may depend on the IBOR tenor.

We ask the following question: If one insisted on keeping the relation (16), albeit subject to
modifications, how would one need to adjust (in a consistent and arbitrage-free manner) the relation
between an IBOR model and the associated ZCBs in a multi-curve setup? It turns out that the answer
is an extension based on the xy-formalism introduced above. Here is how we do it.

First, we consider a collection of interest rate curves indexed by x, y = 0, 1, 2, ..., n where we refer
to the x-curve as the discounting curve and the y-curve as the forecasting curve. An example for a pair
of curves (x, y) may be the pair (0, 1) where the zero-curve is the OIS curve and the one-curve is the
one-month IBOR curve. The case where x = y is the (classical) single-curve economy. Next, we make
the relationship (16) curve-dependent and write:

Ly
t (Ti−1, Ti) =

1
δi

(
Py

tTi−1

Py
tTi

− 1

)
. (17)

Thus, the y-ZCB system Py
tTi

has an associated y-tenored IBOR, which is subject to the same set
of risk factors, i.e., the y-tenored IBOR defines the y-ZCB system. Moreover, the y-ZCB price process
satisfies the martingale relation hy

t Py
tTi

= E[hy
Ti
| Ft], which is to say that no-arbitrage is assumed within

the self-consistent y-market.
Next, we detail the development of consistent multi-curve interest rate systems inspired by the

xy-formalism for both, emerging and developed markets.

3.1. Discounting Systems in Emerging Markets

In this section, we consider the simpler case of an emerging market, in particular one where no
OIS zero-coupon yield curve exists. To be precise, the spot overnight rate is observable, but there
are no tradable and liquid overnight indexed swaps, i.e., there is no OIS derivative market to enable
the construction of a yield curve. For more information on the specific nuances and issues relating
to emerging inter-bank swap markets, we refer the reader to Jakarasi et al. (2015), and the references
therein, who consider the problem of estimating an OIS zero-coupon yield curve in South Africa.
In such a market, all forecasting and discounting of cash flows is done by one liquid, risky y-tenored
IBOR zero-coupon yield curve, only.

To derive the multi-curve discounting system within the xy-formalism, we first consider the
pricing of standard FRAs. FRAs are the fundamental primitive securities in any interest rate market,
which facilitate price discovery for forward IBORs. The FRA considered here has reset time Ti−1 > 0
and maturity time Ti > Ti−1, which is also assumed to be the settlement time, and is therefore written
on the future spot IBOR Ly

Ti−1
(Ti−1, Ti). The value at time t ∈ [0, Ti] of this FRA is denoted by Vyy

tTi
,

with the first character of the superscript indicating the discount curve, and the second character
denoting the forecasting curve. For a unit nominal, the FRA’s payoff at Ti is given by:

Vyy
TiTi

= δi

(
Ly

Ti−1
(Ti−1, Ti)− Ky

)
, (18)
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where Ky is an arbitrary strike rate expressed in the y-market. We emphasise that the FRA’s payoff
is actually measurable at time Ti−1; however the actual cash flow is only paid at time Ti.1 As a
consequence, we may also define the in-advance FRA payoff Vyy

Ti−1Ti
at Ti−1, which is the value Vyy

TiTi

discounted by Py
Ti−1Ti

, by:

Vyy
Ti−1Ti

= Py
Ti−1Ti

δi

(
Ly

Ti−1
(Ti−1, Ti)− Ky

)
. (19)

Using the pricing Equation (4) with x = y, along with relations (15), (16) and (17), the FRA price
process is derived as:

Vyy
tTi

= δi
hy

t
E
[

hy
Ti−1

Vyy
Ti−1Ti

∣∣Ft

]
= δi

hy
t
E
[

hy
Ti−1

Py
Ti−1Ti

(
Ly

Ti−1
(Ti−1, Ti)− Ky

) ∣∣Ft

]
= δiP

y
tTi

(
Ly

t (Ti−1, Ti)− Ky
)

= Py
tTi−1
− (1 + δiKy)Py

tTi
.

(20)

By setting Vyy
tTi

= 0, the fair FRA rate process is recovered and is given by:

Kyy
t (Ti−1, Ti) = Ly

t (Ti−1, Ti), (21)

for t ∈ [0, Ti−1]. The notation Kyy
t (Ti−1, Ti) emphasises that this fair FRA strike rate applies when the

y-curve is used for both, discounting and forecasting.
Next, we consider a standard IRS with unit nominal, reset times {T0, T1, . . . , Tn−1}, payment times

{T1, T2, . . . , Tn}, referencing the y-tenored IBOR and arbitrary fixed swap rate under the y-market
denoted by Sy. Again applying pricing relation (4) with x = y, together with relations (15), (16)
and (17), the IRS price process is derived as:

Vyy
tTn

= ∑n
i=1

δi
hy

t
E
[

hy
Ti

(
Ly

Ti−1
(Ti−1, Ti)− Sy

) ∣∣Ft

]
= Py

tT0
− Py

tTn
− Sy ∑n

i=1 δiP
y
tTi

,
(22)

for t ≤ T0. Using the same notation convention as with the FRA, the fair IRS rate process is given by:

Syy
t (T0, Tn) =

Py
tT0
− Py

tTn

∑n
i=1 δiP

y
tTi

, (23)

for t ≤ T0. For a brief treatment of bootstrapping in an emerging market, we here refer to Appendix C.

3.2. Discounting Systems in Developed Markets

Next, we consider the more complex case of a developed market where, in general, an OIS market
exists. In such a market, cash flows are forecast using the y-tenored IBOR zero-coupon yield curve,
but discounted using the OIS zero-coupon yield curve. Such a product feature is also consistent with
the notion of collateralisation. We consider the same FRA as in the emerging market case; however,
we now assume that discounting occurs under the x-curve (or the OIS curve, to be more specific).
We now have to make use of relation (4) in order to define the FRA’s payoff.

1 The market convention is to understand the right-hand-side of (18) as the rate (or quote) observed at Ti−1 and applied at Ti
on one unit of currency giving the payoff value Vyy

Ti Ti
of the contract at Ti . Since this value is paid at Ti , we denote it Vyy

Ti Ti
,

and use the subscripts Ti .
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Proposition 2. The developed market FRA with reset time Ti−1, expiry time Ti and unit nominal has a terminal
payoff, within the x-market, given by:

Vxy
TiTi

= Qxy
Ti−1Ti

δi

(
Ly

Ti−1
(Ti−1, Ti)− Ky

)
= Qxy

Ti−1Ti
Vyy

TiTi
, (24)

where, as before, δi = Ti − Ti−1 and Ky is the strike rate within the y-market. The in-advance FRA payoff is
then given by:

Vxy
Ti−1Ti

= Px
Ti−1Ti

Qxy
Ti−1Ti

Vyy
TiTi

, (25)

which is the discounted value of the terminal payoff within the x-market.

Proof. A direct application of relation (4) leads to the result in Proposition 2. Like the emerging market
FRA, notice that the developed market FRA’s payoff is also measurable at Ti−1 with the actual cash
flow occurring at Ti.

Before we consider the derivation of the value of the developed market FRA, the following
lemmas will prove to be useful in this regard.

Lemma 1. The converted y-tenored forward IBOR process:

Lxy
t (Ti−1, Ti) = Qxy

tTi
Ly

t (Ti−1, Ti), (26)

for t ∈ [0, Ti−1], satisfies the martingale relation:

Lxy
s (Ti−1, Ti) =

1
hx

s Px
sTi

E
[

hx
Ti

Lxy
Ti−1

(Ti−1, Ti)
∣∣Fs

]
, (27)

for 0 ≤ s ≤ t ≤ Ti−1.

Proof. This statement follows from Equations (3), (26) and (15).

Lemma 2. The fair forward price Kx of a forward contract initiated at time t to exchange a cash flow Ky,
determined in the y-market, for a cash flow of Kx, in the x-market, with Ky being converted at Qxy

Ti−1Ti
, but the

final payoff occurring at expiry Ti > Ti−1 ≥ t is given by:

Kx =
hy

t Py
tTi

hx
t Px

tTi

Ky = Qxy
tTi

Ky. (28)

Proof. The value of such a forward contract is given by:

Vxy
tTi

= 1
hx

t
E
[

hx
Ti

(
KyQxy

Ti−1Ti
− Kx

) ∣∣Ft

]
= Ky hy

t
hx

t
Py

tTi
− Px

tTi
Kx,

(29)

which follows from Equation (3) and the tower property of conditional expectations, while setting
Vxy

tTi
= 0 and solving for Kx yield the required result.

We now have the necessary results to derive the value of the developed market FRA, which is
presented in the following theorem.

Theorem 1. The value of the developed market FRA with reset time Ti−1, expiry time Ti and unit nominal,
within the x-market, is given by:

Vxy
tTi

= δiPx
tTi

(
Lxy

t (Ti−1, Ti)− Kx
)

, (30)
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for t ∈ [0, Ti−1], where δi = Ti − Ti−1 and Kx is the strike rate within the x-market.

Proof. Using Proposition 2, the value of the developed market FRA, for t ∈ [0, Ti−1], is given by:

Vxy
tTi

= 1
hx

t
E
[

hx
Ti−1

Px
Ti−1Ti

Qxy
Ti−1Ti

δi

(
Ly

Ti−1
(Ti−1, Ti)− Ky

) ∣∣Ft

]
= δiPx

tTi
Lxy

t (Ti−1, Ti)− δiPx
tTi

Qxy
tTi

Ky,
(31)

with the first term following from Lemma 1 and the second term from Equation (3). Equation (30)
follows from applying the result of Lemma 2 to the second term and factorising accordingly.

The value of this FRA is commensurate with the value of a multi-curve (or basis) FRA in a
developed market, i.e., the price dynamics are consistent with the standard FRA contract traded in
developed markets. The form of the developed market FRA’s value within the xy-framework leads to
the following definition for the multi-curve forward IBOR process.

Definition 2. The multi-curve market-implied y-tenored forward IBOR process is given by:

Lxy
t (Ti−1, Ti) = Qxy

tTi
Ly

t (Ti−1, Ti) =
Pxy

tTi

δiPx
tTi

(
Pxy

tTi−1

Pxy
tTi

− 1

)
, (32)

for t ∈ [0, Ti−1], where (Pxy
tTi
) is defined in Remark 1.

Moreover, we may also derive the fair developed market FRA rate given the value of the FRA
provided by Theorem 1.

Corollary 2. The fair FRA rate process Kxy
t (Ti−1, Ti) at time t of a developed market FRA written on the

market-implied y-tenored forward IBOR (26), with reset time Ti−1 and settlement time Ti, is given by:

Kxy
t (Ti−1, Ti) = Lxy

t (Ti−1, Ti), (33)

for t ∈ [0, Ti−1].

Proof. Setting the value of the developed market FRA, given by Equation (30), equal to zero, we find
that Kx = Lxy

t (Ti−1, Ti) at time t. Then, for any time t ∈ [0, Ti−1], the result for the fair FRA rate process,
Kxy

t (Ti−1, Ti) = Lxy
t (Ti−1, Ti), follows accordingly.

Remark 3. Relation (33) is the direct multi-curve analogy to the single-curve relation (21). In fact, for x = y,
one recovers the single-curve expressions (20) and (21).

Remark 4. Using Definition 2, one may re-state the value of the developed market FRA as:

Vxy
tTi

= Pxy
tTi−1
− (1 + δiKy)Pxy

tTi
, (34)

for t ∈ [0, Ti−1], which is the direct multi-curve analogy to the emerging market FRA value (20) with the
y-ZCBs replaced by the xy-ZCBs.

Now that we have these results, it is also important to consider the relationship between
Lxy

t (Ti−1, Ti) and Lx
t (Ti−1, Ti). In particular, one would want Lxy

t (Ti−1, Ti) ≥ Lx
t (Ti−1, Ti) due to

the greater degree of risk associated with the multi-curve y-tenored forward IBOR process versus the
corresponding x-tenored process. The following corollary reveals the conditions under which this
feature is achieved, by making use of the associated forward capitalisation factor (FCF) processes.
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Corollary 3. The multi-curve market-implied y-tenored FCF process vxy
t (Ti−1, Ti), observed at time t ≤ Ti−1

and applying over the period [Ti−1, Ti], defined by:

vxy
t (Ti−1, Ti) := 1 + δiL

xy
t (Ti−1, Ti) , (35)

is greater than or equal to the corresponding x-tenored FCF process:

vx
t (Ti−1, Ti) := 1 + δiLx

t (Ti−1, Ti) , (36)

if interest rates are non-negative and hy
t ≤ hx

t for all t ∈ [0, Ti−1] where Ti−1 ≤ Ti.

Proof. Using Equation (35) and Definition 2, we can show that:

vxy
t (Ti−1, Ti) = 1 + δiQ

xy
tTi

Ly
t (Ti−1, Ti)

= 1 + Qxy
tTi

(
vy

t (Ti−1, Ti)− 1
)

= 1−Qxy
tTi

+ vxy
t (Ti−1, Ti) ,

where vy
t (Ti−1, Ti) is the y-tenored FCF and vxy

t (Ti−1, Ti) := Qxy
tTi

vy
t (Ti−1, Ti) is the y-tenored FCF

represented equivalently in the x-market. Then, using Definition 1 and Equation (9), we can show that:

vxy
t (Ti−1, Ti) = Qxy

tTi

Py
tTi−1

Py
tTi

= Qxy
tTi

Pxy
tTi−1

Pxy
tTi

=
Px

tTi−1

Px
tTi

Qxy
tTi−1

= vx
t (Ti−1, Ti)Q

xy
tTi−1

.

Now, in order to have vx
t (Ti−1, Ti) ≤ vxy

t (Ti−1, Ti), we must have that:

vx
t (Ti−1, Ti) ≤ 1−Qxy

tTi
+ vx

t (Ti−1, Ti)Q
xy
tTi−1

vx
t (Ti−1, Ti)

(
1−Qxy

tTi−1

)
≤ 1−Qxy

tTi

1−Qxy
tTi−1
≤ 1−Qxy

tTi
,

where the last inequality holds if interest rates are non-negative, i.e., vx
t (Ti−1, Ti) ≥ 1.

Finally, Qxy
tTi−1
≥ Qxy

tTi
if interest rates are non-negative and hy

t ≤ hx
t for all t ∈ [0, Ti−1] where Ti−1 ≤ Ti.

This may be easily evidenced by setting t = Ti−1 and allowing Ti to vary, while also using the linear
and monotonic properties of conditional expectations.

This corollary proves that the xy-approach, applied to a developed market, yields a y-market
interest rate system, which is dominated by the x-market system, i.e., Py

tT ≤ Px
tT for 0 ≤ t ≤ T.

Furthermore, this y-market system provides a forward IBOR process, Ly
t (Ti−1, Ti), and enables the

construction of a conversion factor process Qxy
tTi

, which facilitates the definition of the developed

market y-tenored forward IBOR process Lxy
t (Ti−1, Ti). Therefore, while the y-market system is still

fictitious, given that it cannot be directly observed, we still consider it to be a model-consistent system
given our curve-conversion framework that is inspired by currency modelling.

Remark 5. Using the FCF, one may also express the terminal payoff of the developed market FRA by:

Vxy
TiTi

= Qxy
Ti−1Ti

(
vy

Ti−1
(Ti−1, Ti)− vy

K

)
, (37)

where vy
K := (1 + δiKy). Then, applying the same results as before, the value of the FRA, for t ∈ [0, Ti−1], is:

Vxy
tTi

= Px
tTi

(
vxy

t (Ti−1, Ti)− vx
K

)
, (38)
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where vx
K = Qxy

tTi
vy

K. If we define the multi-curve y-tenored forward IBOR process by:

Lxy
t (Ti−1, Ti) :=

1
δi

(
vxy

t (Ti−1, Ti)− 1
)

, (39)

and the multi-curve x-market equivalent FRA strike rate by:

Kx :=
1
δi
(vx

K − 1) , (40)

we then recover the developed market FRA price process: Vxy
tTi

= Px
tTi

δi

(
Lxy

t (Ti−1, Ti)− Kx
)

. We note that in

this model vxy
t (Ti−1, Ti) = vx

t (Ti−1, Ti)Q
xy
tTi−1

so that:

1 + δiL
xy
t (Ti−1, Ti)

1 + δiLx
t (Ti−1, Ti)

=
hy

t Py
tTi−1

hx
t Px

tTi−1

, (41)

and Lxy
t (Ti−1, Ti) ≥ Lx

t (Ti−1, Ti) if interest rates are non-negative and hx
t ≤ hy

t for all t ∈ [0, Ti−1] and for
Ti−1 ≤ Ti. This is the approach adopted by Nguyen and Seifried (2015), and it shall be revisited in Section 5.
Two comments on their multi-curve model, given the context of the xy-approach, follow:

(i) The quantities Lxy
t (Ti−1, Ti) and Kx that determine the FRA’s floating and fixed cash flows are derived from

the curve-converted quantities vxy
t (Ti−1, Ti) and vx

K, respectively. This is in contrast with Lxy
t (Ti−1, Ti)

and Kx, the directly comparable curve-converted quantities used in the xy-framework. Therefore, these
derived quantities are no longer consistent with a currency modelling analogy, with each differing from the
correctly converted quantities by an additive factor of (Qxy

tTi
− 1)/δi.

(ii) Observation (i) is further supported by Equation (41) which shows that the conversion factor process
effectively models the spread between the multi-curve y-tenored FCF and the corresponding x-tenored FCF,
as opposed to the classical forward exchange rate. Moreover, the derived y-market system has almost no
relation to the developed market y-tenored interest rate system, that one seeks to model, since the model
derived y-market system dominates the x-market system, i.e., Px

tT ≤ Py
tT for 0 ≤ t ≤ T.

Remark 6. The mathematical quantity that directly models the y-tenored forward IBOR process is Lxy
· (·, ·) and

not Ly
· (·, ·). This is a consequence of industry standards in developed markets, that the product of the x-pricing

kernel and the x-curve discounted y-tenored forward IBOR process is a martingale under the P-measure. In the
xy-approach, this implies that:

hx
s Px

sTi
Ly

s (Ti−1, Ti) = E
[

hx
t Px

tTi
Ly

t (Ti−1, Ti) | Fs

]
, (42)

for 0 ≤ s ≤ t ≤ Ti−1. It is not possible to achieve this relationship within the xy-framework, given our
representation of the y-tenored forward IBOR process (17). However, this relationship is achieved if we replace
Ly
· (·, ·) with Lxy

· (·, ·). Our market-implied y-tenored forward IBOR process, Lxy
· (·, ·), reveals the convolution

of a conversion factor (which facilitates the market’s martingale assumption (42)) and the model y-tenored
forward IBOR process, Ly

· (·, ·). This result questions the utility of the y-ZCB system in the developed market
context. The y-ZCB system is a model construct, derived from the y-tenored model-consistent or model-implied
forward IBOR process, Ly

· (·, ·), which unravels the market’s martingale adjustment from the observed y-tenored
market-implied IBOR process, Lxy

· (·, ·), via the conversion factor Qyx
·· .

Remark 7. The xy-framework advocates the following price process for a multi-curve FRA:

Vxy
tTi

= δiP
xy
tTi

(
Ly

t (Ti−1, Ti)− Ky
)

, (43)
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for t ∈ [0, Ti]. We note that the conversion factor (or martingale adjustment) has been applied to the discounting
x-ZCB system and not to the model for the y-tenored forward IBOR process. However, we note that the terminal
FRA payoff would now be:

Vxy
TiTi

= δi
hy

Ti

hx
Ti

(
Ly

Ti−1
(Ti−1, Ti)− Ky

)
.

This allows us to disentangle the y-ZCB system from the x-ZCB system, which enables us to model the
y-curve discounting in a consistent, robust and rigorous fashion. From an economics perspective, if one compares
the return generated from an xy-FRA to a yy-FRA, one can show that:

Vyy
tTi

Vyy
0Ti

>
Vxy

tTi

Vxy
0Ti

=
Vxy

tTi

Vyy
0Ti

, (44)

as required, since discounting at the x-curve essentially represents a collateralised FRA, which should
therefore return the holder less than an equivalent investment in a non-collateralised FRA, represented by
the y-curve discounting.

Next, we consider the developed market IRS, i.e., one that forecasts cash flows under the y-curve
but discounts under the x-curve, unlike the emerging market IRS.

Theorem 2. The value of a developed market IRS, within the x-market, with reset times {T0, T1, . . . , Tn−1},
payment times {T1, T2, . . . , Tn} and unit nominal, referencing the y-tenored IBOR is given by:

Vxy
tTn

=
n

∑
i=1

δiPx
tTi

(
Lxy

t (Ti−1, Ti)− Sx
)

, (45)

for t ≤ T0, where δi = Ti − Ti−1 and where Sx is the fixed swap rate within the x-market.

Proof. Starting with the emerging market version of the IRS with fixed swap rate Sy within the
y-market and applying pricing relation (4), analogues to Proposition 2, the developed market IRS price
process is given by:

Vxy
tTn

=
n

∑
i=1

δi
hx

t
E
[

hx
Ti−1

Px
Ti−1Ti

Qxy
Ti−1Ti

(
Ly

Ti−1
(Ti−1, Ti)− Sy

) ∣∣Ft

]
, (46)

which, upon application of Lemma 1 and Equation (3), simplifies to:

Vxy
tTn

=
n

∑
i=1

δiPx
tTi

(
Lxy

t (Ti−1, Ti)−Qxy
tTi

Sy
)

, (47)

for t ≤ T0. The result follows by observing that the fixed IRS rate may be expressed in the x-market
by Sx = Sy(∑n

i=1 δiPx
tTi

Qxy
tTi
)/(∑n

i=1 δiPx
tTi
). This may be justified in an analogous fashion to the fixed

FRA rate, but this time making use of a fixed-for-fixed swap contract as opposed to a forward contract,
as in Lemma 2.

Remark 8. Using Definition 32, one may re-state the value of the developed market IRS as:

Vxy
tTn

=
[

Pxy
tT0
− Pxy

tTn

]
− Sy

n

∑
i=1

δiP
xy
tTi

, (48)

for t ≤ T0, which is the direct multi-curve analogy to the emerging market IRS value (22) with the y-ZCBs
replaced by the xy-ZCBs.
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Corollary 4. The fair fixed swap rate process Sxy
t (T0, Tn) of a developed market IRS written on

the market-implied y-tenored forward IBOR (26), with reset times {T0, T1, . . . , Tn−1}, payment times
{T1, T2, . . . , Tn} and unit nominal, is given by:

Sxy
t (T0, Tn) =

Pxy
tT0
− Pxy

tTn

∑n
i=1 δiPx

tTi

, (49)

for t ≤ T0.

Proof. Setting the value of the developed market IRS equal to zero, given by Equation (48), it follows
that the y-market fair fixed IRS rate is Sy =

(
Pxy

tT0
− Pxy

tTn

)
/ ∑n

i=1 δiP
xy
tTi

at time t. Using the proof of
Theorem 2 and Remark 1, the x-market fair fixed IRS rate (converting the y-market rate) is given by
Sx = Sy(∑n

i=1 δiPx
tTi

Qxy
tTi
)/(∑n

i=1 δiPx
tTi
) at time t. Then, for any time t ≤ T0, the result for the developed

market fair IRS rate follows accordingly by setting Sxy
t (T0, Tn) = Sx.

For a brief treatment of bootstrapping in a developed market, we here refer to Appendix C.

3.3. Consistent Multi-Curve Discounting in Emerging Markets

Now that we have a good understanding of how the xy-formalism enables the modelling of
multi-curve interest rate systems in developed markets, we may consider resolving the same problem
for the case of an emerging market. Our first hurdle in moving from a developed to an emerging
market setting is the non-existence of the OIS curve.

Recall that we have assumed the existence of a collection of interest rate curves indexed by
x, y = 0, 1, 2, . . . , n where we refer to the x-curve as the discounting curve and the y-curve as the
forecasting curve. In a common developed market, n = 4 with 0 denoting the nominal OIS curve,
1 the 1-month IBOR curve, 2 the 3-month IBOR curve, 3 the 6-month IBOR curve and 4 the 12-month
IBOR curve. Moreover, the stochastic evolution of each of these curves are modelled via a pricing
kernel process (hy

t ), which are in turn calibrated using liquid linear and non-linear interest rate market
instruments. In a common emerging market, only one IBOR tenor is usually tradable and liquid;
therefore, it is not possible to calibrate the entire set of pricing kernel processes (hy

t ), which span the
common developed interest rate market. This leads us to the following remark.

Remark 9. In the common emerging market, only one IBOR tenor, y∗, is tradable and liquid thereby enabling
the specification and calibration of a well-defined pricing kernel process (hy∗

t ). Pricing kernel processes for all
other IBOR tenors (ĥy

t ) are to be estimated statistically (or otherwise) as a suitable functional form of (hy∗
t ), i.e.,

ĥy
t = f

(
hy∗

t

)
. (50)

where f : R+ → R+ is measurable and adapted, such that the corresponding estimated y-ZCB (and y-curve)
systems, (P̂y

tT), may be constructed via:

P̂y
tT =

1

ĥy
t
E
[

ĥy
T | Ft

]
=

1

f
(

hy∗
t

)E [ f
(

hy∗
T

)
| Ft

]
, (51)

for 0 ≤ t ≤ T.

In Remark 9, if the function f (·) is linear, then the estimated y-ZCB is given by:

P̂y
tT =

1

f
(

hy∗
t

) f
(

Py∗
tT

)
, (52)
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which implies that it is possible to directly replicate the estimated y-ZCB through either a static or
dynamic replication strategy using the y∗-ZCB. However, this may not be possible, in general, if the
function f (·) is convex (concave), as the estimated y-ZCB will be governed by the following inequality:

P̂y
tT ≥ (≤) 1

f
(

hy∗
t

) f
(

Py∗
tT

)
, (53)

which follows by the application of Jensen’s inequality. The xy-formalism may now be applied in
the emerging market setting, assuming the existence of a collection of interest rate curves, indexed
by x, y = 0, 1, . . . , y∗, . . . , n, that are modelled by the calibrated pricing kernel process (hy∗

t ) and the
set of estimated pricing kernel processes (ĥy

t ; y 6= y∗). First, we consider the developed market FRA
within the emerging market context, i.e., one where the payoff is forecasted by the y-curve and then
discounted by the x-curve. The terminal and in-advance FRA payoffs remain unchanged and are
identical to Equations (24) and (25), respectively2, with the FRA price process also assuming the
familiar form:

Vxy
tTi

= δiP
xy
tTi

(
Ly

t (Ti−1, Ti)− Ky
)

= Pxy
tTi−1
− (1 + δiKy)Pxy

tTi
,

(54)

for t ∈ [0, Ti−1], while Ly
t (Ti−1, Ti) continues to be the correct forward IBOR process. Notice that the

derivation of Equation (54) follows by a direct application of Corollary 1.

Definition 3. The multi-curve emerging market y-tenored forward IBOR process is given by:

Ly
t (Ti−1, Ti) =

1
δi

(
Py

tTi−1

Py
tTi

− 1

)
, (55)

for t ∈ [0, Ti−1], unlike the developed market which required the definition of the market-implied y-tenored
forward IBOR process Lxy

t (Ti−1, Ti) := Qxy
tTi

Ly
t (Ti−1, Ti) for t ∈ [0, Ti−1].

This is due to the fact that there is currently no market standard for pricing an emerging market
FRA that is forecasted and discounted under different curves, with the only observable market quantity
being the spot IBOR process Ly

t (t, t + δ) for t ≥ 0. It is also possible, as in the case of developed
markets, to define a fair FRA rate process, Kxy

t (Ti−1, Ti) = Ly
t (Ti−1, Ti); however one would not be

able to observe this quantity in the market (since these FRAs are not traded, in general); therefore,
this would be a model-implied quantity.3

Similarly, we may consider the standard developed market IRS in the context of an emerging
market. The value of the IRS at some time t ≤ T0, making use of the same relations as before, is again
given by:

Vxy
tTn

= ∑n
i=1 δiP

xy
tTi

(
Ly

t (Ti−1, Ti)− Sy
)

= Pxy
tT0
− Pxy

tTn
− Sy ∑n

i=1 δiP
xy
tTi

,
(56)

where Ly
t (Ti−1, Ti), for t ∈ [0, Ti−1], continues to be the correct forward IBOR process, analogous to the

FRA result. As with the FRA, the fair IRS rate process is model-implied (unless the y-tenored IBOR
process is the tradable tenor and t = T0 = 0) and given by Sxy

t (T0, Tn) = (Pxy
tT0
− Pxy

tTn
)/(∑n

i=1 δiP
xy
tTi
)

for t ≤ T0.

2 Assuming that one insists on maintaining measurability of the payoff at the IBOR reset time Ti−1.
3 If the y-tenored IBOR corresponds to the most liquid and tradable tenor, i.e., y = y∗, then one will also have access to the

set of forward IBOR processes Ly
t (Ti−1, Ti) for 0 ≤ t ≤ Ti−1, from the standard and liquidly tradable set of single-curve

emerging market FRAs, and Kxy
t (Ti−1, Ti) = Kyy

t (Ti−1, Ti) = Ly
t (Ti−1, Ti).
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In a multi-curve emerging market interest rate system, within the xy-framework, the initial
(estimated) y-ZCB systems may be constructed in a completely analogous fashion to the
single-curve emerging market relations, see Appendix C, since Kxy

0 (Ti−1, Ti) = Ly
0(Ti−1, Ti) and

Sxy
0 (0, Tn) = (1− Py

0Tn
)/(∑n

i=1 δiP
y
0Ti

). That is, all initial model-implied quantities are only dependent
on the y-curve or y-ZCB system.

If we consider a FRA and an IRS within this context with payoffs forecasted by the y∗-curve and
discounted by one of the other curves, denoted by the x-curve, then the pricing formulae are given by:

Vxy∗
tTi

= Pxy∗
tTi−1
− (1 + δiKy∗)Pxy∗

tTi
, (57)

and:

Vxy∗
tTn

=
[

Pxy∗
tT0
− Pxy∗

tTn

]
− Sy

n

∑
i=1

δiP
xy∗
tTi

, (58)

from Equations (54) and (56), respectively. At this juncture, it is important to note that the xy∗-ZCB,
(Pxy∗

tT ), plays the same role as the y∗-ZCB, (Py∗
tT ), does in the single-curve emerging market setting in

Section 3.1. This leads us to the following definition for the xy-ZCB system, in general.

Definition 4. In the multi-curve interest rate system derived within the xy-framework, the xy-ZCB system,
(Pxy

tT ), defined by:

Pxy
tT =

1
hx

t
E
[

hx
T

(
hy

T
hx

T

)
(1)
∣∣Ft

]
= Px

tTQxy
tT = Qxy

tt Py
tT ,

may be considered to be a quanto-bond assuming:

(i) the x-curve with varying notional defined by the forward conversion factor Qxy
tT ; or

(ii) the y-curve with varying notional defined by the spot conversion factor Qxy
tt .

Remark 10. Within the developed market context, where the nominal OIS curve is considered to be the distinct,
single-curve tradable system, which we shall denote here as the x∗-curve, one may dynamically replicate y-ZCBs
and x∗y-ZCBs, where y 6= x∗, via the following set of x∗-curve quanto-bonds:

Py
tT =

Qx∗y
tT

Qx∗y
tt

Px∗
tT and Px∗y

tT = Qx∗y
tT Px∗

tT ,

whereas, within the emerging market context where one nominal IBOR swap curve is considered to be the
distinct, single-curve tradable system, which we have denoted as the y∗-curve, one may dynamically replicate
x-ZCBs and xy∗-ZCBs, where x 6= y∗, via the following set of y∗-curve quanto-bonds:

Px
tT =

Qxy∗
tt

Qxy∗
tT

Py∗
tT and Pxy∗

tT = Qxy∗
tt Py∗

tT .

4. xy-HJM Multi-Curve Models

In this section, we develop Heath–Jarrow–Morton (HJM) multi-curve interest rate systems based
on the xy-formalism introduced in this paper. The xy-HJM multi-curve system will be derived using
results from Section 3.

We consider the filtered probability space (Ω,F , (Ft),P) where (Ft)0≤t is the filtration generated
by two sets of independent multi-dimensional P-Brownian motions (Wt)t≥0 and (Zt)t≥0, respectively.
Being synonymous with the xy-formalism, we consider an economy with two distinct markets, x and
y, where x may be interpreted as a proxy default-free OIS-based market and y as a risky IBOR-based
market. Furthermore, we assume that the x- and y-markets are driven by the multi-dimensional
P-Brownian motions (Wx

t )t≥0 = (Wt)t≥0 and (Wy
t )t≥0 = (Wt, Zt)t≥0 respectively, where (Wt)t≥0 is
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n-dimensional and (Zt)t≥0 is m-dimensional. This allows us to define the pricing kernel process
associated with each market.

Definition 5. The (Ft)-adapted x- and y-market pricing kernel processes (hx
t )0≤t and (hy

t )0≤t satisfy, respectively,

dhx
t

hx
t

= −rx
t dt− λx

t dWx
t ,

dhy
t

hy
t

= −ry
t dt− λ

y
t dWy

t , (59)

where (rx
t )t≥0 and (ry

t )t≥0 are the short rates of interest; and (λx
t )t≥0 and (λ

y
t )t≥0 = (λx

t , λz
t )t≥0 are the n-

and (n + m)-dimensional market price of risk processes associated with the x- and y-markets, respectively.

Next, let (XtT)0≤t≤T and (YtT)0≤t≤T be (well-defined) processes, respectively satisfying:

dXtT
XtT

=

(
−Ax

tT +
1
2
|Σx

tT |
2
)

dt− (Σx
tT + λx

t )dWx
t ,

dYtT
YtT

=

(
−Ay

tT +
1
2

∣∣∣Σy
tT

∣∣∣2)dt−
(

Σy
tT + λ

y
t

)
dWy

t ,
(60)

for 0 ≤ t ≤ T, where A(·)
tT =

∫ T
t a(·)tu du is one-dimensional, | · | denotes the Euclidean norm,

and Σ(·)
tT =

∫ T
t σ

(·)
tu du with Σx

tT and Σy
tT being n- and (n + m)-dimensional, respectively. The processes

(σx
tT), (σ

y
tT) = (σw

tT , σz
tT) and (a(·)tT ) are generic adapted processes satisfying the implicit integrability

conditions, with σw
tT and σz

tT being n- and m-dimensional, respectively. We may then define the
respective ZCB prices as follows:

Definition 6. Setting Px
tT := XtT/hx

t and Py
tT := YtT/hy

t , the (Ft)-adapted x- and y-market ZCB-systems
satisfy, respectively, the dynamical equations:

dPx
tT

Px
tT

=
(

rx
t − Ax

tT + 1
2

∣∣Σx
tT
∣∣2 − λx

t Σx
tT

)
dt− Σx

tTdWx
t ,

dPy
tT

Py
tT

=

(
ry

t − Ay
tT + 1

2

∣∣∣Σy
tT

∣∣∣2 − λ
y
t Σy

tT

)
dt− Σy

tTdWy
t ,

(61)

following the application of Ito’s Lemma. Invoking the classical HJM drift condition, A(·)
tT = 1

2 |Σ
(·)
tT |2, results in

(h(·)t P(·)
tT )0≤t≤T being a P-(local) martingale, which is a requirement for the xy-HJM framework.

Proposition 3. Assuming that the x- and y-market ZCB-systems are differentiable in T, the instantaneous
forward rate processes ( f x

tT)0≤t≤T and ( f y
tT)0≤t≤T , respectively defined by f x

tT = −∂T ln
(

Px
tT
)

and

f y
tT = −∂T ln

(
Py

tT

)
, satisfy:

d f x
tT =

(
ax

tT + λx
t σx

tT
)

dt + σx
tTdWx

t ,

d f y
tT =

(
ay

tT + λ
y
t σ

y
tT

)
dt + σ

y
tTdWy

t ,
(62)

which are consistent with the classical HJM instantaneous forward rate model.

Proof. By direct application of Ito’s Lemma, the logarithm of the ZCB price process is:

ln
(

P(·)
tT

)
= ln

(
P(·)

0T

)
+
∫ t

0

(
rs − A(·)

sT − λ
(·)
s Σ(·)

sT

)
ds−

∫ t

0
Σ(·)

sT dW(·)
s , (63)

and therefore, taking the negative and differentiating with respect to T gives:

− ∂

∂T
ln
(

P(·)
tT

)
= − ∂

∂T
ln
(

P(·)
0T

)
+
∫ t

0

(
a(·)sT + λ

(·)
s σ

(·)
sT

)
ds +

∫ t

0
σ
(·)
sT dW(·)

s , (64)
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which yields the required instantaneous forward rate result.

Grbac and Runggaldier (2015) provide a thorough account of the approaches that have been adopted
in modelling a developed market multi-curve interest rate system with the HJM framework. Here,
we reprise the key results, given the economy that has already been introduced in this section, in order to
contextualise the xy-HJM framework within the existing body of literature. Grbac and Runggaldier (2015)
note that all approaches that have been adopted model the x-market ZCB-system (Px

tT) with the classical
HJM model, while the multi-curve market-implied y-tenored forward IBOR process, which we denote
here by Lxy

t (Ti−1, Ti), is modelled in one of three ways:

(i) Lxy
t (Ti−1, Ti) is specified in an ad hoc fashion (usually) inspired by the LIBOR market model

(LMM) such that this approach is referred to as a hybrid HJM-LMM;
(ii) Lxy

t (Ti−1, Ti) := (vy
t (Ti−1, Ti) − 1)/δi where, as before, vy

t (Ti−1, Ti) := Py
tTi−1

/Py
tTi

defines the FCF such that under certain parameter restrictions (see Proposition 4 below)
(hx

t Px
tTi

vy
t (Ti−1, Ti))0≤t≤Ti−1 is a P-(local) martingale; and

(iii) Lxy
t (Ti−1, Ti) := E[hx

Ti
Ly

Ti−1
(Ti−1, Ti)

∣∣Ft]/(hx
t Px

tTi
) assuming the classical HJM drift condition for

the y-market ZCB system.

In each approach, (hx
t Px

tTi
Lxy

t (Ti−1, Ti))0≤t≤Ti−1 is a P-(local) martingale, as required. Model (i) is
inconsistent with our approach, since our focus is on modelling ZCB-systems directly and implying
simple spot and forward rate models from that; therefore, we merely make note of (i) for completeness.
Models (ii) and (iii) are comparable to our approach; therefore, we expand upon them below.

Proposition 4. If the following parameter restrictions hold:

Ay
tTi
− Ay

tTi−1
= −1

2

∣∣∣Σy
tTi
− Σy

tTi−1

∣∣∣2 + Σx
tTi

(
Σw

tTi
− Σw

tTi−1

)
− λz

t

(
Σz

tTi
− Σz

tTi−1

)
, (65)

then the process (hx
t Px

tTi
vy

t (Ti−1, Ti))0≤t≤Ti−1 a P-(local) martingale, thereby enabling the use of Model (ii).

Proof. Applying Ito’s lemma to hx
t Px

tTi
vy

t (Ti−1, Ti), using Equations (59) and (61), we have:

d
(

hx
t Px

tTi
vy

t (Ti−1,Ti)
)

hx
t Px

tTi
vy

t (Ti−1,Ti)

=

[
Ay

tTi
− Ay

tTi−1
+ 1

2

∣∣∣Σy
tTi
− Σy

tTi−1

∣∣∣2 − Σx
tTi

(
Σw

tTi
− Σw

tTi−1

)
+ λz

t

(
Σz

tTi
− Σz

tTi−1

)]
dt

+
(

Σw
tTi
− Σw

tTi−1
− Σx

tTi
− λx

t

)
dWx

t +
(

Σz
tTi
− Σz

tTi−1

)
dZt,

(66)

from which it follows that the required martingale condition is achieved only if Equation (65)
is enforced.

Remark 11. In Grbac and Runggaldier (2015), both the x- and y-markets have the same sources of risk, i.e.,
are driven by the same set of Brownian motions, which resolves the parameter restrictions to:

Ay
tTi
− Ay

tTi−1
= −1

2

(
Σy

tTi
− Σy

tTi−1

)2
+ Σx

tTi

(
Σy

tTi
− Σy

tTi−1

)
, (67)

for 0 ≤ t ≤ Ti−1.

Model (iii) requires one to compute a conditional expectation, E[hx
Ti

Ly
Ti−1

(Ti−1, Ti)
∣∣Ft], which is

possible given our model choices, i.e., Equations (59) and (61), along with the classical HJM drift
condition applied to the y-market ZCB-system. Note that in Grbac and Runggaldier (2015), this model
is justified by analogies to credit and foreign exchange modelling. Their model setup leads to two
different parameter restrictions, depending on which analogy is assumed. Our pricing kernel-based
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HJM setup leads to a unique parameter restriction (the classical HJM drift condition for the y-market
ZCB-system), which subsumes both analogies, since our setup does not require us to specify an
exchange rate process in an ad hoc exogenous manner. This may be seen in the following proposition,
recalling the results from Proposition 1.

Proposition 5. The xy-HJM framework’s forward curve-conversion factor process (Qxy
tT )0≤t≤T satisfies:

dQxy
tT

Qxy
tT

= (Σx
tT − Σw

tT)(Σ
x
tTdt + λx

t dt + dWx
t )− (Σz

tT + λz
t )dZt, (68)

while the spot curve-conversion factor process (Qxy
tt )t≥0 satisfies:

dQxy
tt

Qxy
tt

=
(

rx
t − ry

t

)
dt + λx

t dWx
t − λ

y
t dWy

t , (69)

where λx
t dWx

t − λ
y
t dWy

t = −λz
t dZt.

Proof. Using the definition of the conversion factor, Equation (3), along with Definition 6, observe that
Qxy

tT = YtT/XtT , while Qxy
tt = hy

t /hx
t . The result then follows by a straightforward application of Ito’s

Lemma using Equations (60) and (59).

Remark 12. By the Girsanov theorem, it is straightforward to show that there is a multi-dimensional
Qx-Brownian motion (WQx

t ) that satisfies dWQx
t = λx

t dt + dWx
t upon changing measure from P to the

x-market risk-neutral measure Qx. Moreover, there is also a multi-dimensional QT
x -Brownian motion (WQT

x
t )

that satisfies dWQT
x

t = Σx
tTdt+dWQx

t upon changing measure from Qx to the x-market T-forward measure QT
x .

In this paper, we have proposed the xy-formalism for multi-curve interest rate modelling and in
turn advocated model structures for both multi-curve emerging and developed market forward IBOR
processes (see Definitions 3 and 2, respectively). We document these multi-curve forward IBOR
processes within the xy-HJM context in the next definition.

Definition 7. Within the xy-HJM framework, the multi-curve emerging market y-tenored forward IBOR
process is given by:

Ly
t (Ti−1, Ti) =

1
δi

(
vy

t (Ti−1, Ti)− 1
)

, (70)

with the FCF process, vy
t (Ti−1, Ti), satisfying:

dvy
t (Ti−1, Ti)

vy
t (Ti−1, Ti)

=
(

Σy
tTi
− Σy

tTi−1

) (
Σy

tTi
dt + λ

y
t dt + dWy

t

)
, (71)

for 0 ≤ t ≤ Ti−1, such that the process (hy
t Py

tTi
vy

t (Ti−1, Ti))0≤t≤Ti−1 is a P-(local) martingale. The multi-curve
developed market y-tenored forward IBOR process is given by:

Lxy
t (Ti−1, Ti) = Qxy

tTi
Ly

t (Ti−1, Ti) =
1
δi

(
vxy

t (Ti−1, Ti)−Qxy
tTi

)
, (72)

with the converted FCF process, vxy
t (Ti−1, Ti) := Qxy

tTi
vy

t (Ti−1, Ti), satisfying:

dvxy
t (Ti−1, Ti)

vxy
t (Ti−1, Ti)

=
(

Σx
tTi
− Σw

tTi−1

) (
Σx

tTi
dt + λx

t dt + dWx
t

)
− (Σz

tTi−1
+ λz

t )dZt, (73)

for 0 ≤ t ≤ Ti−1, such that the process (hx
t Px

tTi
vxy

t (Ti−1, Ti))0≤t≤Ti−1 is a P-(local) martingale.
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We note that (hx
t Px

tTi
Lxy

t (Ti−1, Ti))0≤t≤Ti−1 is also a P-(local) martingale; however, the multi-curve
developed market y-tenored forward IBOR process does not have an elegant differential representation
as it is essentially the difference between two stochastic processes, these being the converted FCF
process and the curve-conversion factor process.

Remark 13. The only parameter restrictions required by the xy-HJM framework are the classical HJM drift
conditions for both the x- and y-market ZCB systems. Therefore, Model (iii), as presented in Grbac and
Runggaldier (2015), is also a viable model for the developed market forward IBOR process, albeit an unnatural
one given the incompatibility between the x-market pricing kernel (hx

t ) and the y-market forward IBOR process
(Ly

t (Ti−1, Ti)). Another viable model within the xy-HJM framework is that of Nguyen and Seifried (2015),
given by Equation (39); however, recall the observations in Remark 5 regarding this model.

In the next section, rational multi-curve models are introduced. Such models, and in particular
those produced in Section 5.2, provide a rich class of flexible and tractable specifications for xy-HJM
multi-curve models and associated spread dynamics.

5. Rational Multi-Curve Models

As reported in Grbac and Runggaldier (2015), multi-curve rational interest rate models based on
the pricing kernel approach have appeared in Crépey et al. (2016) and in Nguyen and Seifried (2015).
The multi-curve approach proposed by Crépey et al. (2016) assumes a discount bond system associated
with an overnight-indexed swap (OIS) market and introduces a (forward) LIBOR process that has a
built-in spread when compared to the OIS rate. The OIS-based discount bond price system, which in
our setup would correspond to the x-curve ZCB price system, is generated by pricing kernel models
driven by stochastic factors. The (forward) LIBOR process is derived by pricing a forward rate agreement
(FRA) written on the LIBOR. The factor-based model of the multi-curve (forward) LIBOR process is then
deduced from the no-arbitrage relation the FRA price process is required to satisfy. The LIBOR model
turns out to be a rational function(al) of stochastic drivers that is given in units of the OIS pricing kernel
proxy. Thus, whenever the LIBOR dynamics depend on an idiosyncratic driving factor (not affecting the
OIS pricing kernel proxy), an OIS-LIBOR spread is generated that depends on a spread-idiosyncratic
stochastic factor. The source of the spread can be readily read off from the expression of the LIBOR model
owing to the transparency of the multi-curve approach brought forward. Given that the OIS-LIBOR
spread is obtained by focusing on how the offer rate is modelled, we refer to Crépey et al. (2016), and also
Nguyen and Seifried (2015), as a rate-based modelling approach.

5.1. Hybrid Rational-LMM Multi-Curve Models

A feature that is rather telling in understanding the structure of multi-curve models, and thus
helps in their classification, is the nature of the discount and the forecasting curve, respectively. In the
multi-curve models by Crépey et al. (2016), the term-structure of the discount (OIS-based) curve is
constructed by a rational model. However, the LIBOR model is postulated in a rather ad-hoc manner
and ensues directly from modelling the payoff of the forward rate agreement written on it. Similar to
the hybrid HJM-LMM models in Section 4, the forecasting curve (i.e., LIBOR-based term structure) is
constructed akin to LIBOR market models. This is why we refer to Crépey et al. (2016), and to some
extent also to Nguyen and Seifried (2015), as rational-LMM hybrid models. Next, we establish the
relations between these models and the framework presented in this paper.

Proposition 6. Let K(t; Ti−1, Ti) be the value at time t ∈ [0, Ti−1] of the fair FRA rate obtained in
Crépey et al. (2016, sct. 2.1), Then, it holds that K(t; Ti−1, Ti) = Kxy

t (Ti−1, Ti), where Kxy
t (Ti−1, Ti) is

determined by Equation (33).
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Proof. By setting PtTi = Px
tTi

, it follows that:

L(t; Ti−1, Ti) = Px
tTi

Lxy
t (Ti−1, Ti) = Pxy

tTi
Ly

t (Ti−1, Ti), (74)

where L(t; Ti−1, Ti) is the LIBOR specified in Crépey et al. (2016, eq. (2.6)).

Furthermore, in Section 2.2 of Crépey et al. (2016), a particular class of rational LIBOR models is
presented that becomes the workhorse, later in the paper. Next, we show how such a class is obtained
within the xy-framework.

Remark 14. From the relation (74) and by recalling that Py
tTi

= E[hy
Ti
|Ft]/hy

t , we deduce that:

L(t; Ti−1, Ti) =
1

δi hx
t

(
E
[

hy
Ti−1

∣∣Ft

]
−E

[
hy

Ti

∣∣Ft

])
. (75)

Next, we specify the discounting and forecasting kernels as follows:

hx
t = Px

0t + b1(t) A(1)
t , (76)

hy
t = Py

0t + b̄2(t) A(2)
t + b̄3(t) A(3)

t , (77)

where, for i = 1, 2, 3, the processes (A(i)
t ) are martingales. The quantities Px

0t, Py
0t, b1(t) and b̄i(t), i = 2, 3,

are suitably chosen deterministic functions. The correspondence to the rational multi-curve LIBOR models by
Crépey et al. (2016, sct. 2.2 ), is found by setting:

L(0; Ti−1, Ti) =
1
δi

(
Py

0Ti−1
− Py

0Ti

)
,

b2(Ti, Ti−1) =
1
δi

[
b̄2(Ti−1)− b̄2(Ti)

]
, b3(Ti, Ti−1) =

1
δi

[
b̄3(Ti−1)− b̄3(Ti)

]
.

(78)

The specifications (78) cause a slight loss of generality. However, whether in practical terms such
specifications are indeed restrictive can be decided once this model class is calibrated to actual market data.

We now turn our attention to the rational multi-curve models presented in Nguyen and Seifried (2015).
They propose to make use of the so-called FX-analogy to motivate pricing kernel models for the spread
observed between the OIS rate and LIBOR. In particular in Section 4, Theorem 4.1, a multiplicative spread
is considered. The spread is given by the ratio of a conditional expectation of the OIS-based pricing
kernel (state-price deflator) and a conditional expectation of a hypothetical pricing kernel. The latter
deflator may be associated with a foreign currency, although they distance themselves from such an
interpretation, c.f. Section 4.2 of Nguyen and Seifried (2015). It is our view that, although the OIS-LIBOR
spread is interpreted as a kind of currency exchange rate in their work, the deduced rational multi-curve
LIBOR models are of the kind that Crépey et al. (2016) derive. This is especially so because the rational
LIBOR models developed in Nguyen and Seifried (2015) are rate-based models, just as those produced
by Crépey et al. (2016), which relate the OIS forward rate and LIBOR, directly. As they seek to dissociate
themselves from the work of Bianchetti (2009), who, among other authors, unequivocally sticks to the
FX-analogy, we show that the rational models in Nguyen and Seifried (2015) do not need to rely on the
FX-analogy in order to be derived within a pricing kernel setup.

Proposition 7. In Nguyen and Seifried (2015), the multi-curve fair FRA rate L∆(t; T, T + ∆) is given by:

L∆(t; T, T + ∆) =
1
∆

(
p(t, T)

p(t, T + ∆)
E
[
D∆

T | Ft
]

E [DT | Ft]
− 1

)
, (79)
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for t ∈ [0, T]. This model can be obtained by the following specification of the LIBOR process
(L(t; Ti−1, Ti))0≤t≤Ti−1 , for i = 1, 2, . . . , n, in Crépey et al. (2016), Section 2.1, Equation (2.7):

L(t; Ti−1, Ti) =
1

∆Dt

(
E
[

D∆
T | Ft

]
−E [DT+∆ | Ft]

)
, (80)

where Ti−1 = T and Ti = T + ∆.

Proof. Relation (80) is directly obtained by equating the fair FRA rate (4.2) in Nguyen and Seifried (2015)
with the fair FRA rate (2.7) in Crépey et al. (2016). This shows that the OIS-LIBOR spread models, given in
Theorem 4.1 in Nguyen and Seifried (2015), do not necessitate the use of the FX-analogy in order to derive
(rate-based) multi-curve discounting models in a pricing kernel approach. While (Dt) corresponds to the
OIS-associated pricing kernel process (πt) in Crépey et al. (2016), there is indeed no reason to identify the
process (D∆

t ) with a fictitious pricing kernel associated with a foreign currency/economy. It may just be
viewed as an idiosyncratic component of the LIBOR process.

Remark 15. Comparing Equation (80) with Equation (75), we observe a discrepancy in the way that the
conversion to a multi-curve setup is obtained in Nguyen and Seifried (2015). The source of such incongruence is
discussed in Remark 5, (i). The difference is resolved by the following adjustment in the multi-curve model (79):

L∆(t; T, T + ∆) =
1
∆

(
p(t, T)

p(t, T + ∆)
E
[
D∆

T | Ft
]

E [DT | Ft]
− 1 ·Q(t, T + ∆)

)
, (81)

where, based on to the xy-approach, the conversion factor Q(t, T + ∆), or spread process, is given by:

Q(t, T + ∆) =
E
[
D∆

T+∆| Ft
]

E [DT+∆| Ft]
. (82)

The adjustment allows the model to be derived by a consistent application of the FX-analogy in a pricing
kernel setup as produced in the xy-approach developed in this paper.

5.2. Pure-Rational Multi-Curve Models

Unlike the preceding rational-LMM hybrid multi-curve models, we now consider rational models
for both, the discounting curve and the forecasting curve, that is for the ZCB price process (Px

tTi
)0≤t≤Ti

and (Py
tTi
)0≤t≤Ti , respectively, which feature as desirable properties (i) tractability, (ii) transparency of the

dependence structure among the risk factors and thus (iii) a good understanding of the resulting model
for the spread dynamics between the x- (discounting) and the y- (forecasting) curves. The rational price
models considered by Macrina (2014), and by Crépey et al. (2016) for multi-curve interest rate modelling
in particular, offer the set of properties we require. For the x- and y-ZCB, we postulate the following:

Px
tTi

=
Px

0Ti
∏m

k=1 Zx
k (t, Ti)

Px
0t ∏m

k=1 Zx
k (t)

, Py
tTi

=
Py

0Ti
∏n

`=1 Zy
` (t, Ti)

Py
0t ∏n

`=1 Zy
` (t)

, (83)

where Zx
k (t, Ti) = (1 + bx

k (Ti) Ax
t, k) and Zy

` (t, Ti) = (1 + by
` (Ti) Ay

t, `) are taken to be positive processes.
The quantities Px

0t and Py
0Ti

are the initial term structures of the x and y ZCBs, bKenyon(2010) and b` are

deterministic functions, and (Ax
t, k) and (Ay

t, `) are martingales with respect to some (P-equivalent)
probability measure. For further (technical) details, we refer to Macrina (2014) and Crépey et al. (2016).
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We take a closer look at (Py
tTi
), although the structural properties of the model also apply to (Px

tTi
).

The return process of the forecasting ZCB is given by:

ln
(

Py
tTi

)
= ln

(
Py

0Ti

Py
0t

)
+

n

∑
`=1

ln

(
1 + by

` (Ti) Ay
t, `

1 + by
` (t) Ay

t, `

)
. (84)

The associated short rate process (ry
t ) is given by:

ry
t = −

(
∂tP

y
0t

Py
0t

+
n

∑
`=1

θ
y
t, `

)
, (85)

where we define the (Ay
t, `)-driven factor component (θy

t, `) by:

θ
y
t, ` =

∂tb
y
` (t) Ay

t, `

1 + by
` (t) Ay

t, `
. (86)

Now, let us assume, for the sake of the explanation, that the number n of factor components is
given by the particular tenor y. Therefore, let a = 1, 2, 3, . . ., y = 3a, which is the 3-month, 6-month,
9-month, 12-month, etc., LIBOR tenor, and n = a + 2 the number of factor components. For the
one-month LIBOR tenor, we assume that the short rate of the associated 1-month ZCB is driven by two
factor components, i.e., n = 2. Then, we have the following additive structure for the short rate model
associated with the corresponding forecasting ZCBs:

y = 1-month-tenored ZCB, (P1
tTi
) : r1

t = −
(

∂tP1
0t

P1
0t

+ θ1
1(t) + θ1

2(t)
)

,

y = 3-month-tenored ZCB, (P3
tTi
) : r3

t = −
(

∂tP3
0t

P3
0t

+ θ3
1(t) + θ3

2(t) + θ3
3(t)

)
,

...
...

y = 3a-month-tenored ZCB, (Py
tTi
) : ry

t = −
(

∂tPy
0t

Py
0t

+ ∑a+2
`=1 θ

y
` (t)

)
, a = 1, 2, 3, . . . .

(87)

Depending on the specific interbank offer rate market, we could envisage the situation where
θi
` = θ

j
` for all i, j = 3a. This would mean that the various y-curves only differed by the number of

factor components driving the corresponding short rates (i.e, forecasting ZCBs). We would then have:

y-month-tenored ZCB, (Py
tTi
) : ry

t = −
(

∂tP
y
0t

Py
0t

+
a+2

∑
`=1

θ`(t)

)
, a = 1, 2, 3, . . . , (88)

where the short rate model of the 1m-tenored ZCB is recovered by setting a = 0. From the FRA price
process (34), one sees that the quantity responsible for the consistent transfer from a single-curve to a
multi-curve setting is the quanto-bond with price process (Pxy

tTi
).

Next we introduce the multiplicative class of rational models for the “multi-curve” quanto-bond
price process (Pxy

tTi
)0≤t≤Ti :

Pxy
tTi

=
1
hx

t
E
[

hy
Ti

∣∣Ft

]
=

Py
0Ti

∏n
`=1 Zy

` (t, Ti)

Px
0t ∏m

k=1 Zx
k (t)

. (89)

The model for the short rate of interest (rxy
t )0≤t, associated with the quanto-bond, is obtained by

rxy
t = −∂Ti ln(Pxy

tTi
)|T=t, assuming that the quanto-bond price function is differentiable in its maturity

Ti. It follows that rxy
t = ry

t . One could argue that it is somewhat artificial to introduce the x-discounting
bond because, after all, the x-curve may be a specific y-curve. We wish however to allow for more
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generality: there is no reason why the type of model ought to be the same for the x-ZCB and for the
y-ZCB. It is only for convenience that we here decide to consider the same type of pricing model for
both types of bonds. In any case, the discounting curve, identified with the one-day deposit, can be
viewed as the y = 0-forecasting curve in the above setup (87):

1-day-tenored ZCB, Px
tTi

= P0
tTi

: rx
t = r0

t = −
(

∂tP0
0t

P0
0t

+ θ0
1(t)

)
. (90)

A by-product of the multi-curve modelling approach based on bonds as considered in this paper,
is the implicit, or rather emerging, spread models. Within the rational models, the process for the
spread between the y and y + 3 m curves is given by:

sy,y+3m
tTi

=
Py+3m

tTi

Py
tTi

=
Py

0t

Py+3m
0t

Py+3m
0Ti

Py
0Ti

∆a+2(t, Ti), a = 1, 2, 3, . . . , (91)

where the stochastic spread process (∆a+2(t, Ti))0≤t≤Ti is given by:

∆a+2(t, Ti) =
1 + by

a+2(Ti) Ay
t, a+2

1 + by
a+2(t) Ay

t, a+2
. (92)

We note that the stochastic spread is positive assuming that the rates underlying the tenors are
non-negative; see Corollary 3.

5.3. Linear-Rational Term Structure Models

Filipović et al. (2017) introduce the so-called linear-rational term structure (LRTS) models. In this
section, we show how the multi-curve extension to the LRTS is produced by showing that the LRTS
models belong to the more general class introduced in the previous section. We thus prove that
(a) the LRTS models belong to the class of models developed in Macrina (2014) when an infinite-time
horizon is considered and (b) that the pricing kernel generating the LRTS is a weighted heat kernel
(WHK). Pricing kernels generated by WHKs in an infinite time horizon setting are introduced in
Akahori et al. (2014) and developed in Akahori and Macrina (2012) in the case that the WHK is driven
by a time-inhomogeneous Markov process. In particular, we shall show that the LRTS models produce
bond price processes (PtT)0≤t≤T of the form:

PtT =
P0T + b(T) At

P0t + b(t) At
, (0 ≤ t ≤ T) (93)

which are identified as a class of Markov functionals. The function b(t), 0 ≤ t ≤ T, is deterministic,
and (At)0≤t is a martingale process. The explicit construction of this class of term structure models is
presented in Macrina (2014).

Definition 8. Linear-rational term structure models, Filipović et al. (2017).
Let (Zt)0≤t denote the multivariate process with state space E ⊂ Rm that satisfies the stochastic

differential equation:
dZt = κ(θ − Zt)dt + dMt, (94)

where κ ∈ Rm×m and θ ∈ Rm, and where (Mt)0≤t is an m-dimensional martingale. Let (ζt)0≤t denote the
pricing kernel process defined by:

ζt = e−αt (φ + ψZt) , (95)
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where α ∈ R, φ ∈ R, and ψ ∈ Rm such that φ + ψz > 0 for all z ∈ E. The linear-rational term structure,
generated by the linear pricing kernel process (ζt)0≤t, have zero-coupon bond price processes (PtT)0≤t≤T
given by:

PtT = e−α(T−t) φ + ψθ + ψe(T−t) (Zt − θ)

φ + ψZt
, (96)

where T is the bond maturity date.

Proposition 8. The stochastic differential Equation (94) has the unique solution given by:

Zt = e−κt
(

Z0 + κ
∫ t

0
eκsds θ

)
+ e−κt At. (97)

The process (At)0≤t, defined by:

At =
∫ t

0
eκsdMs, (98)

is a martingale.

Proof. That the mean-reverting process (97) is the unique solution to the SDE (94) follows from a
straightforward application of Ito’s Lemma. To show that (At)0≤t is a martingale, one remarks that
E[| At|] < ∞ for all t ≥ 0 and that E[Au|Fs] = As, for 0 ≤ s ≤ u. The latter follows by calculating
E[
∫ u

s d[φ(t)Mt] | Fs], where 0 ≤ s ≤ t ≤ u, and by applying Fubini’s theorem. One then obtains:

E[Au|Fs]− As = E[φ(u)Mu − φ(s)Ms | Fs]−E
[∫ u

s
Mt∂tφ(t)dt

∣∣Fs

]
= 0, (99)

which completes the proof.

Theorem 3. The pricing kernel process (ζt)0≤t that generates the linear-rational term structure models,
specified in Definition 8, is given by:

ζt = ζ0 [P0t + b(t) At] , (100)

where ζ0 = φ + ψZ0. The positive, deterministic function (P0t)0≤t≤T is the initial term structure of the
associated T-maturity bond system with price process:

PtT =
P0T + b(T) At

P0t + b(t) At
(0 ≤ t ≤ T) (101)

where P0t, the deterministic function b(t) and the martingale (At) are determined by:

P0t =
e−αt

φ + ψZ0

[
φ + ψe−κt

(
Z0 + κ

∫ t

0
eκsds θ

)]
, 0 ≤ t ≤ T, (102)

b(t) =
e−αt

φ + ψZ0
ψe−κt, 0 ≤ t ≤ T, (103)

At =
∫ t

0
eκsdMs, t ≥ 0. (104)

Proof. One direction is straightforward: it suffices to insert (102), (103) and (104) in (101) to obtain (96).
The other direction, i.e., beginning from Definition 8, goes as follows: The solution (97) is inserted
in (96) to obtain:

PtT =
e−αT

[
φ + ψe−κT

(
Z0 + κ

∫ t
0 eκsds θ

)]
+ e−αTψκ

∫ t
0 e−κ(T−s)ds θ + e−αTψe−κT At

e−αt
[
φ + ψe−κt

(
Z0 + κ

∫ t
0 eκsds θ

)]
+ e−αtψe−κt At

. (105)
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Next, we define the functions γ(t, T), λ(t, T) and b̃(t) by:

γ(t, T) = e−αT
[

φ + ψe−κT
(

Z0 + κ
∫ t

0
eκsds θ

)]
, (106)

λ(t, T) = e−αTψκ
∫ t

0
e−κ(T−s)ds θ, (107)

b̃(t) = e−αtψe−κt (108)

for t ∈ [0, T], and therewith express the bond price process in the form:

PtT =
γ(t, T) + λ(t, T) + b̃(T) At

γ(t, t) + b̃(t) At
. (109)

The initial term structure P0t, 0 ≤ t ≤ T, satisfies the relation γ(0, 0)P0t = γ(0, t)+λ(0, t) = γ(t, t).
Furthermore, γ(t, T) + λ(t, T)− [γ(0, T) + λ(0, T)] = 0 holds. We thus write:

PtT =
γ(t, T) + λ(t, T)− [γ(0, T) + λ(0, T)] + γ(0, 0)P0T + b̃(T) At

γ(0, 0)P0t + b̃(t) At
, (110)

and immediately obtain (101) by observing that b(t) = b̃(t)/γ(0, 0) for 0 ≤ t ≤ T.

Corollary 5. The linear-rational term structure models can be expressed in the form:

PtT =
P0T

[
1 + b̄(T) At

]
P0t
[
1 + b̄(t) At

] , (111)

for 0 ≤ t ≤ T, where b̄(t) = b(t)/P0t. This is the form (83) for m = 1 and thus the necessary basis for
the extension to the multi-curve linear-rational term structure models via Theorem 1 and Definition 32, in a
developed market, and via Definitions 3 and 4 in the emerging market.

Proof. This follows directly from (101).

Remark 16. We emphasise that the form (101), or equivalently (111), shows that the linear-rational term
structure has, by (102), a functionally fully specified initial term structure P0t of bond prices for t ∈ [0, T].
Furthermore, the models (101) specified by (102)–(104) produce an example of the larger class (93), or equivalently
(111), of term structure models that can accommodate unspanned stochastic volatility as considered in
Filipović et al. (2017, sct. C).

Next, we consider weighted heat kernel processes over an infinite-time horizon,
see Akahori et al. (2014), and in particular the case where the propagator is a conditional expectation,
as in Akahori and Macrina (2012) and Macrina (2014). Such weighted heat kernels are used to generate
(explicit) pricing kernel processes. The definition that follows provides weighted heat kernels in a
multivariate setting.

Definition 9. Let (Xt)0≤t be an m-dimensional (Ft)-adapted Markov process, F(t, x) be a vector-valued and
deterministic function in Rm and w(t, u) a matrix-valued deterministic function in Rm×m. Furthermore, let the
functions f0(t) ∈ R and f1(t) ∈ Rm be deterministic. The process (πt)0≤t is a weighted heat kernel defined by:

πt = f0(t) + f1(t)
∫ ∞

0
w(t, u)E [F(t + u, Xt+u) | Ft]du, (112)

where t ∧ u ≥ 0, and f0(t), f1(t), F(t, x) and w(t, u) are chosen such that (πt) is a positive and finite
(scalar-valued) process.
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The next statement asserts that the pricing kernel process (ζt) in Filipović et al. (2017) is a weighted
heat kernel, and it establishes the relation between (ζt) and the class (112).

Theorem 4. The pricing kernel (95) that generates the linear-rational term structure models by
Filipović et al. (2017), is a special case of the process (112) where the following holds:

1. Let (Xt) be the Markov process (Zt) that satisfies (94).
2. F(t, Xt) = Zt, for all t ≥ 0.
3. w(t, u) = e−β(t+u), β ∈ Rm×m invertible where βκ = κβ for κ ∈ Rm×m invertible.
4. The functions f0(t) and f1(t) are given by:

f0(t) = f1(t)
[
(β + κ)−1 − β−1

]
e−βtθ + e−αtφ, (113)

f1(t) = e−αtψeβt(β + κ), (114)

where φ ∈ R, α ∈ R, θ ∈ Rm, ψ ∈ Rm and β ∈ Rm×m with βκ = κβ for κ ∈ Rm×m. It is assumed that
(β + κ) is invertible.

Proof. One direction is straightforward: It suffices to insert Items 1–4 into Equation (112) to obtain
the pricing kernel process (95). In the other direction, that is starting from (112), one makes the initial
assumptions that the first and second items shall hold. This leads to:

E [Zt+u) | Ft] = e−κ(t+u)
(

Z0 + κ
∫ t+u

0
eκsds θ

)
+ e−κ(t+u)

∫ t

0
eκsdMs. (115)

Then, by choosing the ansatz given in the third item, one obtains:∫ ∞

0
w(t, u)E [F(t + u, Xt+u) | Ft]du = (β + κ)−1e−βtZt +

[
β−1 − (β + κ)−1

]
e−βtθ. (116)

Thus, the functions f0(t) and f1(t) are selected such that the pricing kernel process (95) is obtained,
that is (113) and (114).

6. Pricing of Inflation-Linked, FX and Hybrid Securities

In this section, we show how the across-curve valuation approach developed in this paper
extends to the pricing of other fixed-income financial instruments. The curve-conversion factor
process, developed in the present work, may conveniently be applied to the pricing and hedging of
inflation-linked and foreign-exchange (FX) securities. In particular, the quanto-bond process (Pxy

tT )0≤t≤T
plays an important role in the pricing of hybrid securities, such as inflation-linked foreign-exchange
products, where consistent asset valuation can still be a challenge.

6.1. Inflation-Linked Pricing

It is customary in inflation-linked price modelling and hedging to consider two economies,
the so-called nominal and real economies. Such a viewpoint matches the xy-concept so much so
that the curve-conversion factor associated with inflation-linked pricing is obtained with little effort.
However, this is the strength and appeal we see in this formalism. The nominal (N), cash-based
economy is associated with the x-curve, and the real (R), goods/services-based economy is associated
with the y-curve. Therefore, we set x = N and y = R. Next, we apply the scheme developed in
Sections 2 and 3 of this paper.

We assume positive pricing kernel processes (hN
t )0≤t and (hR

t )0≤t for the nominal and the real
economies, respectively. The process (Ct)0≤t of the consumer price index links prices between the
nominal and the real economies by:

Ct = C0
hR

t
hN

t
, (117)
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where C0 is the base price level at Time 0 (not necessarily normalised to one). The price PNR
tT at time

t ≤ T of an inflation-linked discount bond with cash flow CT at maturity T is given by:

PNR
tT =

1
hN

t
E
[

hN
T

CT
C0
| Ft

]
=

1
hN

t
E
[

hR
T | Ft

]
. (118)

In the xy-formalism, where we recall x = N and y = R, we may write the price process (PNR
tT ) in

terms of the conversion formula:
PNR

tT = PN
tT QNR

tT , (119)

where (PN
tT) is the price process of the nominal discount bond, and where:

QNR
tT =

E
[
hR

T | Ft
]

E
[
hN

T | Ft
] (0 ≤ t ≤ T) (120)

is the curve-conversion factor (spread process) linking discounting on the nominal N-curve and
forecasting on the real R-curve. The expression for the quanto-bond (118) can be obtained in a
straightforward fashion from Equation (4) by setting t = T, thereafter replacing the pricing time s with
t, and further by setting x = N, y = R and HR

T = 1. The nominal curve serves as the base-curve; hence
the curve-conversion factor process (120), in the relation (119), quantifies the number of positions in
the nominal T-maturity discount bond necessary to replicate the no-arbitrage value at t ∈ [0, T] of the
inflation-linked discount bond with value PNR

tT at time t. Given that the nominal discount bond PN
tT

and the inflation-linked discount bond PNR
tT are traded sufficiently on a market, one can imply from

the market the inflation-linked conversion factor:

QNR
tT =

PNR
tT

PN
tT

. (121)

The pricing formulae for an inflation-linked forward rate agreement (or inflation-linked
zero-coupon swap) and for a year-on-year swap contract can be expressed in terms of the conversion
factor. The derivations of such pricing formulae follow those for the forward rate agreement and
the swap contracts presented in Section 3. Price models for inflation-linked securities, which are
based on explicit pricing kernel models (hence, on explicit curve conversion factor processes) have
been developed by Dam et al. (2018). Such models feature a high degree of flexibility and good
calibration properties.

6.2. Exchange to Foreign Currencies

We consider two currencies i and j in the respective nominal (cash-based) economies Ni and Nj.
Here, we show that the forward foreign exchange rate, which converts an amount of domestic currency
j into an amount of foreign currency i at a fixed future data, is given by today’s spot exchange rate
multiplied with the appropriate currency conversion factor. We set x = i and y = j in the xy-formalism,
see Sections 2 and 3. In the following, we abbreviate “foreign exchange” as “FX”.

We denote by (Xij
t )0≤t the spot FX rate process, which converts, e.g., GBP to EUR. We emphasise

that the notation ij implies, in this example, EUR/GBP. By (Fij
tT)0≤t≤T , we denote the process of the

forward FX rate. We conjecture the following relation:

Fij
tT = Xij

t
Pj

tT
Pi

tT
. (122)

Here, (Pi
tT)0≤t≤T and (Pj

tT)0≤t≤T are assumed to be the nominal OIS discount bond price processes
denominated in the i (EUR) and j (GBP) currencies, respectively. We acknowledge that the correct
discount bond price processes, in practice, are those determined by the respective FX basis curves.
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While these may be easily incorporated into the framework via pricing kernels and associated
curve-conversion factor processes, we ignore this fact throughout this section for ease of exposition.
We note that Fij

tt = Xij
t , t ∈ [0, T]. The i- and j-denominated economies are assumed to be equipped

with the respective (nominal) pricing kernel processes (hi
t) and (hj

t). By recalling the price formula of a
discount bond, it follows from the conjecture (122) that:

Fij
tT = Xij

t
hi

t E[h
j
T | Ft]

hj
t E
[
hi

T | Ft
] = Xij

t
hi

t

hj
t

Qij
tT , (123)

where the FX conversion factor (Qij
tT) for the currency pair (i, j) has the familiar form:

Qij
tT =

E[hj
T | Ft]

E
[
hi

T | Ft
] . (124)

Next, we validate the conjecture (122) by pricing an FX forward contract in this setup. We model
the spot FX rate process (Xij

t ) by:

Xij
t = Xij

0
hj

t
hi

t
, (125)

and, by recalling (123), we obtain:

Fij
tT = Xij

t
hi

t

hj
t

Qij
tT = Xij

0 Qij
tT . (126)

This is the relation we would expect to emerge in the xy-approach for the forward FX process.
The stochastic price dynamics of the forward FX contract are determined by the ratio of the forecasting
curves in the two economies denominated in units of the respective currencies. We shall now see
whether the expression (126) for the forward FX rate is indeed the fair rate obtained from pricing the
FX forward contract.

Proposition 9. Let (Pi
tT)0≤t≤T and (Pj

tT)0≤t≤T be the price processes of the discount bonds denominated in
the i and j currencies, respectively. Let (Xij

t )t≥0 be the spot FX rate process exchanging j currency for i currency
at time t ≥ 0. Then, for 0 ≤ t ≤ T, the fair forward FX rate is given by:

Fij
tT = Xij

0 Qij
tT = Xij

t
Pj

tT
Pi

tT
, (127)

where (Qij
tT)0≤t≤T is the curve-conversion process (124).

Equation (127) confirms the expression given in conjecture (122). Furthermore, the FX
curve-conversion factor process (Qij

tT)0≤t≤T can be implied from the quoted forward FX rates and the
spot rates on the market, that is,

Qij
tT =

Fij
tT

Xij
0

. (128)

Proof. Consider the payoff Vi
T = Xij

T/Xij
0 − Ki of an FX forward contract, with expiry date T > 0

and strike value Ki, denominated in i-currency. The price process (Vi
tT) of the FX forward contract is

given by:

Vi
tT =

1
hi

t
E
[

hi
T

(
Xij

T/Xij
0 − Ki

) ∣∣Ft

]
. (129)
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This follows as an application of the across-curve formula (4), where one sets x = i and y = j,
alongside t = T and where the pricing time s is replaced with t. Furthermore, H j

T = 1− Ki/Qij
TT shall

hold, which is indeed a j-currency quantity. The relation Hij
tT = Vi

tT is obtained where we drop the j
superscript in Vi

tT to emphasise that the value Vi
tT at time t ∈ [0, T] is given in units of the i-currency.

Then, by recalling Equation (125), it follows with ease that:

Vi
tT = Pij

tT − KiPi
tT , (130)

for t ∈ [0, T]. By setting Vi
tT = 0, for all t ∈ [0, T], we obtain the result stated in the proposition,

where Ki
tT = Fij

tT/Xij
0 = Qij

tT is the fair (strike) value for the forward currency-exchange process.

6.3. Multi-Curve Interest Rate Foreign-Exchange Hybrid

We consider the situation whereby an investor wishes to enter a foreign-currency forward contract
on LIBOR. An example might clarify this type of hybrid security. Suppose we consider GBP-based
LIBOR, as quoted in the U.K. market. An investor wishes to enter a USD-denominated forward
contract written on the GBP-based LIBOR quotes. This exposes the investor to the risk underlying
the GBP-LIBOR market and the currency-exchange risk between GBP and USD. We are interested
in deducing the fair forward rate process of the USD-forward contract based on GBP-LIBOR. This is
obtained with ease in the xy-approach by combining the results in Section 3.2, on multi-curve systems
in developed markets, and in Section 6.2, above.

Proposition 10. Consider 0 ≤ t ≤ Ti−1 < Ti where Ti − Ti−1 is the tenor of the GBP-based LIBOR and Ti is
the expiry date of the USD-denominated forward contract that is written on the GBP-based LIBOR. The fair
forward rate process Kx$ y£

t (Ti−1, Ti)0≤t≤Ti−1 of the USD-denominated forward contract is given by:

Kx$ y£
t (Ti−1, Ti) =

F$£
tTi

X$£
0

Lx£ y£
t (Ti−1, Ti) = Lx$ y£

t (Ti−1, Ti), (131)

where X$£
0 is the spot USD/GBP exchange rate at t = 0, the fair forward USD/GBP exchange rate process

(F$£
tTi
)0≤t≤Ti is given by the relation (127) and the GBP-based LIBOR process Lx£ y£

t (Ti−1, Ti)0≤t≤Ti−1 is given
by Equation (26).

Proof. The starting point is the y-tenored GBP-based LIBOR, given in Lemma 1, which we convert,
at time Ti−1, into the x$-market by the FX conversion factor (124). We obtain:

Lx$ y£
Ti−1

(Ti−1, Ti) = Q$£
Ti−1Ti

Lx£ y£
Ti−1

(Ti−1, Ti) = Qx$ y£
Ti−1Ti

Ly£
Ti−1

(Ti−1, Ti), (132)

which is the USD-denominated GBP-based LIBOR. We note that the notation x£ and y£ stand for
GBP-OIS and GBP-y-tenor, respectively. As mentioned earlier, we ignore the GBP-USD FX basis
curve, for simplicity. However, this curve may be easily incorporated into the valuation through an
intermediate curve-conversion factor process for GBP-OIS to GBP-USD FX basis.

Next, we write the price Vx$ y£
tTi

at time t ≥ 0 of the USD-denominated forward contract (written
on the GBP-based LIBOR) that expires at Ti ≥ t. That is,

Vx$ y£
tTi

= X$£
0

δi

hx$
t
E
[

hx$
Ti

(
Lx$ y£

Ti−1
(Ti−1, Ti)− Kx$

)
| Ft

]
, (133)
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where Kx$ is the strike rate of the contract. By Equation (132) and the tower property of conditional
expectation, it then follows that:

Vx$ y£
tTi

=
hy£

t

hx$
t

Px$
tTi

Ly£
t (Ti−1, Ti)− Kx$ Py£

tTi
. (134)

Setting Vx$ y£
tTi

= 0 for all t ∈ [0, Ti] gives the result (131), where Equations (3), (15), (26) and (127)
are used.

6.4. Inflation-Linked Foreign Exchange Hybrids

Given that the relations for prices of inflation-linked and FX securities are available in the
xy-approach, we can move on to the valuation of another hybrid financial instrument. We consider the
price process of a contract that gives exposure to inflation in the domestic economy and is priced in a
foreign currency. To answer this question, we take the example of a forward bet on inflation/deflation
in the j-economy valued in units of the i-currency. This could be taking a bet at t ∈ [0, T) on the growth
in the value of the U. K. price index in EUR, Xij

T Cj
T/Cj

0, at the fixed future date T.

Proposition 11. Let (Cj
t)t≥0 be the j-economy price index process (117) and (Xij

t )t≥0 the spot FX rate (125).
Consider the random payoff VNi

T = Xij
TCj

T/Cj
0 − KNi , where KNi is the nominal i-currency strike value, and T

is the fixed expiry date. The price process (VNi
tT )0≤t≤T of the inflation-linked FX forward with cash flow VNi

T is
given by:

VNi
tT = Xij

0 PNi
tT Q

Ni Rj
tT − KNi PNi

tT , (135)

where (PNi
tT ) is the price process of the nominal discount bond in the i-economy, and where the conversion factor

process (Q
Ni Rj
tT )0≤t≤T is defined by:

Q
Ni Rj
tT =

E
[

h
Rj
T | Ft

]
E
[

hNi
T | Ft

] . (136)

The fair forward inflation-linked FX rate process (F
Ni Rj
tT )0≤t≤T is given by:

F
Ni Rj
tT = Fij

tT
P

NjRj
tT

P
Nj
tT

. (137)

Proof. We begin with Proposition 1: Set x = Ni and y = Rj alongside t = T, and thereafter replace the
pricing time s with t. This gives,

H
Ni Rj
tT =

1

hNi
t

E
[

hNi
T Q

Ni Rj
TT H

Rj
T | Ft

]
. (138)

For the real-economy random cash flow at time T > 0, we set H
Rj
T = Xij

0 − KNi /Q
Ni Rj
TT , which is a

quantity denominated in units of the j-real-economy. Now, we calculate the price VNi
tT at time t ∈ [0, T]
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of the hybrid contract. We write H
Ni Rj
tT = VNi

tT to emphasise that the value VNi
tT at time t ∈ [0, T] is given

in nominal units of the economy with currency i. We have:

VNi
tT =

1

hNi
t

E
[

hNi
T

(
Xij

T Cj
T/Cj

0 − KNi
) ∣∣Ft

]
(139)

=
Xij

0

hNi
t

E
[

h
Rj
T | Ft

]
− PNi

tT KNi , (140)

where Equations (117) and (125) are used. This can be expressed in terms of the appropriate conversion

factor process (Q
Ni Rj
tT )0≤t≤T . That is,

VNi
tT = Xij

0 PNi
tT Q

Ni Rj
tT − PNi

tT KNi , (141)

where:

Q
Ni Rj
tT =

E
[

h
Rj
T | Ft

]
E
[

hNi
T | Ft

] . (142)

Setting VNi
tT = 0, for all t ∈ [0, T], we obtain the fair inflation-linked FX forward process:

F
Ni Rj
tT = Xij

0 Q
Ni Rj
tT = Fij

tT
P

NjRj
tT

P
Nj
tT

, (143)

which concludes the proof.

In summary, Equation (137) states that the fair rate of an inflation-linked FX forward is given

by Fij
tT/P

Nj
tT units of the bond P

NjRj
tT , which is linked to inflation in the (domestic) j-economy.

In developed markets, the assets with price Fij
tT , P

Nj
tT and P

NjRj
tT , respectively, are (mostly) liquidly traded.

The relation (137) determines the consistent hedge for the i-currency inflation-linked FX forward in
terms of the j-economy FX forward, the inflation-linked bond and the zero-coupon bond in the j-market.

We thus have (i) the consistent curve-conversion formula Q
Ni Rj
tT = Qij

tTQ
NjRj
tT , linking inflation-indexed

and FX securities and (ii) the equivalent consistent relation (137) between the inflation-indexed and FX
forward rates.

7. Conclusions

In this paper, a framework is developed that allows for the consistent pricing and hedging of
financial assets, which depend on a spread between the rates their values accrue and at which they are
discounted. Such a situation is manifest in fixed-income markets, in particular, where the return of
instruments may accrue at one benchmark rate, e.g., LIBOR, and is discounted at another benchmark
rate, e.g., the OIS rate. The paradigm for modelling the prices of tenor-based fixed-income products is
the so-called multi-curve term structure framework.

Although the approach we develop in this paper is applicable whenever spreads among different
curves (term structures) need to be modelled, we consider fixed-income as the market within which we
develop what we term consistent valuation across curves. We choose the modelling paradigm of pricing
kernels to construct the consistent price systems that give rise to, and also rely on, the curve-conversion
process that allows for no-arbitrage price conversions from one curve to another, as e.g., required
in multi-curve interest rate modelling. This can be viewed as a kind of currency foreign-exchange
analogy, and we draw several parallels with this view while we develop the xy-approach.

After the introduction of the curve-dependent discounting systems, we produce the
curve-conversion factor process that links cash-flows associated with different curves and hence
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gives rise to consistent prices of assets, which accrue value according to the forecasting curve and
are discounted according to the discounting curve. The dual nature of the curve-conversion factor
also allows for conversion of curves. The deduced across-curve pricing formula gives rise to the
consistent set of numeraire assets and associated (risk-neutral) probability measures so as to avoid the
introduction of arbitrage opportunities in a multi-curve market (or a ‘spread market’); see Section 2.
The curve-conversion mechanism enables the introduction of tenor-based zero-coupon bonds without
undermining the no-arbitrage requirement.

An intriguing by-product of the across-curve pricing kernel approach we develop is that it
proposes consistent pricing relations for multi-curve systems in emerging markets where a derivatives
market on one of the benchmarks, say the OIS system, is absent and needs to be estimated. For example,
the liquidly traded tenor may be used to calibrate the pricing kernel model underlying the zero-coupon
bond price system associated with the liquid tenor. Although a multi-curve interest rate system is
available in emerging markets, it has an idiosyncratic and proprietary nature. Given an estimation
methodology, one can apply the xy-approach as a standard to consistently price instruments in a
multi-curve emerging market. We show that the across-curve valuation method is applicable in
developed (liquid) markets as much as in emerging (less liquid) markets and that fixed-income
products, such as forward rate agreements, may be understood and priced with the same ease in both
types of markets.

Recently, interest in so-called rational models has grown, and the advantages of using this
class of models to produce tractable interest-rate models, and extensions to the multi-curve setting,
have been recognised. We develop generic pricing kernel models for across-curve valuation and
show how rational multi-curve models, such as those of Crépey et al. (2016) and Nguyen and
Seifried (2015), are recovered within our xy-approach, and furthermore, the linear-rational term
structure models by Filipović et al. (2017) may be generalised to a multi-curve environment.
Moreover, important contributions have been made by several authors to produce multi-curve
extensions of the Heath–Jarrow–Morton framework. We try to contribute to this research area by
investigating the HJM-framework from the perspective of our across-curve valuation scheme therewith
suggesting multi-curve HJM-models.

Finally, we show how inflation-linked, currency-based and fixed-income hybrid securities can be
priced by applying our consistent across-curve valuation method using pricing kernels.
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Appendix A. No-Arbitrage Strategy for Conversion of Cash Flows and Curves

Let us first consider a simple arbitrage relationship for an economy with default-free and
credit-risky interest rate curves, while assuming perfect market liquidity. Assume that the x-curve is
the default-free curve while the y-curve is one of a potential set of credit-risky curves. Consider the
following simple strategy, at Time 0:

(i) Sell one unit of the numeraire asset in the x-market for 1/hx
0 ; and

(ii) Buy one unit of the numeraire asset in the y-market, which costs 1/hy
0,
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which costs zero to setup, i.e., Vt = 0, since hx
0 = hy

0 = 1. Transaction (i) is equivalent to borrowing
money via the x-market’s money market, while (ii) is equivalent to a deposit into the y-market’s money
market. Then, at any time t > 0, the value of this strategy will be:

Vt =
1
hy

t
− 1

hx
t

,

which will be greater than zero if the risky entity that holds the investment has not defaulted by that
time. Therefore, this strategy does not allow for arbitrage, in general. Now, let us assume that one is
able to mitigate all of the default-risk associated with the entity offering the y-market investment via
appropriate collateralisation. In such a circumstance, the value of the strategy at any time t > 0 must
equal zero, if we are to preclude arbitrage, otherwise one would be ensured of earning a cash flow equal
to Vt which would be greater than zero with certainty at any time t > 0. No arbitrage may be achieved
by adjusting the y-market deposit by the ratio hy

t /hx
t . At any time t > 0, this ratio is merely the realised

multiplicative spread between the discount factors realised in the x- and y-markets, respectively.

Remark A1. In currency modelling, the ratio hy
t /hx

t models the spot exchange rate between the x- and
y-currencies. In particular, one unit of y-currency may be exchanged for hy

t /hx
t units of x-currency at time t.

Another relevant arbitrage relationship to consider involves a finite horizon loan and investment
strategy. Maintaining the same assumptions as before, consider the same strategy as before at Time 0,
and then, do the following at some time t ∈ (0, T):

(i) Sell 1/hx
t units of the x-market T-maturity bond for Px

tT ; and
(ii) Buy 1/hy

t units of the y-market T-maturity bond for Py
tT ,

which again costs zero to setup at Time 0, as before, and terminates at time t when the money market
loan and deposit is transferred to fixed horizon alternatives. Now, at any time s ∈ [0, t), the same
arguments apply as before while at time t the value of this strategy will be:

Vt =
1

hy
t Py

tT
− 1

hx
t Px

tT
,

which again does not permit an arbitrage opportunity, due to the credit risk associated with the
investment leg of the strategy. If we again invoke collateralisation of the investment leg of the strategy,
then arbitrage is precluded at: (a) all times s ∈ [0, t) by adjusting the y-market deposit by the ratio
hy

t /hx
t ; and (b) at time t by adjusting the y-market fixed term deposit by the ratio hy

t Py
tT/hx

t Px
tT . If these

adjustments are not enforced post collateralisation, then one would be ensured of a risk-free profit
equal to Vt for all times t ∈ (0, T].

Remark A2. In currency modelling, the ratio hy
t Py

tT/hx
t Px

tT models the forward exchange rate between the x-
and y-currencies. In particular, one can agree at time t to Exchange 1 unit of y-currency for hy

t Py
tT/hx

t Px
tT units

of x-currency at time T ≥ t.

Appendix B. Consistent Changes of Numeraire and Measure

Here, we discuss changes-of-measure, numeraire assets, martingales and therefore no-arbitrage
within the xy-formalism. The curve-conversion factor process (3) induces the changes-of-measure
between all introduced y-markets (or y-curves). In particular, it governs no-arbitrage across all
distinct markets associated with the economy under consideration. To demonstrate this, we consider
Proposition 1, along with an asset with a spot-defined future cash flow Hy

T and deduce that the value
of such an asset in the x-market is:

Hxy
tT =

1
hx

t
E
[

hy
T Hy

T | Ft

]
, (A1)
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for t ∈ [0, T]. For each of the markets z = x, y, we introduce a change-of-measure density martingale
(mz

t )0≤t≤T which changes measure from the real-world measure P to the equivalent (risk-neutral)
measure Qz, along with the z-discount factor (Dz

t ) such that 1/Dz
t is the natural numeraire under Qz.

This also means that the z-market’s pricing kernel may be written as hz
t = Dz

t mz
t . The price process

(Hxy
tT )0≤t≤T can now be expressed, equivalently, in terms of (a) the Qx risk-neutral measure and (b) the

Qy risk-neutral measure:

Hxy
tT =

1
Dx

t
EQx

[
Dx

TQxy
TT Hy

T | Ft

]
=

my
t

mx
t

1
Dx

t
EQy

[
Dy

T Hy
T | Ft

]
= Qxy

tt Hy
t , (A2)

where we emphasise that (Dx
t Hxy

tT )0≤t≤T and (Dy
t Hy

t )0≤t≤T are Qx- and Qy-martingales respectively,
by construction. Moreover, we may change measure from Qz to the T-forward measure QT

z via the
Radon–Nikodym derivative:

dQT
z

dQz
=

Dz
T Pz

TT
Dz

t Pz
tT

, (A3)

which acts on FT given information Ft up to time t, and therefore, we may now express the price
process (Hxy

tT )0≤t≤T equivalently, in terms of (a) the x-market T-forward measure and (b) the y-market
T-forward measure:

Hxy
tT = Px

tTEQT
x
[

Qxy
TT Hy

T | Ft

]
=

my
t Dy

t Py
tT

mx
t Dx

t
EQT

y
[

Hy
T | Ft

]
= Px

tTQxy
tTE

QT
y
[

Hy
T | Ft

]
= Px

tTQxy
tT

Hy
t

Py
tT

, (A4)

where (Hxy
tT /Px

tT)0≤t≤T and (Hy
t /Py

tT)0≤t≤T are QT
x - and QT

y -martingales respectively.
Equations (A2) and (A4) clearly demonstrate the role of the curve-conversion factor process
in changing measure within and across markets. Furthermore, the price process’ martingale property
is preserved across markets (and curves), with the curve-conversion factor process again enabling this
property. The xy-approach precludes arbitrage within and across different markets (and curves).

Appendix C. Bootstrapping of Initial Term Structures

Appendix C.1. Emerging Markets

In an emerging market, one would have the following initial data: (a) the y-tenored spot IBOR
Ly

0(0, T1); (b) a set of fair FRA rates {Kyy
0 (T1, T2), Kyy

0 (T2, T3), . . . , Kyy
0 (Tn−1, Tn)}; and (c) a set of fair

IRS rates {Syy
0 (0, Tn+1), Syy

0 (0, Tn+2), . . . , Syy
0 (0, Tn+m)}. Using these data, one may construct the initial

y-ZCB system by the relations:

Py
0T1

= 1
1+Ly

0(0,T1)δ1
,

Py
0Ti

=
Py

0Ti−1
1+Kyy

0 (Ti−1,Ti)δi
,

Py
0Tn+j

=
1−Syy

0 (0,Tn+j)∑
n+j−1
k=1 δk Py

0Tk
1+δn+jS

yy
0 (0,Tn+j)

,

(A5)

for i ∈ {2, 3, . . . , n} and j ∈ {1, 2, . . . , m}. In general, one will have to make use of a suitable numerical
bootstrapping technique to extend the y-ZCB system from the longest FRA maturity to the set of IRS
maturities. These results are all consistent with a classical single-curve interest rate framework.

Appendix C.2. Developed Markets

In a developed market, one would have the following initial data: (a) the y-tenored spot IBOR
Lxy

0 (0, T1); (b) a set of fair FRA rates {Kxy
0 (T1, T2), Kxy

0 (T2, T3), . . . , Kxy
0 (Tn−1, Tn)}; and (c) a set of fair
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IRS rates {Sxy
0 (0, Tn+1), Sxy

0 (0, Tn+2), . . . , Sxy
0 (0, Tn+m)}. Using these data, one may construct the initial

y-ZCB system by the relations:

Py
0T1

= 1− δiPx
0T1

Lxy
0 (0, T1),

Py
0Ti

= Py
0Ti−1

− δiPx
0Ti

Kxy
0 (Ti−1, Ti),

Py
0Tn+j

= 1− Sxy
0 (0, Tn+j)∑

n+j
k=1 δkPx

0Tk
,

(A6)

for i ∈ {2, 3, . . . , n} and j ∈ {1, 2, . . . , m}. In general, one will have to make use of a suitable numerical
bootstrapping technique to extend the y-ZCB system from the longest FRA maturity to the set of IRS
maturities. Interestingly, but not surprisingly, since Pxy

st = (hy
s /hx

s )Py
st for 0 ≤ s ≤ t, it follows that:

Ly
t (Ti−1, Ti) =

1
δi

(
Py

tTi−1

Py
tTi

− 1

)
=

1
δi

(
Pxy

tTi−1

Pxy
tTi

− 1

)
, (A7)

and therefore, Pxy
0t = Py

0t for t ≥ 0.

Remark A3. Market practitioners may choose to construct a market-implied y-ZCB system, which we will
denote by {Py

0t}t≥0, as follows:
Py

0T1
= 1

1+Lxy
0 (0,T1)δ1

,

Py
0Ti

=
Py

0Ti−1
1+Lxy

0 (Ti−1,Ti)δi
,

Py
0Tn+j

=
1−∑

n+j−1
k=1 δkSxy

0 (0,Tn+j)Py
0Tk

1+δn+jS
xy
0 (0,Tn+j)

,

(A8)

for i ∈ {2, 3, . . . , n} and j ∈ {1, 2, . . . , m}, using the same initial data, available in a developed market,
as before. This is indeed what is currently done in practice, with no attention paid to the fact that assumption (42)
confounds the true forward IBOR process with a martingale adjustment. Put differently, the resultant y-ZCB
system is dependent on the x-ZCB system via the conversion factor Qxy

·· .
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