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Abstract 

Understanding how person-to-person contagious processes spread through a population requires 

accurate information on connections between population members. However, such connectivity 

data, when collected via interview, is often incomplete due to partial recall, respondent fatigue or 

study design, e.g., fixed choice designs (FCD) truncate out-degree by limiting the number of 

contacts each respondent can report. Past research has shown how FCD truncation affects 

network properties, but its implications for predicted speed and size of spreading processes 

remain largely unexplored. To study the impact of degree truncation on predictions of spreading 

process outcomes, we generated collections of synthetic networks containing specific properties 

(degree distribution, degree-assortativity, clustering), and also used empirical social network data 

from 75 villages in Karnataka, India. We simulated FCD using various truncation thresholds and 

ran a susceptible-infectious-recovered (SIR) process on each network. We found that spreading 

processes propagated on truncated networks resulted in slower and smaller epidemics, with a 

sudden decrease in prediction accuracy at a level of truncation that varied by network type. Our 

results have implications beyond FCD to truncation due to any limited sampling from a larger 

network. We conclude that knowledge of network structure is important for understanding the 

accuracy of predictions of process spread on degree truncated networks.  

Keywords: Social networks; Contact networks; Epidemics; Truncation; Spreading processes; 

Validity; Fixed choice design; Network epidemiology 
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Introduction 

Our understanding of how disease, knowledge and many other phenomena spread through a 

population can often be improved by investigating the population’s social or other contact 

structure, which can be naturally conceptualized as a network (Newman, 2002; Pastor-Satorras et 

al., 2015). In the case of human populations, this contact structure is often gathered through the 

use of questionnaires or surveys that typically ask respondents to name some of their contacts 

(Burt, 1984; Holland & Leinhardt, 1973). Generating population-level network structures from 

such data requires one of two possible approaches (Marsden, 2005). One approach is to delineate 

a population of interest, interview every person in the population, and collect unique identifiers 

for each respondent’s contacts; this allows the mapping of the true sociocentric network within 

that population. The alternative is to sample the population of interest and collect information 

about each respondent and his or her contacts; this results in a collection of egocentric networks 

from that population. Either approach enables the extraction of network features that can be used 

to fit a graph model, such as one of the models in the family of exponential random graphs 

(ERGMs) (Lusher et al., 2012), which allows the subsequent generation of network graphs 

consistent with the fitted features of the observed networks. The features that may be extracted 

from egocentric networks are however quite limited, making sociocentric networks the preferred 

design, resources allowing. 

Both egocentric and sociocentric approaches can place a considerable burden on the respondent 

to recall numerous contacts and describe each in detail (McCarty et al., 2007). As a result, most 

sample survey questionnaires, in both egocentric and sociocentric designs, limit the contacts 

sought from a respondent, for example by the content, intimacy level, geographic location or 

time frame of the relationship elucidated (Campbell & Lee, 1991). A common method is to limit 
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the number of contacts a respondent describes. This may be done directly, e.g. by asking “who 

are your five closest friends with whom you regularly socialize?” It may also be done indirectly, 

e.g. by asking “who are the friends with whom you socialize” but then only asking follow-up 

questions about the first five named (Burt, 1984; Kogovsek et al., 2010). A less-common variant 

of the second approach is for the interviewer to ask follow-up questions on a random subset of 

named contacts. 

All of the above approaches potentially lead to truncation of the number of observed contacts. 

There is longstanding concern within the sociological literature that such truncation might affect 

estimates of network properties, including various forms of centrality (Holland & Leinhardt, 

1973). However, there are countervailing resource and data quality benefits to avoiding 

respondent and interviewer fatigue via truncation (McCarty et al., 2007). While investigating the 

effect of degree truncation on observed structural properties of networks is an important 

problem, substantive interest often lies in making inferences about how a dynamical process on 

the network, such as the spread of an infectious disease, might be affected by truncation. 

Surprisingly, while both the impact of degree truncation on structural properties of networks and 

the impact of structural properties on the spread of a dynamic process through a networked 

population have been investigated, the joint implications of the two processes have not yet been 

elucidated.  

To integrate key ideas from the two corpora, we review first the literature on the impact of 

truncating reported contacts on structural network properties, and second the literature on the 

impact of structural network properties on spread dynamics, to arrive at hypotheses regarding 

how truncation might change expected spreading process outcomes. While our work is motivated 

by epidemic disease processes, our analysis should be applicable to any process that can be 
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modeled using compartmental models of a spreading process. We test the predictions of our 

hypotheses with simulation models using both synthetic, structured networks, and empirically 

observed networks.  

Spreading processes on networks can be modeled on ensembles of networks (Jenness et al., 

2015), using ERGMs or in a Bayesian framework (Goyal et al., 2014). However, using this 

modeling approach to explore the impact of truncation would conflate two processes: the 

truncation process and the network generation process. In order to focus on the former, we 

generate multiple realizations of synthetic full-network datasets with specific network properties, 

and additionally utilize a collection of empirically observed sociocentric networks that can be 

interpreted as multiple network realizations from a larger meta-population. As a result, we are 

able to isolate the effect of degree truncation and explore its impact on predictions of spreading 

processes on networks with very different structural properties.  

The impact of contact truncation on structural network properties 

Limiting the number of connections (“alters”) reported by a respondent (“ego”) is known as a 

fixed choice design (FCD) (Holland & Leinhardt, 1973). This limitation right-censors (imposes 

an upper bound on) an ego’s out-degree (the number of alters nominated by an ego). In 

sociocentric studies out-degree truncation may in turn reduce the in-degree of others, because 

some true incoming ties may end up unreported due to the constraints on out-degree. 

Sociocentric networks are commonly analyzed as undirected networks in which an edge (or tie) 

exists between two nodes, � and �, if either node reports it (not least to minimize the impact of 

underreporting of edges). In such an undirected network, each node’s total degree will consist of 

the union of all in-directed and out-directed nominations. FCD causes this total degree to be 
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lowered in some circumstances, specifically when both � and � fail to report edge ��� between 

them. This can occur only when �� and �� are both larger than ���, the FCD truncation value, and 

thus both potentially will not report ���. If �� and �� are both larger than ���, then whether ��� is 

observed will depend on how FCD is carried out. FCD can be conducted in two ways, as 

outlined above. The more-common approach of focusing on the first ��� or fewer names reported 

(“weighted truncation”) is likely to lead to bias towards stronger contacts, since stronger ties are 

likely to be more salient to a respondent. Here ��� is more likely to be reported if it has higher 

weight. This approach should thus maximize the proportion of a respondent’s social interactions 

that is captured. The less-common approach of drawing a random subset of all named contacts 

(“unweighted truncation”) will provide a broader picture of the types of contacts a respondent 

has – notably increasing the chance of observing weak ties – at the cost of observing a smaller 

proportion of the respondent’s total social interaction. Here, whether ��� is observed depends on 

chance.  

A body of research has highlighted the substantial impact of sampling on network structural 

properties (Frank, 2011; Granovetter, 1976). For example, a recent study of nine different 

sampling methods found substantial variability in their ability to recover four structural network 

characteristics (Ebbes et al., 2015). FCD is known to impact several network characteristics, but 

its effects depend on the structure of the complete network graph (Kossinets, 2006); we consider 

next some key properties (we discuss these properties in more depth in Supplementary Content 

1).  

Degree distribution and assortativity. FCD’s impact on the network degree distribution  is 

almost always to reduce its mean – insofar as edges are dropped – and variance – insofar as 
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higher-degree nodes will be forced to underreport outgoing edges, flattening the distribution. 

This latter effect will be strongest in degree-assortative networks, where both ends of an edge 

may be unable to report the connection; in contrast, in degree-disassortative networks then edges 

that might be censored by the high-degree end are likely to be maintained by the low-degree end 

(Kossinets, 2006; Vázquez & Moreno, 2003). FCD may therefore significantly affect human 

contact networks, which are typically somewhat degree-assortative (Newman, 2003a). Degree-

assortativity itself is not systematically affected by FCD (Kossinets, 2006; Lee et al., 2006), 

unless individuals preferentially report stronger connections, and ties between individuals of 

similar degree are more likely to be strong (Louch, 2000; Marsden, 1987), in which case FCD 

may raise degree-assortativity. 

Clustering. Local clustering can be measured in at least two different ways: (i) Triadic 

clustering: the mean of local clustering coefficient 	�, where 	� is the proportion of all the 

possible edges between neighbors of node � that are present (Watts & Strogatz, 1998); (ii) Focal 

clustering: the level of global triadic closure, that is the ratio of triangles to paths of length two 

(Newman, 2010). Clustering can also occur at higher levels of aggregation, for example in the 

presence of network communities where, loosely speaking, the density of edges within a set of 

nodes belonging to a community is higher than the average density of edges across the whole 

graph (Fortunato, 2010; Porter et al., 2009). Unweighted FCD truncation should reduce 

clustering at the triadic and community levels as it effectively results in random edge removal. 

When truncation is weighted, however, FCD might lead to an increase in clustering: if within-

cluster edges are stronger than others, they are more likely to be preserved.  

Path lengths. In removing ties, unweighted FCD will reduce the fractional size of the largest 

connected component (LCC), 
���, and will often increase the average path length between 
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nodes of the LCC, ℓ���, insofar as the increased length between some pairs of nodes due to loss 

of edges is not offset by reductions in length due to peripheral nodes being dropped altogether 

from the LCC. These results are seen asymptotically for random and power law graphs (Fernholz 

& Ramachandran, 2007), and via simulation of edge removal on empirical networks (Onnela et 

al., 2007a). If FCD is weighted, this second factor will be stronger, as peripherally (weakly) 

connected nodes are preferentially dropped from the LCC.  

The impact of structural network properties on spreading processes 

There is a burgeoning literature on the effect of various network properties on spreading process 

outcomes (Barrat et al., 2008; Newman, 2002; Pastor-Satorras et al., 2015). We consider three 

key spreading process quantities, focusing on two aspects of an epidemic: the early stage and the 

final state. To simplify our analysis, we follow the tradition in this literature and focus on models 

that assume degree infectivity, where an infectious individual can infect all their neighbors in 

just one time step, rather than unit infectivity, where they can only infect one of their neighbors 

per time step (Staples et al., 2015).  

Quantity one is the basic reproduction number, ��, the number of new incident cases (newly 

infected individuals) arising from each currently infected individual in a fully-susceptible 

population. �� is defined as a function of �, the product of the probability of infection per period 

and the number of contacts per period, and �, the rate at which individuals recover. In a 

homogeneous mass-action (i.e. fully mixed) model for an infection where recovery leads to 

immunity, i.e. a Susceptible-Infected-Recovered (SIR) model, �� = �/� , where �� ≥ 1 ensures 

a large epidemic with non-zero probability (Hethcote, 2000). Quantity two is the initial 

exponential (or faster) growth rate of an epidemic, ��. This growth rate is conceptually equal to 
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� in the first period, but thereafter is not well-defined analytically – even in homogenous 

models; it is typically measured empirically as the second moment of the epidemic curve in its 

initial growth phase (Vynnycky & White, 2010). Quantity three is the attack rate �, the 

proportion of the population ever infected.  

Under assumptions of population homogeneity, relatively simple solutions can be found for key 

network properties; however these results rarely hold with non-trivial network structure (Keeling 

& Eames, 2005). We consider how key structural network properties impact the above spreading 

process quantities (we discuss these effects in more depth in Supplementary Content 1). 

Degree distribution and assortativity. �� can be viewed as the average number of edges through 

which an individual infects their neighbors across the whole period of their infectiousness, if all 

their neighbors are susceptible. The probability of infection for each node can, conversely, be 

conceptualized in terms of their degree and their neighbors’ infection statuses. The more degree-

heterogeneous a network is, the higher the likelihood of a large epidemic occurring, since �� is a 

function of the first and second moments of the degree distribution (Pastor-Satorras & 

Vespignani, 2002).  

Similarly, higher degree-assortativity increases the expected epidemic size, since the 

probabilistic threshold for epidemic take-off has a lower-bound of the average degree of nearest 

neighbors (Boguñá et al., 2003). This is intuitive, since the number of one’s neighbors bounds 

the number of infections one can generate. Conditional on the number of nodes and edges in a 

network, degree-assortative networks will have a faster initial growth rate – occurring within a 

dense core of high-degree nodes – but a lower attack rate – due to having longer paths to 
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peripheral, low-degree nodes where chains of infection are more likely to die out (Gupta et al., 

1989).  

Clustering. For any given degree distribution, triadic clustering reduces the average number of 

infections each infected person causes, ��. This reduction is due to newly-infected individuals 

having fewer susceptible neighbors: the contact who infected you is likely also have had the 

opportunity to infect your other contacts (Keeling, 2005; Miller, 2009; Molina & Stone, 2012). 

This will slow the epidemic growth rate �� since newly infected individuals in clustered networks 

have fewer  susceptible alters (Eames, 2008), and while not lowering �� clustering will increase 

the epidemic threshold in the same manner that a fall in �� would (Molina & Stone, 2012).  

In many networks, for a given network density, increased clustering also leads to a smaller 
���, 

which necessarily reduces the maximum possible attack rate (Newman, 2003b), although this 

result appears to be a by-product of clustering leading to increased degree-assortativity (Miller, 

2009). Overall, cliques alone appear to have marginal effects on epidemic dynamics. However, 

the processes which drive clique formation – such as homophily by nodal attributes or 

geographic proximity – mean that networks displaying clustering also often contain topological 

features such as degree-assortativity or heterogeneity that do significantly affect epidemic. As a 

result, processes on clustered networks can look very different from those on non-clustered ones 

(Badham & Stocker, 2010; Molina & Stone, 2012; Volz et al., 2011).  

Broader community structure acts in much the same fashion as cliques, reducing �� due to 

limited capacity to pass infection from one community to the next (Salathé & Jones, 2010), 

although epidemics are unhindered, or even sped up, by inter-community ties when communities 

are overlap (Reid & Hurley, 2011). 
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Path lengths: Although networks with increased ℓ��� will often have lower ��, much of this 

effect is due simply to lower network density. For LCCs of equal density, high ℓ��� is likely to 

be due to a dense core with long peripheral arms; in such a scenario �� will be high once the 

epidemic reaches the core, but will take longer to reach all parts of the LCC (Moore & Newman, 

2000). However, since random spreading processes rarely follow shortest paths between any two 

nodes, the shortest path typically underestimates the length of the path taken by a spreading 

process. Since truncation inflates the length of observed shortest paths, the shortest path seen in 

truncated networks may paradoxically more closely reflect actual path lengths taken than those 

observed in fully observed networks (Onnela & Christakis, 2012). As a result, the lower �� 

predicted from truncated networks may in fact be more accurate.  

Potential impact of degree truncation on spreading processes 

Based on the above results, we formulate some initial hypotheses about the likely impact of out-

degree truncation on predictions of the behavior of spreading processes on the resulting network. 

First and foremost, truncation will reduce the number of edges in the network, since some edges 

are now not observed. This leads to a reduction in mean degree and is likely to increase average 

path lengths and reduce the size of the ����; as a result, both �� and � will be reduced. The 

reduction in �� may however be offset by reduced variance in degree – since out-degree variance 

is strictly reduced by truncation and in-degree variance is likely to drop too. Second, degree 

truncation by tie strength may lead to an inflation of degree-assortativity, if assortative ties are 

stronger on average and thus more likely to be preserved. This should lead to smaller, faster 

ending epidemics – especially if assortativity is created by preferentially dropping core-periphery 

links. Finally, degree truncation by tie strength will have an unpredictable effect on clustering – 

depending on the relationship between tie strength and community structure. Notably, if the two 
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are strongly positively correlated, truncation may increase community structure as weak ties are 

preferentially dropped. If clustering is increased, both ��and A are likely to fall.  

 

Methods 

To test the above hypotheses about the impact of degree truncation on predicted spreading 

process outcomes, we: (1) simulated a tie-strength truncation process on a range of networks; (2) 

simulated a spreading process on the original (fully observed or ‘full’ network) and truncated 

networks a large number of times; and (3) compared spreading process outcome values for the 

full and truncated networks (Figure 1). In the following, we describe in detail the following: (A) 

the network generation process; (B) the truncation process; and (C) the spreading process. 

A. Network structures 

We considered four types of synthetic networks that we call Degree-Assortative, Triadic 

Clustering, Focal Clustering, and Power-Law networks, and in addition we considered networks 

based on empirical data (details below). The empirical social networks were collected from a 

stratified random sample of 46% of households in each of 75 villages in Karnataka, India, which 

were surveyed as part of a microfinance intervention study in 2006 (Banerjee et al., 2013a, 

2013b). We defined an edge between two individuals in the sample to exist if either person 

reported any of the twelve types of social interaction asked about in the study.  

We began synthetic network construction by generating a collection of degree sequences, where 

a degree sequence is a list of node degrees of a network. To generate 100 Degree-Assortative, 

Triadic Clustering, and Focal Clustering networks, each consisting of � = 1000 nodes, we drew 
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100 degree sequences of length � from a Poisson distribution �( )where  = 8, as an 

approximation to a binomial distribution with large N. We used the configuration model to 

generate an initial graph realization for each degree sequence (Molloy & Reed, 1995), and then 

rewired the networks, edge by edge, in order to obtain a collection of calibrated networks such 

that each network closely matches a target value of a chosen characteristic, specifically:  

1. Degree-Assortative. This was achieved by: (i) selecting two disjoint edges (#, �) and 

(%, &) uniformly at random; (ii) computing whether removing the two edges and 

replacing them with edges (#, &) and (%, �) would increase network assortativity; and if 

so (iii) making this change.  

2. Triadic Clustering. This was achieved by: (i) choosing an ego � and two of its alters, � 

and �, who were not connected to one-another; (ii) adding the edge (�, �) to the network, 

thus forming a triangle; and (iii) removing an edge selected uniformly at random 

conditional on that edge not being part of a triangle, thus ensuring increased triadic 

clustering.  

3. Focal Clustering. This was achieved by: (i) selecting three nodes �, � and � uniformly at 

random; (ii) adding edges (�, �), (�, �) and (�, �) if they did not already exist; (iii) 

choosing uniformly at random in the network the same number of edges that were just 

added (excluding edges (�, �), (�, �) and (�, �) in the selection); (iv) computing whether 

removing this second set of edges would result in a net increase in focal clustering – if so, 

removing them; if not, repeating steps (iii) and (iv). 

We generated three versions of each type of synthetic network by calibrating assortativity, triadic 

clustering, and focal clustering to the minimum, median and maximum values of these quantities 

observed in the 75 Karnataka villages (Table 1, column 1).  



14 
 

To generate Power-Law networks, the fourth type of synthetic network, we drew degree 

sequences from a power-law distribution �(�)~ �(), using the values 3, 2.5 and 2 for the degree 

exponent *. We discarded any ungraphable sequences, i.e. those where any value greater than 

� − 1 = 999 was drawn. We again used the configuration model to generate an initial graph 

realization for each degree sequence. Note that lower values of * are associated with degree 

distributions that have increasingly fat tails. 

For each of the four types of synthetic networks, for each level of calibration we generated 100 

independent representative networks using the above methods, for a total of 1200 networks. 

Mean values for a range of network characteristics for each set of 100 networks are shown in 

Table 1. 

B. Truncation 

We simulated degree truncation of the form typically seen in surveys, by placing a ceiling on the 

number of contacts, ���, that can be reported by a respondent, and then reconstructed the contact 

graph created from all sampled contacts. To do this, we first converted the network into a 

directed graph. We then selectively removed -�� − ���. directed edges starting from each 

individual �, beginning with the edge having the smallest edge overlap value. We used edge 

overlap as proxy for tie strength, defined as the fraction of shared network neighbors of a 

connected dyad: /�� = 0�� 1(�� − 1) + -�� − 1. − 0��3⁄ , where 0�� is the number of neighbors � 

and � have in common, and �� and �� are their degrees (Onnela et al., 2007b). Overlap has 

previously been shown to be strongly correlated with tie strength, as conjectured by the weak ties 

hypothesis several decades earlier (Granovetter, 1973). We were thus conducting truncation by 

tie strength.  
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We truncated at ��� = 5〈�〉, taking values of 5 = 0.5, 1, 2, so that the maximum out-degree of 

individuals was half the mean degree in the full network, the same as its mean degree, or twice 

its mean degree. After truncating each individual’s out-degree, we collapsed the directed graph 

into an undirected one based on all remaining ties. Examples of this truncation process on 20-

node networks are shown in Figure 2. We measured a range of network properties for each full 

and truncated network, including mean degree, degree-assortativity, triadic and focal clustering, 

���� and a measure of community clustering – normalized modularity ;< (Newman, 2010); this 

last based on a graph partition for each network using the Louvain method (Blondel et al., 2008).  

 

C. Spreading process 

We ran a Susceptible-Infected-Recovered (SIR) model using degree infectivity on the networks 

defined by the per-period (per time step) probabilities � = 0.03 (the probability of an infectious 

individual infecting each susceptible contact) and � = 0.05 (the probability of an infectious 

individual recovering). These values were not selected to mimic any particular disease, but were 

rather chosen to give a high probability of epidemic take-off in untruncated networks, without 

regularly hitting the ceiling of 100% cumulative incidence. In our networks, with a mean degree 

of 8, these values give a mean infectious period of 14 time steps, and an R0 of approximately 2.8.  

Each spreading process began with five initial infections, chosen uniformly at random among the 

nodes of a network, and each SIR model was run 100 times on the full and degree truncated 

variants of each of the 100 networks. We measured two categories of outcomes across all of the 

10,000 runs (100 runs per network for 100 networks) of each synthetic network type (7,500 for 

the Karnataka village data), including results from those runs for which at least 10% of 
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individuals were ever infected: first, time to infection of the 10th percentile of the population 

(epidemic growth ��: mean and 95% range); and second, the proportion of nodes ever infected 

(the attack rate �: mean and 95% range).  

 

Results  

Summary statistics for all networks at all levels of truncation are shown in Supplementary Table 

1. In all networks, both synthetic and empirical, out-degree truncation consistently reduced mean 

degree as expected, most strongly in Power-Law and Focal Clustering networks. Truncation 

strongly reduced degree-assortativity in all cases except for Power-Law networks, which were 

already degree-disassortative, overwhelming any differences originally seen across levels of 

calibration; this effect was weaker for the Karnataka networks than for synthetic networks other 

than Power-Law. Modularity increased with truncation in all networks except for Degree-

Assortative ones (which had very high initial modularity). With the exception of Power-Law and 

Karnataka networks, where modularity rose smoothly with increasing truncation, most of the 

increase only occurred once networks were truncated at half mean degree. Both triadic and focal 

clustering fell, and the ℓ��� rose, consistently with increasing truncation for all networks in 

which clustering was initially present. 

When spreading processes were simulated on the full networks, at least 10% of the network 

became infected (attack rate � ≥10%) in almost every simulation (over 97.5%), with the 

exception of Degree-Assortative networks where only around 90% of simulations reached 

� ≥ 10%  (Supplementary Table 2). Truncating networks at 2〈�〉 had almost no impact on the 

proportion of epidemics with � ≥ 10% for any network, but further truncation led to a sharp 
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fall-off. At 0.5〈�〉 truncation none of the clustered network epidemics reached � ≥ 10%, and 

only the Power-Law networks, the Degree-Assortative networks calibrated to the lowest level of 

assortativity and the Karnataka networks had more than 2% of their epidemics reach the 

� ≥ 10% threshold.  

Without truncation, 10% of all nodes were infected within 20 time steps on all networks except 

for the degree-assortative ones – which also showed the greatest range of initial epidemic growth 

rates (��) (Table 2). Truncation at 2〈�〉 increased ��in all cases, but not by large amounts; 

however truncation at 〈�〉 raised both mean �� and its variance – notably in the cases of degree-

assortative and triadic clustering networks (Figure 3A). For those networks in which any runs 

reached � ≥ 10% at 0.5〈�〉 truncation, both the mean and variance of ��increased as networks 

became highly fractured.  

Network structure had a greater impact on � than on ��, with clear differences even on full 

networks (Figure 3B). Truncation at 2〈�〉 had almost no impact on � except in the cases of 

Power-Law, and to a lesser extent Degree-Assortative, networks. However truncation at 〈�〉 

leads to a mean � roughly halving for all cases except the Karnataka networks, where � only 

falls by about a quarter. Once truncation reached 0.5〈�〉, no network type averaged � > 16%. 

 

Discussion 

Simulating a generic spreading process on a range of networks containing different structures, 

we find that truncating the number of contacts that each person can report via a fixed choice 

design (out-degree truncation) has a substantial impact on both initial growth rates (��) and 

attack rates (�), even at the commonly used level of 〈�〉 (the mean degree of the network). Our 
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investigations show that the level of inaccuracy introduced into predicted epidemic outcomes by 

a given level of truncation varied depending on the structure of the network under consideration, 

partly due to the impact of truncation on network properties, and partly due to the impact of 

network properties on process outcomes. Truncation on all network types eventually led to 

under-predictions of both �� and A, however the level of underprediction at each truncation level, 

and the level of truncation at which such under-prediction became substantial, varied across 

network types. Notably, our ability to predict process outcomes is degraded more rapidly on 

stylized synthetic networks than on a set of empirical social contact networks from villages in 

Karnataka state, India.  

Central to understanding the effect of out-degree truncation on predictions of spreading process 

outcomes is the transition when the network becomes fragmented and the size of the largest 

connected component rapidly decreases. In our analyses, the Power-Law and Degree-Assortative 

networks showed slow declines in predicted process outcomes as truncation increased, while the 

loss of accuracy was more rapid for both Triadic Clustering and Focal Clustering networks – 

which lost fidelity early on – and the Karnataka networks – which maintained fidelity for longer 

(Figure 3). The speed of initial growth was notably more variable for Degree-Assortative 

compared to all other network types for both no truncation and truncation at 2〈�〉, reflecting the 

importance of the initial infection sites when networks contain both highly and lowly connected 

regions. This variation in findings suggests that knowledge of the structure of a network for 

which one wishes to predict process spread is crucial in determining the level of resources that 

should be placed into measuring the full extent of the network itself: locally clustered networks 

may require more contacts, while those with fat-tailed degree distributions may require fewer. Of 
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course, knowing the mean out-degree of a network is a pre-requisite to determining the level of 

truncation that can be tolerated.  

In contrast to our conjectures, in no case did truncation increase the speed of process spread. The 

impact of truncation in reducing the number of observed ties appeared to overwhelm all other 

processes, not least by affecting the network characteristics of the truncation networks: 

truncation at 〈�〉 led to the Degree-Assortative networks being entirely non-assortative and the 

Triadic Clustering and Focal Clustering networks displaying very limited clustering; only 

modularity appeared to be maintained or even increased as the FCD threshold was lowered – 

potentially because of the breakup of the network into increasingly numbers of unconnected 

components. Further investigation might find levels of truncation at which epidemic severity is 

over-estimated, but in practical terms our findings point to a consistent underestimate of speed 

and attack rate using data truncated by strength.  

In addition to network-level outcomes, it is instructive to consider variability in outcomes at the 

individual level. While it is clear that individuals with higher out-degree are more likely to 

become infected, it is also likely that those with more-connected neighbors will become infected 

more often, since these connected neighbors are more likely to be infected in the first place. This 

association can be seen in Figure 4 for the Karnataka networks (and Supplementary Figure 3 for 

synthetic networks). Low degree individuals are unlikely to be infected regardless of how well-

connected their neighbors are, but for our exemplar infection neighbor degree has little impact 

for those with own degree greater than ten (Figure 4B). As truncation increases – and has a 

disproportionate impact on ties dropped to higher-degree neighbors – individuals with lower 

mean degree neighbors are predicted to be infected less often than those with the same degree, 

but lower mean neighbor degree (Figure 4C and D). This effect is particularly visible at the 
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common FCD value of 〈�〉. These findings highlight that not only can truncation impact 

population-level predictions of infection risk, but they may also differentially affect individual-

level predictions.  

There are several ways in which this analysis could be extended. First, it might be informative to 

consider unweighted, rather than weighted, truncation. Weighted truncation is likely to minimize 

mis-estimation of local spreading processes, since close-knit groups are likely to be maintained 

at the expense of a realistic picture of cross-community connections. Unweighted truncation, in 

contrast, is likely to reduce the speed of process spread generally, but maintain weak ties that 

span structural holes in the network (Burt, 2004). Second, one could investigate spreading 

processes based on edge weights, or using unit infectivity. Third, it might be worthwhile to run 

these analyses for a wide range of truncation levels, in order to evaluate which networks have 

more or less rapid transitions from relatively accurate spreading process predictions to relatively 

inaccurate ones, and at what level of truncation these transitions occur. Such an analysis would 

be particularly useful in the context of a specific empirical network and spreading process, rather 

than in the theoretical cases presented in this paper, as a precursor to the conduct of data 

collection in a survey. While we have used a range of network structures and a standard 

spreading process, our results are limited to the cases we have considered and notably to a single 

level of network density, and thus investigation of other structures and processes might be 

worthwhile. Finally, we used only one set of transmission parameters, and thus the absolute 

impact of truncation may well be different for other infection processes. Nevertheless, we would 

not expect different transmission rates to change our central finding that network structure is an 

important determinant of the impact of truncation on predicted epidemic outcomes.   
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The ultimate goal of our analysis is to arrive at more accurate predictions of process outcomes in 

the context of truncated contact data, the type of data that are common in the study of infectious 

diseases and public health interventions. In addition to our simulation approach, there is the 

potential for analytic work to evaluate the level of mis-prediction likely to arise under a given 

level of degree truncation, for given network structures. Ultimately, this should allow for us to 

adjust predictions for truncation. Such an approach might use statistical or mechanistic network 

models to simulate full networks congruent with both the estimated rate of truncation, and 

observed characteristics of the truncated network; simulations could then be run on these 

simulated networks to predict process outcomes. As noted above, although we have framed out-

degree truncation here as resulting from the adoption of FCD, our methods are agnostic to the 

cause of truncation. Consequently our results may generalize to settings where some other 

mechanism, such as social stigma in the case of self-reported sexual networks, might lead to out-

degree truncation. Additionally, we have focused this work on sociocentric network data 

collection. Truncation and edge non-reporting may also arise within egocentric data collection, 

requiring the use of ERGMs or other methods to infer global network structure. While beyond 

the scope of this paper, investigation of the impact on epidemic prediction of degree truncation 

within egocentric data collection may also be of interest. Similarly, empirical networks (both 

sociocentric and egocentric) also often suffer missingness due to other mechanisms, such as 

missing nodes, reporting of non-existent alters and edges linking population members to non-

members; future investigation of the impact these mechanisms – both alone and in concert with 

truncation – may be an important avenue of investigation in evaluating possible errors in 

predictions of spreading processes.  
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Finally, while our focus here has been on degree truncation in sociocentric studies resulting from 

study design, effective truncation may occur in sociocentric networks for other reasons. For 

example, there has been increasing research activity in the past few years into digitally mediated 

social networks, such as those resulting from mobile phone call and communication patterns 

(Blondel et al., 2015; Onnela et al., 2007a; Onnela et al., 2007b).  Social networks are 

constructed from these data typically by aggregating longitudinal interactions over a time 

window of fixed length, where the features of the resulting networks are fairly sensitive to the 

width of the aggregation window (Krings et al., 2012). This leads to effective network degree 

truncation that is not a consequence of study design per se but rather is induced by the network 

construction process. It seems plausible that some of the insights we have obtained here, as well 

as some of our methods, could be translated to this research context. 

 

Conclusion 

We have shown via simulation that truncation of a network via FCD has a systematic impact on 

how processes are predicted to spread across this network, reducing predicted speed of epidemic 

take-off and the final attack rate, relative to values obtained from a fully observed network. 

However, the degree of impact varies strongly by the level of truncation, and we find that the 

transition level – at which impact on predicted process outcomes shifts from small to 

considerable – varies by network structure. Supplementary information on the structure of the 

full network – potentially estimated from past egocentric or sociocentric studies in the same or 

similar populations – will thus often be crucial for increasing the accuracy of predictions of 

process spread for truncated network data.  
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Supplementary material 

Supplementary Table 1: Descriptive statistics for the calibrated network graphs (mean and 95% 
range) 

Supplementary Table 2: Percentage of epidemics infecting at least 10% of the population 

 

Supplementary Figure 1: Time to infection of 10% of all individuals on networks, amongst 
epidemics infecting at least 10% of the population 

Supplementary Figure 2: Attack rate on networks, amongst epidemics infecting at least 10% of 
the population. 

Supplementary Figure 3: Mean neighbor degree vs. own degree for full and truncated synthetic 
networks 
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Table 1: Mean network characteristic values for empirical and calibrated synthetic networks  

 

 
Target  

values † 

 
Mean  
degree 

Variance of  
degrees 

Gini of  
degrees 

Degree  
assortativity Modularity 

Triadic 
clustering 
coefficient 

Focal 
clustering 
coefficient 
��� ℓ��� 

Karnataka villages (mean)  8.39 27.55 0.37 0.33 0.79 0.64 0.19 0.99 4.10 

Synthetic networks defined by:          
  

  Degree-Assortative r = 0.283 
 

7.86  0.49 88.82 0.28  0.29  0.01  0.00  1.00 3.61  
r = 0.421  7.86  0.20 7.73 0.42  0.28  0.01  0.01  1.00 3.65  
r = 0.797  7.86  0.20 7.73 0.80  0.28  0.01  0.01  1.00 3.88  

  Triadic Clustering c = 0.249 
 

7.75  0.54 62.63 -0.05  0.46  0.29  0.07  0.73 3.71  
c = 0.284  7.75  0.30 18.33 -0.05  0.47  0.34  0.08  0.99 3.70  
c = 0.353  7.75  0.32 20.96 -0.06  0.50  0.43  0.09  0.99 3.69  

  Focal Clustering t = 0.163 
 

7.95  0.20 7.73 0.26  0.66  0.37  0.16  1.00 4.09  
t = 0.249  7.95  0.37 27.83 0.50  0.82  0.43  0.25  0.90 4.61  
t = 0.326  7.95  0.47 44.10 0.68  0.90  0.45  0.33  0.80 5.23  

  Power-Law γ = 3  7.78  0.55 186.20 -0.04  0.36  0.04  0.02  1.00 3.35  
γ = 2.5  7.40  0.65 263.29 -0.10  0.36  0.09  0.03  0.99 3.16  
γ = 2  6.18  0.44 49.96 -0.22  0.37  0.21  0.04  0.99 3.07  

 


���: fraction of all nodes within the largest connected component. ℓ���: average path length between nodes in the LCC. † Target 
values are the minimum, median and maximum values from the 75 Karnataka village networks.  
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Table 2: Population-level outcomes amongst epidemics infecting at least 10% of the population 

 No truncation  

Truncation at  

twice mean degree  

Truncation at  

mean degree  

Truncation at  

half mean degree 

Time to infection of 10% of population            
  Degree-Assortative 35.0 [20.0 - 85.0] 51.0 [27.9 - 120.9] 119.9 [67.1 - 185.0] 138.0 [81.0 - 188.0] 
  Triadic Clustering 17.0 [12.0 - 27.0] 22.0 [15.0 - 34.0] 61.0 [36.0 - 127.0] 
  Focal Clustering 18.0 [11.0 - 39.0] 32.0 [20.0 - 65.0] 96.9 [51.9 - 174.4] 
  Power-Law  8.0 [5.0 - 19.0] 16.9 [9.0 - 38.0] 40.0 [17.9 - 107.1] 72.9 [35.0 - 153.1] 
  Karnataka villages 15.0 [9.0 - 27.0] 21.0 [12.3 - 40.0] 43.0 [23.0 - 100.9] 88.4 [39.0 - 175.4] 
  
Percentage of all individuals ever infectious            

  Degree-Assortative 46.6 [39.3 - 52.8] 39.5 [27.4 - 47.2] 15.2 [10.4 - 26.4] 11.5 [10.2 - 16.6] 
  Triadic Clustering 85.8 [83.4 - 87.9] 84.4 [81.6 - 86.7] 41.8 [18.8 - 54.1] 
  Focal Clustering 60.2 [55.0 - 65.0] 58.0 [51.0 - 63.2] 15.7 [10.5 - 27.4] 
  Power-Law  58.8 [51.5 - 65.1] 41.1 [32.6 - 48.2] 22.2 [12.6 - 30.0] 15.9 [10.6 - 27.5] 
  Karnataka villages 78.1 [68.9 - 83.9] 76.2 [65.6 - 82.9] 57.5 [20.1 - 70.9] 13.9 [10.3 - 24.2] 
Percentage of 47,500 epidemics  

infecting at least 10% of the population 96.5   93.1   66.0   7.1  

 

Figures show mean and 95% ranges for all runs from 10,000 simulations (7,500 for Karnataka villages) for which at least of 10% of 
individuals were ever infected. Note that the proportion of retained networks falls as the level of truncation rises (see Supplementary 
Table 2 for details); empty cells represent simulation types where no runs reached the 10% threshold. All network structures are those 
with highest network properties in each category (see Methods and Table 1).  
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Figure 1: Schematic of study methodology  

 

(1) For synthetic networks, 100 degree sequences were were generated. For the Karnataka village data, 75 empirical village datasets 
were used, and step 2 skipped. (2) Each degree sequence was converted into a network graph using the configuration model, and then 
each synthetic graph was calibrated based on target network values. (3) All networks were truncated at twice mean, mean and half 
mean degree. (4) 100 spreading processes were run across each full and truncated network.
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Figure 2: Toy examples of truncation process for different synthetic graphs 

 

This figure shows three graphs each containing 20 nodes and with a mean degree of approximately 5. Each was generated by 
calibrating a configuration-generated graph through rewiring to achieve specific target values of different network characteristics. The 
top row shows each calibrated graph with all edges; the bottom row shows with dotted lines those edges removed by truncating by tie 
strength at an out-degree of 3.  
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Figure 3: Epidemic outcomes for simulation runs infecting at least 10% of the population across six network structures 

A. B.  

 

Figures show mean and 95% ranges for all runs from 10,000 simulations (7,500 for Karnataka villages) for which at least of 10% of 
individuals were ever infected. Simulation types are defined by out-degree truncation (Circles: no truncation; Hexagons: truncation at 
twice mean degree; Squares: truncation at mean degree; Triangles: truncation at half mean degree). All network structures are those 
with highest network properties in each category (see Methods and Table 1; full results for each network structure are available in 
Supplementary Figure 1 and Supplementary Figure 2).  Empty lines represent simulation types where no runs reached the 10% 
threshold.  
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Figure 4: Mean neighbor degree vs. own degree for full and truncated Karnataka village 

contact networks 

 

All plots are heatmaps, i.e. depth of color represents frequency of occurrence at the given 
location. A. Density of ties in full graph (log-scale); B-D: Mean proportion of all runs in which 
the node was infected (linear scale). The black diagonal line shows points of equal node and 
mean neighbor degree. In the full graph, most nodes are infected most of the time, except those 
with either very low degree or very low mean neighbor degree. When truncated at mean degree 
those with middling degree and mean neighbor degree are infected less often. When truncated at 
half mean degree almost no nodes are ever infected.  
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Supplementary Content 1:  

This content provides a more in-depth description of: (i) the impact of contact truncation on 

structural network properties; and (ii) the impact of network properties on spreading outcomes.  

The impact of contact truncation on structural network properties 

Degree distribution and assortativity. While the impact of FCD on the network degree 

distribution AB is almost always to reduce its mean and variance, its precise effect depends on 

both the first and second moment of the degree distribution and on the ratio of ��� to the mean 

degree CB. Loss of edges in high-variance networks may, however, be offset by degree- 

assortativity (Kossinets, 2006), often quantified by the Pearson correlation coefficient of degrees 

of connected nodes: � =
DEF(�EF(GEHF)

IJIK
, where �LM is the fraction of all edges that join nodes of 

degree % and &, NL and OM are the fraction of edges that start and end, respectively, at nodes of 

degree % or &, respectively, and PGand PHare the standard deviations of distributions of NL and OM 

(Newman, 2003b). If the network is degree-disassortative, such as the scale-free Barabási-Albert 

network where AB~�() and 2 < γ < 3 (Barabási & Albert, 1999), then edges that might be 

censored by the adjacent high-degree node are less likely to also be censored by the adjacent 

low-degree node, and thus dropped entirely in the truncated network (Vázquez & Moreno, 2003). 

Degree-assortative, high-variance networks are thus likely to see the greatest change in AB; 

human contact networks are typically somewhat degree-assortative, and while communication 

contacts have fat-tailed degree distributions with high variance, physical contact networks are 

more degree-homogeneous (Onnela et al., 2007a; Onnela et al., 2007b; Salathé et al., 2010). The 

level of degree-assortativity in a network is not itself systematically affected by FCD, so long as 

edges are dropped without regard to the strength of each connection (Kossinets, 2006; Lee et al., 



35 
 

2006). However, if individuals are more likely to report stronger connections, and ties between 

individuals of similar degree are more likely to be strong – which is suggested by the 

combination of findings that homophilous ties are more likely to be transitive (Louch, 2000; 

Marsden, 1987) and those with greater transitivity (Onnela et al., 2007b) tend to be stronger – 

then FCD might be expected to artificially inflate r. 

Clustering. Local clustering can be measured in at least two different ways: (i) Triadic 

clustering: the mean of local clustering coefficient 	�, where 	� is the ratio of the number of ties 

present between all neighbors of node � and ��(�� − 1)/2, the number of pairs of neighbors of � 

(Watts & Strogatz, 1998); (ii) Focal clustering: the level of global triadic closure, that is the ratio 

of triangles – where (#, �), (#, S) and (�, S) are all present – to paths of length two, i.e., if  

(#, �) and (�, S) exist, they form a path of length two (Newman, 2010). Clustering may also 

occur at higher levels of aggregation in the network, for example in the presence of network 

communities where, loosely speaking, the density of edges within a set of nodes belonging to a 

community is higher than the average density of edges across the whole graph (Fortunato, 2010; 

Porter et al., 2009). One way to quantify this community-level clustering is by modularity, 

; = ∑ (�UU − NU
V)U , where �UU is the proportion of edges in the network that connect nodes in 

community � to other nodes in community � and NU is the proportion of ends of edges that are 

attached to nodes in community � (Newman, 2006). The value of modularity can be normalized 

using the degree distribution of the network as ;< = ; 11 − ∑ -���� 2W⁄ .X(Y�, Y�)U 2W⁄ 3⁄ , W is 

the number of edges in the network and X(Y�, Y�) is equal to one if Y� = Y� and zero otherwise. 

This normalization makes modularity values more readily comparable across networks 

(Newman, 2010). 
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When truncation is unweighted, we expect FCD to reduce clustering at the triadic and 

community levels as it effectively results in random edge removal. When truncation is weighted, 

however, FCD might lead to an increase in clustering: if within-cluster edges are stronger than 

others, they are more likely to be preserved.  

Path lengths. In removing ties, unweighted FCD will reduce the fractional size of the largest 

connected component (LCC), 
���, and will often increase the average path length between 

nodes of the LCC, ℓ���, insofar as the increased length between some pairs of nodes due to loss 

of edges is not offset by reductions in length due to peripheral nodes being dropped altogether 

from the LCC. These results are seen asymptotically for random and power law graphs (Fernholz 

& Ramachandran, 2007), and via simulation of edge removal on empirical networks (Onnela et 

al., 2007a). If FCD is weighted, this second factor will be stronger, as peripherally (weakly) 

connected nodes are preferentially dropped from the LCC. In a network with a dense core, the 


��� is likely to be better preserved in a degree-disassortative than in a degree-assortative 

network under FCD – due to the lower probability of ties within the core being dropped from 

both ends (Kossinets, 2006). This effect will be more pronounced if the ties within this core are 

also stronger than other ties, and thus more likely to be preserved.  

While the above discussion considers structurally shortest paths between pairs of nodes, random 

spreading processes rarely follow shortest paths between any two nodes � and �. Because of this, 

the length of the shortest path between � and � in a fully observed network typically 

underestimates the length of the path taken by a spreading process. Partial observation of the 

network, such as that induced by degree truncation, inflates the lengths of the observed shortest 

paths, but does of course not alter the length of the actual unobserved paths taken by the 

spreading process. For this reason, perhaps somewhat paradoxically, shortest paths inferred from 
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partially observed networks can provide more accurate predictions of the path lengths taken by 

spreading processes than those based on fully observed networks (Onnela & Christakis, 2012). 

 

The impact of structural network properties on spreading processes 

Degree distribution and assortativity. In a network setting, �� can be viewed as the average 

number of edges through which an individual infects their neighbors across the whole period of 

their infectiousness, if all their neighbors are susceptible. The probability of infection for each 

node, Z, can be conceptualized in terms of their degree and their neighbors’ infection statuses. In 

a degree-homogenous network, a degree infectivity epidemic will probabilistically take off if the 

infection probabilities across the degree distribution Z(�) ≡ 〈�〉 ≥ 1, where 〈�〉 is the first 

moment (mean) of the degree distribution of all nodes in the network. In  degree-heterogeneous 

networks, the likelihood of epidemic take-off becomes a function of the first and second 

moments of the degree distribution (Pastor-Satorras & Vespignani, 2002), such that higher 

degree heterogeneity increases ��.Similarly, higher degree-assortativity increases the chances of 

epidemic take-off. The probabilistic threshold for epidemic take-off has a lower-bound of 〈�<<〉, 

the average degree of nearest neighbors, which is also the driver of both degenerate results: 

〈�<<〉 = 〈�〉 in a homogeneous network and 〈�<<〉 → ∞ in an infinitely large scale-free network 

(Boguñá et al., 2003). This is intuitive, since the number of one’s neighbors bounds the number 

of infections one can generate. Degree-assortativity leads to faster take-off, but a lower attack 

rate, conditional on the number of nodes and ties within a network (Gupta et al., 1989). This 

result arises from a dense core of high-degree nodes in which infection is rapidly passed, in 

combination with longer paths to peripheral, low-degree nodes where chains of infection are 

more likely to die out. On scale-free networks, an epidemic will grow at a power law rate, such 
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that early in the epidemic infection levels will be greater than is predicted by homogeneous 

models, in which growth rates are exponential (Vazquez, 2006). 

Clustering. The most straightforward effect of triadic clustering, for a given degree distribution, 

is to reduce the average number of infections each infected person causes. This reduction is due 

to newly-infected individuals having fewer susceptible neighbors: the contact who infected you 

is likely also have had the opportunity to infect your other contacts (Keeling, 2005; Miller, 2009; 

Molina & Stone, 2012). This does not strictly imply a lower ��, since �� refers to a completely 

susceptible population, however this phenomenon increases the epidemic threshold in the same 

manner that a fall in �� would (Molina & Stone, 2012). Similarly, the epidemic growth rate �� is 

somewhat slowed by this reduction in the proportion of susceptible alters (Eames, 2008). 

In many networks, e.g. Erdős–Rényi graphs (Erdős & Rényi, 1959), for a given network density, 

increased clustering also leads to a smaller 
���, which necessarily reduces the maximum 

possible attack rate (Newman, 2003a). However, within the LCC clustering increases the density 

of the network (Serrano & Boguná, 2006), providing more local pathways from an infected to a 

susceptible individual. This reduces the protective effect of any alters who have recovered 

without infecting an ego, and thus some simulations have found clustering increases the attack 

rate � (Keeling, 2005; Newman, 2003a). 

Overall, cliques alone appear to have marginal effects on epidemic dynamics, however the 

processes which drive clique formation – such as homophily by nodal attributes or geographic 

proximity – lead to networks displaying clustering that also contain other topological features – 

such as degree-assortativity or heterogeneity – which do significantly affect epidemics, leading 

to processes on clustered networks looking very different from those on non-clustered ones 
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(Badham & Stocker, 2010; Molina & Stone, 2012; Volz et al., 2011). Broader community 

structure in networks acts in much the same fashion as cliques, reducing �� due to limited 

capacity to pass infection from one community to the next (Salathé & Jones, 2010); although 

epidemics are unhindered, or even sped up, by inter-community ties when overlapping, rather 

than distinctly separated, communities are built into networks (Reid & Hurley, 2011). 
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Supplementary Table 1: Descriptive statistics for the calibrated network graphs (mean and interquartile range) 

A. Mean degree 

  Not truncated  Truncated at 2〈�〉  Truncated at  〈�〉  Truncated at  0.5〈�〉 

Karnataka villages 8.39  [7.84 - 8.97]  7.21  [6.72 - 7.60]  5.54  [4.77 - 5.65]  3.90  [2.78 - 3.95] 
Synthetic networks:             

  Degree-Assortative r = 0.283 7.86  [7.86 - 7.86]  7.68  [7.67 - 7.68]  5.74  [5.72 - 5.76]  3.22  [3.20 - 3.24] 
r = 0.421 7.86  [7.86 - 7.86]  7.64  [7.63 - 7.65]  5.67  [5.65 - 5.69]  3.16  [3.13 - 3.18] 
r = 0.797 7.86  [7.86 - 7.86]  7.54  [7.53 - 7.55]  5.40  [5.38 - 5.42]  2.93  [2.91 - 2.95] 

  Triadic Clustering c = 0.249 7.75  [7.75 - 7.75]  7.40  [7.39 - 7.42]  5.56  [5.53 - 5.58]  3.12  [3.10 - 3.13] 
c = 0.284 7.75  [7.75 - 7.75]  7.39  [7.36 - 7.40]  5.55  [5.52 - 5.57]  3.19  [3.17 - 3.20] 
c = 0.353 7.75  [7.75 - 7.75]  7.31  [7.29 - 7.33]  5.51  [5.48 - 5.53]  3.32  [3.30 - 3.33] 

  Focal Clustering t = 0.163 7.95  [7.95 - 7.95]  6.84  [6.78 - 6.88]  4.49  [4.46 - 4.54]  2.57  [2.54 - 2.59] 
t = 0.249 7.95  [7.95 - 7.95]  6.29  [6.17 - 6.37]  4.07  [4.00 - 4.12]  2.32  [2.28 - 2.35] 
t = 0.326 7.95  [7.95 - 7.95]  5.84  [5.73 - 5.92]  3.76  [3.67 - 3.83]  2.15  [2.11 - 2.20] 

  Power-Law γ = 3 7.78  [7.66 - 7.83]  6.58  [6.50 - 6.63]  4.70  [4.66 - 4.74]  2.89  [2.87 - 2.91] 
γ = 2.5 7.40  [7.04 - 7.55]  6.22  [5.97 - 6.33]  4.60  [4.56 - 4.65]  2.91  [2.89 - 2.93] 
γ = 2 6.18  [5.89 - 6.46]  4.78  [4.44 - 5.02]  4.00  [3.51 - 4.18]  2.88  [2.85 - 2.91] 
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B. Degree-assortativity 

  Not truncated  Truncated at 2〈�〉  Truncated at  〈�〉  Truncated at  0.5〈�〉 

Karnataka villages 0.33  [0.30 - 0.37]  0.23  [0.20 - 0.25]  0.11  [0.09 - 0.13]  0.02  [-0.02 - 0.05] 
Synthetic networks defined by:             

  Degree-Assortative r = 0.283 0.28  [0.28 - 0.28]  0.25  [0.25 - 0.26]  -0.02  [-0.03 - -0.01]  -0.19  [-0.20 - -0.18] 
r = 0.421 0.42  [0.42 - 0.42]  0.38  [0.37 - 0.38]  -0.00  [-0.01 - 0.01]  -0.19  [-0.20 - -0.17] 
r = 0.797 0.80  [0.80 - 0.80]  0.69  [0.68 - 0.69]  -0.00  [-0.02 - 0.01]  -0.20  [-0.21 - -0.18] 

  Triadic Clustering c = 0.249 -0.05  [-0.06 - -0.04]  -0.10  [-0.11 - -0.09]  -0.16  [-0.17 - -0.15]  -0.25  [-0.27 - -0.24] 
c = 0.284 -0.05  [-0.06 - -0.04]  -0.10  [-0.11 - -0.09]  -0.17  [-0.18 - -0.16]  -0.26  [-0.27 - -0.25] 
c = 0.353 -0.06  [-0.07 - -0.05]  -0.11  [-0.12 - -0.10]  -0.18  [-0.19 - -0.17]  -0.27  [-0.28 - -0.26] 

  Focal Clustering t = 0.163 0.26  [0.23 - 0.29]  0.11  [0.09 - 0.12]  -0.07  [-0.08 - -0.06]  -0.18  [-0.20 - -0.17] 
t = 0.249 0.50  [0.46 - 0.55]  0.12  [0.11 - 0.14]  -0.10  [-0.11 - -0.08]  -0.20  [-0.22 - -0.19] 
t = 0.326 0.68  [0.65 - 0.72]  0.08  [0.07 - 0.10]  -0.14  [-0.15 - -0.13]  -0.23  [-0.25 - -0.21] 

  Power-Law γ = 3 -0.04  [-0.06 - -0.03]  -0.11  [-0.13 - -0.09]  -0.12  [-0.15 - -0.10]  -0.14  [-0.18 - -0.10] 
γ = 2.5 -0.10  [-0.13 - -0.08]  -0.14  [-0.16 - -0.12]  -0.14  [-0.16 - -0.11]  -0.14  [-0.16 - -0.12] 
γ = 2 -0.22  [-0.24 - -0.20]  -0.24  [-0.26 - -0.21]  -0.23  [-0.26 - -0.21]  -0.22  [-0.25 - -0.20] 
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C. Modularity 

  Not truncated  Truncated at 2〈�〉  Truncated at  〈�〉  Truncated at  0.5〈�〉 

Karnataka villages 0.79  [0.77 - 0.82]  0.81  [0.79 - 0.84]  0.84  [0.82 - 0.86]  0.87  [0.84 - 0.90] 
Synthetic networks defined by:             

  Degree-Assortative r = 0.283 0.29  [0.29 - 0.29]  0.30  [0.30 - 0.30]  0.40  [0.40 - 0.41]  0.66  [0.65 - 0.66] 
r = 0.421 0.28  [0.28 - 0.29]  0.30  [0.30 - 0.30]  0.41  [0.40 - 0.41]  0.66  [0.66 - 0.67] 
r = 0.797 0.28  [0.28 - 0.28]  0.30  [0.30 - 0.30]  0.44  [0.43 - 0.45]  0.71  [0.71 - 0.72] 

  Triadic Clustering c = 0.249 0.46  [0.45 - 0.46]  0.46  [0.45 - 0.46]  0.48  [0.48 - 0.49]  0.68  [0.67 - 0.68] 
c = 0.284 0.47  [0.47 - 0.48]  0.47  [0.47 - 0.48]  0.49  [0.49 - 0.50]  0.67  [0.67 - 0.68] 
c = 0.353 0.50  [0.49 - 0.50]  0.50  [0.49 - 0.50]  0.52  [0.51 - 0.52]  0.66  [0.66 - 0.67] 

  Focal Clustering t = 0.163 0.66  [0.65 - 0.67]  0.62  [0.61 - 0.63]  0.60  [0.59 - 0.60]  0.76  [0.76 - 0.77] 
t = 0.249 0.82  [0.81 - 0.83]  0.78  [0.77 - 0.79]  0.72  [0.72 - 0.74]  0.81  [0.81 - 0.82] 
t = 0.326 0.90  [0.89 - 0.91]  0.87  [0.86 - 0.89]  0.83  [0.81 - 0.84]  0.86  [0.85 - 0.87] 

  Power-Law γ = 3 0.36  [0.36 - 0.36]  0.32  [0.31 - 0.32]  0.43  [0.43 - 0.44]  0.68  [0.67 - 0.69] 
γ = 2.5 0.36  [0.35 - 0.36]  0.34  [0.33 - 0.35]  0.45  [0.45 - 0.46]  0.68  [0.67 - 0.68] 
γ = 2 0.37  [0.36 - 0.38]  0.43  [0.41 - 0.45]  0.50  [0.49 - 0.56]  0.68  [0.67 - 0.68] 
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D. Triadic clustering coefficient 

  Not truncated  Truncated at 2〈�〉  Truncated at  〈�〉  Truncated at  0.5〈�〉 

Karnataka villages 0.64  [0.63 - 0.66]  0.60  [0.57 - 0.61]  0.50  [0.48 - 0.51]  0.34  [0.27 - 0.37] 
Synthetic networks defined by:             

  Degree-Assortative r = 0.283 0.01  [0.01 - 0.01]  0.01  [0.01 - 0.01]  0.00  [0.00 - 0.01]  0.00  [0.00 - 0.00] 
r = 0.421 0.01  [0.01 - 0.01]  0.01  [0.01 - 0.01]  0.00  [0.00 - 0.01]  0.00  [0.00 - 0.00] 
r = 0.797 0.01  [0.01 - 0.01]  0.01  [0.01 - 0.01]  0.01  [0.01 - 0.01]  0.00  [0.00 - 0.00] 

  Triadic Clustering c = 0.249 0.29  [0.29 - 0.30]  0.26  [0.26 - 0.26]  0.13  [0.12 - 0.13]  0.03  [0.03 - 0.04] 
c = 0.284 0.34  [0.34 - 0.34]  0.30  [0.29 - 0.30]  0.15  [0.15 - 0.16]  0.04  [0.04 - 0.05] 
c = 0.353 0.43  [0.43 - 0.43]  0.37  [0.36 - 0.37]  0.20  [0.19 - 0.20]  0.07  [0.06 - 0.07] 

  Focal Clustering t = 0.163 0.37  [0.37 - 0.38]  0.28  [0.27 - 0.28]  0.12  [0.12 - 0.13]  0.04  [0.04 - 0.05] 
t = 0.249 0.43  [0.42 - 0.44]  0.30  [0.29 - 0.31]  0.15  [0.13 - 0.15]  0.06  [0.05 - 0.06] 
t = 0.326 0.45  [0.44 - 0.46]  0.31  [0.30 - 0.32]  0.16  [0.15 - 0.17]  0.06  [0.05 - 0.07] 

  Power-Law γ = 3 0.04  [0.03 - 0.05]  0.02  [0.02 - 0.02]  0.01  [0.01 - 0.01]  0.00  [0.00 - 0.01] 
γ = 2.5 0.09  [0.07 - 0.13]  0.04  [0.03 - 0.05]  0.02  [0.02 - 0.03]  0.01  [0.01 - 0.01] 
γ = 2 0.21  [0.19 - 0.22]  0.05  [0.04 - 0.06]  0.03  [0.03 - 0.03]  0.02  [0.01 - 0.02] 
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E. Focal clustering coefficient 

  Not truncated  Truncated at 2〈�〉  Truncated at  〈�〉  Truncated at  0.5〈�〉 

Karnataka villages 0.19  [0.17 - 0.21]  0.18  [0.16 - 0.19]  0.16  [0.15 - 0.17]  0.11  [0.08 - 0.12] 

Synthetic networks defined by:            

  Degree-Assortative r = 0.283 0.00  [0.00 - 0.00]  0.00  [0.00 - 0.00]  0.00  [0.00 - 0.00]  0.00  [0.00 - 0.00] 
r = 0.421 0.01  [0.00 - 0.01]  0.00  [0.00 - 0.00]  0.00  [0.00 - 0.00]  0.00  [0.00 - 0.00] 
r = 0.797 0.01  [0.01 - 0.01]  0.01  [0.01 - 0.01]  0.00  [0.00 - 0.00]  0.00  [0.00 - 0.00] 

  Triadic Clustering c = 0.249 0.07  [0.07 - 0.07]  0.06  [0.06 - 0.06]  0.03  [0.03 - 0.03]  0.01  [0.01 - 0.01] 
c = 0.284 0.08  [0.08 - 0.08]  0.07  [0.07 - 0.07]  0.03  [0.03 - 0.03]  0.01  [0.01 - 0.01] 
c = 0.353 0.09  [0.08 - 0.09]  0.07  [0.07 - 0.07]  0.04  [0.04 - 0.04]  0.01  [0.01 - 0.01] 

  Focal Clustering t = 0.163 0.16  [0.16 - 0.16]  0.11  [0.10 - 0.11]  0.05  [0.04 - 0.05]  0.01  [0.01 - 0.02] 
t = 0.249 0.25  [0.25 - 0.25]  0.14  [0.13 - 0.14]  0.06  [0.06 - 0.06]  0.02  [0.02 - 0.02] 
t = 0.326 0.33  [0.33 - 0.33]  0.15  [0.15 - 0.16]  0.07  [0.06 - 0.07]  0.02  [0.02 - 0.03] 

  Power-Law γ = 3 0.02  [0.02 - 0.02]  0.01  [0.01 - 0.01]  0.00  [0.00 - 0.00]  0.00  [0.00 - 0.00] 
γ = 2.5 0.03  [0.02 - 0.03]  0.01  [0.01 - 0.01]  0.00  [0.00 - 0.00]  0.00  [0.00 - 0.00] 
γ = 2 0.04  [0.04 - 0.05]  0.01  [0.01 - 0.01]  0.00  [0.00 - 0.00]  0.00  [0.00 - 0.00] 
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F. Average shortest path in Largest Connected Component 

  Not truncated  Truncated at 2〈�〉  Truncated at  〈�〉  Truncated at  0.5〈�〉 

Karnataka villages 4.10  [3.89 - 4.36]  4.43  [4.19 - 4.68]  5.30  [5.00 - 5.82]  7.09  [6.56 - 9.23] 
Synthetic networks defined by:             

  Degree-Assortative r = 0.283 3.61  [3.61 - 3.62]  3.65  [3.65 - 3.65]  4.17  [4.16 - 4.18]  6.17  [6.13 - 6.23] 
r = 0.421 3.65  [3.65 - 3.65]  3.69  [3.69 - 3.69]  4.22  [4.21 - 4.23]  6.36  [6.29 - 6.41] 
r = 0.797 3.88  [3.87 - 3.88]  3.91  [3.90 - 3.91]  4.47  [4.47 - 4.48]  7.36  [7.28 - 7.46] 

  Triadic Clustering c = 0.249 3.71  [3.70 - 3.72]  3.78  [3.77 - 3.79]  4.22  [4.20 - 4.23]  6.35  [6.28 - 6.42] 
c = 0.284 3.70  [3.70 - 3.72]  3.78  [3.77 - 3.79]  4.21  [4.20 - 4.23]  6.11  [6.05 - 6.17] 
c = 0.353 3.69  [3.68 - 3.70]  3.78  [3.77 - 3.79]  4.20  [4.18 - 4.22]  5.75  [5.70 - 5.80] 

  Focal Clustering t = 0.163 4.09  [4.07 - 4.12]  4.21  [4.18 - 4.23]  4.91  [4.88 - 4.94]  7.94  [7.84 - 8.07] 
t = 0.249 4.61  [4.56 - 4.66]  4.73  [4.68 - 4.78]  5.39  [5.34 - 5.45]  8.33  [8.26 - 8.47] 
t = 0.326 5.23  [5.10 - 5.39]  5.34  [5.20 - 5.51]  5.98  [5.83 - 6.17]  8.85  [8.60 - 9.14] 

  Power-Law γ = 3 3.35  [3.30 - 3.38]  3.61  [3.56 - 3.64]  4.25  [4.18 - 4.30]  6.34  [6.12 - 6.51] 
γ = 2.5 3.16  [3.09 - 3.23]  3.43  [3.36 - 3.51]  3.93  [3.79 - 4.06]  5.52  [5.22 - 5.80] 
γ = 2 3.07  [3.03 - 3.10]  3.50  [3.45 - 3.54]  3.85  [3.79 - 3.93]  4.70  [4.59 - 4.83] 

 

〈�〉: Mean degree of nodes in a given graph. For definitions of �, c, ^, * and X and how they define each synthetic network type, please 
see main text of paper.  

 



48 
 

Supplementary Table 2: Percentage of epidemic simulation runs infecting at least 10% of 

the population 

  
Not 

truncated 
 Truncated 

at 2〈�〉 
 Truncated 

at  〈�〉 
 Truncated 

at  0.5〈�〉 

Karnataka villages 99.5  99.3  90.4  11.9 
Synthetic networks defined by:         

  Degree-Assortative r = 0.283 91.1  90.1  76.0  11.7 
r = 0.421 89.9  88.9  69.3  8.7 
r = 0.797 89.1  82.6  26.7  1.0 

  Triadic Clustering c = 0.249 99.8  99.8  87.3  0.0 
c = 0.284 99.9  99.8  92.1  0.0 
c = 0.353 99.8  99.8  95.9  0.0 

  Focal Clustering t = 0.163 99.6  99.4  55.6  0.0 
t = 0.249 98.9  98.3  66.0  0.0 
t = 0.326 97.5  96.4  66.7  0.0 

  Power-Law γ = 3 98.6  92.1  43.6  9.7 
γ = 2.5 98.9  95.1  51.9  15.0 
γ = 2 97.5  89.1  56.3  23.8 

 

Figures are percentage points of 10,000 runs (synthetic networks) or 7500 runs (Karnataka 
villages).  
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Supplementary Figure 1: Time to infection of 10% of all individuals on networks, amongst 

epidemic simulation runs infecting at least 10% of the population 

 

A: Karnataka villages; B: Degree-Assortative; C: Triadic Clustering; D: Focal Clustering; E: 
Power-Law networks. Figures show mean and 95% ranges for all runs from 10,000 simulations 
(7,500 for Karnataka villages) for which at least of 10% of individuals were ever infected. 
Simulation types are defined by truncation (see legend) and level of calibration – darker shading 
represents stronger calibration towards higher values of network properties (see Table 1).  Empty 
lines represent simulation types where no runs reached the 10% threshold.  
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Supplementary Figure 2: Attack rate on networks, amongst epidemics infecting at least 

10% of the population. 

 

 

A: Karnataka villages; B: Degree-Assortative; C: Triadic Clustering; D: Focal Clustering; E: 
Power-Law networks. Figures show mean and 95% ranges for all runs from 10,000 simulations 
(7,500 for Karnataka villages) for which at least of 10% of individuals were ever infected. 
Simulation types are defined by truncation (see legend) and level of calibration – darker shading 
represents stronger calibration towards higher values of network properties (see Table 1).  Empty 
lines represent simulation types where no runs reached the 10% threshold.  
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Supplementary Figure 3: Mean neighbor degree vs. own degree for full and truncated 

synthetic networks 

For each set of figures below: 

A. Full graph; B: graph truncated at twice mean degree; C: graph truncated at mean degree; D: 
graph truncated at half mean degree. Within each cell, darker=more: Blue (A1): Initial density of 
ties (log-scale); Green (B1, C1, D1): Mean proportion of neighbors dropped (linear scale); Red-
Yellow (A2, B2, C2, D2): Mean proportion of epidemic runs in which the node was infected 
(linear scale). The black diagonal line shows points of equal node and mean neighbor degree. 
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I. Degree-Assortative 

A1. A2.  

B1. B2.  

C1. C2.  

D1. D2.  
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II. Triadic Clustering 

A1. A2.  

B1. B2.  

C1. C2.  

D1. D2.  



54 
 

III. Focal Clustering 

A1. A2.  

B1. B2.  

C1. C2.   

D1.  D2.  
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IV. Power-Law degree distribution 

A1. A2.  

B1. B2.  

C1. C2.  

D1. D2.  
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V. Karnataka villages 

A1. A2.    

B1. B2.  

C1. C2.   

D1. D2.  


