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Abstract   The costs of technologies often fall over time due to a range of pro-

cesses including learning-by-doing. This is a well-characterized concept in the 

economics of innovation, in which learning about a particular technology, and 

hence cost reduction, is related to cumulative investments in that technology. This 

chapter provides a case study applying technology learning endogenously in a 

TIMES model. It describes many of the key challenges in modelling technology 

learning endogenously, both in terms of the interpretation and policy relevance of 

the results, and in terms of methodological challenges. The chapter then presents a 

case study, exploring a multi-cluster learning approach where many key technolo-

gies (fuel cells, automotive batteries, and electric drivetrains) are shared across a 

set of transport modes (cars, buses and LGVs) and technologies (hybrid and plug-

in hybrid fuel cell vehicles, battery electric vehicles, hybrid and plug-in hybrid 

petrol and diesel vehicles). The multi-region TIAM-UCL Global energy system 

model has been used to model the multi-cluster approach. The analysis is used to 

explore the competitive and/or complementary relationship between hydrogen and 

electricity as low-carbon transport fuels. 

 

1 Introduction 

Energy system models inform policymakers about the potential importance of 

particular technologies by examining whether their presence or absence (at a given 

cost/performance) influences the overall costs of decarbonisation. In examining 

the potential of new technologies, technology-rich models like TIMES and 

MARKAL take one of three approaches, which can be varied with different model 

runs or scenarios, for the capital cost of a technology: 

1. Assume no technological change to examine whether, with stock turnovers, 

current technologies are sufficient to meet energy system goals.  

2. Use exogenous forecasts of technological development, drawn from a range 

of sources. This is the approach that is typically taken with MARKAL and 

TIMES model.  

3. Endogenise technological change into the model structure (by implementing 

“Endogenous Technology Learning” or ETL).  

Most bottom-up energy system models adopt the second approach, using exog-

enous forecasts of technological development to represent technology improve-

ments. These forecasts come from diverse sources, for which underlying assump-
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tions are not always clear.  Typically, it is recognized that while significant cost 

reduction is possible as a result of research and development (R&D) before a 

technology enters markets, there is further cost reduction after market introduc-

tion, as a result of learning-by-doing, economies of scale, continued R&D and 

other factors such as maturing supply chains. Some technological forecasts are 

produced on the basis of learning curve studies that posit a particular level of de-

ployment of the technology. This can lead to several problems: 

 First, the models’ technology choice is resting on inputs that already assume 

the success of particular technologies.  If the analyst is interested in optimal 

technology portfolios, this is clearly problematic: the input data already incor-

porates assumptions about which technologies will be most widely deployed. 

 Second, exogenous technology learning allows the energy system to get the 

benefits of learning for free. There is no need to deploy expensive first-of-a-

kind technologies, because in later years the costs will have fallen. It is possible 

that this appears to implicitly advocate a wait-and-see mode of technology de-

ployment (it is not cost effective yet, so it should not be deployed yet); and it 

understates the total investment requirements and costs of decarbonisation, 

since learning costs are ignored. This has been described as ‘learning without 

doing’ (Seebregts et al. 1999).  

Endogenous technology learning thus improves the internal consistency of the 

models (Grubb et al. 2002), and can be more appropriate for analysis attempting to 

gauge the relative importance of different technologies. Multi-cluster ETL-

enabled models also allow insights into technology dynamics, which may suggest 

that technologies are worth supporting even if they are not in themselves the least-

cost option, because they support learning that enables other lower cost solutions1. 

 

This Chapter provides a case study applying technology learning endogenously 

in TIMES model. It applies a multi-cluster approach where many key technologies 

(fuel cells, automotive batteries, and electric drivetrains) are shared across a set of 

transport modes (cars, buses and LGVs) and technologies (hybrid and plug-in hy-

brid fuel cell vehicles, battery electric vehicles, hybrid and plug-in hybrid petrol 

and diesel vehicles). The analysis is used to explore the synergies and interactions 

between key component technologies, and the competitive and/or complementary 

relationship between hydrogen and electricity as low-carbon transport fuels. 

2 Background: Modelling technology learning and the expe-

rience curve 

 

                                                           
1 e.g. fuel cell buses may not themselves be the least-cost bus technology in a 

carbon constrained future; but they may ‘earn’ their position in a least-cost solu-

tion if their deployment results in learning that can be applied to cars 
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The relationship between cumulative deployment and capital cost—described 

as the “learning curve”—is a well-characterized concept in the economics of in-

novation. Learning curves have been determined empirically for a wide range of 

energy technologies (McDonald and Schrattenholzer 2001)[3]. The most common 

formulation of the learning curve is described by Equation (1) below:  

 

Ct = C0*(Qt/Q0)-b     Equation (1) 

 

Where C0 and Q0 are the initial capital cost and initial installed capacity respec-

tively, while Ct and Qt are the capital cost and cumulative installed capacity re-

spectively at time t.  The parameter b is not intuitively easy to grasp, so is usually 

expressed as the progress ratio (PR = 2-b) or the learning rate (LR = 1-PR). The 

learning rate is the cost reduction achieved for a doubling of cumulative capacity, 

and is typically around 15-20% for new energy technologies (Gritsevskyi and 

Nakićenovic 2000; Seebregts et al. 1998). 

 

The learning curve equation, based on cumulative capacity, is an intuitive and 

analytically tractable account of how deployment relates to technological change. 

As a result, it has become the most widespread approach to implementing tech-

nology learning endogenously within energy-economy models. However, a grow-

ing literature—from both quantitative analysts and more qualitative ‘innovation 

studies’ scholars (Winskel et al. 2013) highlights the complexities that such a 

basic formulation overlooks. Perhaps unsurprisingly, representing technology dy-

namics effectively in energy systems and integrated assessment models is recog-

nised as one of the great challenges for the field (Grubb et al. 2002). Here, we 

highlight three key methodological challenges and issues in modelling ETL, and 

the ways in which previous analysis has addressed them. 

 

First, empirically derived learning curves capture changes that are both time 

dependent (typically thought to reflect learning ‘by research’), and scale depend-

ent (including returns to scale, and maturation of supply chains). For this reason, 

some scholars prefer the term ‘experience curve’. Disentangling those different 

factors is not always straightforward, and the estimation of true ‘learning by do-

ing’ can thus be challenging. Other factors come into play too – commodity costs, 

supply-chain bottlenecks, and the processes of ‘forgetting’ (described by econo-

mists as depreciation of knowledge stocks) that can occur when an industry expe-

riences pauses or set-backs, as has occurred with the nuclear industry in many 

countries. The wider innovation literature highlights the existence of regulatory 

and wider socio-technical processes (such as socially conferred ‘legitimacy’ and 

the establishment of political lobbying power) that also go hand in hand with suc-

cessful deployment, and help to reinforce allocation of R&D budgets and reduc-

tion in regulatory and transaction costs (Bergek et al. 2008). Some authors have 

suggested that the specification of future learning rates in models should therefore 

be dependent on the policy scenario (Winskel et al. 2014).  
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Some authors have attempted to disaggregate these diverse learning and other 

effects. For example, the separate processes of learning-by-doing and learning-by-

research have been modelled by adopting a ‘two-factor’ learning curve, in which 

both cumulative capacity, and some measure of the R&D knowledge stock, influ-

ence rates of learning (e.g. Totschnig and Keppo 2007, Criqui et al 2014). Others 

have developed three-factor or multi-factor models (Yeh and Rubin 2012). How-

ever, such approaches add analytic complexity, and may not be appropriate for a 

large, technology rich model. In any case, an innovation system perspective sug-

gests that it is rare that technologies are fostered solely through R&D or solely 

through deployment with no accompanying R&D. It seems possible that a single 

learning curve, though undoubtedly a simplification, may be well placed to repre-

sent aggregate capacity-cost relationships that emerge from a wide range of pro-

cesses, including both true ‘learning’ and other correlated processes. A similar 

point is made by Watanabe et al. (2000) and Kahouli-Brahmi (2008), and a good 

discussion of the issues is provided by Yeh and Rubin (2012). An alternative to 

two-factor or multi-factor learning is to model exogenous learning as a function of 

time in addition to learning-by-doing.   

 

Second, technologies are often closely related, and cost reductions in one appli-

cation often leads to cost reductions for a related technology in a different applica-

tion, even where slightly different characteristics are required. In modelling ETL, 

it is possible to create ‘clusters’ of closely-related technologies, which share learn-

ing, to account for this effect. Examples of cluster-based learning include 

Totschnig and Keppo (2007), who assessed clusters around several key technolo-

gies for cars (fuel cells, hydrogen tanks, hybrid systems, and onboard fuel reform-

ers); and Gritsevski and Nakicenovic (2000), who modelled ETL for fuel cells, 

with full spill-overs between different types of fuel cell for cars (e.g. running on 

hydrogen vs. on methanol), and partial spill-overs between automotive and sta-

tionary fuel cells. Krzyzanowski et al. (2004) explored clusters in which learning 

in hybrid drive trains is shared between light trucks and cars, and it appears that 

Krzyzanowski et al. (2008) explored cluster learning in which fuel cell learning 

was shared between buses and cars, but this is not made explicitly clear in the pa-

per. Gül et al. (2009) applied learning to clusters of hydrogen and electricity pro-

duction technologies, but the representation of transport technologies does not use 

a cluster approach, and so does not enable spill-overs between e.g. fuel cell cars 

and battery electric light goods vehicles.  

 

The degree of spill-over between particular technologies is an important as-

sumption in such analysis, but it is not clear that such relationships can be fore-

casted with any accuracy. Past practice has tended to make assumptions about the 

degree of relatedness and spill-over, largely on the basis of modeller judgement 

rather than empirical evidence. Furthermore, it is not necessarily straightforward 

to define the level of aggregation at which to study (and model) the experience 

curve. Components (such as wind turbine blades or nacelles) may develop at dif-

ferent rates from the aggregate wind turbine.  
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A third methodological challenge relates to the perfect foresight nature of bot-

tom-up energy system models such as MARKAL/TIMES. Many earlier studies 

applying ETL in MARKAL/TIMES or other bottom-up optimization models (e.g. 

Mattsson and Wene, 1997; Seebregts et al. 1998; Feber et al 2003) found that the 

model tends to deploy the ‘learning technology’ very rapidly and to the greatest 

extent possible—or not at all. In terms of interpretation, this raises questions about 

the feasibility of very rapid transitions from one technology to another, as well as 

questions about the relationship between deployment speed and learning rate. An 

observation from the rapid roll-out of flue-gas desulphurisation in Germany during 

the 1980s was that simultaneous deployment across a large number of power sta-

tions inhibited effective learning because the same mistakes were being made at 

the same time (Eames 2000). There was no time to learn from one installation and 

apply those lessons to the next, since they were not occurring sequentially. The 

implications of this observation for system models is that the relationship between 

learning rates and deployment rates (and rate constraints) should be considered, at 

least in the interpretation of results if not endogenously within the model.  

 

The immediately-or-never pattern of deployment of a learning technology with-

in an ETL model has led some authors to advocate caution in modelling ETL: if 

the resulting model dynamics are simply the result of exogenous rate constraints 

and upper bounds, then there may be few additional insights derived from the con-

siderable effort required to endogenise learning in the model (Loulou et al. 2005). 

However, the approach presented in the case study in this chapter appears to re-

duce the problem of immediately-or-never deployment in an ETL model. This 

case study applies multiple clusters in which key vehicle components (automotive 

batteries, fuel cells, and electric drivetrains) undergo learning that is then com-

bined within and shared across vehicle modes (buses, HGVs, cars). As the analy-

sis shows, the model does not show the immediately-or-never behavior typical to 

previous work with ETL in energy system models.  

3 Endogenous Technology Learning in TIMES 

 

To represent learning-by-doing in TIMES, the investment cost (INVCOST) of 

the learning technology will decrease with the cumulative investment of the learn-

ing technology. The investment cost of the learning technology becomes a varia-

ble investment cost. This is represented by equation 2. 

 
b

taCINVCOST 
    Equation (2) 

 

Where, a is initial investment cost, C is cumulative investment and b represents 

learning. Since the relationship between the investment cost and learning rate is 

non-linear (Equation 1), the TIMES model’s objective function will yield a non-

linear expression, which as a linear programming model it is unable to solve. To 
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avoid a non-linear relationship, the investment cost in the objective function will 

be represented by piecewise linear approximation of total investment cost (TCt ) 

as shown in Figure 1. The cumulative learning curve is approximated by linear 

segments and binary variables are used—leading to mixed integer programming, 

which increases computing time. 

 

Learning in one technology often enables cost reductions in closely related 

technologies. To account for this effect, a cluster approach can be used in TIMES, 

in which a group of technologies sharing a common component—the ‘key tech-

nology’—learn together. The technologies constituting a cluster are related by 

multiple links that contribute to magnify their economic, social and environmental 

impacts (Grübler et al. 1999). These multiple relations ensure that progress in one 

technology contributes, directly or indirectly, to progress for other members of the 

cluster, as it helps to reinforce their own position in the marketplace. 

 
Fig. 1. Segment approximation of the cumulative cost curve 

 

In TIMES, it is possible to apply learning for a single technology at a regional 

level or global level. When learning is global, deployment yields cost reductions 

for users of the technology worldwide regardless of which region has deployed the 

technology—learning is said to spill over globally. 

For each learning technology, the user provides: 

 The progress ratio pr (pr=2-b; 1-pr (learning rate) is the cost reduction incurred 

when cumulative investment is doubled); 

 One initial point on the learning curve, denoted (C0, TC0) and floor cost; 

 The maximum allowed cumulative investment Cmax (from which the maximum 

total investment cost TCmax may be inferred); 

 The number N of segments for approximating the cumulative learning curve 

over the (C0, Cmax) interval (note that N may be different for different technolo-

gies). 
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As noted above, many previous applications of ETL within MARKAL/TIMES 

models have observed that the model tends to select learning technologies, and in-

vest massively in early periods in these technologies in order to lower future cost. 

The resulting unrealistically rapid deployment can be prevented by additional con-

straints (build rate). Results are then conditioned by the exogenous upper bound. 

The discount rate provides an incentive for postponing investments. Investing ear-

ly allows the unit investment cost to drop immediately, and thus allows much 

cheaper investments in the learning technologies in the current and all future peri-

ods. The resulting dynamics depend on the learning rate and the discount rate. 

4 Case Study 

4.1 Introduction 

Both hydrogen and electricity have been widely discussed as possible fuels for 

decarbonising road transport, as long as hydrogen and/or electricity is produced in 

a sustainable manner. Yet deployment of such vehicles is currently limited, as bat-

tery electric and fuel cell technologies are too expensive to compete techno-

economically with internal combustion vehicles using fossil fuels. This case study, 

which draws on Anandarajah et al. (2013), analyses the long-term role of hydro-

gen and electricity in facilitating decarbonisation of the global transport sector by 

implementing global learning endogenously in the TIAM-UCL multi-regional 

global energy system model. The 16-region TIAM-UCL model has been devel-

oped at UCL through the UK Energy Research Centre (UKERC) by breaking out 

the UK from the Western Europe Region in the 15- Region ETSAP-TIAM2 model, 

which is the global multiregional incarnation of the TIMES model generator (Lou-

lou et al. 2005; Loulou and Labriet 2007). 

4.2 Technology learning 

The cluster approach adopted in this paper uses single factor learning, where a 

group of technologies sharing a common component—the ‘key technology’—

learn together. For example, fuel cells are an example of a key component tech-

nology, and members of the corresponding cluster of ‘shell’ technologies in which 

the component is used are hybrid- and plug-in hybrid- fuel cell vehicles both in 

cars and light goods vehicles (LGVs) as well as in buses. Three key component 

technologies undergo learning in the model, and are thus explicitly represented in 

the model as technologies in their own right, in addition to the vehicle ‘shell’ sys-

tems in which they are deployed (Figure 2): 

 Fuel cell systems ($/kW) 

 Electric drivetrains ($/kW) 

                                                           
2 ETSAP-TIAM, originally developed by KanLo 

(www.kanors.com/DCM/TIAM) 

http://www.kanors.com/DCM/TIAM
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 Automotive battery systems ($/kWh) 

Only investment costs undergo learning. As a result, the component technolo-

gies in the model only carry investment costs. Efficiency and O&M costs are at-

tributes of the vehicles (shell) themselves. Each of these component technologies 

is embedded in vehicles that use them. For example, a hybrid hydrogen fuel cell 

vehicle uses electric drivetrain, battery, and a fuel cell system. A plug-in hybrid 

petrol car, in contrast, uses an electric drivetrain and battery but no fuel cell. Table 

1 shows the vehicle types, the acronyms used to describe them in this paper, the 

fuels they use, and which of the component ‘key technologies’ they use. Data are 

not shown in the table, for brevity, since the capacity of each key technology dif-

fers depending on whether the vehicle type is deployed as a car, bus or LGV. Data 

can be found in McDowall (2012). 

 

Table 1. Vehicle types in the model. All vehicle types are available as cars and 

light goods vehicles (LGVs), only those marked with an asterisk are available as 

buses. 

Vehicle type Acronym Fuels used 

Key technologies 

Battery 
Electric 

Drive 

Fuel 

cell 

Petrol vehicle Petrol ICE Petrol or ethanol    

Diesel vehicle* Diesel ICE Diesel or biodiesel    

Petrol hybrid 

vehicle 

Petrol HEV Petrol or ethanol    

Diesel hybrid 

vehicle* 

Diesel HEV Diesel or biodiesel    

Petrol plug-in 

hybrid vehicle 

Petrol PHEV Petrol or ethanol 

and electricity 

   

Diesel plug-in 

hybrid vehicle 

Diesel PHEV Diesel or biodiesel 

and electricity 

   

Fuel cell vehicle FCV Hydrogen    

Fuel cell hybrid 

vehicle* 

FCHV Hydrogen    

Fuel cell plug-in 

hybrid vehicle 

FCPHEV Hydrogen and elec-

tricity 

   

Battery electric 

vehicle 

BEV Electricity    

Natural gas ve-

hicle* 

CNG Natural gas    

LPG vehicle LPG Liquefied petrole-

um gas 

   
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Fig. 2. Multi-cluster learning approach modelled in TIAM-UCL 

 

Learning for a component takes place regardless of the vehicle type in which it 

is deployed. i.e. cost reductions that arise from deployment of fuel cells in buses 

also apply to fuel cells for use in cars. Shared learning of this kind is thought real-

istic by the automotive industry, which sees opportunities for hybrid vehicles to 

provide a stepping stone into electric vehicles, whether battery powered or fuel 

cell powered (Lipman and Hwang 2003). Similarly, Zaetta and Madden (2011) 

suggest that a plausible route for bus fuel cell system development is through 

shared learning with car fuel cells. 

 

4.3 Data 

Documentation for TIAM-UCL is available in the website of the UK Energy 

Research Centre, and data and assumptions for vehicle characteristics and learning 

technologies are fully documented in McDowall (2012) and McDowall and Dodds  

(2012). For brevity, only the key technology learning parameters (learning rate, in-

itial cost, initial capacity and floor cost) are presented in Table 2. It is assumed 

that learning can start from 2015. All costs are in year 2005 US$. 
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Table 2. Data on key learning technologies. Detailed assumptions found in 

McDowall (2012). 

  
Fuel cell 

system 
Electric 

powertrain 
Automotive 
batteries 

  $/kW $/kW $/kWh 

Initial cost 883 244 756 

Floor cost  27 24 151 

Learning rate 18% 10% 7% 

  GW GW GWh 

Initial installed ca-
pacity 1.1 250 6.5 

Number of dou-
blings of capacity to 
reach floor cost 18 23 23 

 

5 Scenarios 

Five groups of scenarios have been run in order to examine the role of learning 

in determining the optimality of electricity and hydrogen in the global road 

transport sector. All scenarios are greenhouse gas (GHG) reduction scenarios, in 

which cumulative carbon-equivalent (CO2e) emissions are constrained to a total of 

1980 GtCO2e during 2010-2100 (consistent with a 50% likelihood of global mean 

temperatures rising no more than 2oC above pre-industrial levels). This scenario 

does not force the model to meet commitments made by particular countries to re-

duce emissions. Instead, the model is free to determine the least-cost global 

abatement.  

 

1. Static technological development: Transport technologies undergo no learn-

ing; transport technology costs are constant across the model time horizon.  

2. ETL base case scenario. Transport technologies undergo ETL; roll-out of 

hydrogen and electric vehicles occurs only when they become cost effective.  

3. ETL Early hydrogen deployment scenarios: Cases in which countries deploy 

hydrogen vehicles before they are part of a cost-optimal carbon abatement so-

lution. There are several scenario variants: 

 Three scenarios examine differing levels of non-optimal early deployment 

of fuel cell cars, representing efforts made by countries to launch fuel cell 

vehicles domestically in order to capture first-mover advantages in this 

technology. The first of these scenarios envisages Germany and Japan each 

deploying 15,000 vehicles in 2020. The importance of early deployment is 

further tested by running scenarios with twice and four times this early de-

ployment level.  
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 An additional early deployment scenario examines early deployment of 

fuel cell buses. This scenario supposes that some cities force uptake of fuel 

cell buses for air quality reasons. 

4. ETL No CCS scenario. Deployment of carbon capture and storage (CCS) 

technologies is prevented; otherwise same as ETL base case scenario  

5. ETL Late action scenario. Global mitigation is delayed; no emissions reduc-

tions against the base case are possible before 2020 in this scenario; otherwise 

same as ETL base case scenario.  

The global availability of bioenergy is uncertain, and it may have an important 

effect on the cost-effectiveness of low-carbon vehicle technologies, since biofuels 

derived from biomass might be expected to compete with hydrogen and electricity 

in a low carbon scenario. The base case scenarios assume that global availability 

of biomass is broadly in line with the more optimistic scenarios of Erb et al. 

(2009). However, Slade et al. (2001) note that the literature encompasses estimates 

of significantly greater global biomass availability. Each of the above scenarios 

has therefore also been tested under more optimistic assumptions about the global 

availability of biomass, in which the availability of biomass is twice that in the 

base case.  

6 Results 

6.1 Roles for hydrogen and electricity in the transport sector 

Static Technology Scenario 

Without significant learning, hydrogen and electric vehicles remain too expen-

sive, and hence play a minimal role, appearing only in 2095, in the transport sector 

even under a stringent carbon constraint.  

 

Endogenous Technology Learning base scenario (ETL) 

When the model is allowed to benefit from learning-by-doing, hydrogen and 

electricity both play a substantial role. Learning brings down the cost of fuel cells 

and electric vehicle components, enabling hydrogen and electricity to become 

cost-effective transport fuels.  

 

Early Hydrogen Deployment Scenarios  

The forced eary deployment in these scenarios does not change long-term 

transport sector hydrogen or electricity consumption patterns as compared to the 

ETL scenario. While early deployment reduces vehicle costs, these technologies 

and their associated infrastructure remain too expensive to justify deployment un-

til marginal abatement costs have risen further. 

 

Later Action Scenario 

Combined consumption of electricity and hydrogen in the transport sector sub-

stantially exceeds that in the ETL base case scenario. This is because the model is 
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unable to reduce emissions before 2020, and must therefore ‘work harder’ to re-

duce emissions after this date to remain within the cumulative carbon emissions 

budget.  

 

No CCS scenario 

This scenario shows a similar pattern to the late action scenario. In the absence 

of CCS technologies, the model must reduce emissions more quickly in end-use 

sectors including transport, and so deploys both battery electric vehicles and fuel 

cells more rapidly than in the ETL base case. 

 

Sensitivity scenarios on Biomass Availability 

In the base case runs, the model deploys bioenergy in the power sector and in 

industry, often in combination with CCS, rather than in the transport sector. One 

might imagine that in scenarios with greater availability of bionenergy, the model 

might select biofuels rather than electricity or hydrogen.  

 

However, the results of the biomass resource sensitivity scenarios do not sup-

port this view. Instead, increasing biomass resource availability increases the abil-

ity of the model to deploy bio-CCS (which is assumed to be net carbon negative).  

As a result, the model delays the entry of hydrogen and electricity into the 

transport sector, with little early deployment of either, as end-use sectors need less 

decarbonisation thanks to the greater contribution from bio-CCS to emissions re-

ductions.  

6.2 Transport technology deployment pathways 

Within each of the vehicle classes, the results suggest a sequence of vehicle 

technology transitions. In all vehicle types, the sequence begins with hybridisation 

of the vehicle fleet, reducing the fuel consumption and deploying a significant 

number of electric drive-trains and automotive battery systems. Later, these hy-

brids are replaced, sometimes followed by plug-in hybrid technology as an inter-

mediate stage, and ultimately followed by hydrogen fuel cell technologies, and for 

cars some battery electric vehicles. An example of this pattern is shown in Figure 

3. 

Many studies applying endogenous technology learning find that the model 

seeks to deploy in early periods a very large amount of the ultimate technology (in 

this case usually fuel cell vehicles), since early deployment drives down costs and 

those lower costs can be enjoyed for the rest of the modelling period. However, 

with components sharing learning, and recombined across different vehicle modes 

and platforms (and across different global markets in the 16 regions of the model), 

the model can reduce the costs associated with moving down the learning curve by 

sequential deployment of technologies that contribute to learning without incur-

ring the high costs associated with an early massive deployment of not-yet cost-

effective technologies.  
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Fig. 3. Sequential deployment of different vehicle technologies (2005-2050) in 

Light Goods Vehicles (ETL-base case scenario).  

 

There is also a sequence in terms of the timing of deployment of low-carbon 

technologies across vehicle types. Fuel cells are deployed first in buses and LGVs, 

which have higher average annual mileage than cars, and which therefore priori-

tise lower running costs (and hence higher efficiency) more highly than cars. In 

LGVs, the model first deploys hydrogen, and ultimately transitions to electric ve-

hicles after 2075 in many scenarios. This is likely to be because the efficiency of 

electric vehicles is higher than that of hydrogen, but so is the capital cost. It is only 

later in the period, when carbon abatement costs have become very high, that the 

model prefers the greater efficiency of battery electric vehicles.  

 

The deployment of vehicles results in the deployment of the key technologies 

that undergo learning. Fuel cell technology becomes cost effective first in buses 

and LGVs, and then in cars following the cost reductions associated with deploy-

ment. Electric drive trains and batteries are cost effective starting in hybrid vehi-

cles, and are subsequently deployed in all other low-carbon vehicle types.  

6.3 Implications of ETL for vehicle cost 

Cumulative investment brings down the costs of key technologies (fuel cell, 

electric battery and electric drive) in all scenarios in which ETL is applied (ETL 

base case scenario is shown in Figure 4). Since the learning rate for fuel cells 

(18%) is relatively high compared to that of batteries (7%) and electric drive-trains 

(10%), the cost of fuel cells decreases more rapidly. Battery costs fall quickly to 

just over $300/kWh, but are not deployed in sufficiently large quantities to reach 

their potential floor cost of $150/kWh. The cost of fuel cells in 2050 is reduced to 

less than a twentieth of the 2015 cost. To achieve these cost reductions, the 

transport sector requires a cumulative installed capacity of around 131,000 GW of 

fuel cells by 2050 worldwide; corresponding to a cumulative total of around 1.6 

billion vehicles, with around 53 million new fuel cell vehicles added each year by 

2050.  
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Fig. 4. Unit cost of key technologies in the base case ETL scenario. 

 

The investment (discounted to base year 2005) over the 35 years from 2015 to 

2050 that achieves these cost reductions in fuel cells is a cumulative global total of 

$1,200bn (i.e. the cumulative total investment in fuel cell technologies globally). 

The figure for the 15 years from 2015 to 2030 is $64 billion (required to have a 

cumulative installed capacity of around 1,860 GW of fuel cell by 2030). However, 

this cost is offset by the avoided investments in the conventional technology: pet-

rol and diesel engines. As a result, the additional ‘learning investments’ required 

to bring down fuel cell cost are rather small, around $33bn (discounted to base 

year 2005) for the 15 years. 

 

As noted above, it is larger vehicles with higher annual mileage3 that are de-

ployed first, rather than cars. Nevertheless, the costs of fuel cell cars is reduced 

significantly in 2030 (Figure 5), despite having had no deployment of fuel cells in 

cars by that date. Instead, roll-out of fuel cell buses and light-goods vehicles has 

driven down the costs of fuel cells and other EV components, reducing the capital 

costs of fuel cell vehicles. Even so, fuel cell vehicles remain too expensive in the 

near term to compete with conventional hybrids, which are deployed globally re-

sulting in a significant reduction in global transport CO2 emissions. Only from 

2050 onwards, as emissions constraints bite further, does the transition to hydro-

gen passenger mobility begin. 

 

The early deployment scenarios demonstrate a clear effect on near term costs, 

with early deployment of fuel cell technologies in cars or buses driving down 

costs of key components. This is shown in Figure 5. However, despite these accel-

erated cost reductions in the near term, the early deployment scenarios do not have 

a sufficiently large impact on costs to accelerate adoption. Given the presence of 

other, cheaper abatement opportunities throughout the energy system, the model 

prefers to deploy hydrogen vehicles later, as carbon abatement costs rise.  

 

                                                           
3 Average annual mileages for buses and light goods vehicles are much higher 

than for cars. In the model, this is reflected in assumed average annual mileages 

specific to each vehicle mode.  
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Fig. 5. Capital cost of a hybrid fuel cell vehicle under different early deployment 

scenarios. 

6.4 Hydrogen versus Electric Vehicles? 

There is an on-going debate about the complementarity or competitiveness of 

hydrogen and electric vehicles (Bento 2010). In the results presented here, both 

hydrogen fuel cell vehicles and battery electric vehicles are deployed in all scenar-

ios. At a global level then, the model does not support an absolute trade-off be-

tween hydrogen and electricity as transport fuels, since different markets in differ-

ent regions may prefer one or the other4, and both are required to achieve global 

decarbonisation at least cost. There is also significant deployment of fuel cell 

plug-in hybrid electric vehicles (FCPHEVs) in all scenarios, representing a com-

plementarity between fuel cell and battery electric technology at the level of the 

individual vehicle. 

 

 
Fig. 6. Transport sector consumption of hydrogen and electricity under different 

scenarios, in 2050 (left panel) and 2095 (right panel). 

 

In the medium term, therefore, there appears to be synergy between vehicles 

using hydrogen and electricity as fuels, as scenarios with more hydrogen vehicles 

(FCVs and FCHVs) tend also to deploy more electric vehicles (BEVs, Petrol and 

diesel PHEVs), in part because of the shared cost reductions. By the end of the 

                                                           
4 Technology costs are global, but fuel production costs and carbon intensities 

vary, reflecting different resource endowments, and this can result in different 

fuels being preferred in different regions. 
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century, most passenger cars and light goods vehicles are fuelled with either hy-

drogen or electricity or both (FC PHEVs). In this heavily decarbonised transport 

sector, hydrogen and electricity become competitors in the sense that scenarios 

with more of one have less of the other (see Figure 6).  It should be noted from the 

axes of the diagram that in the long term (by 2095), more hydrogen than electrici-

ty is consumed by the transport sector in all scenarios.  

7 Conclusions, limitations and policy implications 

The study concludes that electricity and hydrogen emerge as complementary 

fuels, rather than as strict competitors, with both deployed in all scenarios. This re-

flects the fact that hydrogen and battery electric vehicles share components: in the 

near term, deployment of hybrid cars reduces the costs of components that are 

used in fuel cell vehicles; and later deployments of fuel cell vehicles further re-

duce the costs of battery electric vehicle components, resulting in synergy rather 

than competition between hydrogen and electricity technologies. However, in the 

long term when the transport sector has been largely decarbonised, technology 

competition between hydrogen and electricity does arise, in the sense that scenari-

os using more electricity in the transport sector use less hydrogen and vice versa. 

 

Methodologically, a key observation is that a multi-cluster approach appears to 

overcome a shortcoming found by many previous authors. Specifically, while 

many previous applications of ETL within MARKAL/TIMES models have ob-

served either immediate and rapid or zero deployment of the learning technology, 

with a resulting need for transition rate constraints, the multi-cluster approach pre-

sented here results in a gradual and phased deployment of the learning technology. 

The multi-cluster approach thus appears to be a promising approach to improving 

the modelling of endogenous technological change.  

 

However, there are limitations that should be borne in mind in considering the 

conclusions from a policy perspective. In particular, there is deep uncertainty re-

lating to the learning curve specifications, including the value of the learning rate 

and potential changes to the learning rate over time. Moreover, real world multiple 

and divergent scale-dependent drivers of cost reduction have been modelled with a 

single factor. Similarly, a single global learning process has been modelled here, 

whereas in reality some components of learning tend to be location specific (e.g. 

related to local practices and institutions). These uncertainties and limitations are 

in addition to those inherent in all long-term energy system optimization, and the 

results are not intended to be predictive, but rather are intended to yield insights 

into possible dynamics and patterns in the energy system.  

 

The messages for policymakers must therefore be drawn with caution. The cur-

rent analysis suggests that, in the long-term, both hydrogen and electricity remain 

important options for long-term decarbonisation. The results also suggest that pol-
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icymakers seeking to accelerate the deployment of hydrogen or electric vehicles 

through early deployments may be disappointed if the rest-of-the-world follows a 

least-cost abatement trajectory.  
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