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Abstract  

In this paper we investigate the dynamic relations between crude oil price returns 
and a set of energy price returns, namely diesel, gasoline, heating, and the natural 
gas. This is performed by means of Granger non-causality tests for US spot 
closing prices over the period from January 1997 to December 2017. In previous 
studies this has been done by testing for the added predictive value of including 
lagged values of one energy price return in predicting the conditional expectation 
of another. In this paper, we instead focus on different ranges of the full 
conditional distribution within the framework of a dynamic quantile regression 
model, and identify the quantile ranges from which causality arises. The results 
constitute a richer set of findings than what is possible by just considering a 
single moment of the conditional distribution, which can be useful for 
implementing better substitution investment strategies and effective policy 
interventions. We find several interesting one-directional dynamic relations 
between the employed energy prices, especially in the tail quantiles, but also a bi-
directional causal relation between energy prices for which the classical Granger 
non-causality test suggests otherwise. Our results are robust to alternative 
measures of the price of oil and different data frequencies. 

Key words: Energy price returns, Granger non-causality, Quantile regression, 
Tail quantiles 
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1 Introduction

In this paper we study the dynamic relations between crude oil price returns and a set of
energy price returns, namely diesel, gasoline, heating, and the natural gas, in the spirit of
Granger causality. As Bauwens et al. (2006, p. 306) put it, “the time-series notion of Granger
(-Sims) causality is based on the idea that cause must precede effect, and that a factor cannot
cause another variable if it doesn’t contribute to the conditional distribution (or expectation)
of that variable given the past. This concept has become very influential in time series and
macroeconometric modelling.” In the present paper we analyze the causal relationships, not
only in the expectations, but also in the conditional quantiles of the employed energy price
returns, by estimating quantile regressions [see Koenker and Bassett (1978) and Basset and
Koenker (1982)] and testing the null hypothesis of Granger non-causality in quantiles using
the sup-Wald test, as suggested by Koenker and Machado (1999).

Several advantages apply to the quantile Granger non-causality test compared to the
classical Granger non-causality test in mean. First, the quantile causality test considers
different scales and locations of the conditional distribution, and therefore provides a more
complete description of the true dynamic causal relationship than the classical Granger non-
causality test which only investigates average relationships (in the center of the conditional
distribution). Presence of heterogeneity, which is a common characteristic in financial time
series, can thereby lead to significant information loss about the true relationship, unless
various quantile levels are investigated. Second, the quantile causality approach can help
us capture asymmetric causal effects, since parameters may depend on the location of the
dependent energy price return within its conditional distribution. This advantage is impor-
tant for our study, since crude oil price return, for instance, can affect different parts of the
future distribution of another energy price return to different degrees. Among the possible
sources of this asymmetry are production and inventory adjustment lags while in economic
terms asymmetry is interpreted as a different dynamic relationship under various market
conditions or states of the economy. Third, by employing the quantile causality approach,
no assumptions need to be specified regarding the asymmetric causal relationships whilst we
overcome the need for an additional (threshold) parameter in the model. Last, we forgo the
sample splitting procedure that is usually required when studying different market states,
maintaining the time dependence structure in the original data and taking advantage of the
complete sample size.

The relationship between crude oil and energy prices has been extensively investigated in
numerous research papers. Serletis and Herbert (1999), in an influential study, explore the
existence of common trends across Henry Hub and Transco Zone 6 natural gas prices, the
fuel oil price for New York Harbor, and the PJM power market for electricity prices. They
find shared trends among the prices, and thus evidence of effective arbitraging mechanisms
for these prices across these markets, as well as causality and a feedback relationship between
any two price pairs. Other empirical studies, such as for instance, Yücel and Guo (1994),
employ rigorous econometric techniques to investigate fuel price comovement for energy tax
policy purposes. They find evidence of a long-run relationship between coal, natural gas,
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and oil prices, and therefore conclude that a single-fuel tax in these markets would not
be effective as a single tax policy. Villar and Joutz (2006) confirm the stable long-run
cointegrating relationship between crude oil and natural gas prices, but also suggest that oil
price is exogenous to natural gas price. Finally, Brown and Yücel (2008), similar to Asche
et al. (2006), discuss substitutability and competition between natural gas and crude oil in
electric power generation and provide evidence of cointegration between these fuel prices.
In addition, they find that movements in natural gas prices are well explained by crude oil
prices and that natural gas price Granger causes crude oil price, but only to a marginal
extent.

Furthermore, there is an extended literature exploring the existence of asymmetry in the
relationship between crude oil and other energy prices. Bacon (1991), in a seminal study
for the crude oil and gasoline markets in the United Kingdom, describes the asymmetric
mechanism as ‘rockets and feathers,’ thus referring to the fact that gasoline prices rise rapidly
like rockets in response to crude oil price increases, but fall slowly like feathers in response
to crude oil price declines. Balke et al. (1998) investigate the asymmetric relationship
between crude oil and gasoline prices in the United States and provide mixed evidence of
asymmetry. In doing so, they consider two identical model specifications, which differ only
in the specification of asymmetry, and find evidence for rare and small, but also large and
pervasive asymmetry. Borenstein et al. (1997) support the view of asymmetric responses
in the U.S. gasoline markets which they explain through inventory adjustment lags and
temporary market power among retail gasoline sellers. More recently, Chang and Serletis
(2016) investigate the relationship between crude oil and gasoline prices for the United States
and confirm the asymmetric effects, while providing evidence in support of the ‘rockets and
feathers’ behaviour.

Motivated by growing environmental concerns as well as costly fossil fuels, Reboredo et
al. (2017) use continuous and discrete wavelet methods, and linear and non-linear Granger
causality tests, to study co-movement and causality between oil price variation and renewable
energy stock returns. Their findings indicate weak, but in the long run gradually strength-
ened, dependence between oil price and renewable energy stock returns. They also find
evidence of non-linear causality propagating from renewable energy indices to oil prices at
different time horizons, as well as mixed evidence of Granger causality running from crude
oil to renewable energy prices. Employing similar renewable energy stock indices, Kyritsis
and Serletis (2019) investigate the effects of oil price shocks on the financial performance of
the renewable energy and technology sectors, and find evidence of symmetric price trans-
mission, which they explain through the insignificant effect of uncertainty about oil prices
on the renewable energy stock returns. From a different point of view, Atil et al. (2014)
use the nonlinear autoregressive distributed lags model to examine the pass-though of crude
oil prices into gasoline and natural gas prices, and conclude that oil prices affect gasoline
prices and natural gas prices in an asymmetric and non-linear transmission way, with the
negative oil price shocks inducing greater effects than positive shocks. The authors attribute
the larger asymmetric impact of the oil price decreases to downward price expectation spirals
that affect gasoline and natural gas prices during downward economic conditions, and show
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that energy price dynamics are more complex than a simple and stable relationship.
A new strand of literature has emerged in recent years trying to explain the complex

energy price dynamics through the financialization of energy markets, rather than merely by
changes in economic variables. Indeed, since the early 2000s the financialization of commod-
ity markets, and more particularly the crude oil market, started taking place with financial
investors and portfolio managers using energy assets as a means to diversify their portfolios
and hedge their exposure against uncertainty risk. See, for instance, Ta and Xiong (2012),
Hamilton and Wu (2014), Kyritsis and Serletis (2018). In fact, it is estimated that the total
value of assets allocated to commodity index trading strategies increased from $15 billion
at the end of 2003 to $260 in mid-2008 (Commodity Futures Trading Commission, 2011).
Daskalaki and Skiadopoulos (2011) attribute the financialization of energy markets to differ-
ent return behavior and low correlation with stock returns, while new stylised facts, such as
increased price volatility, as well as prices above fundamental values have emerged in energy
prices during the last decades. Signals given by economic policy interventions, however,
can significantly affect energy prices through supply and demand fundamentals and thus
counteract the impact of financial investors in energy markets. Adjusting economic policy
with respect to market conditions is therefore of great importance, especially considering the
varying price transmission mechanisms.

The present paper contributes to the above literature by providing empirical evidence
regarding causal relations and dynamic interactions between crude oil and a set of energy
price returns. To the best of our knowledge, no study has previously investigated Granger
causality on different ranges of the full conditional distribution between these wholesale
energy markets. Our paper contributes to the existing literature by filling this void and
provides insights on information dynamics that are of high importance for optimal hedging
strategies and portfolio risk management, as well as for policy-makers who must have a
clear understanding of these complex price relations before implementing specific policy
interventions, such as single-fuel taxes, explicit carbon prices, and import tariffs. To this
end, we employ the quantile approach that enables us to test for non-causality between the
energy price returns in different quantiles of each variable, and therefore identify the quantile
ranges from which causality arises. On the contrary, the classical Granger non-causality test
can be a poor reflection of the true energy price relations if the latter solely occur over
some locations of the conditional distribution, and in particular outside the interquartile
range. The same methodological approach has previously been followed by Chuang et al.
(2009) and Ding et al. (2014), who investigate causal relationships between stock return
and volume and stock and real estate markets, respectively. Our results indicate significant
dynamic interactions between the employed energy price returns, and especially in the lower-
and upper-level quantiles. We also find the existence of bi-directional causal relations, for
instance between heating and crude oil price returns, for which the classical Granger non-
causality test suggests otherwise. Finally, it is to be noted that we interpret causality in
terms of predictability, and not as implying underlying structural economic relations.

The remainder of this paper is structured as follows. In Section 2 we introduce the
classical Granger non-causality test and the sup-Wald test of non-causality in quantiles by
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Koenker and Machado (1999) and Chuang et al. (2009). In Section 3 we describe the
employed energy price return series and present the empirical evidence while robustness of
our results is examined with respect to alternative measures of the price of oil and different
data frequencies. Section 4 concludes the paper with a brief discussion of our findings and
implications for economic reforms and policy interventions.

2 Econometric methodology

2.1 Classical Granger causality test

When a variable x does not Granger-cause another variable y, it suggests that

Fyt(z|(y, x)t−1) = Fyt(z|yt−1), ∀z ∈ R, (1)

holds where Fyt(·|Ω) is the conditional distribution of yt with Ω denoting the information set
available at time t− 1, and (y, x)t−1 denotes the information set generated by yt and xt up
to time t−1 (Granger, 1969). On the contrary, when Equation (1) fails to hold, the variable
x is said to Granger-cause y. A necessary condition for Equation (1) is that

E(yt|(y, x)t−1) = E(yt|yt−1) (2)

where E(yt|(y, x)t−1) is the conditional mean of the variable yt. Usually Equation (2) is used
as the starting point for tests of Granger causality. There could be, at least, two reasons
for this. Firstly, the test is sometimes used to investigate if a variable is worthwhile using
in forecasting another. Modelling the conditional mean rather than the entire conditional
distribution is then a natural starting point. Secondly, estimating the full conditional distri-
butions is more cumbersome than implementing the classical Granger causality test, which
can be done by means of a vector autoregressive (VAR) model. The estimation can even
be done by ordinary least squares regression. As an example, if crude oil is denoted yt and
gasoline prices xt, the classical test could be performed within the framework of the bivariate
VAR-model

E(yt|yt−i, xt−j) = α0 +

p∑
i=1

αiyt−i +

q∑
j=1

βjxt−j + εy,t (3)

E(xt|xt−i, yt−j) = γ0 +

p∑
i=1

γixt−i +

q∑
j=1

δjyt−j + εx,t, (4)

where εt = (εy,t, εx,t)
′ is a vector of i.i.d random disturbances. The null hypothesis of Granger

non-causality in mean from xt to yt is rejected if the coefficients of xt−1, xt−2, ..., xt−q in
Equation (3) are jointly significantly different from zero. In the same vein, if the coefficients
of lagged yt (δ1, δ2, ..., δq) in Equation (4) are not significantly different from zero, then we
conclude that yt does not Granger-cause xt in mean. Note, however, that this notion of
non-causality is not sufficient for Granger non-causality in distribution. Therefore, although
a failure to reject the null hypothesis means that x does not Granger-cause y in the mean,
it does not preclude causality in other moments or distribution characteristics.
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2.2 Quantile causality test

As discussed earlier, for many cases the conditional mean approach may not describe the
complete causal relationship between two time series variables. Given the fact that a distribu-
tion is completely determined by its quantiles, Lee and Yang (2006) first considered Granger
non-causality in terms of the conditional quantiles of the distribution. Hence, Equation (1)
is equivalent to

Qyt(τ |(y, x)t−1) = Qyt(τ |yt−1), ∀τ ∈ (0, 1), (5)

where Qyt(τ |Ω) denotes the τ−th quantile of Fyt(·|Ω). Thus, we say that x does not Granger-
cause y in all quantiles if Equation (5) holds. Note, however, that in this case non-causality
is tested only in a particular quantile level, and not quantile intervals.

Rather than testing non-causality in a moment (mean or variance) or in a fixed quantile
level τ , in this study we are interested in investigating causal relations in different quantile
intervals by testing Equation (1). In doing so, we follow Chuang et al. (2009) who, in an
influential study, investigate the causal relations between stock return and volume and define
Granger non-causality in the quantile range [a, b] ⊂ (0,1) as

Qyt(τ |(y, x)t−1) = Qyt(τ |yt−1), ∀τ ∈ [a, b], (6)

where Qyt(τ |Ω) denotes the quantile of Fyt(·|Ω) for τ ∈ [a, b]. The quantile causality test is
performed considering several quantile ranges [a, b] ⊂ (0, 1) for τ ∈ [a, b], using the quantile
regression method proposed by Koenker and Bassett (1978) and Basset and Koenker (1982),
and the sup-Wald statistic test suggested by Koenker and Machado (1999); see also Koenker
(2005) for a more comprehensive study of quantile regression. To test for Granger-non
causality in quantiles, we consider the following conditional quantile versions of Equations
(3) and (4)

Qyt(τ |Ωt−1) = φ0(τ) +

p∑
j=1

φj(τ)yt−j +

q∑
h=1

ψh(τ)xt−h (7)

Qxt(τ |Ωt−1) = ω0(τ) +

p∑
j=1

ωj(τ)xt−j +

q∑
h=1

ξh(τ)yt−h, (8)

where Ωt−1 denotes the information set generated by past values of yt and xt. The null
hypothesis of non-causality in quantiles is

H0 : ψ(τ) = 0, ∀τ ∈ [a, b], (9)

for Equation (7). Hence, if the parameter vector ψ(τ) = [ψ1(τ), ψ2(τ), ..., ψq(τ)]′ is equal to
zero, it implies that xt does not Granger-cause yt at the quantile interval τ ∈ [a, b]. In a
similar way, if ξ(τ) = [ξ1(τ), ξ2(τ), ..., ξq(τ)]′ is equal to zero, then we can say that yt does
not Granger-cause xt at the quantile interval τ ∈ [a, b].
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For a given τ , the parameter vector ψ(τ) is estimated by minimizing asymmetrically
weighted absolute deviations:

minφ0(τ),φj(τ),ψh(τ)

T∑
t=1

ρτ

(
yt − φ0(τ)−

p∑
j=1

φj(τ)yt−j −
q∑

h=1

ψh(τ)xt−h

)
(10)

where ρτ (u) = (τ − 1(u < 0))u, 1(A) is the indicator function of the event A, and T is the
sample size, following Koenker and Bassett (1978). For a specific quantile τ ∈ (0, 1) we can
write the Wald statistic of ψ(τ) = 0 as:

WT (τ) = T
ψ̂T (τ)′Ω̂(τ)−1ψ̂T (τ)

τ(1− τ)
(11)

where Ω̂(τ) is a consistent estimator of Ω(τ), which is the variance-covariance matrix of ψ(τ).
Wald statistic process follows the following weak convergence:

WT (τ)⇒

∥∥∥∥∥ Bq(τ)√
τ(1− τ)

∥∥∥∥∥
2

(12)

where Bq(τ) = [τ(1− τ)]−1/2N(0, Iq) is a vector of q independent Brownian bridges and the
weak limit is the sum of squares of q independent Bessel processes. For the null hypothesis
of non-causality over a quantile interval, Koenker and Machado (1999) suggest a sup-Wald
test which can be written as:

sup
τ∈T

WT (τ)→ sup
τ∈T

∥∥∥∥∥ Bq(τ)√
τ(1− τ)

∥∥∥∥∥
2

(13)

In this empirical work we consider different quantile intervals [a, b] ⊂ (0, 1). In order to do
so, we generated a regular quantile sequence of length n from a to b (a = τ1 < ... < τn = b)
and applied a quantile regression for each τi and for different lag orders. The sup-Wald test
for (9) is computed as:

supWT (τ) = sup
i=1,...,n

WT (τi) (14)

The results of the sup-Wald test on various quantile ranges may be used to identify [a, b]
from which the causality arises. For instance, if the null hypothesis of Granger non-causality
is rejected for some τ ∈ (0, 1) but not for some τ ∈ [a, b], we may infer that causality arises
from the quantile intervals outside [a, b].

In order to determine the significance level of the sup-Wald test, for each range and each
lag order, we generate 100,000 independent simulations approximating the standard Brown-
ian motion through the use of a Gaussian random walk with 3,000 i.i.d. N(0, 1) innovations
to identify the critical values at the 1%, 5%, and 10% significance levels.1 Furthermore, since

1The table of critical values is available on request. Some critical values of the sup-Wald test have also
been tabulated in De Long (1981) and Andrews (1993).
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Table 1: Summary statistics

Series Mean Variance Minimum Maximum Skewness Kurtosis Normality

Diesel 1.724 0.807 0.391 3.894 0.375** -0.991*** 16.218***

Gasoline 1.591 0.689 0.307 3.292 0.320** -1.098*** 16.955***

Heating 1.608 0.805 0.304 3.801 0.430*** -0.949*** 17.212***

Natural gas 4.410 4.961 1.720 13.420 1.423*** 2.375*** 144.252***

RAC 53.968 957.025 9.810 129.030 0.476*** -0.995*** 19.910***

WTI 55.598 884.283 11.350 133.880 0.415*** -0.929*** 16.280***

Notes: Sample Period, monthly observations, 1997:01-2017:12. Asterisks indicate rejection of null
hypothesis of skewness, excess kurtosis, and normality. The skewness and excess kurtosis statistics
include a test of the null hypothesis that each is zero. The Jarque-Bera test is used to test for nor-
mality. ***, **, and * indicate significance at the 1%, 5%, and 10% significance levels, respectively.

we need to select the optimal lag for each quantile range in order to conduct the sup-Wald
test, we use the sequential lag selection method to determine the optimal lag truncation
order [see Chuang et al. (2009) and Ding et al. (2014)]. For instance, if the null hypothesis
ψq(τ) = 0 for [0.05, 0.5] is not rejected for the lag-q model but the null ψq−1(τ) = 0 for [0.05,
0.5] is rejected for the lag-(q − 1) model, then we set the desired lag order as q∗ = q − 1 for
the quantile interval [0.05, 0.5]. If no test statistic, however, is significant over that interval,
we select the lag length of order one. We calculate the sup-Wald test statistics to check the
joint significance of all coefficients of lagged past values for each quantile interval. Hence, if
the selected lag order is q∗, then the null hypothesis is H0 : ψ1(τ) = ψ2(τ) = ψq(τ) = 0 for
[0.05, 0.5].2 For simplicity, we do not assume different lag orders, hence p = q. Therefore,
by employing the methodology of quantile Granger non-causality while considering various
quantile ranges [a, b], we capture the quantile intervals from which the true causal relations
arise.

3 The data and empirical analysis

This study uses spot closing energy prices, namely crude oil, diesel, gasoline, heating, and
natural gas prices for the United States. As a proxy for the price of crude oil we use the
West Texas Intermediate (WTI) crude oil spot price, while for robustness purposes we also
employ a second proxy, namely the U.S. refiner’s acquisition cost (RAC) for a composite
of domestic and imported crude oil.3 Both crude oil prices are expressed in US dollars per
barrel. We use the Los Angeles ultra-low sulfur No 2 diesel price in US dollars per gallon

2The results for lag order selection of the quantile causality tests are not reported here in order to preserve
space, but they can be provided upon request.

3The U.S. refiner’s acquisition cost (RAC) for composite crude oil is a weighted average of domestic and
imported crude oil costs. It includes transportation and other fees paid by refiners, but does not include the
cost of crude oil purchased for the Strategic Petroleum Reserve.
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for the diesel price, the New York Harbour conventional gasoline price in US dollars per
gallon for the price of gasoline, the New York Harbour No 2 heating oil price in US dollars
per gallon for the price of heating, and the Henry Hub natural gas price in US dollars per
MBTU for the price of natural gas. All prices are obtained from the U.S. Energy Information
Administration (EIA) on a monthly basis, over the period from January 1997 to December
2017, and are in nominal terms. The development of energy price series alongside with their
logarithmic returns, which are scaled up by a factor of 100, are illustrated in Figure 1.

We present the summary statistics of the energy price series in Table 1. The average
monthly prices range from $1.591 per gallon for gasoline to $55.598 per barrel for crude
oil. On a monthly basis, the energy prices reached their maximum values in June 2008 for
diesel ($3.894), gasoline ($3.292), and heating ($3.801), which is also shown in Figure 1.
The highest peak in natural gas price ($13.420) and crude oil price ($133.880) was observed
in October 2005 and July 2008, respectively. It is worth mentioning that during the first
half of 2008 all energy prices increased from 41.05% for the case of gasoline to 58.82% for
natural gas, with crude oil increasing by 47.22%, while during the second half of 2008 all
of them experienced a remarkable drop of more than 47%, thus providing evidence for a
strong price relationship. Table 1 also shows that all price series are positively skewed and
deviate from normality, while natural gas price exhibits excess kurtosis, heavy tails, and in
particular longer right tail than a normal distribution. The latter distribution characteristics
are also depicted in the different plots in Figure 2 and provide further support for our deci-
sion to investigate Granger causality on different ranges of the full conditional distribution,
rather than solely on the conditional mean. In fact, the histograms illustrate deviation from
normality with the red line representing the theoretical normal distribution, while the cor-
responding quantile-quantile plots verify skewness and other distributional characteristics,
such as heavy or long tails (see particularly the case of gasoline and natural gas).

An interesting feature of the data related to the contemporaneous correlations across
the logarithmic energy price returns is provided in Table 2. In order to determine whether
these correlations are statistically significant, we follow Pindyck and Rotemberg (1990) and
perform a likelihood ratio test of the hypotheses that the correlation matrices are equal to
the identity matrix. The test statistic is

− 2ln(|R|N/2)

where |R| is the determinant of the correlation matrix and N is the number of observations.
The test statistic is distributed as χ2 with q(q − 1)/2 degrees of freedom, where q is the
number of series. For the case of the West Texas Intermediate crude oil, the test statistic
is equal to 920.364 with a p-value of 0.000, and we can therefore clearly reject the null
hypothesis that these series are uncorrelated. The same conclusion holds for the case of the
U.S. refiner’s acquisition cost for composite crude oil, for which the test statistic is equal to
888.782 with a p-value of 0.0004.

4The contemporaneous correlation dynamics for the case of the U.S. refiner’s acquisition cost (RAC) are
available on request.
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Figure 1: Time series of energy prices and their logarithmic returns
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Figure 2: Histogram of energy prices with their respective quantile plots
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Table 2: Contemporaneous correlations

Series Diesel Gasoline Heating Natural gas WTI

Diesel 1 0.716 0.809 0.207 0.759
Gasoline 0.716 1 0.728 0.208 0.818
Heating 0.809 0.728 1 0.346 0.838
Natural gas 0.207 0.208 0.346 1 0.232
WTI 0.759 0.818 0.838 0.232 1

x2(10) = 920.364

Note: Monthly data from 1997:01 to 2017:12.

Notice that correlations in Table 2 indicate a relatively weak price relationship between
the crude oil and natural gas price returns. This is a fact that has been expected, since
diesel, gasoline, and heating are refined petroleum products and thus more dependent on
crude oil price development. Crude oil and natural gas prices are, however, somewhat related
to each other, since they are both substitutes in direct consumption but also in production of
other energy sources, such as cooking, heating, and electricity generation. It should be noted
that natural gas currently emerges as a considerable source of the electricity production mix,
since it provides power system with significant flexibility, which complements the intermittent
renewable energy sources, and therefore acts as a “bridge” to a low carbon economy (Kyritsis
et. al, 2017). The correlation patterns documented in Table 2 also manifest in the different
plots in Figure 1, which depict the development of the employed series over the investigated
period.

Before we continue with our main analysis, we conduct some necessary unit root and
stationary tests in the logarithmic energy price returns, in order to test for the presence of a
stochastic trend (a unit root) in the autoregressive representation of each individual return.
Our motivation stems from the fact that existence of a unit root in a series invalidates
the standard assumptions for an asymptotic analysis, as for instance the usual asymptotic
properties of estimators, based on which statistical inference is performed. ADF and DF-
GLS are, respectively, augmented Dickey-Fuller and Phillips-Perron statistics for the null
hypothesis of a unit root for the time series. KPSS denotes the stationary test for the null
hypothesis of stationarity. All three tests, namely, the Augmented Dickey-Fuller (ADF)
test [see Dickey and Fuller, 1981], the Dickey-Fuller GLS (DF-GLS) test [see Elliot et al.,
1996] and the KPSS test [see Kwiatkowski et al., 1992] provide evidence that all series are
stationary, or integrated of order zero, I (0), and we therefore continue our analysis employing
all price series in first logarithmic returns.5 The Akaike information criterion (AIC) is used
for the lag length selection in both the ADF and DF-GLS regressions, while the Bartlett
kernel for the KPSS regressions is determined using the Newey-West bandwidth (NWBW).
The stationarity of the logarithmic energy price returns is also verified by their historical
development, which is depicted in the different plots in Figure 1.

5The various unit root and stationary test results are reported in Table A.1 in the appendix.
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Table 3: Granger causality tests in mean between monthly WTI
and energy price returns

The null hypothesis Lag order p-value Decision

WTl ; Diesel (6) 0.000 Causality
Diesel ; WTl (6) 0.627 No causality
WTl ; Gasoline (4) 0.000 Causality
Gasoline ; WTl (4) 0.141 No causality
WTl ; Heating (5) 0.002 Causality
Heating ; WTl (5) 0.005 Causality
WTl ; Natural gas (2) 0.016 Causality
Natural gas; WTl (2) 0.867 No causality

Notes: Sample Period, monthly observations, 1997:01-2017:12.
The symbol ; denotes the null hypothesis of Granger non-
causality. The entry “Causality” indicates that the null hypothesis
is rejected at the 5% significance level, while the entry “No causal-
ity” indicates that the null hypothesis of Granger non-causality
could not be rejected at the 5% significance level. Lag order is
selected based on the Akaike Information Criterion.

Table 4: Granger causality tests in mean between monthly RAC
and energy price returns

The null hypothesis Lag order p-value Decision

RAC ; Diesel (6) 0.000 Causality
Diesel ; RAC (6) 0.417 No causality
RAC ; Gasoline (4) 0.000 Causality
Gasoline ; RAC (4) 0.047 Causality
RAC ; Heating (6) 0.001 Causality
Heating ; RAC (6) 0.017 Causality
RAC ; Natural gas (2) 0.011 Causality
Natural gas; RAC (2) 0.968 No causality

Notes: Sample Period, monthly observations, 1997:01-2017:12.
The symbol ; denotes the null hypothesis of Granger non-
causality. The entry “Causality” indicates that the null hypothesis
is rejected at the 5% significance level, while the entry “No causal-
ity” indicates that the null hypothesis of Granger non-causality
could not be rejected at the 5% significance level. Lag order is
selected based on the Akaike Information Criterion.
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In the next step of our analysis we use the Wald test to conduct the classical Granger non-
causality test in mean. In doing so, we test the null hypothesis that βj = 0 (or δj = 0) for j =
1, 2, ..., q, in the two linear regression models described by Equations (3) and (4). Rejection
of the null hypothesis implies that knowledge of past values of xt improves the prediction
of future energy price return of yt, beyond predictions that are based on past returns of the
energy product alone, yt−1, yt−2, ..., yt−q. As aforementioned, we perform the analysis twice
employing each time a different proxy for the price of crude oil, namely the West Texas
Intermediate (WTI) crude oil and U.S. refiner’s acquisition cost (RAC) for composite crude
oil. The optimal lag truncation orders are selected by the Akaike Information Criterion
(AIC) and are reported together with the corresponding estimation results in Tables 3 and
4, respectively.

Several linear causal relations are found propagating between crude oil and other em-
ployed energy price returns; some exceptions however apply to this, such as for instance,
from each of the diesel and natural gas returns to WTI and RAC crude oil returns, as well
as from gasoline to WTI return. We also notice that the selected lag order varies from
two to six months for both crude oil prices, contingent on the particular investigated causal
relationship between the employed fuel price returns. After performing this test to all the
bivariate relations between each of the crude oil returns, namely WTI and RAC, and each
of the other returns for diesel, gasoline, heating, and natural gas, we conclude that past
crude oil returns improve the predictions of all the other fuel returns, beyond predictions
that are based on past returns of fuels alone. For instance, information about the returns
of WTI from the last four and six months improves the prediction of future gasoline and
diesel returns, respectively, compared to predictions that are based only on past returns
of those fuels. The same conclusion holds for the bivariate causal relations when RAC is
used as a proxy for the crude oil price, thus providing evidence for robustness to an alter-
native measure of the price of oil. In the opposite direction, past information of neither
diesel, gasoline, or natural gas returns improves the prediction of future WTI return, beyond
predictions that are based merely on its past return history. Although the aforementioned
results, which are based on the conditional mean represented by Equations (3) and (4), are
useful to learn about causal relations, they may not reveal all the information that describes
the complete causal relationship between two time-series variables, and therefore may lead
to invalid causal inferences.

Motivated by these considerations, we explore the causal relationships between the em-
ployed energy price returns, by considering the conditional quantile functions given by Equa-
tions (7) and (8) — using the longest available span of data.6 For our empirical analysis we
consider in total eight large quantile intervals for the above conditional quantile functions,
similar to Ding et al. (2014). More precisely, we examine three large quantile intervals,
namely [0.05, 0.95], [0.05, 0.5], and [0.5, 0.95], and five small quantile intervals, namely
[0.05, 0.2], [0.2, 0.4], [0.4, 0.6], [0.6, 0.8], and [0.8, 0.95]. For each quantile interval, we first
select the optimal lag truncation order and then conduct the sup-Wald test to evaluate the

6This applies to the price series of diesel, gasoline, heating, and natural gas, which start being available
from January 1997.
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Table 5: Test results for quantile causality between monthly WTI and energy price returns

τ ∈ [0.05,0.95] [0.05,0.5] [0.5,0.95] [0.05,0.2] [0.2,0.4] [0.4,0.6] [0.6,0.8] [0.8,0.95]

(a) WTI ; energy prices

Diesel 55.34∗∗∗ 56.14∗∗∗ 4.96 60.05∗∗∗ 37.04∗∗∗ 8.73∗∗ 3.59 1.91
(2) (2) (1) (2) (2) (1) (1) (1)

Gasoline 20.86∗∗ 17.27∗∗∗ 18.49∗∗ 17.48∗∗∗ 5.60∗ 7.53∗ 17.28∗∗ 18.50∗∗

(4) (2) (4) (2) (1) (2) (4) (4)

Heating 41.21∗∗∗ 41.21∗∗∗ 2.86 47.01∗∗∗ 14.18∗∗∗ 2.60 1.53 2.86
(5) (5) (1) (5) (2) (1) (1) (1)

Natural gas 71.37∗∗∗ 1.28 71.37∗∗∗ 1.30 8.54∗ 1.05 10.98∗∗ 71.37∗∗∗

(7) (1) (7) (1) (2) (1) (2) (7)

(b) Energy prices ; WTI

Diesel 6.09 0.86 6.16 0.94 0.69 1.97 5.82∗ 6.16∗

(1) (1) (1) (1) (1) (1) (1) (1)

Gasoline 4.05 0.71 4.19 0.77 13.13∗ 0.29 0.59 4.19
(1) (1) (1) (1) (4) (1) (1) (1)

Heating 34.29∗∗∗ 34.29∗∗∗ 29.11∗∗∗ 34.29∗∗∗ 17.95∗∗∗ 14.43∗∗ 11.86∗ 29.11∗∗∗

(5) (5) (4) (5) (4) (4) (4) (4)

Natural gas 3.28 0.81 3.38 10.29 0.83 0.77 0.71 3.38
(1) (1) (1) (4) (1) (1) (1) (1)

Notes: Sample Period, monthly observations, 1997:01-2017:12. Each interval in the square brackets is the
quantile interval on which the null hypothesis of Granger non-causality, as per Equuation (7) and (8), holds.
The sup-Wald test statistics and the selected lag orders (in parentheses) are reported. ***, **, and * indicate
significance at the 1%, 5%, and 10% significance levels, respectively.
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Table 6: Test results for quantile causality between monthly RAC and energy price returns

τ ∈ [0.05,0.95] [0.05,0.5] [0.5,0.95] [0.05,0.2] [0.2,0.4] [0.4,0.6] [0.6,0.8] [0.8,0.95]

(a) RAC ; energy prices

Diesel 73.78∗∗∗ 73.78∗∗∗ 5.56 73.78∗∗∗ 45.89∗∗∗ 11.32∗∗∗ 9.58∗∗ 2.77
(2) (2) (1) (2) (2) (1) (2) (1)

Gasoline 52.22∗∗∗ 52.22∗∗∗ 26.64∗∗∗ 52.65∗∗∗ 4.83 0.83 0.12 26.64∗∗∗

(4) (4) (4) (4) (1) (1) (1) (4)

Heating 68.52∗∗∗ 68.52∗∗∗ 5.61 68.52∗∗∗ 19.56∗∗∗ 2.19 0.53 20.37∗∗∗

(7) (7) (1) (7) (2) (1) (1) (4)

Natural gas 40.45∗∗∗ 17.94∗∗ 12.25∗∗ 18.16∗∗ 2.08 2.14 9.01∗ 24.74∗∗∗

(4) (4) (2) (4) (1) (1) (2) (6)

(b) Energy prices ; RAC

Diesel 6.10 2.32 7.20∗ 2.32 1.10 1.03 1.24 7.20∗

(1) (1) (1) (1) (1) (1) (1) (1)

Gasoline 3.43 3.43 1.91 3.47 1.35 1.96 1.78 1.84
(1) (1) (1) (1) (1) (1) (1) (1)

Heating 5.13 5.13 16.67∗∗ 33.63∗∗∗ 19.53∗∗∗ 3.60 12.21∗ 16.67∗∗

(1) (1) (4) (6) (4) (1) (4) (4)

Natural gas 5.25 1.79 5.25 8.87 1.62 1.79 0.89 5.25
(1) (1) (1) (4) (1) (1) (1) (1)

Notes: Sample Period, monthly observations, 1997:01-2017:12. Each interval in the square brackets is the
quantile interval on which the null hypothesis of Granger non-causality, as per Equuation (7) and (8), holds.
The sup-Wald test statistics and the selected lag orders (in parentheses) are reported. ***, **, and * indicate
significance at the 1%, 5%, and 10% significance levels, respectively.
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joint significance of all coefficients of lagged crude oil or fuel price returns.
Tables 5 and 6 report the sup-Wald test statistics and selected lag truncation orders

for non-causality in quantiles between each of the WTI and RAC crude oil returns and
other energy price returns. In particular, Panel (a) of Table 5 reports the tests results for
non-causality from WTI crude oil return to diesel, gasoline, heating, and natural gas price
returns. For the quantile interval [0.05, 0.95], WTI crude oil return Granger-causes all the
other energy returns at the 5% significance level, while the quantile sub-intervals indicate
significant causality propagating solely from the lower- and/or upper- level quantiles, [0.05,
0.2] and [0.8, 0.95], for three out of the four relationships. In particular, for the case of
gasoline we find no evidence of causality arising from WTI crude oil returns over the middle
quantile intervals [0.2, 0.4] and [0.4, 0.6]. Hence, WTI crude oil return does not improve the
prediction of gasoline return, beyond predictions that are based on its own past return history
alone, when the latter fluctuates around its median. However, by considering causal relations
in the tail region of the conditional distribution [0.05, 0.2] and [0.8, 0.95], we find significant
Granger causality from WTI crude oil return to gasoline return. For the case of heating,
there is Granger causality propagating over the lower quantile intervals [0.05, 0.2] and [0.2,
0.4] at the 1% significance level, while investigation of causality for the case of natural gas
indicates the opposite pattern, thus causality arising only over the upper quantile intervals
[0.6, 0.8] and [0.8, 0.95] at the 5% significance level. Hence, WTI crude oil return improves
the predictions of heating and natural gas returns, beyond predictions that are based on
their own past return history alone, only when the latter fluctuate around their lower- and
upper- level quantiles, respectively. Finally, knowledge of the WTI crude oil return from
only the last month improves the prediction of diesel return, beyond predictions that merely
account its past return development, when the latter fluctuates around its median. The test
results for non-causality over quantiles from RAC crude oil return to the other energy price
returns, reported in Panel (a) of Table 6, are very similar to the above results in terms of
significance, but also lag truncation order. For instance, knowledge of the two previous RAC
oil returns improves the prediction of diesel return over the lower quantile intervals [0.05,
0.2] and [0.2, 0.4], while knowledge of the four past RAC oil returns improves the prediction
of gasoline return, when the latter fluctuates over the upper quantile interval [0.8, 0.95].

Panel (b) of Table 5 reports the sup-Wald test statistics for non-causality from each of
the diesel, gasoline, heating, and natural gas returns to WTI crude oil return, over the eight
investigated quantile intervals. None of the test results is significant at the 5% significance
level over the first quantile interval [0.05, 0.95], except for the case of the heating return which
reveals existence of a feedback mechanism between heating and crude oil markets. The results
are in accordance with previous findings in the literature that support (weakly) exogeneity
of crude oil price, at least with respect to gasoline and natural gas prices. See, for instance,
Asche et al. (2003) and Villar and Joutz (2006). When we explore causal relationships in the
context of smaller quantile intervals, we find no causality running from the diesel, gasoline,
and natural gas returns to WTI crude oil return, but statistically significant causality, in the
context of Granger, propagating from the heating return to the WTI crude oil return over
most parts of the conditional distribution. These test results are very similar in terms of
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Table 7: Granger causality tests in mean between daily WTI
and energy price returns

The null hypothesis Lag order p-value Decision

WTl ; Diesel (8) 0.003 Causality
Diesel ; WTl (8) 0.012 Causality
WTl ; Gasoline (8) 0.001 Causality
Gasoline ; WTl (8) 0.088 No causality
WTl ; Heating (8) 0.000 Causality
Heating ; WTl (8) 0.139 No causality
WTl ; Natural gas (6) 0.000 Causality
Natural gas; WTl (6) 0.505 No causality

Notes: Sample Period, daily observations, January 2, 1997 to De-
cember 29, 2017. The symbol ; denotes the null hypothesis of
Granger non-causality. The entry “Causality” indicates that the
null hypothesis is rejected at the 5% significance level, while the
entry “No causality” indicates that the null hypothesis of Granger
non-causality could not be rejected at the 5% significance level.
Lag order is selected based on the Akaike Information Criterion.

significance and lag truncation order with the reported results in Panel (b) of Table 6, which
refer to the same causal relations, but with RAC being used as a proxy for the price crude
oil. In particular, we find no statistical evidence in favor of feedback mechanisms, except for
the case of heating and RAC crude oil returns where heating return Granger-causes RAC oil
return over the quantile invervals [0.05, 0.2], [0.2, 0.4], and [0.8, 0.95]. Considering the results
from Tables 5 and 6, we conclude that energy price returns Granger cause each other mostly
under extreme market conditions, and therefore consideration of these relationships only
under normal market situations may lead to invalid causal inferences, and thus inefficient
risk management strategies or unintended policy outcomes. Finally, comparison of Tables 5
and 6 provides evidence for robustness to alternative measures of the price of oil.

In the last step of our analysis, we investigate the robustness of our results to the use
of higher frequency data. In particular, we use daily returns for the above diesel, gasoline,
heating, and natural gas prices for the period from January 2, 1997 to December 29, 2017.
Regarding the price of oil we use daily WTI crude oil return, since RAC crude oil is not
available on a higher frequency than monthly. We report the estimation results in Tables 7
and 8, exactly in the same fashion as those in the previous tables for the case of monthly
returns. By looking at Table 7 we conclude, similarly to the previous cases, that daily WTI
crude oil return Granger causes all other energy returns, while gasoline, heating, and natural
gas returns do not Granger cause WTI crude oil return. In the next step, we conduct the
sup-Wald test in order to investigate Granger causality from daily WTI crude oil return to
diesel, gasoline, heating, and natural gas returns over different quantile intervals. The results
of these tests are reported in Panel (a) of Table 8 and lead to similar conclusions to those of
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Table 8: Test results for quantile causality between daily WTI and energy price returns

τ ∈ [0.05,0.95] [0.05,0.5] [0.5,0.95] [0.05,0.2] [0.2,0.4] [0.4,0.6] [0.6,0.8] [0.8,0.95]

(a) WTI ; energy prices

Diesel 17.96∗∗∗ 8.55∗∗ 18.38∗∗∗ 9.54∗∗ 1.71 1.94 13.35 18.45∗∗∗

(1) (1) (1) (1) (1) (1) (5) (1)

Gasoline 38.30∗∗∗ 32.48∗∗∗ 22.83∗∗ 32.48∗∗∗ 1.33 2.15 16.52∗∗ 23.07∗∗∗

(6) (4) (6) (4) (1) (1) (4) (6)

Heating 56.68∗∗∗ 67.64∗∗∗ 42.81∗∗∗ 67.64∗∗∗ 18.22∗∗∗ 2.83 2.92 42.81∗∗∗

(10) (10) (10) (10) (4) (1) (1) (10)

Natural gas 54.52∗∗∗ 54.50∗∗∗ 42.24∗∗∗ 35.57∗∗∗ 55.03∗∗∗ 39.56∗∗∗ 39.20∗∗∗ 47.06∗∗∗

(3) (1) (3) (1) (1) (1) (1) (4)

(b) Energy prices ; WTI

Diesel 25.82∗∗ 25.82∗∗ 17.17∗ 26.21∗∗ 19.04∗ 11.64 0.68 17.71∗∗

(8) (8) (5) (8) (8) (8) (1) (5)

Gasoline 21.14 21.14 3.89 21.14∗ 17.62 4.96 0.68 3.95
(9) (9) (1) (9) (8) (1) (1) (1)

Heating 72.12∗∗∗ 72.12∗∗∗ 2.09 74.80∗∗∗ 15.93 0.36 2.08 10.85
(9) (9) (1) (9) (9) (1) (1) (6)

Natural gas 51.18∗∗∗ 1.87 51.18∗∗∗ 33.28∗∗∗ 1.23 0.60 7.93∗ 54.44∗∗∗

(10) (1) (10) (4) (1) (1) (2) (10)

Notes: Sample Period, daily observations, January 2, 1997 to December 29, 2017. Each interval in the square
brackets is the quantile interval on which the null hypothesis of Granger non-causality, as per Equuation (7)
and (8), holds. The sup-Wald test statistics and the selected lag orders (in parentheses) are reported. ***,
**, and * indicate significance at the 1%, 5%, and 10% significance levels, respectively.
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the previous cases. In fact, for the case of gasoline we find evidence of causality propagating
from daily WTI crude oil return over the lower- and upper- level quantiles [0.05, 0.2], [0.6,
0.8], and [0.8, 0.95], thus being identical to the results from the case of monthly WTI crude
oil return in Table 5. Moreover, we find evidence of WTI crude oil return Granger causing
heating return over the quantile intervals [0.05, 0.2], [0.2, 0.4] and [0.8, 0.95], thus verifying
robustness of our results to the employment of a different oil price and particularly to the
use of monthly RAC crude oil in Table 6. It is worth noting that use of daily energy returns
provides us with evidence of WTI crude oil return Granger causing natural gas return over the
full conditional distribution. This result may have practical implication for investors who
operate in these energy markets with different investment horizons, since horizon-specific
information regarding causality may be useful for portfolio diversification and value-at-risk
estimation. Moreover, we find several interesting causal relations propagating from the
different daily energy returns to WTI crude oil return outside the interquartile range, which
cannot be captured by the classical Granger non-causality test — see Panel (b) of Table 8. In
particular, we find evidence of heating and natural gas returns Granger causing WTI crude
oil over the lower level quantile of [0.05, 0,2], thus verifying the existence of a bi-directional
causal relation for which the classical Granger non-causality test suggests otherwise (see
Table 7). Hence, we conclude that a failure to reject the null hypothesis of Granger causality
in the mean does not preclude causality in other moments of the distribution, and therefore
it is important to investigate causality on different ranges of the full conditional distribution.

4 Conclusions and policy implications

The present paper investigates the causal relations and dynamic interactions between crude
oil and a set of energy price returns, namely diesel, gasoline, heating, and the natural gas,
within the framework of a dynamic quantile regression model. To the best of our knowledge,
no study has previously investigated Granger causality between these energy markets on dif-
ferent ranges of the full conditional distribution. Our paper contributes to the existing litera-
ture by filling this void and provides insights on information dynamics that are of high impor-
tance for robust economic policy, as well as for optimal hedging strategies and sustainable risk
management. The quantile approach enables us to test for non-causality between the price
returns in different quantiles of each variable, and thereby identify the quantile ranges from
which causality arises. The latter is the greatest strength of the quantile causality test, which
makes it possible for us to draw valid causal inferences and undertake effective policy mea-
sures, for instance fuel taxes and import tariffs with the aim of transforming successfully the
energy sector and increasing national energy security. Moreover, through the use of quantile
causality tests, we provide detailed information about dispersion of energy return distribu-
tions, which can complement conventional volatility measures, such as conditional variance.

The paper employs monthly crude oil, diesel, gasoline, heating, and natural gas price
data from U.S. wholesale markets, for the period from January 1997 to December 2017. Our
results indicate significant one-directional causal relations between the employed energy price
returns, especially in the tail quantile intervals, which cannot by identified by the classical
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Granger non-causality test. Interdependence between energy returns outside the interquar-
tile range of the conditional distributions implies that investors are incapable of hedging the
risk across these energy markets during extremely volatile bear and bull periods. It also
suggests that policy-makers should be cautious of increasing systemic risk when extreme re-
turns are observed in these energy markets, and thereby should implement economic policies
that minimize systemic risk. Moreover, policy-makers should aim at reducing the oil price
risk in different sectors, such as transportation, heating, and agriculture, for instance by
constructing well-diversified energy portfolios. It is worth noting that natural gas emerges
as a considerable source in the power production mix, substituting largely crude oil and
thus decreasing dependence of electricity sector on crude oil price fluctuations. Finally, we
find the existence of bi-directional causal relations and therefore feedback mechanisms, for
instance between heating and crude oil price returns, for which the classical Granger non-
causality test suggests otherwise. Our results are robust to a number of alternative oil prices
and data frequencies.
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5 Appendix

Table A.1: Unit roots and stationary tests

Test

Series ADF DF-GLS KPSS Decision

A. Log levels

Diesel -2.097 -2.146 0.333*** I (1)
Gasoline -1.887 -2.076 0.364*** I (1)
Heating -1.835 -1.911 0.339*** I (1)
Natural gas -2.223 -2.214 0.413*** I (1)
RAC -2.356 -2.400 0.346*** I (1)
WTI -1.988 -2.279 0.364*** I (1)

B. Logarithmic returns

Diesel -13.630*** -13.634*** 0.055 I (0)
Gasoline -4.811*** -2.662* 0.045 I (0)
Heating -12.733*** -2.267* 0.066 I (0)
Natural gas -15.438*** -1.560 0.033 I (0)
RAC -9.529*** -8.291*** 0.060 I (0)
WTI -12.043*** -2.134 0.056 I (0)

Note: Sample Period, monthly observations, 1997:01-2017:12.
***, **, and * indicate significance at the 1%, 5%, and 10% significance
levels, respectively.
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