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ABSTRACT 

Relation-based category learning is based on very different principles than feature-based 

category learning. It has been shown that relational categories are learned by a process 

akin to structured intersection discovery, which is formally powerful than feature-based 

associative learning, but which fails catastrophically with probabilistic category 

structures. This research provided consistent evidence that relational concepts are 

qualitatively different from featural concepts, and they are also learned in a qualitatively 

different manner. Experiment 1 showed that relational category learning with 

probabilistic structures can be improved by comparing systematic pairs of exemplars, 

where shared relations between the exemplars can be abstracted. Experiment 2 showed 

that comparing the exemplars to the prototype can improve learners’ ability to learn 

probabilistic relational categories in terms of prototype-plus-exception rules. Experiment 

3 and 4 examined further the distinction between feature-and relation-based category 

learning using a dual task methodology. Experiment 3 revealed that featural category 

learning was more impaired by a visuospatial dual task than by a verbal dual task, 

whereas relational category learning was more impaired by the verbal dual task. 

Experiment 4 examined how the dual task that involves more relational information 

interacts with feature-and relation-based category learning. The results showed that there 

was no reliable difference between two category learning. Taken together, Experiment 3 

and 4 results suggest that in contrast to featural category learning, which may involve 

mainly non-verbal mechanisms, relational category learning appears to place greater 

demands on more explicit and attention-demanding verbal or verbally-related learning 

mechanisms. The findings presented in this dissertation contribute to the growing body of 
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theoretical and empirical results suggesting that relational thought is a qualitatively 

different thing than the kinds of thinking and learning afforded by feature-based 

representations of the world. 
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CHAPTER 1: INTRODUCTION 

The ability to acquire and reason about relational concepts is a cornerstone of 

human thinking. It is the basis of our ability to grasp analogies between seemingly 

different objects or situations (e.g., Bassok, 2001; Clement & Gentner, 1991; Gentner, 

1983; Gentner & Smith, 2013; Gick & Holyoak, 1980; Goswami, 2001; Holyoak, 2005; 

Holyoak & Thagard, 1995; Markman & Gentner, 2000), to infer hidden causes of 

observed events (e.g., Gopnik & Melzoff, 1997; Gopnik, Sobel, Schulz, & Glymour, 

2001), to apply abstract rules in novel situations (e.g., Smith, Langston & Nisbett, 1992), 

and even to appreciate perceptual similarities (e.g., Palmer, 1978; Goldstone, Medin & 

Gentner, 1991; Hummel, 2000; Hummel & Stankiewicz, 1996). Along with language, our 

capacity to think explicitly about relations may be the primary factor separating human 

cognition from the cognitive abilities of our closest primate cousins (see, e.g., Penn, 

Holyoak & Povinelli, 2008). 

Relational concepts are concepts that specify the relations between things rather 

than just the literal features of the things themselves: A barrier is something that stands 

between one thing and another; a conduit is something that transports something else 

(water, electricity, karma) from one place to another; a friend is someone who likes and is 

liked by another. Although it is tempting to think of nouns as referring to concrete objects 

defined by simple lists of features (e.g., “a bird has feathers and wings and lives in 

trees”)—and although, as reviewed shortly, the vast majority of laboratory research on 

category learning has been based on such feature-based categories—about half of 100 

highest-frequency nouns in the British National Corpus refer to relational concepts 
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(Asmuth & Gentner, 2005). Relational categories may thus be more the rule than the 

exception. 

Given the centrality of relational concepts in human thinking, it is important to 

understand what such concepts consist of and how they are acquired—and the degree to 

which the answer to the first question imposes constraints on the answer to the second. In 

this Dissertation, I shall explore several empirical implications of the intersection 

discovery hypothesis: The hypothesis that relational concepts are learned by a process of 

structural alignment (a.k.a. analogical mapping; Gentner, 1983; Gick & Holyoak, 1980; 

1983), which makes explicit the relational correspondences between otherwise featurally 

different examples, combined with a form of intersection discovery, in which the shared 

elements and relations between those systems are retained while elements or relations 

unique to one system or the other are discarded (Doumas, Hummel & Sandhofer, 2008; 

Gick & Holyoak, 1983; Hummel & Holyoak, 2003). As a learning algorithm, intersection 

discovery is both formally more powerful than associative learning (e.g., as discussed in 

the literature on animal learning [e.g., Rescorla & Wagner, 1972] and in traditional 

models of category learning in human subjects [e.g., Krushke, 1992]) and, in 

counterintuitive ways, more limited in the kinds of category structures it is equipped to 

acquire. 

The Dissertation is organized as follows. I shall first review evidence for various 

kinds of relational concepts in human cognition. I next discuss the problem of learning 

relational concepts from examples. I will argue that such concepts are formally too 

complex to be acquired by means of traditional associative learning. I will present the 

intersection discovery hypothesis as a potential solution to the limitations of associative 
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learning and summarize prior support for that hypothesis. The main part of the 

Dissertation consists of four experiments testing additional predictions of the intersection 

discovery hypothesis, and the implications of concept acquisition qua relational learning 

more generally. Finally, I will conclude with a discussion of the implications of my 

findings for our understanding of relational concepts and the conditions under which they 

can and cannot be learned. 

1.1. Prior research on relational categories 

Although relational concepts are ubiquitous in human cognition, it would be a 

mistake to assume that “relational concept” is a monolithic term. Instead, relational 

concepts appear to manifest themselves in several more specific ways in human cognition. 

Intrinsic vs. Extrinsic Properties. Barr and Caplan (1987; Caplan & Barr, 1991) 

made a distinction between intrinsic and extrinsic features. Intrinsic features are those 

that belong to an entity in isolation, such as “has wings” for birds, whereas extrinsic (i.e., 

relational) properties refer to relations between two or more entities, such as “used to 

work with” for a hammer. In Barr and Caplan’s experiments (1987), participants in a 

pilot study were asked to list members of categories consisting of natural kinds and 

artifacts. Barr and Caplan then asked another group of participants to rate on a 1…7 scale 

the degree to which each of the category members collected from the pilot study had 

intrinsic or extrinsic properties. The results showed that artifacts (such as toys, tools, 

weapons, vehicles, sports, and furniture) were more defined by extrinsic features whereas 

natural kinds (such as trees, fruit, mammals, birds, and flowers) were more defined by 

intrinsic features. Barr and Caplan (1987) also reported partial membership scores, which 
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were responses not falling on either endpoint of the membership scale. That is, on their 

scale, any response from 2 to 6 was scored as partial membership. They found that higher 

proportion of participants provided partial membership judgments about the members of 

extrinsic categories, and concluded that extrinsic concepts show more graded 

membership than intrinsic concepts. 

Isolated vs. Interrelated Concepts. Goldstone (1996) and his colleagues (e.g., 

Goldstone, Steyvers, & Rogosky, 2003) explored a number of metrics for measuring the 

degree to which a concept is isolated (i.e., featural) or highly interrelated with other 

concepts (i.e., relational). Goldstone (1996) argued that relatively interrelated concepts 

can be identified by the minimul use of nondiagnostic features and more by a caricature 

than a prototype. In the first experiment, the stimuli were 3 x 3 grid line segments 

consisting of horizontal, vertical, and diagonal lines. Participants in the isolated condition 

were instructed to create an image of the two concepts to be learned. Participants in the 

interrelated condition were instructed to seek out stimulus features that served to 

distinguish the concepts. He found that nondiagnostic line segments did not have much 

influence on categorization accuracy in the interrelated condition relative to diagnostic 

lines. In contrast, nondiagnostic line segments had a greater influence in the isolated 

condition.  

Another experiment presented participants with four categories, each consisting of 

seven vertical bars (resembling a histogram). Each category included a prototype and a 

caricature. The prototype was defined as the exemplar that presented average values 

along the dimensions that comprise the category’s members, whereas a caricature was 

defined as an extreme exemplar, specifically, an exemplar that presented values that 
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departed from the central tendency of the category in the opposite direction of the central 

tendency of other, simultaneously acquired categories (Goldstone, et al., 2003). Given 

that accuracy rates were above 90%, the main interest was response time. Categorizing 

caricatures was generally faster than categorizing prototypes. This speed advantage was 

particularly pronounced when participants was instructed to discriminate features. 

Participants in the interrelated condition whose task was to seek out stimulus features that 

served to distinguish the concepts showed faster performance when categorizing 

caricatures than prototypes. By contrast, participants in the isolated condition whose task 

was to create an image of the two concepts to be learned did not show the caricature 

advantage. Together, these findings suggest that isolated (i.e., featural) categories may be 

better characterized by prototypes than by ideals or caricatures, whereas interrelated (i.e., 

relational) categories may be better characterized by ideals or caricatures than by 

prototypes (see also Kittur et al., 2006b). 

Natural Kinds vs. Nominal Kinds. Kloos and Sloutsky (2004) made a distinction 

between natural kind concepts, which have dense correlational structures and nominal 

kind concepts, which are based on sparse rule-like structures. They investigated how 

people learn natural and nominal categories using artificial stimuli. Members of natural 

categories had a set of correlated features in common, whereas members of nominal 

categories had a single relation in common. Participants were asked to learn a category 

by observation with many instances of the category or by a rule-like definition such as 

category members have relation X. The results showed that observation is a better way to 

learn natural categories, whereas discovering an explicit rule is a better way to learn 

nominal categories. Their findings suggest that a difference in representational density 
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needs different category learning regimes: Dense concepts are learned better in a more 

implicit (observation-based) way, whereas sparse ones are learned better in a more 

explicit (rule-based) way. This distinction also suggests that entity and relational 

categories rely, not only on different kinds of mental representations, but also on different 

kinds of learning algorithms.   

 Role-governed categories. Markman and his colleagues (Markman & Stilwell, 

2001; Goldwater, Markman & Stilwell, 2011) have argued that, unlike featural categories 

in which labels refer to categories defined by their members’ features, role-governed 

categories are defined by items that play particular roles in a more global relational 

structure. Examples include categories such as doctor, advisor, private (the military rank), 

and so on. Those examples are certainly composed of features in some way, but rather it 

is the relational information that separates role-governed from feature-based categories, 

not specific features. Goldwater et al. (2011) provided empirical evidence to support the 

existence of role-governed categories. They showed that our knowledge of role-governed 

categories, in contrast to feature-based categories, is largely about properties extrinsic to 

category members. They also showed that, when asked to choose words to describe 

feature-based categories, people tend to choose words describing typical category 

characteristics; but when asked to choose words describing role-governed categories, 

people tend to choose words describing ideal characteristics (see also Goldstone, 1996; 

Kittur, et al., 2006b).  

In addition, Goldwater and Markman (2011) examined factors that increase 

people’s sensitivity to role-governed categories. In a novel-word extension study, a triad 

consisted of one target category, a role-governed alternate and a thematic alternate (e.g., 



7 

 

“bird’s nest” for a target word, “house” for a role-governed alternate, and “tree” for a 

thematic alternate). On each trial, participants were given either a label or a description 

for the exemplars. In the label condition, the query was, for example, “The target is a 

goppin. Which of these other two is better called goppin?” In the description condition, 

the query would be “It’s a goppin target. Which of these other two is better called 

goppin?”. The results showed that participants in the label condition chose role matches 

more frequently than participants in the description condition. Goldwater and Markman 

interpreted this result to indicate that labels induce analogical comparison (Gentner, 

2003; Namy & Gentner, 2002; Yamauchi, 2009), which aligns elements on the basis of 

common relational roles.  

In their next study, half of the participants were provided a similarity rating task 

followed by a categorization task, and the other half were provided an imageability rating 

task followed by a categorization task. For the similarity rating task, the target and one of 

the alternates were presented (the role-matched alternate or the thematic matched one). 

The query was, “How similar are the target and alternative 1? How similar are the target 

and alternative 2?” Similarly, for the imageability task, the target and one of two 

alternates (role-match or thematic-match) were presented and the participant was asked, 

“Which is easier to picture in your head: the target or one alternative 1? “Which is easier 

to picture in your head: the target or one alternative 2?” The categorization task then was 

provided to all participants. The query was “which of these two better go with target to 

make a category?” The results showed that participants in the similarity condition chose 

more often the role-matched alternative than participants in the imageability condition, 

which does not require a comparison of the elements of the mental representation of the 
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concepts. Taken together, these findings suggest that similarity comparisons as well as 

labels create a general sensitivity to role-governed categories that persist beyond the 

specific items on which the judgments were made.  

 Ad-hoc Categories. Barsalou's (1983, 1985) ad-hoc categories are categories 

constructed spontaneously to achieve a goal, such as "things to take out of the house 

during a fire". The members of this category, which include things such as cash, pets, 

family photos, laptops, and so forth, typically lack any intrinsic (i.e., featural) similarity. 

The only “feature” the members of this category have in common is that they are all 

things to take out of the house in case of fire. In contrast to the members of feature-based 

categories, which have a graded structure around a central tendency (i.e., the prototype), 

ad-hoc categories show a graded structure around an ideal (properties that optimally 

promote goal resolution) as in the example of foods with no calories for “things to eat on 

a diet”. The centrality of a specific goal suggests that relational category representations 

may have a relatively sparse, rule-like nature (e.g., see also Kittur et al., 2004; Kittur et 

al., 2006b; Kloos & Sloutsky, 2004). 

Abstract Coherent Categories. Rehder and Ross (2001) proposed that a kind of 

relational category they called abstract coherent categories can be acquired on the basis 

of relationships that are independent of the specific attributes of exemplars, as long as the 

relationships are maintained in a way consistent with prior expectations. In their study, 

three exemplars of the abstract coherent category “morkels” were presented: one morkel 

“operates on the surface of water, works to absorb spilled oil, coated with spongy 

material,” while another “operates on land, works to gather harmful solids, has a shovel”. 

The members of this category lack featural overlap but take their structure from systems 
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of features that support a common abstract relation (i.e., that a morkel’s features work 

sensibly together to satisfy a goal). They argued that the human conceptual system is 

closely related to abstract coherent concepts.  

Thematic Relations. Thematic relations can be also seen as yet another kind of 

relational category. A thematic relation is generally defined as any temporal, spatial, 

causal or functional relation between things that perform complementary roles in the 

same scenario (Estes, Golonka & Jones, 2011, Golonka & Estes, 2009; Lin & Murphy, 

2001; Wisniewski & Bassok, 1999). Examples of thematic relations include the relation 

between cows and milk and the relation between bagels and cream cheese. Thematic 

relations are external in that they occur between multiple objects, concepts, people or 

events and complementary in the sense that the arguments of a thematic relation fill 

complementary roles of the relation (e.g., cows are producers and their milk is the 

products; Estes et al., 2011). In this way, the arguments of a thematic relation differ from 

members of an ad-hoc category: There is no sense in which the members of an ad-hoc 

category are bound to complementary roles. The sense in which thematic relations form 

(typically very small) categories is that the arguments of a thematic relation can be 

viewed as the “members” of the category. 

1.2. What are relations? 

In spite of the diversity of these different kinds of concepts, they all share the 

property that they are defined, not by the literal features of their exemplars, but by 

relations, either between the features of an individual exemplar or between the exemplar 
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and other objects (including the person doing the categorizing). In this context, it is 

important to say what a relation is. 

Formally, a relation is a subset of the Cartesian product of two or more 

(potentially) infinite sets. Consider the set of integers and imagine an infinite table, with 

both columns and rows labeled with the integers, 0…0 (the table extends forever to the 

right and to the bottom). In the cells of the matrix, insert a value of 1 (i.e., true) if the 

integer in the corresponding row is larger than the integer in the corresponding column 

and insert the value 0 (i.e., false) otherwise. The result is an infinitely large table with 1s 

below the main diagonal and 0s everywhere else; this table is the mathematical definition 

of the relation larger-than (row, column). 

Intuitively, a relation (or, more precisely, a relational role) is a property of an 

object (e.g., an integer) whose truth value is impossible to establish without reference to 

at least one other object: The number 42 cannot simply be larger or smaller; it can only 

be larger or smaller than some other number. (Note that this fact is manifest in the 

mathematical definition of a relation.) Similarly, in the statement “John gave the book to 

Mary”, John is not simply a giver; he is the giver of a book to Mary. 

From this formal perspective, almost every concept satisfies the definition of a 

relation. For example, even the response of a ganglion cell in the retina express a relation 

between the amount of light on one spot on the retina and the amount of light on an 

adjacent spot. This fact has given rise to some confusion in the literature about what 

constitutes a “relational representation” (see, e.g., Hummel, 2010, for a discussion).  

From a psychological perspective—and for the purposes of this Dissertation—a 

representation is relational if and only if it makes the relation in question explicit, that is, 
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if some element of the representation corresponds specifically to the relation, 

independently of whatever arguments it happens to be taking at the time (see Fodor & 

Pylyshyn, 1998; Doumas, et al., 2008). According to this definition, the expression “loves 

(John, Mary)” is explicitly relational because it represents the relation loves 

independently of its arguments (e.g., as evidenced by our ability to evaluate what loves 

(John, Mary) has in common with, and differs from, loves (Mary, John) or loves (Bill, 

Susan)). The ganglion cell, by contrast, is not explicitly relational because a different cell 

is required for every different possible contrast on the retina; that is, the “relation” 

represented by a ganglion cell (i.e., a local contrast value) is not independent of its 

arguments (the photoreceptors representing the luminance values giving rise to that 

contrast).  

In turn, the requirement that relations be represented independently of their 

arguments implies that there must be some basis for specifying dynamically (i.e., on the 

fly) which arguments any given relation happens to be taking at any given time. In the 

case of propositional notation, this “binding tag” is list position within the parentheses 

(e.g., in loves (John, Mary), the binding of John to lover is specified by his first position 

in the parentheses). From a psychological perspective, what is important is that this kind 

of dynamic binding (whatever the “tag” happens to be at, say, a neural level) requires 

attention and consumes finite working memory resources. As elaborated shortly, the 

resulting demands on attention and working memory are among the major hallmarks of 

explicitly relational (a.k.a., symbolic) processing in the literature.  
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1.3. A learning algorithm for relational concepts 

Given the many kinds of relational categories, an important question is how such 

concepts are acquired: How do we come to know what a barrier is, or what larger-than 

means? This question is complicated by the fact that, by adulthood at least, many of our 

relational concepts are independent of (i.e., invariant with) their arguments (Doumas et 

al., 2008; Hummel & Holyoak, 1997, 2003): We understand that larger-than means the 

same thing in the statement “Jupiter is larger than Saturn” as in the statement “The 

nucleus of an atom is larger than the electrons”, even though Jupiter and Saturn are very 

different than atomic nuclei and electrons.  

This kind of argument-invariance poses a difficulty for learning because, although 

we eventually come to understand relations as distinct from their arguments, we never 

actually get to experience relations disembodied from their arguments: No one has ever 

seen an instance of larger-than without some specific thing that was larger than some 

specific other thing. The argument-invariance of relational concepts poses a problem for 

learning because it implies that associative learning is formally too weak to explain the 

acquisition of relational concepts (Chomsky, 1959; see also Doumas et al., 2008; 

Hummel, 2010; Hummel & Holyoak, 1997, 2003; Kittur, Hummel & Holyoak, 2004), a 

fact that may help to explain why so few species are capable of learning relational 

concepts.  

The reason, in brief, is that associative learning is tied to the co-occurrence 

statistics of the features of the concepts so acquired. If, in a category learning experiment 

using artificial “bugs” as stimuli, a given head type, H, occurs 75% of the time with a 

given category label, C, then it is possible to learn associatively that H predicts C. 
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Relations, by contrast, cannot be predicted based strictly on co-occurrence. We know, for 

example, that a neon atom is larger than an electron even if we have never explicitly 

considered this comparison before. What is worse is that any co-occurrence statistics a 

person has had the opportunity to observe may contradict whatever relation(s) in which 

an object currently stands: A neon atom is smaller than everything else with which the 

average person ever has any experience, so according to co-occurrence statistics alone it 

is impossible to even imagine its being larger than anything.  

In response to the inadequacy of associative learning to explain the acquisition of 

relational concepts, some researchers have proposed that relational concepts, including 

both full-blown schemas (e.g., Gick & Holyoak, 1983; Hummel & Holyoak, 2003) and 

individual relations, such as larger-than (e.g., Doumas et al., 2008), are learned by a 

process of structured intersection discovery. The basic idea is that two situations—e.g., 

two love triangles, in the case of a love triangle schema (see Hummel & Holyoak, 2003), 

or two instances of one thing being larger than another, in the case of the larger-than 

relation (see Doumas, et al., 2008)—are structurally aligned (Gentner, 1983), making the 

correspondences between their parts explicit. For example, in the case of the love triangle 

schema, the learner may observe two instances of a love triangle (e.g., John loves Mary, 

but Mary loves Bill, so John is jealous of Bill, and Jill loves Mike, but Mike loves Betty, 

so Jill is jealous of Betty), notice the analogy between them (mapping John to Jill, Mary 

to Mike and Bill to Betty) and induce a schema by discovering the intersection of the two 

examples, that is, retaining the things they have in common and discarding the details on 

which they differ (in this case, person1 loves person2, person2 loves person3, so person1 

is jealous of person3). Learning by intersection discovery is formally more powerful than 
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simple associative learning because it relies on the machinery of structural alignment, i.e., 

analogy (see Doumas, et al., 2008; Gentner, 1983; Hummel & Holyoak, 2003), making it 

sensitive to the abstract (including higher-order) relational structure of the concepts being 

compared. 

In contrast to relational concepts, which are too complex to learn as simple 

associations (because of the argument invariance property), featural concepts (i.e., 

concepts defined by their exemplars’ features, rather than by relations) can be learned 

associatively. For example, if members of category X tend to have features A1, B1 and 

C1, whereas members of category Y tend to have features A2, B2 and C2, then it is 

possible to discriminate Xs from Ys simply by learning associative links (e.g., weighted 

connections in a connectionist network, or associative links as learned by the Rescorla-

Wagner [1973] model) from A1, B1 and C1 to X and from A2, B2 and C2 to Y. That is, 

there is good reason to believe that relational and featural concepts require very different 

learning algorithms: Intersection discovery (or some other algorithm that exploits the 

machinery of structure mapping) in the case of relational concepts vs. simple association 

in the case of featural concepts (Hummel, 2010; Hummel & Holyoak, 2003). 

To the extent that different learning algorithms underlie the learning of relational 

and featural concepts, then conclusions drawn from experiments using one kind of 

category may not necessarily apply to the other kind. One of the most robust and 

replicable conclusions from the literature on category learning from the 1970s to the 

present (e.g., Kruschke, 1992; Kruschke & Johansen, 1999; Markman & Maddox, 2003; 

Minda & Smith, 2011; Rosch & Mervis, 1975; Shiffrin & Styvers, 1997; Smith & Medin, 

1981) is that people easily learn categories with a family resemblance, i.e., probabilistic 
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structure. In a category with a family resemblance structure, there is no single feature 

shared by all members of the category. Rather, features tend to occur probabilistically, 

and “good” members of the category (i.e., members closer to the prototype) tend to have 

more features in common with other members of the category than “bad” members. The 

observation that people easily learn categories with a family resemblance structure leads 

naturally to the conclusion that our natural concepts also have a family resemblance 

structure, as famously suggested by Wittgenstein (1953).  

However, as observed by Kittur and colleagues (Kittur, Holyoak, & Hummel, 

2006b; Kittur, Hummel, & Holyoak, 2004), one limitation of this conclusion is that all 

the experiments demonstrating our ability to learn probabilistic category structures have 

been performed using feature-based categories. If feature-based categories are learned 

associatively, then they should be easily learnable even if they have a probabilistic 

structure (provided the features are sufficiently predictive of category membership). But 

if relational categories defy learning by association—and in particular, if they are learned 

by a process akin to structured intersection discovery—then they should not be learnable 

when they have a family resemblance structure: If there is no relation that all members of 

a relational category have in common, then the intersection of the category’s exemplars 

will be the empty set. That is, the intersection-discovery theory of relational learning 

predicts that probabilistic relational categories ought to be (virtually) unlearnable. 

1.4. Kittur, Hummel and Holyoak (2004) 

Kittur et al. (2004) set out to explicitly test the prediction that probabilistic 

relational categories ought to be difficult to learn. Each exemplar in their experiments 
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consisted of an octagon and a square. In the relational condition of this experiment, the 

prototypes of A and B were defined by the relations between the octagon and the square. 

In the prototype of category A, the octagon was larger than the square (‘1’), darker than 

the square (‘1’), above the square (‘1’) and in front of the square (‘1’). In the prototype of 

B, it was smaller than the square (‘0’), lighter than the square (‘0’) below the square (‘0’) 

and behind the square (‘0’). The precise size and darkness (i.e., features) of the octagon 

and square did not matter for category membership and were allowed to vary across 

exemplars within a category. In the featural condition of this experiment, A and B were 

defined by the precise size and darkness of the octagon and square.  

Orthogonally crossed with the relational vs. featural conditions, half the 

participants learned family resemblance (a.k.a., probabilistic) category structures and the 

other half learned deterministic category structures. In the family resemblance condition, 

exemplars were constructed from the prototypes by switching one relation or feature in 

the prototype to its value in the opposite prototype, as in the example above. (For 

example, if the prototype of category is denoted [1,1,1,1] and the prototype of B is 

[0,0,0,0], then the four exemplars of A would be [0,1,1,1], [1,0,1,1], [1,1,0,1] and 

[1,1,1,0]. Note that, although any given exemplar contains ¾ of the corresponding 

prototype’s features/relations, no exemplar contains all of the prototype’s 

features/relations, and no feature/relation appears in all the prototypes of a category. It is 

in this sense that the category has a “family resemblance” or “probabilistic” structure.) 

The deterministic condition was constructed from the probabilistic condition simply by 

discarding one exemplar (counterbalanced) from each category, so that one feature or 

relation was perfectly (i.e., deterministically) predictive of category membership. For 
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example, discarding the first exemplar of each category leaves exemplars [1,0,1,1], 

[1,1,0,1] and [1,1,1,0] for A and [0,1,0,0], [0,0,1,0] and [0,0,0,1] for B, so that the first 

relation (or feature) is deterministically ‘1’ across all members of A and ‘0’ across  

all members of B. 

Kittur et al. (2004) found that although the feature-based categories were easy for 

participants to learn whether they were deterministic or probabilistic, and although 

relational categories were easy to learn as long as they were deterministic, relational 

categories were extremely difficult to learn when they were probabilistic. Indeed, half 

their participants never learned the probabilistic relational categories, even after 600 

exposures to the exemplars.  

Their findings support the hypothesis that people learn relational concepts by a 

process of intersection discovery (Hummel & Holyoak, 2003), in which they compare 

examples of relational concepts to one another, retaining what the examples have in 

common and discarding or discounting the details on which they differ. In the case of a 

probabilistic category structure, the intersection is the empty set, rendering the category 

unlearnable. Thus, although Hummel and Holyoak (2003) and Doumas, et al. (2008) 

showed that intersection discovery is capable of learning complex, relational concepts, it 

fails catastrophically when those concepts have a probabilistic structure. This finding has 

since been replicated by Kittur et al. (2006b) and Jung and Hummel (2009a, 2009b, 

2011).  
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1.5. Jung and Hummel (2009a, 2009b): Rendering probabilistic 

relational categories learnable 

Jung and Hummel (2009a) sought to further test the intersection discovery 

account of relational learning by examining the conditions under which probabilistic 

relational categories could be made learnable. Murphy and Allopenna (1994) and Rehder 

and Ross (2001) showed that category structures that map onto learner’s existing schemas 

are easier to acquire than those that do not. Accordingly, Jung and Hummel reasoned that, 

faced with the task of learning probabilistic relational categories, anything that 

encourages the learner to discover a higher-order relation that remains invariant over 

members of a category—effectively rendering the category deterministic—ought to 

substantially facilitate learning. 

Jung and Hummel (2009a) used a category structure isomorphic to that of Kittur 

et al. (2004), except that instead of octagons and squares, they used circles and squares. 

In all conditions of their first experiment, participants were trained on the (unlearnable) 

probabilistic relational category structure used by Kittur et al. (2004). In one condition, 

participants were instructed to categorize the stimuli as members of A or B (just as in 

Kittur et al.). In another condition, participants were instructed, not to categorize the 

stimuli, but to press the A key “if the circle was winning” in a given stimulus or the B 

key “if the square was winning”. Participants were not told what “winning” meant; rather, 

they were told that they would figure it out as they went along. Crucially, any stimulus 

that a participant in the categorize condition would correctly categorize as an A was a 

stimulus for which a participant in the “who’s winning” condition would correctly say 

“the circle is winning”; and any stimulus correctly categorized as a B was one in which 
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“the square was winning”. That is, the “categorize” and “who’s winning” tasks were fully 

isomorphic, differing only in the instructions participants received at the beginning of the 

experiment, and thus in the task participants believed themselves to be performing. 

The result was that participants in the categorize condition, just like Kittur et al.’s 

participants, had tremendous difficulty learning the category structures, with fewer than 

half of them ever learning to criterion. By contrast, participants in the “who’s winning” 

condition learned much faster, with all of them reaching criterion well before the end of 

the experiment. That is, the “who’s winning” task rendered the otherwise unlearnable 

probabilistic relational category structure learnable.  

A series of follow-up experiments (Jung & Hummel, 2009b) systematically 

investigated the reasons for and nature of this effect, and the short story is that the “who’s 

winning” task seems to engage people’s knowledge of winning/losing relations, thereby 

making them tolerant of the probabilistic structure of the categories. People know that for 

a team to win it is not necessary for that team to get all the points; it is only necessary for 

them to get more points than the other team. Switching the task from “categorize” to 

“who’s winning?” thus seems to have allowed participants in the “who’s winning” 

condition to discover a higher-order property (namely, something like “has more points”) 

that does indeed remain invariant over all members of a category: In every member of 

category A, the circle “has more points” than the square, and in every member of B, the 

square “has more points” than the circle. These data are thus consistent with the idea that 

relational learning (via intersection discovery) requires some kind of invariant (in this 

case, “has more points”) in order to succeed. 
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How does the who’s winning task help intersection discovery in the probabilistic 

relational category learning situation? Jung and Hummel (2009b) hypothesized two 

possibilities: the comparison hypothesis and the winning schema itself hypothesis. The 

first hypothesis was that the who’s winning task facilitates learning simply by 

encouraging participants to compare the circle and square in some manner that the 

category learning task does not. For example, perhaps participants in the who’s winning 

condition represented the circle and square as separate objects and doing so facilitated 

learning by encouraging them to compare them to one another. On this account, any task 

that encourages participants to represent the circle and square as separate objects engaged 

in a relation (like winning/losing) ought to facilitate learning. For example, asking 

participants “who’s daxier?” should encourage the same kind of comparison as “who’s 

winning?” and result in a comparable improvement over “to which category does this 

example belong?”.  

Their second hypothesis was that a schema for what “winning” consists of may 

facilitate learning by encouraging participants to count the number of “winning” roles 

(i.e., “points”) bound to the circle and the square and to declare whichever part has more 

winning roles the winner. On this account, the effect of “who’s winning” reflects the 

operation of the “winning” schema, per se, rather than simply the effect of comparisons 

encouraged by instructions that suggest the circle and square are separate objects.  

Where these hypotheses make divergent predictions is in the potential role of 

consistent vs. mixed role assignment in the effect. In Jung and Hummel’s (2009a) 

experiment, the assignment of relational roles to categories was consistent, in the sense 

that all the roles named in the instructions were assigned to the circle in category A (with 
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the unnamed roles assigned to the square) and all the roles not named in the instructions 

were assigned to the circle in category B (with the named roles assigned to the square). 

That is, given category A, all the relational roles named in the experimental 

instructions— specifically, darker, larger, above, and in front—correspond to the circle, 

and all the unnamed roles (smaller, lighter, below, and behind) correspond to the square. 

In category B, the opposite role-bindings hold.  

Perhaps naming darker, larger, above and in front somehow marks them as the 

“winning” roles, leaving lighter, smaller, below and behind to be the “losing” roles. If so, 

then to the extent that the effect is due to the involvement of the “winning” schema, per 

se, then having the roles consistent with categories (i.e., such that the “winning” shape is 

the one with the most named [i.e., “winning”] roles) ought to lead to faster learning than 

having the roles mixed across the “winning” and “losing” shapes (e.g., such that the 

“winning” shape that the one that has 3/4 of larger and in front [named, “winning” roles] 

and lighter and below [unnamed, “losing” roles]). By contrast, to the extent that the effect 

of “who’s winning” simply reflects the role of comparison, then consistent vs. mixed role 

assignment should make little difference to the rate of learning. A third possibility, of 

course, is that both hypotheses are correct, in which case we would expect to see 

facilitatory effects of both comparison (i.e., “who’s daxier?” vs. “what category?”) and, 

in the case of “who’s winning?” role assignment.  

The results were consistent with both the hypothesized explanations of the effect 

of “who’s winning” in Jung and Hummel (2009b). Participants in the who’s daxier 

condition took reliably fewer trials to reach criterion than those in the categorize 

condition, but those in the who’s winning condition took reliably fewer still. There was 
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also a reliable difference of role assignment in the only who’s winning condition: As 

expected, participants in the consistent conditions reached criterion faster than those in 

the mixed conditions.  

The fact that who’s daxier resulted in faster learning than categorize in both the 

consistent and mixed conditions is consistent with the hypothesis that who’s winning (like 

who’s daxier) encourages participants to compare the circle and square in a way that 

categorization does not. This hypothesis is further supported by the fact that participants 

in the mixed winning condition performed similarly to those in the daxier condition and 

better than those in the categorize condition. At the same time, the fact that participants 

in the consistent winning condition learned faster than those in either the mixed winning 

or daxier conditions is consistent with a winning-schema-specific effect. Together, Jung 

and Hummel (2009b)’s results suggest that an effective way to help people learn 

relational categories with a probabilistic structure is to recast the learning task in a form 

that encourages them to discover a higher-order relation that remains invariant over 

members of a category.  

However, there are still at least two additional differences between who’s winning 

and who’s daxier that could account for the superior performance in the former condition: 

First, the difference between the question “who’s winning?” is simply more meaningful 

than “who’s daxier?”—a difference that could somehow have led to better performance 

in who’s winning. Second, the two roles of the winning/losing relation have opposite 

valence. Perhaps it is something about relational roles with opposite valence, rather than 

winning per se, that encourages participants to invoke a schema that facilitates the 

discovery of an invariant higher-order relation with our stimuli. 
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In order to clarify the additional residual questions, the tasks “which one would 

Britney Spears like?” and “which one comes from Nebraska?” were added in addition to 

the previous tasks. The former task was assumed to encourage participants to think of the 

circle and square as separate objects, like who’s winning and who’s daxier. And like 

who’s winning, but unlike who’s daxier, its roles have opposite valence (presumably it is 

“good” to be liked by Britney and bad not to be liked by her) and it has meaning. The 

latter task shares the comparative property of winning, daxier and Britney and it has 

semantic content, like winning and Britney, but presumably lacks strong differences in 

valence across its roles (i.e., it is presumably neither particularly good nor particularly 

bad to be from Nebraska).  

When Jung and Hummel (2009b) crossed the five learning conditions 

orthogonally with consistent vs. mixed role assignment, they found that which one would 

Britney Spears like is equivalent to who’s winning, and Nebraska is equivalent to daxier. 

That is, like the winning and Britney, the learning conditions separating circle from 

square, having roles with opposite valence, and having semantic content may be more 

likely to guarantee discovering a higher-order invariant and thus facilitate learning. 

Missing of any of these elements, however, seems to have a detrimental influence on 

category learning with a probabilistic structure. 

In conclusion, Jung and Hummel (2009a, 2009b)’s findings are consistent with 

the hypothesis that learning relational categories is greatly facilitated by the discovery of 

an abstract invariant that holds true across all members of a category. As such, the data 

support the idea that relational category learning may entail a process of schema 

induction by intersection discovery in the mind of the learner.  
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1.6. Overview of experimental approach 

 While Jung and Hummel’s (2009a, b) findings replicated and extended the 

findings of Kittur et al., providing additional evidence that relational categories are 

learned by a process of schema induction, and that this algorithm makes it very difficult 

for people to learn relational categories with a probabilistic structure, we still know very 

little about the mechanism underlying relational category learning. My motivation in the 

current experiments was to improve our understanding of relational category learning by 

conducting further tests of the intersection discovery hypothesis and by examining other 

factors (such as the presence of a dual task during learning) that may affect relational 

concept acquisition. 

 The experiments described in Chapter 2 explored factors that might plausibly 

make probabilistic relational categories learnable and provided another test of the schema 

induction hypothesis. The experiments described in Chapter 3 relation-based categories 

by contrasting feature- and relation-based category learning using a dual-task paradigm. 

Finally, Chapter 4 and 5 provides general discussion, and conclusion.  
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CHAPTER 2:  

EXPERIMENT 1—TESTING THE INTERMEDIATE ENCODING 

HYPOTHESIS 

In both the Kittur et al. and Jung and Hummel studies, about half the participants 

in the categorize conditions never learned to criterion. But this result implies that about 

half eventually did learn to criterion (albeit much more slowly than the participants in the 

“who’s winning?” condition). On the strictest interpretation of the intersection discovery 

hypothesis, this ought to be impossible (i.e., the intersection is always the empty set, so 

the categories should never be learnable by anyone). This result raises the question: How 

do those participants who learn the categories manage to do so? My motivation in the 

first experiment was to test the hypothesis that those participants who do eventually learn 

to criterion manage to do so by learning subordinate-level sub-categories (within which 

one or two relations do remain invariant), and then learning to classify those sub-

categories with a common label (as elaborated shortly).  

As noted previously, according to the intersection discovery hypothesis, the 

reason probabilistic relational categories are difficult to learn is that intersection 

discovery is invoked with relational concepts (as opposed to simple associative learning, 

which is invoked by featural concepts). The intersection discovery process leads to a 

more general representation of a set of exemplars (e.g., a schema) by deemphasizing (or 

removing entirely) features or relations that are unique to one exemplar or another (Gick 

& Holyoak, 1983; Hummel & Holyoak, 2003; Kittur et al, 2004, 2006b).  

Intersection discovery is useful because it acts to reveal relational generalities 

that might otherwise remain implicit in the mental representation of the individual 
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exemplars (Doumas et al., 2008). However, it fails catastrophically with probabilistic 

categories, in which the intersection is the empty set. In the first experiment, I tested 

whether the comparison process underlying intersection discovery (i.e., structural 

alignment, aka, analogical mapping; see Gick & Holyoak, 1983) can be manipulated to 

enhance discovering an invariant relation so that the empty set problem can be avoided.  

The empty set problem emerges with probabilistic categories when every 

exemplar of a category is compared (directly or indirectly) with every other exemplar. In 

the first experiment, I manipulated stimulus presentation so that each exemplar has a 

specific counterpart for comparison. For example, exemplar [0, 1, 1, 1] was always paired 

with exemplar [1, 0, 1, 1] and exemplar [1, 1, 0, 1] was always paired with exemplar [1, 1, 

1, 0]. Such consistent pairings would give participants the opportunity to learn at least 

two invariant relations between each pair of exemplars. For example, comparing [0, 1, 1, 

1] with [1, 0, 1, 1] leaves the third and fourth relations invariant. Accordingly, I 

hypothesized that the process of selective comparison should prevent the empty set 

problem by encouraging participants to learn subcategories of the nominal categories.  

An additional purpose of the current experiment was to replicate the basic 

difficulty-of-probabilistic-relational-category learning effect with new stimulus materials. 

Kittur et al. (2004, 2006b) used stimuli composed of octagons and squares, and Jung and 

Hummel (2009a, b) used stimuli composed of circles and squares. The current 

experiment used fictional “bugs” as stimuli (Figure 1). The prototype of the category 

“Fea” [1, 1, 1, 1] had a head wider and darker than its body (relations r1 and r2; the first 

two 1’s in the vector), antennae longer than its head (r3) and wings longer than its body 

(r4). The prototypical Dav [0, 0, 0, 0] had the opposite relations, with its body wider and 
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darker than its head (r1 and r2), antennae shorter than its head (r3) and wings shorter 

than its body (r4).  

In the probabilistic condition, any exemplar of A or B shared three relations with 

its own prototype and one with the prototype of the opposite category. In other words, the 

formal probabilistic category structures used were isomorphic with those used by Kittur 

et al (2004, 2006b) and Jung and Hummel (2009a, b).  

      Participants were assigned to one of three learning conditions: The 

subordinate-level condition, the intermediate encoding condition, and the basic baseline 

condition. In the subordinate-level condition, on each trial participants were presented 

with two stimuli simultaneously. The first task was to classify the two different species at 

the basic-level: Fea or Dav. The second task was to reclassify the same two species at the 

subordinate level: Kei Fea or Cim Fea (Figure 2). For example, paired exemplars [0, 1, 1, 

1] and [1, 0, 1, 1] corresponded to “Kei Fea”, and paired exemplars [1, 1, 0, 1] and [1, 1, 

1, 0] corresponded to “Cim Fea”. In the intermediate encoding condition, participants 

saw the same pairs as those in the subordinate-level condition but did not classify them at 

the subordinate level (Figure 3). In the basis baseline condition, participants saw only 

one exemplar at a time and classified it at the basic level (Figure 4).  

The key to encoding at the subordinate-level is that the comparison is designed 

to help participants to discover the relations shared by the mapped exemplars ([− ,− , 1, 1] 

for Cim Fea and [1, 1, −, −] for Kai Fea, and [−, −, 0, 0] for Sko Dav and [0, 0, −, −] for 

Lif Dav). That is, even though, as a whole, the basic level category Fea has no invariant 

relations, its subcategories, Cim and Kai, do. If participants can learn the subcategories 

(i.e., by virtue of the invariants they contain), then perhaps this learning can help to 
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bootstrap their learning of the basic level (even though no invariants exist at that level). 

The intermediate encoding condition presents participants with exemplars in the same 

pairs as the subordinate-level condition but did not require them to label the exemplars at 

the subordinate level. This condition was included to test the role of mere exposure to 

exemplars that share invariants.  

In the basic baseline condition, each trial presented a single bug on the screen and 

the participant’s task was to classify it at the basic (Fea or Dav) level only. This condition 

served as the closest replication of the category learning conditions used by Kittur et al. 

(2004, 2006b) and Jung and Hummel (2009a, b), in which one single object was provided 

for the categorization task. 

Method 

Participants. A total of 44 participants participated in the study for course credit. 

Participants were randomly assigned to one of three conditions.  

Materials. Stimuli were line drawings of fictional bugs. The bugs varied in the size and 

darkness of their heads, the length, width and darkness of their bodies, and the length of 

their antennae. The prototype of category “Fea” was defined as [1, 1, 1, 1], and the 

prototype of “Dav” was defined as [0, 0, 0, 0], where the particular value on each 

dimension (1 or 0) defined the value of a relation. The prototype [1, 1, 1, 1] represented 

head larger than body, head darker than body, antennae longer than head, and wings 

longer than body, and [0, 0, 0, 0] represented head shorter than body, head lighter than 

body, antennae shorter than head, and wings shorter than body. Each category (species) 

consisted of one prototype (basic level species) and four exemplars. Subspecies of each 

species were made by grouping pairs of exemplars according to shared relations: Kei Fea 
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= [0, 1, 1, 1] and [1, 0, 1, 1,], and Cim Fea = [1, 1, 0, 1] and [1, 1, 1, 0]; Sko Dav = [1, 0, 

0, 0] and [0, 1, 0, 0], and Lif Dav = [0, 0, 1, 0], and [0, 0, 0, 1]. 8 trials per block were 

presented in the subordinate-level and intermediate encoding conditions, and 16 trials per 

block were presented in the basic baseline condition. Each exemplar was presented in a 

random order once per block.   

Design. The experiment used a 3 condition (subordinate-level vs. intermediate encoding 

vs. basic baseline) between-subjects design.          

Procedure. All conditions consisted of two or more blocks of training trials followed by 

two blocks of transfer trials. The training phase of the experiment differed across 

conditions, as described above. During this phase of the experiment, participants received 

accuracy feedback on each response made on each trial.  

            In the subordinate-level condition, each trial of the training phase simultaneously 

presented two exemplars. Participants identified two bug stimuli at the basic level by 

clicking on boxes under the two bugs. The response was followed by accuracy feedback. 

And then they re-identified the same species at the subordinate level. In the intermediate 

encoding condition, participants were given only the basic-level identification task. In the 

control condition, bugs were presented one at a time in the center of the screen, asking 

participants to identify one bug at the basic level.  

The transfer phase was the same across all conditions. All participants classified 

the bugs at the basic level only and they received no accuracy feedback. 16 trials were 

presented per block, with each exemplar presented in a random order once per block. 

Each exemplar remained on the screen until the participant responded. The training phase 

lasted for 40 blocks (320 trials for subordinate-level and intermediate encoding, and 640 
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trials for basic baseline) or until the participant responded correctly on at least fourteen of 

sixteen trials (87.5% correct) for two consecutive blocks across all conditions. At the end 

of the experiment participants were queried about strategies they used during the 

experiment. 

Predictions 

Consider the possible effects the comparison process may have on category 

learning at basic and subordinate levels. Labeling the exemplars at the subordinate level 

may lead participants to appreciate that, although there is no invariant at the basic level, 

exemplars at the same subordinate level do share invariants. As such, if these invariants 

can guide learning at the subordinate level, then perhaps participants’ mastery of the 

subordinate level categories can help to bootstrap their discovery of the basic level 

categories. To the extent that simple comparison of systematic pairs of exemplars—as 

participants will do in both the subordinate level and intermediate encoding conditions—

is sufficient for invariant discovery, then participants in both these conditions ought to 

learn faster and/or to a higher criterion than those in the basis baseline condition.  

Results 

Study phase: Accuracy. First, I report accuracy on the basic-level (Fea vs. Dav) in each 

condition. A 3 (subordinate-level vs. intermediate encoding vs. basic baseline) between-

subjects ANOVA revealed main effects of task [F (2, 41) = 5.103, MSE = 0.007, p < 

0.05] (Figure 5). As expected, subordinate-level learners (M = .70, SD = .10) were likely 

to perform more accurately than basic baseline learners [Tukey’s HSD, p < 0.05)]. 

Intermediate encoding learners (M = .71, SD = .07) were also likely to perform more 

accurately than basic baseline learners (M = .62, SD = .08) [Tukey’s HSD, p < 0.05)]. 
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Performance in the subordinate-level condition was almost identical to the performance 

in the intermediate encoding condition. (Tukey’s HSD, p = 0.99). Performance at the 

subordinate-level task (Kei Fea vs. Cim Fea) is reported only in the subordinate-level 

condition (M = .62, SD = .11). Performance at the subordinate-level task was exactly 

identical to in the basic baseline condition (t(27) = -0.089, p = 0.93), implying that 

identifying at the subordinate-level was not as helpful as identifying in the control 

condition.  

Study phase: Trials to criterion.  I also report the rate at which participants learned the 

categories in terms of trials to criterion. All participants in the subordinate-level and 

intermediate encoding conditions reached criterion, whereas only 50% of participants in 

the basic baseline condition reached criterion. A 3 (subordinate-level vs. intermediate 

encoding vs. basic baseline) between-subjects design ANOVA revealed a main effect of 

task [F (2, 41) = 78.511, MSE = 12482.691, p < 0.001]. Participants in the subordinate-

level condition (M = 102, SD = 64) took reliably fewer trials to reach criterion than those 

in the basic baseline condition (by Tukey’s HSD, p < 0.001). Participants also reached 

criterion in fewer trials in intermediate encoding condition (M = 82, SD = 52) than in the 

basic baseline condition (M = 537, SD = 173) (by Tukey’s HSD, p < 0.001) (Figure 6).  

Transfer phase: Accuracy. My primary interest was accuracy on the transfer phase. A 3 

(subordinate-level vs. intermediate encoding vs. basic baseline) between-subjects 

ANOVA revealed main effects of task [F (2, 41) = 9.298, MSE = 0.008, p < 0.001] 

(Figure 7). Participants in the intermediate encoding condition (M = .79, SD = .06) 

showed reliably more accurate performance than participants in the subordinate-level 

condition (M = 0.71, SD = 0.13) [Tukey’s HSD, p < 0.05)] as well as in the basic 
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baseline condition (M = 0.65, SD = 0.09) [Tukey’s HSD, p < 0.001)]. There was no 

reliable difference between subordinate-level and basic baseline (Tukey’s HSD, p = 

0.32).                             

I also analyzed differences between study and transfer phase to examine how 

much learners improved in each condition (Figure 8). For learners in the subordinate-

level condition, performance on the transfer trials (M = .71, SD = .13) was not reliably 

different from performance on the basic-level study trials (M = .70, SD = .10) [t(13) = 

0.194, p = 0.85), whereas performance at the subordinate-level (M = .62, SD = .11) was 

reliably different from performance on transfer [t(13) = 2.396, p < 0.05], suggesting that 

accuracy at the subordinate-level reliably decreased than accuracy at the basic-level 

(t(13) = -2.912, p < 0.05). For learners in the intermediate encoding condition, 

performance on the transfer trials (M = .79, SD = .06) reliably improved than mean 

performance on the study trials (M = .71, SD = .07) [t(14) = 4.91, p < 0.001). For learners 

in basic baseline, there was no reliable difference between the study (M = .62, SD = .08) 

and transfer trials (M = 0.65, SD = 0.09) [t(14) = 1.93, p = 0.074). Because only 50% of 

participants in basic baseline reached criterion, which means the rest of the participants 

were given the transfer trials under the circumstance they did not figure out the category 

learning rule, it seems that there was no reliable difference between the study and transfer 

trials.             

                                                Discussion 

Previous research reported that participants have great difficulty learning 

relational categories with probabilistic structures (Kittur et al., 2004, 2006b, Jung & 

Hummel, 2009a, b, 2011). The difficulty was interpreted in terms of participants’ 
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attempting to learn relational structures through a process of intersection discovery, 

which retains those features and relations exemplars have in common and discards those 

on which the exemplars differ (Doumas et al., 2008; Hummel & Holyoak, 2003). Such an 

approach to learning relational categories will work as long as there are one or more 

features or relations shared by category members. Experiment 1 examined under what 

condition the relations shared by category members can be retained. I took as a starting 

point the way in which an exemplar is compared with other exemplar. I hypothesized that 

if an exemplar of relational concepts has a counterpart to compare, one or two relations 

can remain invariant.  

The results of Experiment 1 showed that simple comparison of systematic pairs of 

exemplars was enough to improve participants’ ability to learn probabilistic relational 

categories. For participants in the intermediate encoding condition, the comparison task 

at the basic level helped them to abstract shared relations between the exemplars (11− − 

and − −11 for Fea, 00 − − and − − 00 for Dav).  

Performance in the subordinate-level condition was reliably less accurate than in 

the intermediate encoding condition, and there was no difference between the 

subordinate-level condition and basic baseline condition. The basic level performance in 

the subordinate-level condition was almost identical to the intermediate encoding 

condition, but there was a reliable difference between two conditions during transfer, 

suggesting that the subordinate classification task would hurt category learning in some 

way. A post-hoc analysis of participants’ end-of-experiment self-reports revealed that 

participants’ decisions were partially based on the commonality defined in terms of 

numerical values such as head width, wing length, etc., rather than relative values (such 
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as head wider than body). Participants seemed to speculate that the exemplars with the 

same numerical size, darkness, or length belong to the same subspecies. In making the 

stimuli, exemplars of each category were constructed by varying the metric properties 

size, darkness and length, respecting the categorical relations larger, darker, and longer. 

On this account randomly generated values for each exemplar might have been the same 

from time to time. For example, when heads with larger and darker relations across the 

exemplars define the Fea species, two exemplars may have the same head size (or head 

darkness) across the exemplars. That is, it seems that the query of the subspecies led 

participants to focus more on featural aspects, resulting in the impaired learning. Such 

tendency toward paying more attention to featural properties may have continued to 

influence transfer.  

Clearly important for my current purpose was the fact that, as predicted, 

comparing the exemplars in a systematic way improved the participants’ ability to 

discover invariants so that the empty set could be rendered as non-empty. However, it 

still remains unclear how the task at the subordinate-level would hurt performance during 

transfer. Perhaps the order of encoding—basic-level encoding was followed by 

subordinate-level encoding—could be a potential reason for learning decline in 

Experiment 1a. The following pilot study tested the speculation. 
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CHAPTER 3: PILOT STUDY 

Experiment 1a showed that subordinate-level encoding was no more effective 

during training, and less effective during transfer, than intermediate encoding. One 

possible explanation for this finding, which is broadly consistent with the logic of 

Experiment 1a, is that in that in the subordinate-level encoding condition of experiment, I 

had participants perform the basic-level classification before they performed the 

subordinate-level classification. But if subordinate-level classification is to serve as an 

aid to basic-level classification, then it is reasonable to expect that it ought to temporally 

precede that basic-level classification. Experiment 1b was designed to test this 

hypothesis: For example, suppose that participants learned Kei Fea is defined by the 

invariant (− −11), and Cim Fea is defined by the invariant (11− −). When participants 

judge a higher-level species, Fea or Dav, they could associate the invariant (− −11) with 

Fea or also the other invariant (11− −) with Fea. Such simple association would be able to 

make participants to learn probabilistic relational categories in a more simple way than 

the way the basic task is followed by the subordinate task.  

 The procedure of the pilot study was exactly identical to Experiment 1 except that 

participants were first given the subordinate-level classification task, and then the basic-

level classification task.  

Method 

Participants. 12 participants participated in the study for course credit. 

Materials and procedure. The same bug stimuli as Experiment 1 were used. In the pilot 

study, the subordinate labels did not include the basic names (i.e., Kei and Cim), unless 
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they would already tell the answer for the following basic level task (Figure 9). The 

procedure for the pilot study was opposite to the Experiment 1a. The subordinate-task 

was followed by the basic-task. 

Results 

The pilot study tested only the subordinate-level condition to roughly measure 

how much performance could improve when the task’s order was flipped. I compared 

performance in the pilot study with performance in the subordinate-level condition of 

Experiment 1a. 

Study phase: Accuracy. Performance at the subordinate-level (Kei vs. Cim) in the pilot 

study (M = .65, SD = .09) was not reliably different from the subordinate-level in 

Experiment 1a (M = .62, SD = .11) [t(24) = -0.832, p = 0.413]. There was reliable 

difference between the basic-level tasks in two experiments. Accuracy in the pilot study 

(M = .77, SD = .04) was reliably different from accuracy in Experiment 1a (M = .70, SD 

= .10) [t(24) = -2.134, p < 0.05] (Figure 10).                    

Trials to criterion. As in Experiment 1a, all participants in the pilot study reached 

criterion, and there was no difference between trials-to-criterion in the pilot study (M = 

94, SD = 78) and Experiment 1a (M = 102, SD = 64) [t(24) = 0.307, p = 0.761].   

Transfer phase: Accuracy. Transfer performance in the pilot study (M = .79, SD = .05) 

was marginally different from performance in Experiment 1a (M = .71, SD = .13) [t(24) = 

-1.935, p = 0.065). In the pilot study, performance on the transfer trials (M = .79, SD 

= .05) was not reliably different from performance on the basic-level study trials (M = .77, 

SD = .04) [t(11) = -0.116, p = 0.29), whereas performance at the subordinate-level study 
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trials (M = .62, SD = .11) was reliably different from performance on transfer [t(11) = -

6.375, p < 0.001]. 

Discussion 

The pilot study was designed to examine why the subordinate-level condition of 

Experiment 1a was less helpful than expected. I speculated that as the aid to basic-level 

classification, subordinate level classification should have preceded basic-level 

classification. In the pilot study, the task order was flipped: The basic task followed the 

subordinate task. When compared to the subordinate-level results in Experiment 1a, fairly 

reliable improvement was observed in the pilot study. The effects seem to benefit from 

associative learning: Associating each subordinate having two invariants with the basic. 

The process of associating is schematized in Figure 11. Relational learning, with 

invariants available, drives the subordinate task; then associative learning is all that is 

required to learn which subordinate-level categories belong together as members of the 

same basic-level category. 
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CHAPTER 4: 

EXPERIMENT 2—TESTING THE PROTOTYPE COMPARISON 

HYPOTHESIS 

In the next experiment, I tested two key manipulations to find another way to 

learn probabilistic relational categories. First, as a more direct way to circumvent the 

empty set problem, participants were trained to compare each exemplar with a prototype. 

My hypothesis was that comparing the exemplars to the prototype can help participants 

learn to categorize the bug stimuli in terms of prototype-plus-exception rules. For 

example, mapping the prototype [1, 1, 1, 1] to the exemplar [1, 0, 1, 1] will result in a 

schema that includes r1, r2 and r4, but lacks r2 (i.e., [1, −, 1, 1]). Whichever exemplar is 

compared to the prototype, the resulting schema will always produce one of the 

probabilistic category structures, minus the mismatching relation (i.e., [−, 1, 1, 1], [1, −, 1, 

1], [1, 1, −, 1] or [1, 1, 1, −]). The prototype-plus-exception rules could potentially reveal 

three invariant relations per exemplar (although the invariants will not be constant across 

exemplars within a category).  

Participants in the prototype condition were provided a prototypical member of 

each species and were asked to classify it using a basic-level label (e.g., “Fea” or “Dav”) 

and then they reclassified the exemplar species using a subordinate-level label: Kei Fea, 

Bai Fea, Wou Fea, or Cim Fea. I hypothesized that the basic label and a set of 

subordinate labels might provide participants with an explicit hierarchical structure could 

facilitate learning the category structure. If so, then each subordinate label would be 

associated with the relational difference between that exemplar and the prototype of its 
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category (the exceptional relation): Kei Fea (smaller head), Bai Fea (lighter head), Wou 

Fea (shorter antenna), and Cim Fea (shorter wing).  

Following on the intermediate encoding condition of Experiment 1, which 

allowed participants to compare systematic pairs of category exemplars, this experiment 

also tested whether random pairing of exemplars might also facilitate learning of 

relational invariants. Randomly pairing exemplars would highlight two invariants on each 

trial, although across trials, the invariants so highlighted would be free to vary. The 

random pairing manipulation was tested in the two different exemplars condition. After 

identifying the exemplars at the basic-level, participants were asked to re-identify each 

exemplar at the subordinate-level.  

The two same exemplars condition was designed to test the Experiment 1’s results, 

in which participants’ decision was partially influenced by the same metric properties 

(e.g., the same wing length) between the exemplars. I examined when the exemplars have 

the exactly identical relations, but also have different metric properties, whether different 

featural properties would affect category learning. For exemplar, the exemplars (e.g., 

1101, head size 4 and 1101, head size 7) would be exactly identical in terms of the 

relational property, or would be different in terms of the featural property.  

Two kinds of control condition were used: Subordinate baseline and basic 

baseline. In the subordinate baseline condition, one single bug was presented, followed 

by the basic-level and subordinate-level classification tasks. Participants in the basic 

baseline condition were given only the basic-level classification task.  

Method 

Participants. A total of 96 participants participated in the study for course credit. 
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Participants were randomly assigned to one of five conditions.  

Materials.  The same bug stimuli were used in this experiment as in Experiment 1. 

Unlike the previous experiment, in which two different exemplars were associated with 

one label, the prototype from each category and all exemplars were associated with all 

different labels in Experiment 2: For the Fea species [1, 1, 1, 1] was the prototype, Kei 

Fea = [0, 1, 1, 1], Bai Fea = [1, 0, 1, 1,], Wou Fea = [1, 1, 0, 1], and Cim Fea = [1, 1, 1, 0] 

served as the subordinates; For the Dav species [0, 0, 0, 0] was the prototype, Haw Dav = 

[1, 0, 0, 0], Ang Dav = [0, 1, 0, 0], Sko Dav = [0, 0, 1, 0], and Lif Dav = [0, 0, 0, 1] were 

the subordinates.   

Design. The experiment used a 5-condition (prototype vs. two different exemplars vs. two 

same exemplars vs. subordinate baseline vs. basic baseline) between-subjects design.          

Procedure. All conditions except basic baseline were provided two or more blocks of 

training trials consisting of basic and subordinate classification tasks (only the basic task 

was provided in basic baseline), followed by two blocks of transfer trials, as in the 

previous experiment. The training phase of the experiment differed across conditions, as 

described below. During this phase, participants received accuracy feedback on each trial. 

The transfer phase was the same across all conditions. Participants classified the bugs at 

the basic level only and they received no accuracy feedback.  

Participants were assigned to one of five training conditions: prototype, two 

different exemplars, two same exemplars, subordinate baseline, and basic baseline. In the 

prototype condition, participants were shown one bug that belongs to the prototype on the 

left side on the screen. They first decided whether the prototypical bug belongs to Fea or 

Dav by clicking the name and then a new exemplar appeared in the right side (the 
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prototypical species remained on the screen). They decided the corresponding exemplar’s 

name as the second task (Figure 12).  

In the two different exemplars condition, two different exemplars belonging to the 

same species, randomly chosen, were provided simultaneously. Participants first decided 

the basic level category to which two exemplars belong and then decided each 

exemplar’s name by clicking the mouse. For example, when two exemplars [1, 1, 0, 1] 

and [1, 0, 1, 1] are matched, participants should classify them as the Fea species at the 

basic level and then re-classify the exemplar [1, 1, 0, 1] as Wou Fea, and [1, 0, 1, 1] as 

Bai Fea at the subordinate-level (Figure 13).  

The two same exemplars condition was identical to the two different exemplars 

condition, except that two exemplars were defined by exactly the same relations, but 

differing in their metric properties. For example, below two bugs have the exactly same 

relations: Head larger than body, and head lighter than body, antennae longer than head, 

and wings longer than body. The only difference between two bugs is the metric darkness 

of the head (Figure 14).  

In the subordinate baseline condition, the participant classified one bug per trial at both 

the basic and subordinate levels. In the basic baseline condition participants classified 

each bug at the basic level only (Figure 15).                   

During training, in prototype, two different exemplars, and two same exemplars, 8 

trials were presented per block, in subordinate baseline, and basic baseline, 16 trials were 

presented per block. In all conditions, the transfer phase was identical to the learning 

phase of the basic baseline condition. 16 trials were presented per block, with each 

exemplar presented in a random order once per block. Each exemplar remained on the 
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screen until the participant responded. The training phase lasted for 40 blocks (320 trials 

for prototype, two different exemplars, and two same exemplars, and 640 trials for 

subordinate baseline, and basic baseline) or until the participant responded correctly on 

at least fourteen of sixteen trials (87.5% correct) for two consecutive blocks. At the end 

of the experiment participants were queried about strategies they use during the 

experiment. 

Predictions 

 My main interest was in accuracy on the transfer phase. I predicted that the 

prototype condition will show better performance than the other conditions. I assumed 

that comparing the prototype with the exemplar can tell participants which relations are 

identical to each other and which relation is different between two bugs. In any case, 

three shared relations might be learned per exemplar.   

 I also predicted that participants who will be shown simultaneously two 

exemplars in the training phase (i.e., two different exemplars and two same exemplars) 

would face more difficult challenges compared to the prototype condition. In two 

different exemplars, randomly pairing exemplars would highlight two invariants on each 

trial. If the participants can appreciate two invariants, then their performance would be as 

helpful as intermediate encoding of Experiment 1, but less than the prototype condition. 

In two same exemplars, exactly the same exemplars (in terms of relations) will be 

provided, which means this condition may equal the control condition where a single bug 

will be presented, as long as the participants will focus more on relational properties than 

featural ones.  
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The subordinate-baseline and basic-baseline conditions will serve as control 

conditions that do not explicitly involve comparison. 

Results 

Study phase: Accuracy on basic-level. A 5 (prototype vs. two different exemplars vs. 

two same exemplars vs. subordinate baseline vs. basic baseline) between-subjects 

ANOVA revealed main effects of task [F (4, 91) = 45.518, MSE = 0.008, p < 0.001] 

(Figure 16). Participants in the prototype condition performed more accurately than those 

in all other conditions. Prototype learners (M = 0.92, SD = 0.06) were likely to perform 

more accurately than two different exemplars learners (M = 0.66, SD = 0.11) [Tukey’s 

HSD, p < 0.001)], two same exemplars learners (M = 0.63, SD = 0.09) [Tukey’s HSD, p 

< 0.001)], subordinate baseline learners (M = 0.60, SD = 0.08) [Tukey’s HSD, p < 

0.001)], and basic baseline learners (M = 0.64, SD = 0.08) [Tukey’s HSD, p < 0.001)]. 

There were no other reliable differences between the conditions at the basic level during 

the study phase.          

Study phase: Accuracy on subordinate-level. A 4 (prototype vs. two different 

exemplars vs. two same exemplars vs. subordinate baseline) between-subjects ANOVA 

revealed a main effect of task [F (3, 73) = 5.889, MSE = 0.015, p < 0.01] (Figure 17). 

Participants in the prototype condition showed more accurate performance than 

participants in all other conditions. Prototype learners (M = 0.46, SD = 0.16) were likely 

to perform more accurately than two different exemplars learners (M = 0.35, SD = 0.12) 

[Tukey’s HSD, p < 0.05)], two same exemplars learners (M = 0.31, SD = 0.48) [Tukey’s 

HSD, p < 0.01)], and subordinate baseline learners (M = 0.33, SD = 0.13) [Tukey’s HSD, 
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p < 0.01)]. There were no other reliable differences between the conditions at the 

subordinate level during the study phase.                                        

Study phase: Basic-level vs. subordinate-level. I report the difference between the 

basic-level and subordinate-level in each condition except for basic baseline to examine 

how much learning at different category levels were different. For the participants in 

prototype condition, performance at the basic-level (M = 0.92, SD = 0.07) was reliably 

different from one at the subordinate-level (M = 0.46, SD = 0.16) [t(19) = 13.176, p < 

0.001]. Basic-level (M = 0.66, SD = 0.11) in two different exemplars was reliably 

different from subordinate-level (M = 0.35, SD = 0.12) [t(19) = 11.357, p < 0.001] 

Performance at basic-level (M = 0.63, SD = 0.09) in two same exemplars was reliably 

different from subordinate-level (M = 0.31, SD = 0.05) [t(17) = 13.880, p < 0. 001]. 

Basic-level (M = 0.60, SD = 0.09) in subordinate baseline was reliably different from 

subordinate-level (M = 0.33, SD = 0.13) [t(18) = 10.704, p < 0.001] (Figure 17).             

Study phase: Trials to criterion. I also report how many trials participants needed to 

reach to criterion during the study phase in terms of the basic-level. Only in the prototype 

condition did all participants reach criterion. A 5 (prototype vs. two different exemplars 

vs. two same exemplars vs. subordinate baseline vs. basic baseline) between-subjects 

design ANOVA revealed a main effect of task [F (4, 91) = 107.139, MSE = 8776.459, p 

< 0.001] (Figure 18).  

As expected, participants reached criterion in fewer trials in prototype (M = 36, 

SD = 27) than in two different exemplars (M = 239, SD = 89) (Tukey’s HSD, p < 0.001), 

in two same exemplars (M = 285, SD = 69) (Tukey’s HSD, p < 0.001), in subordinate 

baseline (M = 592, SD = 113) (Tukey’s HSD, p < 0.001), and in basic baseline (M = 496, 
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SD = 133) (Tukey’s HSD, p < 0.001). Participants given the two different exemplars task 

(M = 239, SD = 89) took reliably fewer trials to reach criterion than those in the 

subordinate baseline (M = 592, SD = 113) (Tukey’s HSD, p < 0.001) and also those in 

the basic baseline task (M = 496, SD = 133) (Tukey’s HSD, p < 0.001). Participants 

given the two same exemplars task (M = 285, SD = 69) also took reliably fewer trials to 

reach criterion than those in the subordinate baseline (M = 592, SD = 113) (Tukey’s HSD, 

p < 0.001) and also those in the basic baseline task (M = 496, SD = 133) (Tukey’s HSD, 

p < 0.001). Participants given the basic baseline task (M = 592, SD = 113) took reliably 

fewer trials to reach criterion than those in the subordinate baseline (M = 496, SD = 133) 

(Tukey’s HSD, p < 0.05).  

Transfer phase: Accuracy. My primary interest was accuracy on transfer phase. A 5 

(prototype vs. two different exemplars vs. two same exemplars vs. subordinate baseline 

vs. basic baseline) between-subjects ANOVA revealed a main effect of task [F (4, 91) = 

5.943, MSE = 0.011, p < 0.001] (Figure 19). Participants in prototype (M = .80, SD = .07) 

showed reliably more accurate performance than in two different exemplars (M = 0.69, 

SD = 0.10) (Tukey’s HSD, p < 0.01), in two same exemplars (M = .68, SD = .11) 

(Tukey’s HSD, p < 0.01), in subordinate baseline (M = .65, SD = .16) [Tukey’s HSD, p < 

0.01)] and in basic baseline (M = .68, SD = .07) (Tukey’s HSD, p < 0.01).  

As in Experiment 1a, I report differences between study (only basic-level) and 

transfer to examine how much participants learned in each condition (Figure 20). 

Surprisingly, for learners in prototype, performance decreased on transfer (M = .92, SD 

= .07) relative to study (M = .80, SD = .07) [t(19) = 4.920, p < 0.001]. For learners in two 

different exemplars, performance on transfer (M = .69, SD = .10) slightly increased from 
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study to transfer (M = .66, SD = .11) [t(19) = 1.498, p = 0.151). For learners in two same 

exemplars, the difference between study (M = .63, SD = .09) and transfer (M = .68, SD 

= .11) was marginally reliable [t(17) = 1.865, p = 0.079). For learners in subordinate 

baseline, performance on transfer (M = .65, SD = .16) slightly increased relative to study 

(M = .60, SD = .08) [t(18) = 1.745, p = 0.098). For learners in basic baseline, the 

difference between study (M = .64, SD = .08) and transfer (M = .68, SD = .07) was not 

reliable [t(18) = 1.637, p = 0.119). 

Discussion 

Experiment 2 examined whether providing participants prototypes of the basic-

level categories would facilitate their learning of the exemplars of those categories by 

helping them to learn the exemplars in a rule-plus-exception fashion. As expected, 

performance in the prototype condition exceeded performance in the other conditions. 

Prototype learners showed above 90 % correct in classifying the prototype, and 80% 

correct during transfer. Providing the prototypes appears to have helped participants to 

learn the exemplars. These results are consistent with the hypothesis that explicitly 

providing the prototype can help learners overcome the difficulties posed by the empty 

intersection problem.  

Learning in a random pairing fashion did not help learners overcome the 

difficulties posed by the empty intersection problem: Neither the difference between two 

different exemplars and two same exemplars, nor even the difference between 

comparison conditions and single conditions was reliable. In contrast to Experiment 1 

where the same pair was consistently compared, random parings seemed to fail to drive 

the discovery of invariants. According to a post-hoc analysis of self-reports, majority of 
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participants mentioned that they were able to discover the relational similarities between 

the exemplars to some extent, but they little understood how to define each species. In 

conclusion, comparing random pairs was not as helpful as comparing specific pairs, and 

even was similar to the condition where a single exemplar was presented.   
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CHAPTER 5:  

EXPERIMENT 3—TESTING THE EFFECTS OF DUAL VERBAL 

AND VISUAL DUAL TASKS ON FEATURAL VS. RELATIONAL 

CATEGORY LEARNING 

  The results from Experiment 1 and 2 added further evidence that the learning 

mechanism for relational categories with a probabilistic structure is the intersection 

discovery hypothesis, which is quite a contrast to associative learning for featural 

learning mechanism. Such evidence accordingly implies that relational and featural 

categories are learned in qualitatively different ways.   

In Experiment 3, I investigated the sensitivity of feature- and relation-based 

category leaning to two different kinds of dual-task disruption. In contrast to feature-

based representations, which come to us effortlessly, relational representations require 

attention and working memory (see, e.g., Baddeley & Hitch, 1974; Hummel & Holyoak, 

1997, 2003; Logan, 1994; Maybery, Bain, & Halford, 1986). 

To the extent that featural and relational category learning rely on different kinds 

of mental representations, they might be differentially disrupted by different kinds of dual 

tasks. In particular, it is reasonable to hypothesize that featural learning may be more 

disrupted by a dual task that consumes visual working memory resources than by one that 

consumes verbal or executive resources (inasmuch as featural category learning is largely 

a visual learning task), whereas relational category learning may be more disrupted by a 

dual task that consumes verbal or executive working memory (inasmuch as relational 

processing is an explicit, attention-demanding task).  

Other researchers have also argued for multiple systems of category learning 
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(Ashby, Alfonso-Reese, Turken, & Waldron, 1998). Miles and Minda (2011) showed that 

verbal dual tasks, which impose an executive functioning load, impaired rule-defined 

category learning, whereas a visual dual task impaired non-rule-defined learning 

regardless of executive functioning demand. Their findings provided evidence that verbal 

working memory and executive functioning are engaged in the rule-defined system, and 

visual processing is more engaged in the non-rule-defined system. 

My next experiment tested the prediction that relational category learning will be 

more subject to verbal dual-task interference than feature-based category learning. By 

contrast, feature-based learning will be more subject to visuospatial dual-task 

interference than relational learning.  

I used deterministic category structures in the current experiment; i.e., there was 

always be one relation or feature that is deterministically predictive of category 

membership. The reason for using deterministic categories is that the categories must be 

learnable, even in the relational case, so that I can observe the effects of the manipulation 

on trials to criterion (i.e., how long it takes participants to learn the categories).  

I orthogonally crossed relational- vs. feature-based categories with verbal dual 

task vs. visual dual task vs. no dual task. In the verbal dual task conditions, participants 

had to perform a task known to interfere with relational processing (memorizing digits) 

while they simultaneously performed the category learning task. In the visual dual task 

condition, participants had to memorize the locations of filled squares in 3 X 3 grids 

while simultaneously learning the categorization. In the no dual task condition, 

participants simply performed the category learning task by itself. 
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Method 

Participants. A total of 75 participants participated in the study for course credit. Each 

participant was randomly assigned to one of the six conditions. 

Materials. Each exemplar consisted of a grey ellipse and a grey rectangle. Each 

exemplar had both relational properties (e.g., ellipse bigger than rectangle) and featural 

properties (e.g., ellipse of size 4). Each participant was tasked with deciding whether the 

objects they saw belonged to one of two featural or one of two relational categories.  

Each exemplar was defined by three category-relevant properties: size (absolute 

in the featural condition or relative in the relational condition), darkness (absolute or 

relative) and orientation (absolute or relative). In the featural condition, the orientation of 

the ellipse was deterministically associated with category membership (i.e., horizontal 

orientation for category A, vertical for category L), whereas in the relational category 

condition, the relative orientation of the ellipse and rectangle (i.e., either same or 

different) was deterministically associated with category membership (with same for 

category A and different for category L). The other properties were probabilistically 

associated with category membership. 

For the featural category condition, the prototypes of the categories were defined 

as [1,1,1] for category A and [0,0,0] for L, where [1,1,1] represents an rectangle size 3 

[out of 9] for category A, 7 for category L, the color 3 [out of 9] for category A, 7 for 

category L, and horizontal orientation for category A, vertical for category L (Figure 21). 

Similarly, for the relational category condition, the prototypes were defined as [1,1,1] for 

category A and [0,0,0] for L, where [1,1,1] represents an ellipse larger, darker, and same 

orientation and [0,0,0] represents a rectangle larger, darker, and different orientation 
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(Figure 22). Exemplars of each category were made by switching the value of one 

dimension in the prototype (e.g., relational category A exemplar [1,0,1] would have the 

ellipse larger, lighter, and same orientation as the rectangle). Four copies of each 

exemplar type were presented on each block, two paired with a “Yes” responses on the 

dual task and two with a “No” responses, resulting in 32 trials per category per block. 

Design. The experiment used a 3 (dual task: none vs. verbal vs. visuospatial) X 2 

(relevant property: features vs. relations) between-subjects design.  

Procedure. Participants were assigned randomly to one of the six groups. For the dual 

task conditions, on each trial, a memory task was provided first and followed by a 

categorization task and by a recall task. In the control conditions, only the categorization 

task was provided. Both categorization and dual task responses were followed by 

accuracy feedback (Figure 23).  

Participants in the verbal dual-task condition were first given a verbal working 

memory task, in which 5 random digits were displayed for two seconds with spaces 

between them (so that they appeared to be individual numbers rather than digits of a 

single number). Participants were asked to memorize the digits while they performed the 

categorization task. In the categorization task, an exemplar consisting of a rectangle and 

an ellipse was shown. Participants were instructed to press the A key if the stimulus 

belong to category A and the D key if it belong to D. Each exemplar remained on the 

screen until the participant responded. Responses were followed by accuracy feedback. 

Participants then saw one random digit and were asked to decide whether it was in the set 

they saw previously.  
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In the visuospatial dual-task condition, a 3 by 3 grid was displayed in the middle 

of a screen for two seconds with two randomly-chosen cells filled. Participants were 

asked to memorize the locations of the filled cells until they completed the categorization 

task. In the recall task, one filled cell was displayed in the grid and participants were 

asked whether the cell had been filled in the original display. The experiment was consist 

of 30 blocks (960 trials) and continue until the participant responded correctly on at least 

twenty nine of thirty two trials (90.6% correct) for two consecutive blocks or until all 30 

blocks transpired, whichever comes first. At the end of the experiment participants were 

queried about strategies they use during the experiment. 

Predictions 

I hypothesize that the two dual tasks will interact with the kinds of category 

learning in different ways. The verbal dual task will interfere with relational category 

learning to a greater extent than featural category learning. In contrast, I hypothesize that 

the visuospatial dual task will interfere with featural category learning to a greater extent 

than relational category learning. Taken together, I predict the additional distinction 

between feature-and relation-based category learning via the double dissociation between 

visual vs. verbal dual task interference on the one hand and featural vs. relational 

category learning on the other. 

Results 

Dual task accuracy. I discarded the data from participants whose accuracy was below 

70% correct on the dual task (2 participants in the verbal/featural condition). Mean 

accuracy on the verbal dual task was M = .94 (SD = .03) for the featural category learning 
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condition, and M = 0.91 (SD = 0.06) for the relational learning condition. Mean accuracy 

on the visual dual task was M  = 0.91 (SD = 0.06) for the featural condition, and M = 0.89 

(SD = 0.04) for the relational condition. There was no reliable difference between the 

verbal and visuospatial tasks [t(51) = 1.61, p = .114], suggesting that these tasks occupied 

cognitive resources to roughly the same extent.  

Category learning task accuracy: Trials to criterion. Since my primary interest is the 

rate at which participants learn the categories as a function of the dual tasks, I report the 

data first in terms of trials to criterion. These analyses are conservative in the sense that 

participants who never learned to criterion were treated as though they reached criterion 

on the last block. Figure 24 shows the mean trials to criterion by category learning 

condition. A 3 (dual task) × 2 (category learning task) between-subjects ANOVA 

revealed a main effect of dual task [F(2, 69) = 5.058, MSE = 579014.858, p < 0.01]. 

Since my main interest was in how different dual tasks affect the different kinds of 

category learning, one-way ANOVAs were conducted for the featural and relational 

learning conditions. The results revealed reliable differences between dual tasks in the 

featural category learning condition [F(2,35) = 4.981, MSE = 617725.846, p < 0.05]. 

Planned comparisons in the featural category learning showed that there was a reliable 

difference between the verbal (M = 386, SD = 387) and visuospatial dual task (M = 697, 

SD = 411) [t(35) = -2.288, p < 0.05]. There was also a reliable difference between the 

visuospatial and the control condition (M = 262, SD = 191) [t(35) = 3.014, p < 0.01]. The 

difference between the verbal and the control condition was not reliable [t(35) = 0.877, p 

< 0.386]. The ANOVA results from the relational condition revealed reliable differences 

between the dual tasks [F(2,34) = 7.641, MSE = 799483.887, p < 0.01]. Planned 
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comparisons revealed that there was a reliable difference between the verbal (M = 739, 

SD = 352) and visuospatial dual task (M = 330, SD = 362) [t(34) = 3.221, p < 0.01]. 

There was also a reliable difference between the verbal and control conditions (M = 276, 

SD = 222) [t(34) = 3.014, p < 0.01]. The difference between the visuospatial and control 

conditions was not reliable [t(34) = 0.404, p < 0.689]. No other main effects were 

statistically reliable. Most interestingly, there was a reliable interaction between dual task 

and category learning, indicating that relational category learning was disrupted more by 

the verbal dual task, whereas featural category learning was disrupted more by the 

visuospatial dual task [F(2,69) = 2.475, MSE = 855659.946, p < 0.01].  

Response times. Since the category learning accuracy results yielded a reliable 

interaction between the dual and category learning tasks, I also analyzed these tasks in 

terms of participants’ mean response times on individual trials in order to gain insight 

about the strategies participants in each condition may have adopted. A 3 (dual task) × 2 

(category learning task) between-subjects ANOVA revealed a main effect of dual task 

[F(2, 69) = 3.202, MSE = 0.961, p < 0.05]. One-way ANOVAs were also conducted in 

each category learning condition. The main effect of dual task was not reliable [F(2, 35) 

= 2.137, MSE = 0.612, p = 0.133] in the featual learning condition. But since the 

accuracy data showed that participants in visuospatial feature-learning required many 

more trials than to reach to the criterion than participants in verbal featural learning, I 

expected a reliable difference between two conditions in a planned comparison analysis. 

My prediction was confirmed. There was a reliable difference between the verbal (M = 

0.99, SD = 0.31) and visuospatial dual task (M = 1.41, SD = 0.78) [t(35) = -2.037, p < 

0.05], indicating that response times in visuospatial feature-learning condition were 
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longer than those in verbal feature-learning. No other differences were statistically 

reliable. There were no reliable differences in the relational learning condition. Also, 

ANOVA showed a reliable main effect of category learning [F(1, 69) = 3.883, MSE = 

1.166, p = 0.053], indicating that feature learning (M = 1.17, SD = 0.55) was marginally 

faster than relational learning (M = 1.42, SD = 0.56) (Figure 25). 

Discussion 

To the extent that relational concepts are qualitatively similar to feature-based 

concepts, our understanding of concepts can be expected to generalize from the 

(extensively investigated) case of feature-based categories to the (largely neglected) case 

of relational categories. However, there is reason to believe they are not, casting doubt on 

our ability to generalize our conclusions from studies using feature-based categories to 

the case of relational concepts. 

Most notably, people have no difficulty learning feature-based categories in 

which no single feature remains invariant across all members of a category (see Murphy, 

2002). By contrast, relational categories are extremely difficult to learn when there is no 

such relational invariant (Kittur et al., 2004, 2006b; Jung and Hummel 2009a, 2009b, 

2011). These findings suggest that featural and relational learning rely not only on 

qualitatively different forms of mental representation (namely, features vs. relations; see, 

e.g., Hummel, 2010; Hummel & Holyoak, 1997, for a discussion of the difference) but 

also that they rely on qualitatively different kinds of learning algorithms (e.g., associative 

learning in the featural case and something more akin to structured intersection discovery 

in the relational case; Jung & Hummel, 2009a, 2009b, 2011). 
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The current experiment provides additional evidence for this sharp distinction 

between featural and relational category learning. In the current experiment, featural 

learning was impeded by a visual dual task (i.e., one that might be expected to interfere 

with visual feature processing as required for featural learning) but not by a verbal dual 

task. Relational category learning, in sharp contrast, was interfered with by a verbal dual 

task (which has been shown to interfere with relational processing; Waltz, Lau, Grewal, 

&, Holyoak, 2000), but not by a visual dual task. This double dissociation between visual 

vs. verbal dual task interference on the one hand and featural vs. relational category 

learning on the other adds to the growing evidence that these two kinds of category 

learning rely on qualitatively different and dissociable learning systems. 
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CHAPTER 6:  

EXPERIMENT 4—TESTING THE EFFECTS OF A RELATION-

CENTERED VISUAL DUAL TASK ON CATEGORY LEARNING 

In the previous experiment, I predicted that the visual dual task would interfere 

with the featrual category learning more than the verbal dual task would. In the previous 

study, the visual dual-task was to memorize the locations of two shaded cells in a 3 by 3 

grid, which could be characterized as a feature-centered visual dual-task. The following 

experiment investigated the effects of a more relational visual-dual task on featural and 

relational category learning.  

My question was that to what extent a relation-centered visual dual-task interferes 

with category learning. Previously, I predicted that a visual dual-task would hinder 

feature-based category learning, since the resources—implicit and less attention-

demanding—that are necessary to process featural categories are lately the same as those 

necessary to perform the visual dual task. By contrast, a relation-centered visual dual-task 

whose process can be characterized as more attention-demanding, may be more likely to 

interfere with relational category learning. Thus I will be able to observe the resilience of 

feature-based category learning under a relation-centered visual dual-task.  

I orthogonally crossed relational- vs. feature-based categories with verbal vs. 

visual-relation dual task. The verbal dual task condition was identical to one used in the 

previous experiment. In the relation-centered visual dual task condition, a hexagon and an 

octagon with different sizes were provided simultaneously. Participants had to memorize 

the relative size of the two objects while performing each categorization trial.  
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Method 

Participants. A total of 61 participants participated in the study for course credit. Each 

participant was randomly assigned to one of the four conditions. 

Materials. The same ellipse and rectangle stimuli were used in this experiment as in the 

previous experiments. 

Design. The experiment used a 2 (dual task: verbal vs. relation-centered visual) X 2 

(relevant property: features vs. relations) between-subjects design.  

Procedure. In the verbal dual task condition, the same procedure as the previous 

experiment was used. In the relation-centered visual dual-task condition, a hexagon and 

an octagon of different sizes were presented in a random location for two seconds. 

Participants were asked to memorize the relative sizes of the two objects until they 

completed the categorization task. In the recall task, a hexagon and an octagon were 

displayed in random locations of the screen and participants were asked whether the 

relative sizes of two objects were the same as ones in the original display. The 

experiment lasted for 30 blocks (960 trials) or until the participant responded correctly on 

at least twenty nine of thirty two trials (90.6% correct) for two consecutive blocks. At the 

end of the experiment participants were queried about strategies they used during the 

experiment. 

Predictions 

I predict that the relation-centered visual dual-task will influence category 

learning in the same manner as the verbal dual task. Specifically, the relational visual 

dual task, like the verbal dual task, will impair relational category learning to a greater 

extent than featural category learning. That is, in contrast with the previous experiment 
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where more feature-characterized visual dual-task was used, more relation-characterized 

visual dual-task will interfere with relation-based category learning.  

Results 

Dual task accuracy. I discarded the data from participants whose accuracy was below 

70% correct on the dual task (1 participant in the visual/featural condition, and 2 

participants in the visual/relational condition). Mean accuracy on the verbal dual task was 

M = 0.92 (SD = 0.09) for the featural category learning condition, and M = 0.92 (SD = 

0.05) for the relational learning condition. Mean accuracy on the visual dual task was M 

= 0.86 (SD = 0.07) for the featural condition, and M = 0.84 (SD = 0.06) for the relational 

condition. Accuracy on the visual dual task in Experiment 4 declined to some extent 

compared to the visual dual task in Experiment 3. There was reliable difference between 

the verbal and visual tasks [t(59) = 3.862, p < 0.001], suggesting that the visual dual task 

occupied more cognitive resources than the verbal dual task did. However, my main 

interest in Experiment 4 was that how the relation-centered visual dual-task would 

interact with featural and relational category learning, not how two different dual tasks 

would interact with separate category learning.   

Category learning task accuracy: Trials to criterion. Since my primary interest is the 

rate at which participants learn the categories as a function of the dual tasks, I report the 

data first in terms of trials to criterion. These analyses are conservative in the sense that 

participants who never learned to criterion were treated as though they reached criterion 

on the last block. Figure 26 shows the mean trials to criterion by condition. A 2 (dual 

task) × 2 (category learning task) between-subjects ANOVA revealed that there was no 
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reliable difference between verbal and visual dual tasks [F(1, 57) = 0.442, MSE = 

66109.223,  p = 0.509].                          

Since my main interest is in how different dual tasks affect the different kinds of 

category learning, I compared the accuracy on featural and relational category learning 

within each dual-task. As expected, the results revealed a reliable difference between the 

featural (M = 329, SD = 395) and relational conditions (M = 657, SD = 390) within the 

verbal dual- task [t(28) = -2.292, p < 0.05]. Interestingly, there was also a reliable 

difference between the featural (M = 286, SD = 350) and relational conditions (M = 568, 

SD = 407) within the visual dual-task [t(29) = -2.062, p < 0.05], indicating that relational 

category learning was disrupted more by the relation-centered visual dual task. The 

difference between the featural (M = 307, SD = 368) and relational conditions (M = 611, 

SD = 395) was reliable [t(59) = -3.109, p < 0.01]. No other main effects were statistically 

reliable.  

Response times. I also analyzed these tasks in terms of participants’ mean response times 

on individual. A 2 (dual task) × 2 (category learning task) between-subjects ANOVA 

revealed a main effect of dual-task [F(1, 57) = 8.007, MSE = 2.669, p < 0.01], indicating 

that response times in the visual dual-task (M = 1.86, SD = 0.68) were longer than those 

in the verbal dual-task (M = 1.43, SD = 0.53). Also, ANOVA showed a reliable main 

effect of category learning [F(1, 57) = 9.829, MSE = 3.277, p < 0.01], indicating that 

feature learning (M = 1.41, SD = 0.17) was faster than relational learning (M = 1.87, SD = 

0.04). Within each dual-task, response times in the relational learning condition were 

reliably longer than the featural learning [for the verbal dual-task, t(28) = -2.239, p < 0.05, 

for the visual dual-task, t(29) = -2.243, p < 0.05] (Figure 27).  
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Discussion 

Experiment 3 has made clear the importance of verbal working memory for 

relational categories, and visual working memory for feature-based categories. I was 

interested in further exploring the cognitive resources of the visual dual-task that included 

more relational information. In Experiment 4, my prediction was that if the visual dual-

task is more involved in the use of relational resources, even if the dual-task is visually 

demanding, the relation-centered visual dual-task would interfere with learning relational 

categories. As predicted, the new visual dual-task more taxed relational categories than 

feature-based categories. The results suggest that the relation-centered visual dual-task 

would consume verbal-based cognitive resources (i.e., attention-demanding). 

Participants’ self-reports also supported the results: Their strategy was that they made the 

sentence like “octagon is larger than hexagon” to memorize the relative size of two 

objects by themselves. The results, in conjunction with the results of Experiment 3, show 

that relational concepts rely heavily on the verbal system based on more attention-

demanding processes, and feature-based concepts rely more on the non-verbal system 

based on more implicit processes, implying the importance of qualitatively different and 

separable learning systems to two kinds of category learning.  
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CHAPTER 7: GENERAL DISCUSSION  

The findings presented in this Dissertation make a strong case that not only are 

relational concepts qualitatively different from featural concepts, they are also learned in 

a qualitatively different manner. In particular, the current results are consistent with the 

hypothesis that relational categories are learned by a kind of structured intersection 

discovery—a process that is formally powerful than feature-based associatively learning, 

but which fails catastrophically with probabilistic category structures.  

However, as shown by the results of Experiments 1 and 2, whether a category 

structure is probabilistic—and thus whether concept acquisition must fail 

catastrophically—lies at least in part in the manner in which the learner approaches the 

learning task. Experiment 1, like Jung and Hummel (2009a, b, 2011), showed that 

learning can be improved by structuring the learning task to reveal within-category 

invariants. Jung and Hummel showed that unstated higher-order invariants (such as 

whether the “circle is winning”), can facilitate concept acquisition. Experiment 1 

extended this result, showing that the invariants can come from the hierarchical structure 

of the categories themselves: If the to-be-learned concepts do not possess invariants at the 

nominal (i.e., “basic”) level of categorization, then it can be helpful to learn the 

categories first at a subordinate level of abstraction that does contain invariants 

(Experiment 1b). Having learned the subordinate-level categories, learning that multiple 

subordinate-level concepts belong to the same “basic-level” (i.e., named) concept can be 

accomplished in an associative fashion. 

This finding may help to make sense of the fact that many, or at least some, 

natural relational concepts seem to have a probabilistic structure. For example, “mother” 
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is clearly a relational concept, and yet it is difficult to come up with a single relational 

definition that encompasses all and only instances of “mother” (much like Wittgenstein’s, 

1953, concept of “game”, as discussed shortly). On its face, this fact is troubling for the 

intersection discovery hypothesis, since that hypothesis predicts that there should be no 

probabilistic relational concepts. However, as proposed by Lakoff (1987), the resolution 

of this dilemma may lie in concepts such as mother being polysemous: We have multiple 

(individually deterministic) “mother” schemas unified under a single label. If this 

polysemy-based account of otherwise seemingly probabilistic natural relational concepts 

is correct, then the results of Experiment 1 (especially the results of Experiment 1b 

compared to the results of the subordinate encoding condition of Experiment 1a) suggest 

that we may learn the subordinate-level meanings of mother before we learn to attach the 

label “mother” to all the different concepts to which it can refer. 

This idea of polysemy may even suggest a solution to Wittgenstein’s (1953) 

famous “game” dilemma: Although no one seems able to come up with a single 

definition that includes all games and excludes all non-games—and even though “game” 

would appear, on its face, to be a relational concept—perhaps our failure to come up with 

a satisfactory definition reflects the concept’s polysemy (see Lakoff, 1987). If this 

account is correct, then our understanding of “family resemblance” categories may be 

fundamentally incorrect, or at least incomplete: To say that a concept such as “mother” or 

“game” is a collection of polysemous relational concepts united under a single name is a 

very different claim about the mental representation of concepts than to say that “mother” 

and “game” are simply points in a high-dimensional feature (i.e., vector) space (i.e., a 

“prototype”, or the mean of a collection of points) and that any specific exemplar of 
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mother or game is simply another point in that space that lies closer to or further from 

that prototype point. 

This claim about the inadequacy of traditional feature-based model of concepts is 

not new. Numerous researchers have argued that relational concepts cannot be adequately 

represented as lists of features, but instead must be mentally represented as relational 

structures such as schemas, theories, or causal models (Gentner, 1983; Holland, Holyoak, 

Nisbett, & Thagard, 1986; Hummel & Biederman, 1992; Hummel & Holyoak, 1997, 

2003; Keil, 1989; Murphy & Medin, 1985; Rehder & Burnett, 2005; Waldmann, Holyoak 

& Fratianne, 1995). This view is supported by evidence from studies of similarity, 

relational reasoning and attention suggesting that relations and features may be 

psychologically distinct (e.g., Barr & Caplan, 1987; Gentner, 1983; Gentner & Kurtz, 

2005; Goldstone, 1996; Logan, 1994; Markman & Stilwell, 2001; Medin, Goldstone & 

Gentner, 1993). At the same time, however, the empirical findings demonstrating 

prototype effects—which are almost universally attributed to feature-based notions of 

conceptual structure—are both numerous and robust (see Murphy, 2002). It remains to be 

seen whether the notion of relational concepts, combined with ideas about the 

hierarchical structure of those concepts, can help to make sense of the kinds of effects 

that would otherwise lead one to conclude that concepts are but lists of features.  

Understanding the roles of features and relations in conceptual structures is 

complicated by the fact that both undoubtedly play a role. The question is not whether 

features or relations serve as the basis of our concepts, but rather how they work together 

to structure and inform our understanding of the world. A reasonable conjecture, 

suggested by numerous findings across the study of both perception and cognition, is that 
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the mind will use features whenever it can but can also reason about relations whenever it 

must. “Features” can be processed automatically, quickly and effortlessly (for reviews 

see Hummel, 2001; Thoma & Davidoff, 2007) but as reviewed previously, relational 

representations support substantially more sophisticated kinds of inference and 

generalization.  

Consistent with this generalization, Experiments 3 and 4 showed that relational 

category learning imposes a greater working memory load than does featural category 

learning. In the former case it is necessary to actively compute relations and bind them to 

their arguments (Halford, Wilson, & Phillips, 1998; Hummel & Biederman, 1992; 

Hummel & Holyoak, 1997, 2003; Oberauer, Suß, Wilhelm, & Sander, 2007). In contrast, 

featural categories may incur reduced memory load, perhaps by relying on emergent 

perceptual features or implicit learning mechanisms (Ashby & Waldron, 1999; Ward & 

Becker, 1992). 

Kittur et al. (2006b) showed that feature- and relation-based representations also 

seem to support qualitatively different kinds of judgments, with feature-based 

representations supporting familiarity judgments, while relation-based representations 

support “goodness of exemplar” judgments (at least with relationally-defined categories). 

Their findings suggest that these different kinds judgments are the exclusive purview of 

their respective kinds of representations: In their data, stimulus features drove familiarity 

judgments even when relational differences between stimuli were the only basis for 

distinguishing them (i.e., familiarity judgments were at chance when relations, but not 

features, discriminated between stimuli), and relational differences drove “goodness” 

judgments even when features provided the only basis for discrimination. 
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Taken together, these findings suggest a kind of double dissociation between the 

learning and use of featural versus relational representations, which may ultimately 

reflect differences between the representation and processing of implicit features on the 

one hand and explicit relational predicates on the other (see also Hummel, 2001, 2010; 

Thoma & Davidoff, 2007). The findings presented in this Dissertation contribute to the 

literature demonstrating that featural and relational representations are psychologically 

distinct. 

 The results of these studies also help to clarify the circumstances under which 

relational concepts, probabilistic and otherwise, maybe acquired. Comparison across 

exemplars is known to play an important role in the acquisition of relational categories 

(Gentner, Anggoro, & Klibanoff, 2011; Higgins & Ross, 2011; Kurtz, Boukrina, & 

Gentner, 2013). Much of the comparison research involves within-category pairs, 

between-category pairs, or mixed-category pairs, in which exemplars are paired randomly 

regardless of whether they belong to the same or different categories. The results 

presented here suggest that comparisons are likely to be beneficial specifically to the 

extent that they allow learners to discover relational invariants within categories (and 

possibly invariant contrasts between categories)—and that the role of such invariants is 

likely to be much greater for relational concepts (such as those that are crucial for math 

and science education) than for featural ones.  

The current results also suggest that other manipulations used in studies of 

relational learning and reasoning may affect category learning and inference. For 

example, relational responding is decreased when response time is limited, or when the 

richness or featural complexity of the stimuli is increased (Markman & Gentner, 1993a). 
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In contrast, relational responding is increased when people are required to use multiple 

analogs (Catrambone & Holyoak, 1989; Gick & Holyoak, 1983), to perform comparisons 

(Gentner & Namy, 1999), or to provide multiple mappings for a single example 

(Markman & Gentner, 1993b). Further work is needed to explore how such 

manipulations may bias category learning to focus on either featural or relational 

information. 

In summary, the findings presented in this Dissertation contribute to the growing 

body of theoretical and empirical results suggesting that relational thought—the kind of 

thinking that seems to separate us most sharply from our closest primate cousins—is a 

qualitatively different thing than the kinds of thinking and learning afforded by feature-

based representations of the world. They also underscore the fact that the power of 

relational thought comes with attendant costs. Acquiring a relational concept demands 

your full attention (Experiments 3 and 4) and requires you to discover its invariant core 

(Experiments 1 and 2). If you fail on either score, the relational concept will elude your 

grasp. 
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CHAPTER 8: CONCLUSION  

Relational concepts play a central role in human cognition, especially in the most 

uniquely cognitive faculties, such as scientific, mathematical and (abstract) causal 

reasoning, as well as language. However, theoretical considerations and previous 

empirical research suggest that the power of relational concepts comes with a cost: 

namely, that they are much more sensitive to the conditions of acquisition than are 

feature-based concepts.  

The experiments described in this Dissertation investigated two factors that are 

predicted to systematically impair the acquisition of relational concepts relative to 

featural concepts. Experiments 1 and 2 replicated and extended previous findings (e.g., 

Jung & Hummel, 2009, 2011; Kittur et al., 2004, 2006a, b) demonstrating that, although 

featural concepts are easily acquired even when they have a probabilistic structure, 

acquisition of relational concepts fails catastrophically in the face of such structures; that 

is, relational concepts require at least one property to remain invariant over all exemplars 

in order to be learnable. Experiments 3 and 4 used a dual-task paradigm to demonstrate 

that relational and featural concepts are differentially affected relational and featural dual 

tasks, further supporting the conclusion that featural and relational concept acquisition 

rely on qualitatively different mental representations and/or learning algorithms.  

8.1. Summary of Experiments 1 and 2 

One of the most robust findings in the study of category learning is that people 

easily learn categories with a probabilistic structure in which no single feature is shared 

by all members of the category (see Murphy, 2002). However, all the experiments 

demonstrating this phenomenon have used categories defined in terms of their exemplars’ 
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features (see Kittur et al., 2004). To the extent that relational concepts are represented in 

a qualitatively different manner than feature-based concepts (e.g., as schemas, scripts or 

frames, rather than simple lists of features), laws of learning discovered using one kind of 

category may not generalize to concepts based on the other.  

When Kittur at al. (2004, 2006a, b) explored whether the prototype effects so 

often observed with feature-based categories could also be observed with relational 

categories, they found that people have great difficulty learning relational categories with 

probabilistic structures. They interpreted this result in terms of peoples’ attempting to 

learn relational structures through a process of intersection discovery, which retains those 

features and relations exemplars have in common and discards those on which the 

exemplars differ (Doumas et al., 2008; Gick & Holyoak, 1983; Hummel & Holyoak, 

2003). Such an approach to learning relational categories will work as long as there is one 

feature or relation shared by all category members, but will fail catastrophically if all 

features and relations are related only probabilistically to category membership. This 

intersection discovery account of relational learning predicts that a relational category 

will be learnable if and only if there exists at least one relation that is present in all 

exemplars of the category. That is, relational categories are learnable iff the intersection 

of the exemplars in not the empty set. The corollary of this prediction is that all and only 

those manipulations that render the intersection non-empty will render the category 

learnable. 

Jung and Hummel (2009a, 2009, 2011) extended the results of Kittur et al. (2004, 

2006a, b) by investigating circumstances that might make it possible to learn relational 

categories with a (putatively) probabilistic structure. Consistent with the intersection 
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discovery hypothesis, they found that the best way to make a probabilistic relational 

category learnable is to structure the learning task in such a way as to render the category 

structure effectively deterministic—i.e., to render the intersection non-empty. 

Experiments 1 and 2 of this Dissertation extended the findings of Jung and Hummel. 

Numerous studies have demonstrated that explicit comparison of category 

exemplars can play an important role in the acquisition of relational concepts (see 

Doumas et al., 2008, for a review). Experiment 1 investigated the effects comparison as a 

way to render the empty set non-empty for the purposes of learning otherwise 

probabilistic relational concepts.  

This experiment showed that pairing exemplars of a probabilistic relational 

category (during training) in such a way that members of a pair systematically shared 

relations (i.e., so that the intersection, for the members of that pair, was rendered non-

empty) facilitated category learning and transfer, regardless of whether the paired 

exemplars were explicitly named (subordinate-level condition of Experiment 1a) or not 

(intermediate encoding condition of Experiment 1a), relative to presenting the exemplars 

in isolation (basic baseline condition of Experiment 1a). This effect of pairing was 

enhanced when the training task was ordered in such a way that participants named the 

exemplars at the subordinate level (which contained the invariants) prior to naming them 

at the basic level (which did not; Experiment 1b). This latter effect is consistent with the 

hypothesis (Lakoff, 1987) that seemingly probabilistic relational categories in the world 

(such as mother) are in fact polysemous, with multiple deterministic subordinate-level 

relational concepts (e.g., birth mother, adoptive mother, loving mother, abusive mother, 
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etc.) sharing the same basic-level name. In this way, it is also consistent with the 

fundamental prediction of the intersection discovery hypothesis. 

Experiment 2 examined the conditions under which explicitly presenting the 

prototype of a relational concept (i.e., an exemplar containing all the category-relevant 

relations) might facilitate learning of the exemplars of that concept. The hypothesis was 

that perhaps presenting the prototype would help learners overcome the empty set 

problem by allowing them to learn the exemplars in a rule-plus-exception fashion. This 

experiment showed that providing learners with the prototypes helped them to learn the 

prototypes (not surprisingly), but did not help them to learn the specific exemplars. This 

experiment also investigated the effects of pairing exemplars in a random (rather than 

systematic, as in Experiment 1) fashion. The results showed that random pairings did not 

facilitate leaning relative to presenting single exemplars in isolation. This result implies 

that it is not the effect of comparison, per se, (Experiment 2) that makes probabilistic 

relational category learning possible, but rather the role of comparison in the discovery of 

a useful of invariant (Experiment 1). These results, like those of Experiment 1, add to the 

growing body of support for the prediction that only those manipulations that render the 

intersection non-empty can facilitate the learning of an otherwise probabilistic relational 

concept. 

8.2. Summary of Experiments 3 and 4 

A large body of research on relational thinking has shown that relational tasks 

(such as analogy-making) are more sensitive verbal and relational dual tasks than featural 

tasks are, and than they (relational tasks) are more sensitive to relational than to featural 

dual tasks (see Morrison, 2005). Experiments 3 and 4 aimed to investigate the distinction 



72 

 

between feature-and relation-based category learning in terms of their sensitivity to 

different kinds of dual tasks. Experiment 3 revealed an interaction between category 

structures and dual tasks, such that featural category learning was more impaired by a 

visuospatial dual task than by a verbal dual task, whereas relational category learning was 

more impaired by the verbal dual task. When Experiment 4 used a relation-centered 

visual dual task, like the verbal dual task condition, relational category learning was more 

vulnerable to the visual dual task than was featural category learning. Taken together, the 

results suggest that in contrast to featural category learning, which may involve mainly 

non-verbal mechanisms, relational category learning appears to place greater demands on 

more explicit and attention-demanding verbal or verbally-related learning mechanisms. 
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FIGURES 

 

 

 

 

Figure 1.  Prototypical species for each category: “Fea” (left) and “Dav” species 
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Figure 2.  The subordinate-level condition in Experiment 1a. The left pair shows Fea 

species (basic-level) and Kei Fea (subordinate-level) and the right one shows Fea species 

and Cim Fea. 
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Figure 3.  The intermediate encoding condition in Experiment 1a. The left figures shows 

the pair of [0, 1, 1, 1] and [1, 0, 1, 1], and the right one shows the pair of [1, 1, 0, 1] and 

[1, 1, 1, 0].  
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Figure 4.  The basic baseline condition in Experiment 1a. The single bug belongs to the 

Fea species. 
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       Figure 5. Mean accuracy by study condition in Experiment 1a 
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Figure 6. Trials to criterion by study condition in Experiment 1a 
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Figure 7. Mean accuracy by transfer condition in Experiment 1a 
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         Figure 8. Mean accuracy by condition in Experiment 1a 
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Figure 9. The stimuli used in the pilot study (left) and in Experiment 1a (right) 
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               Figure 10. Mean accuracy by experiment 
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          Figure 11. Schematic of the task used in the pilot study 
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Figure 12. The prototype condition in Experiment 2. The bug in the left side is the 

prototype, and the right one is the exemplar. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fea 

Dav Wou Fea 

Kei Fea 

Cim Fea 

Bai Fea 



85 

 

 

 

 

 

Figure 13. The two different exemplars condition in Experiment 2. They belong to the 

Fea species in the basic-level and to Wou Fea and Bai Fea in the subordinate-level, 

respectively. 
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Figure 14. The two same exemplars condition in Experiment 2. Two bugs belong to the 

Fea species in the basic-level and Bai Fea in the subordinate-level. 
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Figure 15. The subordinate baseline condition and basic baseline condition in 

Experiment 2, respectively. 
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Figure 16. Mean accuracy by study condition in Experiment 2 
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      Figure 17. Mean accuracy by study condition in Experiment 2 
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Figure 18. Trials to criterion by study condition in Experiment 2 
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             Figure 19. Mean accuracy by transfer condition in Experiment 2 
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Figure 20. Mean accuracy by condition in Experiment 2 
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Figure 21. Three relevant properties in the featural condition in Experiment 3: Category 

A (above) and L (below) 
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Figure 22. Three relevant properties in the relational condition in Experiment 3: Category 

A (above) and L (below) 
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                 Figure 23. Experimental design by each condition in Experiment 3 
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Figure 24. Trials to criteion by category learning condition in Experiment 3 
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Figure 25. Response times by dual condition in Experiment 3 
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                            Figure 26. Trials to criterion by dual task in Experiment 4 
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        Figure 27. Response times by dual task in Experiment 4 
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