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ABSTRACT 
 
 

The quality of people’s lives depends on safe and reliable infrastructure. However, there exist 

various types of uncertainties that may influence performance of structures, which could cause 

unexpected failures. Therefore, it is important to quantify the risk of such failures through 

systematic treatment of uncertainties and make a risk-informed decision. As an effort to predict 

uncertain performance of structural elements based on experimental observations, the principle 

of Bayesian inference has been often used. In this study, the recently proposed Sparse Bayes 

method is reviewed and tested by use of an experimental database of the shear strengths of 

reinforced concrete beams without stirrups. The performance of the Sparse Bayes method is 

demonstrated through comparison with existing methods such as least-square method and 

penalized least-square method. The Sparse Bayes method is further developed to identify a few 

representative points in the parameter space by grouping the relevant vectors identified by the 

method using the k-means clustering algorithm. The study confirms that the Sparse Bayes 

method has wide applicability, ability to achieve an optimal fitting, and efficiency. Therefore, the 

method can potentially provide a useful tool to develop powerful probabilistic models for various 

problems based on experimental observations. 
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CHAPTER 1 

 
INTRODUCTION 

This study reviews the concepts of Sparse Bayesian learning and the relevance vector machine 

(Tipping 2001) and tests the method as a potential tool for developing strength models of 

structural elements based on experimental observations. The method is further developed to gain 

important insight about the given phenomenon, which may be useful for future engineering 

research and design practice. 

 

1.1 Motivation 

 

Nowadays various engineering communities recognize significant uncertainties in phenomenon 

and mathematical models, as well as their critical impacts on the actual performance of 

engineering systems. As an effort to estimate uncertain parameters in a mathematical model 

effectively using available experimental data, the principle of Bayesian inference has been 

studied by many researchers (Neal 1996, Berger 1985). In particular, theories of Bayesian 

inference were recently used to achieve optimal level of fitting during a regression analysis, i.e. 

avoiding over- and under-fitting (Tipping 2004). For example, Tipping (2004) introduced a 

sparsity concept to Bayesian inference to overcome computational challenges in full numerical 

integration calculations, which are needed to achieve the optimal level of fitting. In this study, 

the Sparse Bayesian method (Tipping 2001) is reviewed and used to develop strength models of 

reinforced concrete beams using an experimental database to test the applicability of the Sparse 

Bayes method to structural engineering problems and to explore further development of the 
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method to gain insight of a given phenomenon from experimental observations and to help 

decision-making process in engineering designs. 

 

1.2 Objectives and Scope   

 

The primary objective of this study is to test the Sparse Bayes methodology as a tool for 

developing statistical model of structural engineering phenomena. This study also aims at 

providing practical guidelines and decision frameworks for using the Sparse Bayes methodology 

in predicting strengths of structural elements and designing appropriately. A preliminary study is 

also performed to explore the possibility of using the Sparse Bayes methodology to gain 

important insights in civil engineering problems.  

 

1.3 Organization   

 

Following this introductory chapter, Chapter 2 provides an in-depth review on the Sparse Bayes 

methodology with focus on theories of Bayesian Inference. The chapter also describes the 

MATLAB® codes created by Mike Tipping for the Sparse Bayes methodology (Tipping 2009), 

which were used in this study. In Chapter 3, three different statistical methods – Least-Square, 

Penalized Least-Square, Bayesian Inference are reviewed and compared using the experimental 

database of the shear strengths of reinforced concrete beams with no stirrups (Reineck et al. 

2003), which was used by Song et al. (2010) for the development of another Bayesian inference 

methodology. The performance of the Sparse Bayes method is discussed in detail through this 

comparison. Chapter 4 describes the further analysis of the database introduced in previous 
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chapter using the Sparse Bayes methodology. Using the relevant vector concept, influential 

parameters and critical domains in the design space are identified for the shear strengths of 

reinforced beams, as by-products of the Sparse Bayes methodology. Finally, a summary of the 

major findings and suggestions for future study are presented in Chapter 5. 
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CHAPTER 2 

 
REVIEW OF SPARSE BAYES METHODOLOGY 

This chapter reviews the Sparse Bayes concept and the Sparse Bayes methodology for optimal 

statistical inference based on Tipping (2001). 

 

2.1  Sparse Bayesian Model 

 

Sparse Bayesian model (Tipping 2001) is a generalized “linear” regression model in which 

Bayesian inference is used with a specific prior over the parameters to give a sparsity. Herein, 

the term “linear” means the model is a linear function of general basis or kernel functions. 

When N observations are available, the inputs of the model, i.e. variables used to predict 

a target value in the model, are set up as X = {x1 x2 ... xN} and the corresponding target vectors 

are t={t1  t2  ... tN}T. The “model” y(x) is a linear function of M adjustable parameters w = {w1, 

w2, …, wM}, i.e. 

 
1

( ; ) ( )
M

m m
m

y w φ
=

=∑x w x   (2.1) 

where ( )mφ x  is a basis function of the model. The “prior” distribution, i.e. the distribution of the 

model parameter w before the objective information from the observations is incorporated during 

a Bayesian inference, is defined as follows:  

 1/2 1/2 2
1

1

1( | α ,...,α ) (2π) α exp α ω
2

M

M m m m
m

p −

=

⎡ ⎤⎧ ⎫= −⎨ ⎬⎢ ⎥⎩ ⎭⎣ ⎦
∏w   (2.2) 

where αm  is a hyperparameter representing the uncertainty in the estimated weight ,mw  

1,..., .m M=  These hyperparmeters control the inverse variance of each weight as shown in the 
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equation. However the model p(w|α1,…, αM) is still a Gaussian density function, which does not 

give a sparse model (Tipping 2004). So, hyperpriors are introduced over all  to find the basis 

terms whose weights   are peaked around zero.   

             When uniform scale priors are used for example, each hyperparameter controls the 

individual weight. Using such hyperpriors in the Bayesian inference, one identifies the weight 

terms whose posterior density concentrates at zero. The associated inputs can be considered 

irrelevant and can be removed from the linear model y(x;w) to achieve a sparse model. Non-zero 

weighed vectors are called ‘relevant’ vectors, which indicate the locations in the parameter 

domain relevant enough to have basis functions. This is the main feature of the Sparse Bayes 

mechanism. 

After a prior is defined as described above, the posterior distribution over 

hyperparameters   is obtained based on the observations t. The posterior distribution over 

weights is given as: 
2 2

2 ( | ,α,σ ) ( ,α,σ )( ,α,σ | )
( )

p pp
p

= t w ww t
t

 (2.3) 

To facilitate the calculation, the posterior distribution in (2.3) can be alternatively computed as 

follows (Tipping 2001). 
 

2 2 2( ,α,σ | ) ( | ,α,σ ) (α,σ | )p p p=w t w t t  (2.4) 

where  is the ‘weight posterior’ distribution. This posterior distribution defined 

over weights is Gaussian and calculated as follows:  
 

2
2

2

( | ,σ ) ( | α)( | ,α,σ )
( | α,σ )

p pp
p

= t w ww t
t

 (2.5) 

In detail, the Gaussian posterior distribution in (2.5) is given as 

αm

αm

αm

p(w | t,α,σ2 )
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where A is a diagonal matrix of hyperparameters, i.e. 1(α ,...,α )Mdiag=A andΦ  is a set of basis 

functions, i.e. Φ = [Φmn ]= [φm (xn )] .  

Once the posterior distribution is constructed, one way to estimate the parameters is to 

find the values that maximize the posterior distribution in (2.5). This is termed “maximum a 

posteriori” (MAP) estimation and considered as “short cut” because one concerns only about 

where the posterior distribution becomes maximum and ignores the variability and actual 

distribution of the unknown coefficients. 

In order to find the optimal level of fitting, the marginal likelihood is first calculated by 

integrating out the weight terms: 
 

( )

2 2

11/2/2 2 1 T T 2 1 T

( | α,σ ) ( | ,σ ) ( | α)

1                  =(2π) σ α exp α
2

N

p p p d

σ
−−− − −

=

⎧ ⎫+ ΦΦ − + ΦΦ⎨ ⎬
⎩ ⎭

∫t t w w w

I t I t
 (2.7) 

“Full Bayesian” approach aims to find  and  that maximize the marginal likelihood in (2.7), 

denoted by αMP  and 2σMP , respectively.  When  is “infinite” or very large, the uncertainty in 

the coefficient is negligible, so the corresponding basis function  is retained. If  does not 

reach infinity (or does not blow up),  basis function can be deleted or  is re-estimated. The 

following re-estimation formula is derived from differentiating 2log ( | α,σ )p t with respect to  

and  (Tipping 2001): 
 

2
2

2

γα  and (σ )
µ γ

new newi
i

i ii
N
−Φ

= =
−∑
t µ

 

γ 1 αi i ii= − Σ  

(2.8) 

α σ2

α i

φi α i

φi α i

α

σ2

 

( )

1/22 ( 1)/2 T 1

12 T 2 T

1( | ,α,σ ) (2π) exp ( µ) ( µ)
2

 where σ  and µ σ

Np −− + −

−− −

⎧ ⎫= Σ − − Σ −⎨ ⎬
⎩ ⎭

Σ = Φ Φ + = ΣΦ

w t w w

A t
 (2.6) 
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where   is a measure of well-determinedness of parameter w and its range is   

(Tipping 2001). This process is repeated until convergence. SparseBayes MATLAB® software 

package developed by Mike Tipping (Tipping 2009) can perform these complicated re-

estimations and were used for the numerical examples in this study.  

 

2.2 Summary of Learning Algorithm Procedure 

 

The inference algorithm of the Sparse Bayes method described in Section 2.1 is illustrated by a 

flow chart in Figure 2.1.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1. Learning Algorithm Procedure  

γ i γ i ∈ 0,1[ ]

   Initialize hyperparameter  and  

    Compute the posterior statistics to find  and  
 

 
   Add or Eliminate basis function,   

 
  Repeat the process until convergence  

 
Make a new prediction 
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The SparseBayesDemo MATLAB® code illustrates regression and classification models 

in one and two dimensions with user-chosen Gaussian or Bernoulli likelihood function models. 

Using a sparse subset of the possible basis functions, the data is derived from the generative 

model. At the MATLAB® prompt, user can choose to write one of two likelihoods functions, 

its dimension, and a noise. The example of Gaussian model with one dimension is written at the 

prompt such as ‘SparseBayesDemo(‘Gaussian’,1)’ and the graphical outcome is yielded as 

below: 

  

Figure 2.2. Graphical result of Gaussian model from SparseBayesDemo (Tipping 2009) 
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The result of Sparse Bayes gives six graphical outcomes which demonstrates the analysis 

made by Sparse Bayes MATLAB® code. Figure 2 is the example in which 100 data points are 

randomly generated. ‘Generated data’ graph shows all the data points and the relevant vectors 

are indicated on ‘Data and Predictor’ graph with circled dots. From ‘Inferred weights’ graph, one 

can see that 12 relevant vectors are chosen from Sparse Bayes algorithm, and the weight for each 

vector is shown as a straight line. The larger magnitude of the weight indicates higher correlation 

of the chosen vector with the predictive model. ‘Well-determinedness’ graph is the bar chart of 

the gamma value in (2.8) calculated for each relevant vector. The gamma value is in a range 

from zero to one and can be interpreted as a measure of how ‘well-determined’ its vector is by 

the data (MacKay 1992). If the parameter fits the data, the gamma value will be close to one. 

From the Sparse Bayes software by Mike Tipping, the analysis of model estimation became easy 

to visualize and understand the functionality for Sparse Bayesian models. 

 

2.3 Advantage of Sparse Bayes Methodology 

 

The Sparse Bayes methodology utilizes the marginalized likelihood, which allows us to make an 

optimal prediction on hyperparameters despite varying parameters and unknown validation data. 

While Bayesian inference itself requires a tedious integration procedure, Sparse Bayes 

methodology eventually sets many weights to zero and predict the model in an efficient way, i.e. 

produces a model with fewer number of relatively important basis functions (“relevant vectors”). 

Sparsity in the estimated function y(x) reduces the complexity and increases the speed in 

calculations for predictions. Moreover, Sparse Bayesian methodology gives an insight regarding 

important parameters in the models and important regions in the parameter space, which will be 
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further investigated in Chapter 4. In next chapter, three different inference methodologies are 

applied to a dataset for the purposes of test and comparison. 
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CHAPTER 3 
 
 

TESTS AND APPLICATIONS OF SPARSE BAYES USING EXPERIMENTAL DATA 

 

In this chapter, the performance of the Sparse Bayes method is tested and compared with those 

by traditional inference methods such as least-square method and penalized least-square method 

using an experimental database of the shear strengths of reinforced concrete beams. 

  

3.1 Experimental Database of Shear Strengths of Reinforced Concrete Beams 

 

In this chapter, the experimental database by Reineck et al. (2003) is used to test the Sparse 

Bayes method. Reineck et al. (2003) developed a large database for the shear strengths of 

reinforced concrete (RC) beams without shear reinforcement. With a broad scope of structural 

parameters available, shear strengths are observed from 439 RC specimens. From the original 

database by Reineck et al. (2003), some data points such as light-weight concrete and the tests in 

which maximum aggregate size is unavailable are removed (Song et al. 2010). As a result, 398 

tests are used for this study. 

 Figure 3.1, adopted from Song et al. (2010), shows the distributions of parameters 

influencing the shear strength over the reduced database. Around 300 tests members have 

rectangular cross-sections while the others have T-shaped beams. It is also observed that 230 

beams in the database have compressive strength of a concrete lower than 40 MPa, and most of 

the specimens have the effective depth between 200 to 300 mm. The figure gives a 

comprehensive understanding of the shear strengths distribution over a wide range of parameter 

values. Using this database, probabilistic shear strengths models are developed by three different 
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methodologies: Sparse Bayes method, least-square method and penalized least-square method. 

First, these methods are briefly reviewed in the following sections. 

 

 

Figure 3.1. Distributions of parameter values of RC beams in shear database (Song et al., 2010) 

 

3.2  Least-Square Methodology 

 

The Least-Square (LS) method is one of the most basic approaches in estimating model 

parameters based on given data. From a linear model ( ; )y x w in (2.1), the least-square method 

finds the values of w that minimize the error measure  

which is proportional to the sum of the squared prediction errors of the model. The weights 

giving the least square error are derived as 

 
88

21

129

98

135

29

68

17

214

233

162

121

53

26

166

132

26

87

39

112

94

25

30

81

13

11

10

35

21

37

13

14

61

12

15

10

103

25

29

50

3

13

26

37 4
17 149 230 300 341

68 234 30131 341

55 80 162 315265 341
2.4

188135 33131 341

10 20 30 40 50 60 70 80 100 120f'c (MPa) :
N of Tests :

sum : 243 258 287
d (mm) :

N of Tests :
sum :

10 300 400 600 900 2000

264
ρ  (%) :

N of Tests :
sum :

0.1 0.75 1.0 1.25 1.5 2.0 3.0 4.0 7.0

10129
a/d :

N of Tests :
sum :

3.0 3.5 4.0 5.0 6.0 8.0

282

200

4

98 331 341

Es/Ec :
N of Tests :

sum :

6 8 10 12

219
0.005

129 330 341

da/d :
N of Tests :

sum :

0.05 0.1 0.15 0.3

291

0.7

341

d/h :
N of Tests :

sum :

0.9 1.0

0.1

88 328 341

bw/h :
N of Tests :

sum :

0.5 1.0 2.0 4.0

302

0.8

21 254

2

1 1

1( ) ( )
2

N M

D n m m n
n m

E t w φ
= =

⎡ ⎤= −⎢ ⎥⎣ ⎦
∑ ∑w x  (3.1) 



13 
 

( ) 1T T
LS

−
= Φ Φ Φw t  (3.2) 

  

The LS method is straightforward to use, but the method has a risk of “over-fitting” the model 

with the training data (Tipping 2004). 

 

3.3 Penalized Least-Square Methodology 

 

To reduce the risk of developing an over-fitted model, in the Penalized Least-Square (PLS) 

method, one adds a weight penalty term to the error measure. The error measure of the PLS 

method is thus 
ˆ( ) ( ) λ ( )D wE E E= +w w w  (3.3) 

where ( )DE w  is the error measure in (3.1) used for the LS method, λ  is a regularization 

parameter introduced to achieve an optimal level of fitting, and  ( )wE w  represents the scale of 

the weights, i.e. 

2

1

1( )
2

M

w m
m

E w
=

= ∑w  (3.4) 

From (3.3) and (3.4), it is clear that the larger value of λ  is used, the smaller weight values will 

be achieved during the minimization, which leads to a smooth and under-fitted model. The 

regularization parameter is often determined through validation using additional dataset that is 

not used for training purpose. 

 

3.4 Comparison of Three Methodologies 
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Since the PLS method requires a separate dataset for determining the regularization parameter, 

i.e. validation dataset, the shear strength database is divided into three different sets; a training 

set (for model construction), a validation set (for determining λ), and a test dataset (for 

measuring the error). In this study, one eighth of the entire dataset of 398 shear strength data is 

used as the training set while another one eighth is used as a validation set. The remaining data in 

the set are used for testing purpose. Using a random number generator in MATLAB®, these 

three sets are arbitrarily determined. As a result, approximately fifty data are in a group of 

training and validation sets respectively, and around three hundred data are in a test set. 

 

 

Figure 3.2. Comparison of three different methodologies 
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The markers in Figure 3.2 show the sums of the squared errors by LS, PLS and SB 

methods calculated for the test data set. Since PLS requires an additional validation data set 

while the other two methods not, for a fair comparison, LS and SB methods used both training 

and validation sets for the training purpose. The curve in the plot is the performance of the PLS 

model when the regularization parameter is arbitrarily given instead of being determined by 

minimization of the error in (3.3). 

The LS shows the largest sum of squared errors for the test set because the model is over-

fitted with the set used for training, and thus fails to represent the general shear strength 

mechanism shown in the bigger data set. The PLS model with the optimal λ value found from 

the validation data set performs significantly better than the LS model. This result indicates that 

the validation set helps reduce the risk of over-fitting. Finally, the plot shows that the Sparse 

Bayes methodology further reduces the error in the test set even though the same number of data 

points is used for the model construction and no efforts for validation were needed. The test, 

validation, and training sets are randomly generated for numerous times to check the reliability 

of the results. And the SB methodology consistently shows the best result during the process and 

similar trends are shown from the three methodologies with randomly selected sets. This result 

shows that the SB method has a good potential as an efficient and accurate statistical inference 

tool. Future research is needed to explore the full potential of the method in developing statistical 

models for various civil engineering applications. 
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CHAPTER 4 
 
 

FURTHER DEVELOPMENT OF SPARSE BAYES METHODOLOGY 

 
 

In this chapter, Sparse Bayesian methodology is applied to the database demonstrated in Chapter 

2. Influential parameters are distinguished in determining the shear strengths of the reinforced 

beams and further analysis was made using the relevant vector concept.  

 

4.1 Review of Existing Shear Strength Models 

 

Song et al. (2010) used the shear strengths experimental database by Reineck et al. (2003) to 

develop probabilistic shear strength models using a Bayesian methodology (Gardoni et al. 2002). 

The size of the database was reduced to 398 to exclude the data in which the maximum 

aggregate size is not available. Song et al. (2010) discussed shear failure mechanisms in 

reinforced concrete beams to identify critical parameters influencing shear strengths of RC 

members without transverse reinforcement. To this end, existing shear strength models were also 

reviewed. Table 1, adopted from Song et al. (2010), summarizes existing shear strength models 

reviewed and further developed based on the database in their study. Most shear design codes 

use empirical models to predict shear strengths as seen in Table 4.1. Most of the shear strength 

models share six parameters { ,ρ, , , / , }w cb h d a d f ′ , which are critical parameters that influence the 

shear strengths of reinforced concrete beams without stirrups. 
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Model Equation 

ACI 11-3 
(ACI 2002) dbfV wcc ′=

6
1  

ACI 11-5 
(ACI 2002) 

db
M
dV

fV w
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u
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⎜⎜⎝
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a
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+
+
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Notations: cV (N): shear strength; cf ′ (MPa): concrete compressive strength; wb (mm): web 
width; d (mm): effective depth; dbA ws /=ρ : longitudinal reinforcement ratio in which  sA  is 
the amount (area) of longitudinal reinforcement; uV (N): factored shear force; uM (N⋅mm): 
factored moment; 5100.2 ×=sE  (MPa): elastic modulus of reinforcement; cc fE ′= 4700  
(MPa): elastic modulus of concrete; a  (mm): shear span length; ad  (mm): the maximum 
aggregate size; and yf  (MPa): the yielding strength of the longitudinal reinforcement. 

Table 4.1. Existing shear strength models (Song et al. 2010) 
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To further investigate the influences of these parameters, in this study, probabilistic shear 

strength models are developed using the Sparse Bayes methodology. The same reduced database 

by Reineck et al (2003) and Sparse Bayes MATLAB® code (Tipping 2009) are used for the 

model development. Various combinations of the six critical parameters are used as model 

parameters. 

  

4.2 Parameters Influencing Shear Strength  and their Application to Sparse Bayes 

 

Sparse Bayes is used to estimate the number of relevant vectors, correlations and errors in 

calculating the main function of shear strength for nine combinations of the six critical model 

parameters. The natural logarithm is applied to each parameter value before the model 

development to achieve homoscedasticity of the model (Song et al. 2010). Table 4.2 shows nine 

possible combinations of the six influencing parameters considered in this study. Table 4.3 

shows the results of the model construction using the Sparse Bayes method in terms of the 

number of relevant vectors, sum of the squared errors, maximum error, and covariance of the 

errors. 
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 wb d⋅  cf ′  ρ  /a d  /s cE E  /dd d  /d h  

Case 1 o o o x x x x 

Case 2 o o o o x x x 

Case 3 o o o o o x x 

Case 4 o o o o x o x 

Case 5 o o o o x x o 

Case 6 o o o o o o x 

Case 7 o o o o o x o 

Case 8 o o o o x o o 

Case 9 o o o o o o o 

 
Table 4.2. Nine combinations of critical parameters 

 

 Combinations of Parameters 
 # of 

Relevant 
Vectors 

Sum of 
Squared 
Errors 

Maximum 
Error 

c.o.v. of 
Errors 

Case 1 ,  ,  ρw cb d f ′  88 11.872 0.402 0.196 

Case 2 ,  ,  ρ, /w cb d f a d′  102 12.983 0.642 0.209 

Case 3 ,  ,  ρ, / ,  /w c s cb d f a d E E′  96 12.983 0.458 0.207 

Case 4 ,  ,  ρ, / ,  /w c ab d f a d d d′  113 16.728 1.083 0.270 

Case 5 ,  ,  ρ, / ,  /w cb d f a d d h′  101 9.289 0.269 0.176 

Case 6 ,  ,  ρ, / ,  / ,  /w c s c ab d f a d E E d d′  118 13.977 0.670 0.246 

Case 7 ,  ,  ρ, / ,  / ,  /w c s cb d f a d E E d h′  92 10.823 0.271 0.206 

Case 8 ,  ,  ρ, / ,  / ,  /w c ab d f a d d h d d′  114 11.528 0.623 0.225 

Case 9 ,  ,  ρ, / ,  / ,  / ,  /w c s c ab d f a d E E d d d h′  107 12.918 0.575 0.235 

Table 4.3. Results of development of probabilistic strength models by Sparse Bayes method 

 

4.3 Analysis of Results 

 

From the results in Table 4.3, one can identify which combinations of influencing parameters are 

the most reasonable choices by comparing the errors and the number of relevant vectors chosen 

from the Sparse Bayes method. In terms of the number of relevant vectors, Case 1, Case 3 and 

Case 7 are showing better results. Requiring fewer number of relevant vector means the model 
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captures relatively important domains in the parameter space more effectively. Case 5 and Case 

7 show superior results in terms of sum of the squared errors, which indicates that the models 

have smaller errors in average. These two cases demonstrate smaller maximum errors as well, 

which means the models do not have subdomain where the errors are relatively extreme. The 

coefficients of variation (c.o.v.) of errors are similar for all cases. Therefore, Case 5, i.e. strength 

models defined in terms of   {bwd ,  ′fc ,  ρ, a / d ,  d / h} , stands out as the best combination of critical 

parameters. 

Additionally, it is observed that the number of parameters used in the Sparse Bayes 

method does not have a strong correlation with the number of relevant vectors. The relevant 

vectors chosen out of 398 data points are in a range between eighty and a hundred. Too small 

number of relevant vectors can be risky and less reliable. Too many relevant vectors may not be 

helpful in identifying important subdomains using the Sparse Bayes methodology. Therefore, it 

is desirable to choose models that have reasonable numbers of relevant vectors in such an 

investigation. In the next section, the identified relevant vectors are further investigated to gain 

insight of the shear strengths of reinforced concrete beams.  

 

4.4 Further Investigation of Identified Relevant Vectors 

 

First, the relevant vectors identified by the Sparse Bayes method are grouped by use of the k-

means clustering algorithm in order to discover the patterns and correlations of relatively 

important subdomains in the parameter space. 

The k-means algorithm is one of the popular unsupervised learning algorithms 

(MacQueen 1967). K-means classify a given data set for a pre-determined number of clusters, k. 
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The algorithm finds clusters such that the centroids of the identified clusters are placed far away 

from each other. Figure 4.1 illustrates a typical k-means algorithm. 
 

 

 

Figure 4.1. Example of k-clustering Algorithm 

 

This algorithm aims at minimizing the following objective function, which is the sum of 

the squared distance between the center of the cluster and the data point in the cluster: 
 

2

1 1

jnk
j
i j

j i
F x c

= =

= −∑∑  (4.1) 

where xi
j  is the i-th data point in the j-th cluster, i=1,…,nj, and j = 1,…,k, and cj  is the centroid 

of the j-th cluster with nj data points. The k-means algorithm is simple and easy, but one needs to 

choose the number of clusters before the clustering. 

 The k-means clustering is performed for 101 relevant vectors from Case 5. The relevant 

vectors identified by the Sparse Bayes using the combination of five parameters, 

 1. Define initial centroids in k clusters. 

  2. Assign data to the closest centroid.  
 

 
 3. Recalculate the positions of the k centroids.   

 
 4. Repeat step 2 &3 until the k centroids no longer move. 
process until convergence  
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,  ,  ρ, / ,  /w cb d f a d d h′ , i.e. Case 5 are used as an example. As a reasonable number of clusters, k, 

the study tries 4, 5 and 6. The coordinates at the identified centroids, and their mean, variance 

and coefficient of variation are summarized in the tables below. The order of the c.o.v.’s (from 

the highest to the lowest) is also shown to compare that in which parameter the clusters are the 

most well-separated. 
 

k=4 wb d  cf ′  ρ  /a d  /d h  

Cluster 1 0.579 0.885 0.560 0.650 0.428 
Cluster 2 0.627 0.885 0.117 0.568 0.364 
Cluster 3 0.776 0.875 0.430 0.592 0.294 
Cluster 4 0.507 0.966 0.854 0.607 0.895 

Mean 0.622 0.903 0.490 0.604 0.495 
Variance 0.114 0.0427 0.306 0.034 0.272 

c.o.v. 0.183 0.0473 0.623 0.057 0.549 
c.o.v. order 

(high to low) 3 5 1 4 2 

 

Table 4.4. Results of k-means clustering of relevant vectors (k=4) 

 

k=5 wb d  cf ′  ρ  /a d  /d h  

Cluster 1 0.842 0.853 0.874 0.567 0.265 
Cluster 2 0.578 0.883 0.583 0.644 0.429 
Cluster 3 0.507 0.966 0.854 0.607 0.895 
Cluster 4 0.756 0.892 0.246 0.584 0.301 
Cluster 5 0.603 0.881 0.170 0.590 0.381 

Mean 0.657 0.895 0.545 0.598 0.454 
Variance 0.137 0.0425 0.330 0.029 0.255 

c.o.v. 0.209 0.0475 0.605 0.048 0.561 
c.o.v. order 

(high to low) 3 5 1 4 2 

 

Table 4.5. Results of k-means clustering of relevant vectors (k=5) 
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k=6 wb d  cf ′  ρ  /a d  /d h  

Cluster 1 0.756 0.892 0.246 0.584 0.301 
Cluster 2 0.638 0.864 0.436 0.787 0.371 
Cluster 3 0.558 0.891 0.617 0.582 0.443 
Cluster 4 0.507 0.966 0.854 0.607 0.895 
Cluster 5 0.842 0.853 0.874 0.567 0.265 
Cluster 6 0.595 0.883 0.141 0.565 0.390 

Mean 0.649 0.891 0.528 0.615 0.444 
Variance 0.127 0.0399 0.307 0.084 0.230 

c.o.v. 0.195 0.0448 0.582 0.137 0.517 
c.o.v. order 

(high to low) 3 5 1 4 2 

Table 4.6. Results of k-means clustering of relevant vectors (k=6) 

 

It is observed that the c.o.v.’s of the centroid coordinates are not sensitive to the chosen 

number of clusters, and thus for the tested range, i.e. 4, 5 and 6, the optimal number of clusters 

needs to be determined based on the dissimilarities of the cases represented by the centroids in 

terms of their shear failure mechanisms. It is also noted that the order of the c.o.v.’s between the 

parameters is consistent while ρ , the longitudinal reinforcement ratio stays the highest. This 

implies that the reinforcement ratio is the most influential parameter that separates the clusters 

and thus considered as a relatively important parameter to be considered during a parametric 

study. 

 

4.5 Observations 

 

With chosen set of combinations of five parameters   {bwd ,  ′fc ,  ρ, a / d ,  d / h}  from previous 

section, two parameters are selectively chosen and drawn in a scattered graph. Each color 
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represents a different cluster, and the centroid of each cluster is marked as an asterisk. Below is a 

graph of the reinforcement ratio, ρ  in y-axis with four other parameters in x-axis.  

 

 

Figure 4.2. Distribution of clusters along ρ and four other parameters (natural logarithms applied 

to all parameters) 

 

From Figure 4.2, it is distinguishable that five clusters are clearly distributed along the 

axis of ρ . This graphical result proves that the reinforcement ratio, ρ  is an influential parameter 

that separates the clusters well. The second highest coefficient of variance during a parametric 

study in Section 4.4 is /d h . Therefore a graph of /d h  in y-axis with three parameters, 

  bwd ,  ′fc ,  a / d , in x-axis is shown in Figure 4.3. Unlike Figure 4.2, Figure 4.3 does not show a 

good separation between clusters along the axis of /d h . 
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Figure 4.3. Distribution of clusters along /d h  and three other parameters (natural logarithm 

applied to all parameters) 
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CHAPTER 5 

 
CONCLUSIONS 

This study investigated the Sparse Bayes methodology by Mike Tipping and tested the method as 

a statistical inference tool for civil engineering data. The method was further developed to 

identify important parameters and subdomains in the parameter space.  

There are many parameters that contribute to the shear strengths of reinforced concrete 

beams. Among those variables, the combination of   {bwd ,  ′fc ,  ρ, a / d ,  d / h}  was identified as the 

most influential set that can predict the shear strength model with Sparse Bayes methodology. 

From extensive amount of given data, only one fourth was chosen to develop the model without  

additional validation dataset. The model was able to predict the shear strength model accurately 

for the remaining test data set. This is highly effective way of predicting a phenomenon and the 

Sparse Bayes methodology was proved to be a useful tool for developing statistical model for 

structural engineering problems. 

Furthermore, the further development using the k-means algorithm revealed that the most 

influential parameter in the shear strength model of reinforced concrete beam is the 

reinforcement ratio, which gives out the highest correlation of coefficient when k-means 

clustering algorithm was performed, and well separated the identified clusters. 

This study shows the applicability of using the Sparse Bayes method to structural 

engineering problems and gives an insight to aid in decision-making process for future 

engineering research and projects.  
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