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ABSTRACT

Understanding and modeling users’ intent in search queries is an important topic in studying search

engine systems. Good understanding of search intent is required in order to achieve better search

accuracy and better user experience. In this thesis work, I identify and study three major problems in

the subject: ambiguous search intent, ineffective query formulation and vague relevance criteria. To

systematically study these problems, the thesis consists of three parts. In the first part, I study search

intent ambiguity in search engine queries and propose a click pattern-based method that captures

ambiguous search intent based on behavioral difference rather than semantic difference. Analysis

shows that the proposed method is more accurate and robust in measuring query ambiguity. In

the second part, I study how to provide query formulation support to facilitate users in expressing

search intent. Query completion and correction, and syntactic query reformulation are proposed and

studied in this part. Experiments show that the proposed query formulation support methods can

help users formulate more effective queries and alleviate search difficulty. In the third part, I study

how to model search intent so that we can gain insights about users’ behaviors and leverage the

knowledge to improve search engines. Two topics are studied in this part: modeling search intent

with data level representation and discovering coordinated shopping intent in product search. It is

shown that the proposed methods can not only discover meaningful user intent but also improve

search and other related applications. The proposed models and algorithms in the thesis are general

and can be applied to improve search accuracy in potentially many different search engines. As a

systematic study on intent modeling and automatic query reformulation in search engine systems,

this thesis work also provides a road map to future exploration on intent understanding and analysis.

ii



ACKNOWLEDGMENTS

I want to express my sincere gratitude to my advisor Professor ChengXiang Zhai, who supported

and guided me through my Ph.D study. His knowledge, vision and passion in academic has always

inspired me to pursue my research to the full extent. He offered invaluable advices to my work. This

thesis would not have been possible without his help. He is also kind, patient and encouraging to

me. His way of advising has made it possible for me to work and improve myself more effectively.

From him I have learned not only the knowledge, but also the mindset to become an independent

researcher.

I would also like to thank my doctoral committee members, Professor Jiawei Han, Professor

Dan Roth and Doctor Emre Kiciman, for their valuable guidance on my study and research, as well

as constructive suggestions on this dissertation.

I owe gratitude to my colleagues and friends, Yanen Li, Rui Li, Paul Hsu, Yue Lu, Hongning

Wang, Yunliang Jiang and Mianwei Zhou. They offer valuable help to my research. I also want to

thank all my colleagues in Database and Information System (DAIS) group, and all my friends in

UIUC.

I am deeply indebted to my father Yunhai Duan and my mother Yaqin Han. Without their love

and support, none of my achievements is possible. Last but not least, I am grateful to my wife Zhen

Wu and my daughter Emma Duan for their love and care, and for the happiness they bring into my

life.

iii



To the human race.

iv



TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

CHAPTER 2 RELATED WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1 Search Intent Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Supporting Query Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Intent Modeling in Structured Entity Retrieval . . . . . . . . . . . . . . . . . . . . 10

PART I Modeling Ambiguous Search Intent . . . . . . . . . . . . . . . . . . . . . . . . 13

CHAPTER 3 MODELING AMBIGUOUS INTENT WITH CLICK PATTERNS . . . . . 14
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Click Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.2 Modeling and Identifying Click Patterns . . . . . . . . . . . . . . . . . . . 16
3.2.3 Exploring Click Patterns in Search Logs . . . . . . . . . . . . . . . . . . . 17

3.3 Click Patterns and Query Ambiguity . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3.1 Pattern Entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3.2 Properties of Ambiguity Metrics . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 Classifying Ambiguous Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4.1 Problem Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4.2 Classification Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.4.3 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.5 Click Patterns and Query Recommendations . . . . . . . . . . . . . . . . . . . . . 28
3.5.1 Problem Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.5.2 Query Recommendation Results . . . . . . . . . . . . . . . . . . . . . . . 30
3.5.3 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

PART II Supporting Query Formulation . . . . . . . . . . . . . . . . . . . . . . . . . 32

CHAPTER 4 QUERY COMPLETION AND CORRECTION . . . . . . . . . . . . . . . . 33
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3 Transformation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

v



4.3.1 Model Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.2 Model Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3.3 Model Smoothing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3.4 Mixture Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3.5 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.4 Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.4.1 Trie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.4.2 A* Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.4.3 Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4.4 Thresholding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.5 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.5.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.5.2 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.5.3 Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

CHAPTER 5 QUERY REFORMULATION WITH SYNTACTIC OPERATORS . . . . . . 55
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2 Syntactic Operators for Improving Search Results . . . . . . . . . . . . . . . . . . 58
5.3 Automatic Reformulation with Syntactic Operators . . . . . . . . . . . . . . . . . 59

5.3.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.3.2 Combining Operators in Prediction . . . . . . . . . . . . . . . . . . . . . 63

5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.4.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.4.2 Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.4.3 Cases Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

PART III Deep Intent Modeling for Structured Entity Retrieval . . . . . . . . . . . . 68

CHAPTER 6 MODELING QUERY INTENT WITH ENTITY STRUCTURES . . . . . . 69
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.2 Probabilistic Query Model for Ranking Product Entity . . . . . . . . . . . . . . . 72

6.2.1 Probabilistic Entity Ranking Based on Query Generation . . . . . . . . . . 73
6.2.2 Model Estimation Based on Entity Specifications . . . . . . . . . . . . . . 77
6.2.3 Improve Estimation by Leveraging Associated Text Data . . . . . . . . . . 79
6.2.4 A Mixture Model of Review Text Data . . . . . . . . . . . . . . . . . . . 79
6.2.5 Maximum a Posterior (MAP) Estimation of the Mixture Model . . . . . . 81
6.2.6 Smoothing and Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.2.7 Indexing and Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.3.1 Datasets and Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . 85
6.3.2 Experiment Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
6.3.3 Search Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.4 Other Applications Using the Probabilistic Query Model . . . . . . . . . . . . . . 90

vi



6.4.1 Facet Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.4.2 Query Independent Facet Generation . . . . . . . . . . . . . . . . . . . . 92
6.4.3 Query Specific Facet Generation . . . . . . . . . . . . . . . . . . . . . . . 93
6.4.4 Review Annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

CHAPTER 7 DISCOVERING COORDINATED SHOPPING INTENT IN PRODUCT
SEARCH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7.2 Discovering Coordinated Shopping Intent in Product Search . . . . . . . . . . . . 98

7.2.1 Topic Modeling Approach Adapted for Intent Discovery . . . . . . . . . . 100
7.2.2 Coordinated Representation of Shopping Intent in Product Search . . . . . 102
7.2.3 Joint Mixture Model for Discovering Shopping Intent . . . . . . . . . . . . 103
7.2.4 Model Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
7.2.5 Combining Similar Intent Models . . . . . . . . . . . . . . . . . . . . . . 105

7.3 Discovered Shopping Intent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.4.1 Intent-Oriented Query Ambiguity Analysis . . . . . . . . . . . . . . . . . 111
7.4.2 Improving Product Search . . . . . . . . . . . . . . . . . . . . . . . . . . 114
7.4.3 Improving Product Recommendation . . . . . . . . . . . . . . . . . . . . 116

7.5 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

CHAPTER 8 SUMMARY AND FUTURE DIRECTIONS . . . . . . . . . . . . . . . . . 120
8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
8.2 Discussions and Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . 123

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

vii



CHAPTER 1

INTRODUCTION

Search engine systems exist everywhere in the world of data. As an important tool for information

access, search engine systems are built on top of various data sources, including unstructured text

data as well as semi-structured/structured data. In all the search engine systems, the utility of

a system is directly affected and largely determined by its ability to understand a user’s search

intent. Good understanding of search intent usually leads to better search accuracy and better user

experience.

However, search intent is a complicated issue. Accurate understanding and modeling search

intents is difficult in many ways.

Unclear/Ambiguous Intent. First, it is often that a user does not have a clear search intent.

This is especially true for exploratory search, where the user doesn’t have a fixed goal. In this case,

a user’s query is only a rough hint about what exactly is interesting to the user.

Ineffective Query Formulation. Second, even when a user’s information need is clear, there

are at least two reasons why a user may not be able to describe the information need (query intent)

very clearly. First, there is usually a vocabulary gap between the user and the documents, making it

difficult for the user to use the right words for the query. Second, the user may not realize that there

are many distracting documents in the collection, and additional constraints on top of a keyword

query may be needed (e.g., two words should occur next to each other) in order to retrieve some

particular content.

Vague Relevance Criteria. Finally, even when a user can describe an information need clearly,

the query by itself can only convey a vague criteria for relevance matching, as there is typically

difference in intent and data representation. Therefore, it is still challenging to obtain a deep level of

representation of intent that allows us to easily match with the relevant data (i.e., obtain a document-

level representation of intent).
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In this work, I propose to tackle these challenges in intent modeling and exploit search logs

to help understanding user intent. I will further leverage the understanding of intent to improve

retrieval accuracy through query reformulation. Specifically, I will study the following topics:

• Modeling ambiguous search intent. People issuing the same query may target very differ-

ent information. Ambiguity of search intents exists ubiquitously in search engine systems.

Understanding such ambiguity is important for intent modeling and will largely benefit the

search experience. Traditional methods in ambiguity analysis assumes that each clicked re-

sult represents an unique intent. However, there are many search tasks, such as comparison

shopping and research survey, where a user’s intent is to explore many documents. In these

cases, the simple assumption of a one-to-one correspondence between clicked documents and

user intent breaks down. In this work, I will study the modeling of search intents from the per-

spective of behavior analysis. Specifically, the notion of “click pattern” is proposed to serve

as the fundamental unit for intent analysis. Click patterns can be effectively discovered by

analyzing user behavior in click-through logs. The model will lead to a better understanding

and a more accurate measurement of ambiguity in search intent.

• Supporting Query Formulation.

– Query completion and correction. One major difficulty that users encounter in ex-

pressing their search intent is the vocabulary gap between the users and the data. Due

to the vocabulary gap it is difficult for end users to formulate effective queries based

on their search intents. In this work, I will study query completion and correction to

help users clarify their search intents. The idea is to provide real time feedback to the

user while the query is being entered. This way, by detecting the most likely intent

based on active input of the user, we can help the user complete and refine their search

intent in real time. Consider a user entered a keyword “schwarzenegger” to the search

interface, if we can infer that the most possible targeted query is “shwartzeneger movie

2013”, it can provide the query in a drop down list so that the user can directly enter

the complete query (by selecting using the arrow keys or the pointing devices) without

typing in the rest. To alleviate the problem of vocabulary gap, we further consider the

cases where users may not be able to spell correctly. For instance, “schwarzenegger”

2



can be misspelled as “shwartzeneger” and the system should still provide the sugges-

tion of “shwartzeneger movie 2013” as the most possible intent query. To achieve these

goals, I will study the modeling of similarity between search intents. A generative joint

sequence model will be adapted for the problem. Complex similarity models will be

estimated and studied. Efficient search algorithms will also be studied for finding the

most possible query completion and correction based on inferred search intent from a

(partial) user query.

– Query reformulation with syntactic operators. Although the use of keyword query

is prevailing in IR systems, it has not been well understood whether it is sufficient for

expressing search intents. Indeed, modern search engines support a range of advanced

syntax beyond keyword queries. These syntax are designed to further clarify the users’

search intents by imposing certain constraints on one or more keywords. For instance,

the query “change “default java” +unix” states that the phrase “default java” must be

matched as a phrase rather than as separate keywords, and additionally the keyword

“unix” must be matched. Although they are both intended for the same information, the

lightly modified query with the syntactic operators (quotation mark for phrase match

and plus sign for necessity) turned out to more effective in retrieving the relevant in-

formation than the plain keyword query on major search engines. The lack of such

semantic constraints in keyword query makes it insufficient to express certain search

intents. In this work, I will systematically study the advantage of query syntax in search

intent expression. I will also study the automatic reformulation of search queries with

syntactic operators based on the inferred search intents. The problem will be casted into

a supervised learning to rank problem and a set of effective features will be proposed

and studied.

• Deep intent understanding/modeling in structured entity retrieval. Even if search intent

can be clearly conveyed in query, it is still challenging to obtain a deep level of intent repre-

sentation which matches with the document representation in the data. Such a representation

is usually critical in relevance matching because it determines the relevance criteria. Under-

standing and modeling of deep intent representation is, however, difficult due to the various

types of search intent and document representation.

3



On the other hand, structured entity retrieval, an emerging and important issue in information

retrieval, is of particular importance in e-commerce, medical information system and many

other search systems. The difference in data representation (structured data of product entities

vs. unstructured text of Web documents) raises challenges as well as new opportunities in

intent modeling. In this work, I use structured entity retrieval as a platform for extending

my study on deep intent understanding and modeling. Particularly, I study the following two

topics.

– Modeling query intents with entity structures for product search. In the scenario

of product search, the objects to be retrieved are structured entities defined by a set of

attributes and values. For example, products are defined by their specifications. Each

specification consists of a name and a value, which can be either numeric or categorical.

For instance, a laptop can be represented by its brand, cpu speed, screen size, etc. In the

scenario of product search, a user’s search intent is strongly tied with the specifications

of products. However, the query language users use to describe their search intent is

usually in an unstructured text format. Because of such difference, it is necessary to

obtain a deep level of representation of search intent with the entity structure so that we

can understand what users are shopping for given the vague relevance criteria conveyed

in the user query. In this work, I study the problem of intent matching between user

query and product information in the form of probabilistic models for product search. I

show how this can improve the accuracy of product search as well as benefit important

related applications such as automatic facet generation.

– Discovering coordinated shopping intent in product search In the previous part of

work, I study the problem of query intent modeling in product search by matching be-

tween user queries and structured product information. Although the proposed method

is effective for improving the accuracy of entity retrieval, it does not provide much in-

sight in understanding user intent as it analyzes intent on a per query basis. In reality,

user intent is a more complicated issue, especially in product entity search. Different

users may use the same query to express different intent, or use different queries to

express the same intent. To capture this, we need to model search intent at a higher con-

ceptual level. This calls for an explicit and accurate representation of search intent. In
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this part of work, I propose a novel coordinated intent representation, where each intent

is collectively represented by query terms and product attributes. A joint mixture model

is then proposed to automatically discover such intent by analyzing search engagement

logs. I show that the proposed method can effectively discover distinct, coherent and

meaningful intent models, and with the interpretable coordinated intent representation,

we can gain insights into the user shopping preferences. The discovered intent models

can not only be directly incorporated in product search to improve search accuracy, but

also be leveraged in search related applications such as query ambiguity analysis, prod-

uct recommendation and search result diversification and personalization to promote the

overall search experience.

Thesis Organization: The rest of the thesis is organized as follows. Chapter 2 surveys the

related literature. Chapter 3-7 are divided into three parts. In Part I (Chapter 3), I present one

published work on modeling ambiguous search intent. In Part II (Chapter 4 and Chapter 5), I

present two published work on supporting query formulation. In Part III (Chapter 6 and Chapter 7),

I present one published work and one work in submission on understanding and modeling of deep

search intent. Finally, the thesis work is summarized in Chapter 8.
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CHAPTER 2

RELATED WORK

2.1 Search Intent Analysis

User intent/query intent analysis has been the subject of much research in recent years, especially

for the purposes of search personalization and vertical search engine selection.

Understanding user’s intent in search queries helps identify queries that require more personal-

ized search results. Song et al. proposed to summarize queries as in three categories: ambiguous

query, broad query and clear query [64]. They found that through topical categorization, the three

types of queries are to a certain extent distinguishable according to the topical distribution. They

classified the queries into these categories and estimated that 16% of queries are ambiguous in

sampled logs. Teevan et al. studied how to automatically identify ambiguous queries [69]. They

proposed “potential for personalization curve” for measuring the ambiguity of search queries. They

measure the ability of one ranking list of search results satisfying multiple users. They show that

the implicit measure (using click-through data) correlates well with the explicit measure. They also

show that click entropy correlates well with “potential for personalization”. Mei and Church stud-

ied the difficulty of search and personalization from an information theory perspective [52]. They

used conditional entropy of URLs as an indicator of search difficulty, and compared the general

search difficulty to the search difficulty when personalized with user’s IP address. Their results

show that personalization has huge potential in reducing search difficulty. A backoff model for per-

sonalization is also proposed where multiple layers of personalization are combined in optimizing

the effectiveness.

Query intent analysis has also been studied in refining search result presentation [25] and vertical

search engine selection [51, 39]. Daume and Brill proposed to group web search results based

on reformulating the original query to alternative queries the user may have intended [25]. Li et
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al. proposed to identify queries for different vertical search engines by connecting with the close

labeled queries in the click graph [51]. Hu et al. leveraged wikipedia to form query intent space,

and used it to improve vertical selection[39]. However, these studies are focused on the semantic

level of query intent. In our study, we approach user intent from a fundamentally different aspect

by analyzing users’ click behaviors.

The problem of query ambiguity has potential impact on the performance of retrieval [42, 60, 2].

The study of query ambiguity has a long history [75]. Early studies are focused on word sense

disambiguation[70, 61, 24, 65, 33] with the use of dictionary and thesaurus. Allan and Raghavan

studied the use of Part-of-speech Pattern to form clarification questions and reduce query ambiguity.

Cronen-Townsend and Croft proposed query clarity as a measure of ambiguity [19]. Query clarity

is computed as the KL-divergence of the query language model and the collection language model.

The query language model is estimated from the top ranked documents of the query. Therefore,

a high query clarity indicates the query is more concentrated on specific topics. Query clarity has

been used often for predicting query difficulty.

Wang and Agichtein studied how to distinguish informational and ambiguous queries. They

propose the use of user averaged click entropy (average entropy)[74]. Average entropy computes

the average of the click entropy on the click distribution of each individual user. The assumption is

that while a query may be ambiguous in general, each individual user has a clear navigational intent

(which is different from others) and therefore will click on only few web pages; on the other hand,

users with information seeking intent tend to click on more web pages, although the overall intent

is clear. As a result, informational queries shall have higher average entropy than the ambiguous

queries. However, the assumption that individual intents are clear and navigational for ambiguous

queries is ungrounded. An ambiguous query can also be (completely/partially) associated with

information seeking intents.

In this thesis work, I propose to study query ambiguity from a different perspective. Rather

than analyzing each clicked URL individually, as was done in most previous researches, we tie the

concept of query ambiguity to the users’ click behaviors. We propose to discover the click patterns

and use pattern entropy as a new metric for query ambiguity. To the best of our knowledge, no

previous research has studied click pattern for measuring query ambiguity before.
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User behavior modeling is an active research area in query log analysis. Craswell et al. studied

the problem of position bias in users’ click behaviors [18]. Through a large scale experiment of

perturbing the search engine rankings, the best explanation for position bias was found to be a model

where users view results from top to bottom and leaving as soon as they see a worthwhile document.

User modeling has also been studied for search evaluation [27, 77]. Dupret and Piwowarski explored

the underlying hypothesis for the mean average precision metric [27]. Yilmaz et al. proposed a new

evaluation metric that uses a sophisticated user model tuned by observations over many thousands of

real search sessions [77]. This work extends the study of user modeling with an exploration of fine

grained user models where each query may correspond to a mixture of different types of behaviors.

2.2 Supporting Query Formulation

Research on spelling correction has a long history [22, 48, 58]. Edit distance, initially proposed by

Damerau [22] and Levenshtein [48], has been widely used in generic spelling correction. More re-

cent work on offline spelling correction tends to focus on search engine queries [14, 21, 32, 49, 66].

Cucerzan and Brill [21] studied spelling correction as an iterative process to exploit the informa-

tion in query logs. Li et al. [49] explored distributional similarity of query terms to estimate the

error model. Chen et al. [14] leveraged web search results to improve the performance of spelling

correction on rare queries. Sun et al. [66] explored click-through data to identify user correction

pairs, and applied them to build a phrase-based error model. Gao et al. [32] proposed the use of a

general ranker as a generalization of the traditional noisy channel model in spelling correction, and

implemented it with a distributed infrastructure to incorporate large scale data. As offline spelling

correction is just a special case of online spelling correction, we consider the performance of both

conditions when evaluating our system.

One of the earliest forms of auto-completion is the tab completion feature found in many com-

mand prompts. It is later extended by Darragh et al. [23] to support the prediction of general text.

Recently, Chaudhuri and Kaushik [13] proposed a technique to further extended auto-completion to

tolerate errors. Particularly, they made use of a simple edit distance model and performed a fuzzy

search over database records to find completions. To the best of our knowledge, this is the only

prior work that addresses the problem of online spelling correction. Unfortunately, with a prede-
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termined cap on edit distance and linear lookup time with increasing data size, the algorithm is not

sufficiently robust and scalable for online spelling correction for query completion.

The approach taken in this work for spelling correction is largely inspired by previous work

in grapheme to phoneme transformation. Chen [15] studied conditional and joint maximum en-

tropy models for grapheme to phoneme conversion. Taylor [68] used a hidden Markov model,

where the graphemes are observations of the hidden phoneme states. Bisani and Ney [9] proposed

a joint-sequence model for modeling grapheme to phoneme transformation, where graphemes and

phonemes are viewed as a joint sequence generated with a Markov model. In this work, we adapt

the joint sequence modeling of Bisani and Ney to model the transformation from the intended query

to the observed sequence. However, whereas grapheme to phoneme conversions are strongly con-

strained by pronunciation rules, typographical errors do not impose any constraint on possible trans-

formations, increasing the difficulty in model training.

Query reformulation/refinement is a broad topic on using modified versions of queries to im-

prove search results. Our work is naturally subsumed by this topic. Under this broad topic, query

expansion, query contraction, spelling correction and many other topics have been extensively stud-

ied. Query expansion aims to expand the keywords of a query with additional terms, so as to enrich

the short keyword query and bridge the vocabulary gap. Recent work studied query expansion based

on corpus analysis [76], concept dictionaries [56] and relevance feedback [53]. Query contraction,

on the other hand, attempts to abridge long and verbose queries in order to concentrate on the rel-

evant topics [44][5][45][43]. None of these work studied the use of syntactic operators for query

reformulation as we did in this work. Guo et al. [34] employed a modified conditional random

field model for simultaneously performing multiple reformulation tasks including spelling correc-

tion and query segmentation. They used human annotated queries for training, which is not directly

targeted at increasing retrieval performance. Moreover, it is unclear how this method would work

for alleviating search difficulty and how it could be generalized to different syntactic operators.

Beside explicit reformulation of query, there are also many studies on implicit refinement of

queries, such as term proximity and term necessity. This type of refinement is usually transparent

to users and more subtle to search results. For instance, term proximity has been widely adopted

[57][67][11] to improve retrieval performance. Zhao and Callan proposed to estimate term necessity

probability and used it to refine existing retrieval models [81]. These refinements can all be viewed
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as soft versions of the hard constraints imposed by corresponding syntactic operators. However,

there are two major differences that clearly distinguish the explicit use of syntactic operators. First,

existing work on implicit refinements are all retrieval model dependent. It requires extra work to

integrate refinement scores into different retrieval models. Second, the syntactic operators of query

language carry clear and well defined semantics. Therefore, they can be used by search systems

to interact with users through query suggestions. Compared with blindly making refinements, it

lowers the risk of disappointing users in case the refinements are not appropriate.

Another line of related work is query difficulty prediction. Cronen-Townsend et al. proposed to

use query clarity as a predictor to estimate the performance of a query [20]. Hauff et al. did a com-

prehensive survey on various kinds of query difficulty predicators [35]. Yom-Tov et al. proposed a

learning framework to estimate query difficulty. Our work of automatic syntactic reformulation is

related to query difficulty prediction in that we want to estimate performance of modified queries

and suggest queries with hypothetical performance benefits. Some of the features we use in our

method are inspired by the work on query difficulty prediction.

My research is also strongly related to the work on negative feedback. Wang et al. used EM

algorithm to estimate language models for negative feedback and use them to re-rank the rest of

the results [72]. They later systematically studied the existing methods for improving search accu-

racy with negative feedback in different retrieval models [73]. Our method also uses the negative

feedback information to assist search difficulty, but it distinguishes itself by making use of syntac-

tic operators to introduce additional semantics. Compared with existing methods, this is a novel

approach and provides better usage of the negative feedback.

2.3 Intent Modeling in Structured Entity Retrieval

There have been extensive study of supporting keyword queries in structured entity data, but most

of the work assume that the returned results are a set of tuples that match all the keywords (see,

e.g., [40, 1, 38]) without tackling the important problem of intent modeling, which is critical for

a problem such as product entity search. Standard information retrieval (IR) models have been

adapted to rank objects in databases (e.g., [37]), but the application is a straightforward use of

existing retrieval models to score each single attribute, assuming the relevance definition implied in
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a traditional IR model, thus this line of work has not addressed the special notion of relevance in

product search where we must model preferences of users. Moreover, the retrieval units are joining

trees of tuples, which are not appropriate for product entity search.

Another major limitation of these previous work on supporting keyword queries is that they have

mainly focused on lexical level of relevance. For instance, relevance is determined by matching

keywords with different attributes of the entity. In this case, queries such as “radeon hd graphics

laptop” may work reasonably well, but “laptop with dedicated graphics card” will clearly not work.

As the method depends on the description of the entity, keywords that are not in the description

cannot be matched well. This problem is commonly known as the “ vocabulary gap”. Some work

have attempted to go beyond this simple notion of relevance and applied probabilistic models in IR

to database object ranking [12], but the focus was on leveraging workload data to improve estimation

of probabilistic models, and the queries considered are restricted to structured queries rather than

plain natural language keyword queries as we address in the work. Integration of IR and database

search has been considered in some previous work, particularly in developing probabilistic models

(see, e.g., [28, 29, 30]). A main goal of this line of work to extend standard relational algebra

in such a way that it can handle probabilistic weights required for performing IR-style ranking,

thus they have not addressed how to optimize ranking of database objects for unstructured keyword

preference queries.

A significant amount of work has been done on XML retrieval, which is also related to our

work in that the documents dealt with have weak structures and keyword queries are handled. A

comprehensive review of the work in this line can be found in [47]. However, there are many

important differences between XML retrieval and product entity retrieval. One major difference

is that the queries in XML retrieval tend to refer to structures whereas in product search that we

are considering in our work, the queries are pure keyword queries similar to those for Web search.

Moreover, the notion of relevance has a unique and different interpretation in product search, i.e.,

a relevant entity object is one whose attribute values match well the preferred attribute values of a

keyword query.

The work in this thesis is also related to recent work on leveraging review data for ranking en-

tities [31], in which the reviews associated with each entity are simply used as text representation

of an entity, and keyword queries would be matched with these reviews directly to rank entities.
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Such an approach has ignored the attribute value descriptions of product entities completely, thus

they do not offer any formal model for ranking product entities in a database with product specifi-

cations. Since it solely relies on product reviews, it would suffer from the problem of data sparsity

as reviews are only available for some product entities, and even fewer of them have enough con-

tent for estimating an accurate model. In contrast, we leverage reviews as well as search queries

as supplementary data to improve estimation of probabilistic models that would otherwise have to

be based on product specifications only. There are also some studies of e-commerce related appli-

cations based on product search log mining. Li et al. proposed a semi-supervised method trained

with search queries and matched products for tagging query keywords with product meta-data [50].

Sarkas et al. studied a similar problem with a supervised and an unsupervised model [62]. Pound et

al. studied facet discovery by mining a search log that contain structured product information [55].

These work are application oriented and utilize task specific mining heuristics. In comparison, our

work is focused on deep search intent modeling with entity structure.
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Part I

Modeling Ambiguous Search Intent

13



CHAPTER 3

MODELING AMBIGUOUS INTENT WITH CLICK
PATTERNS

3.1 Introduction

Understanding and interpreting a user’s search intent is the first step a web search engine must take

to fulfill the user’s needs. However, accurate understanding and interpretation is usually difficult

because of the ambiguity in search intent. Ambiguity is typically caused by a broad query, which is

usually entered by user who does not have a clear search intent in the beginning.

To solve this problem, web search engines routinely analyze the click behaviors of past searchers

to extract information about query intents and are used to measure query ambiguity, influence rank-

ing decisions and result presentation, as well as generate query recommendations.

Current query analysis techniques assume that each clicked web result provides evidence of a

distinct intent. Such a simplifying assumption is problematic, however, as it ignores the many rea-

sons why users with the same semantic intent may click on more than one web result: they may

have a high-recall information need, such as when users are comparison shopping or completing a

research task; or they may have an exploratory intent with no specific predefined interest. When

query analysis techniques ignore such multi-click intents, they lose important evidence of relation-

ships among documents and cloud their representation of users’ intents.

For example, state-of-the-art measures of query ambiguity are based on measuring the entropy

of clicks on web documents aggregated across users issuing a common query [74, 69, 52]. This ap-

proach, however, conflates click entropy due to multi-click intents with click entropy due to lexical

and task ambiguities. For instance, the query wedding dresses represents a high-recall information

need and, correspondingly, most users click on all of the top search results (brides.com, elegant-

gowns.com, onewed.com). In contrast, the query auto rent represents an aggregation of multiple

distinct navigational intents, where different users each click on one of the three URLs rental-
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Figure 3.1: Examples of query clicks.

cars.com, nationalcar.com and enterprise.com. Despite the clear differences in query intents and

user behaviors, both have similarly high click entropies.

We argue for explicitly representing multi-click intents by making click patterns a first-class

abstraction in query analyses. Specifically, we think each individual user demonstrates a particular

type of behavior when confronting a search result page. Therefore, we model the ambiguous search

intents by identifying the common patterns of users’ behaviors. Such patterns, namely click pat-

terns, are a proxy representation of the user intents underlying a query. The underlying assumption

is that although we do not know for sure the true intent of two users issuing the same query, we can

be fairly sure about their similarity: when two users have similar click patterns, we believe their

true intents must also be similar. One of the interesting conceptual implications is that this allows

us to represent query intent as a mixture of multiple navigational and multi-click intents.

3.2 Click Patterns

Each individual user behaves in different ways when they are presented with the same search results.

However, we hypothesize that underneath the noisy click behaviors each search query corresponds

to an underlying behavior model, where users obey a set of common behavioral patterns.
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3.2.1 Definition

Formally, we define click pattern and click profile as follows.

Definition 1: Click Pattern Given a query q and its click-through document set Cq, a click

pattern τq is a probability distribution over the Cq representing how likely each document will

be clicked on. Specifically, we use multinomial distribution to model click patterns, i.e. τq =

{p(c)|c ∈ Cq,
∑

c∈Cq
p(c) = 1}. In practice, we simplify the representation of click pattern by only

considering the top 3 most probable clicks. Therefore, each click pattern is written as a ordered list

of 3 elements:

τ := {(c1, p(c1)), (c2, p(c2)), (c3, p(c3))}

where p(c1) > p(c2) > p(c3).

Definition 2: Click Profile We further define Γq as the click profile of query q. Γq = {p(τq)}

is a multinomial probability distribution over all the possible click patterns of q. The probability

p(τq) indicates how likely a user will obey a certain click pattern τq when Cq presented. In later

discussions, we also use Γq to denote the set of all possible click patterns (i.e. p(τq) > 0) of query

q where it doesn’t cause confusion.

3.2.2 Modeling and Identifying Click Patterns

Ideally, we want to discover a small set of underlying click patterns that capture the common click

behavior of most users. Users obeying the same click pattern are expected to show very similar

click behaviors, while users obeying different click patterns shall behave in quite different manners.

Because the clicked documents are usually quite different for each query, obtaining direct su-

pervision is difficult. Therefore, we resort to unsupervised methods. Specifically, we employ the

divisive clustering algorithm to find the patterns among the noisy sample of observed click behav-

iors. The detail of the algorithm is shown in Algorithm 1.

The algorithm starts with a click profile of only one click pattern. Then it essentially keeps

splitting the click pattern until the average intra-distance of each cluster is below a certain threshold.

One merit of the algorithm is that it does not require us to preset the number of click patterns,

which varies across queries. Instead, the number of click patterns is determined dynamically by the
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Algorithm 1: Divisive Clustering for Discovering Click Patterns
input : A set of click-vectors Vq for query q, a similarity threshold σ, a distance function F
output: The click profile Γq for q

Init Cluster c0 with all click vectors in Vq
Init Result list l
Enqueue c0 to queue s
while s is not empty do

Dequeue first item c from s
Compute average intra-cluster distance distc of c with F
if distc < σ then

Add (c.center,c.prob) to l
else

Use KMeans to divide c into two sub clusters c′ and c′′

Enqueue c′ and c′′ to queue s

return l

threshold σ. This aligns with our principle of modeling click patterns as we control the similarity

of click behaviors of users who obey the same click pattern.

We do not specify the distance function F in this algorithm. Each alternative distance function

F might lead to an interesting exploration of click patterns. In our study, we use cosine distance

(one minus cosine similarity) as the distance function. We choose this distance function mainly

because it makes the setting of the distance threshold σ more intuitive.

However, it is worth mentioning that here are potentially better ways for devising the distance

function, e.g. by taking into account the ranking positions. This could allow us to explore more

specialized behavior models. For instance, in analyzing mobile search logs, the ranking position is

of particular importance. We plan to continue exploring this idea in our future work.

3.2.3 Exploring Click Patterns in Search Logs

In this section, we explore click patterns and click profiles in real search logs 1, to study how they

can help us understand user behaviors and represent complex query intents.

To facilitate our exploration, we empirically categorize click patterns into three categories as

follows. These categories are intended to provide the reader with an intuitive understanding of

common click patterns.
1For our analysis, we use the MSN search log dataset released in 2006.
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• Navigational patterns. A navigational pattern has a single dominating URL in the click

vector. It represents the user’s intent of directly navigating to a particular URL.

• Informational patterns. An informational pattern corresponds to an information seeking in-

tent where the purpose is to acquire knowledge on a given topic. In this case, each URL has

similar chance of getting clicked. Possible scenarios for informational patterns are “compar-

ison shopping” or “research survey” of a topic.

• Semi-navigational patterns. Beside navigational patterns and informational patterns, there

is a third category of click pattern, where more than one URL dominate the click distribution.

In this case, the query intent is still mostly navigational, but the destination of the navigation

is not a single URL. We refer to this type of click patterns the semi-navigational pattern. A

common scenario for semi-navigational pattern is when there is a complementary page to

the major destination of the navigation. The complementary page might not be necessary

for completing the user’s task, but it contains useful information and improves the user’s

understanding of the topic.

Table 3.1 shows the click profiles of several queries discovered by the proposed algorithm. The

queries were sampled from the test data set released by Wang and Agichtein [74]. For each click

profile, the major click patterns and their probabilities are shown. Query 1, Query 2 and Query

3 have simple click profiles as each of them consists of only one click pattern. For Query 1, the

intent is to navigate to the website of “radio shack”. Consequently a single navigational pattern is

observed. For Query 2, the intent is to survey the information of “wedding dresses” available on

the Web. Correspondingly an informational pattern is observed. For Query 3, while users mostly

navigate to the the URL prom-hair.org, some find the site prom.hairresources.net also helpful and

explore both resources. The click pattern falls into the category of semi-navigational pattern. All

three queries have clear query intents.

Query 4 is a typical ambiguous query where different users have very different targets. Its

corresponding click profile shows three major navigational patterns. Query 5 is an interesting query

whose click profile is a mixture of different types of click patterns. In fact, this type of click profile is

not rare in search queries. For this particular query honda parts, some of the users directly navigate

to the online company store, while others take time to survey all the other web stores beside the
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Table 3.1: Examples of click patterns

Query 1: radio shack

τ1 (100%): Nav.
http://radioshack.com/:0.97
http://radioshack.com/search/:0.03

Query 2: wedding dresses

τ1 (100%): Inf.
http://brides.com/:0.42
http://elegantgowns.com/:0.38
http://onewed.com/dresses/:0.2

Query 3: prom hair

τ1 (64%): Sem.
http://prom-hair.org/:0.56
http://prom.hairresources.net/:0.26
http://prom-hairstyles.us/:0.04

Query 4: rental cars

τ1 (50%): Nav.
http://rentalcars.com/:0.83
http://priceline.com/:0.08

τ2 (21%): Nav.
http://nationalcar.com/:0.77
http://alamo.com/:0.2
http://enterprise.com/:0.01

τ3 (10%): Nav.
http://enterprise.com/:0.83
http://priceline.com/:0.08
http://thrifty.com/:0.04

Query 5: honda parts

τ1 (70%): Inf.
http://hondapartspro.com/:0.34
http://partstrain.com/:0.2
http://hondapartstore.com/:0.15

τ2 (24%): Nav.
http://estore.honda.com/:0.76
http://partstrain.com/:0.11
http://hondapartspro.com/:0.09

official company store. Compared with the former three queries, the query intents of Query 4 and

Query 5 are much more complex. Such a difference is well captured by the increase of complexity

in their click profiles.

Based on our analysis of 5,000 random samples of search queries from MSN search log, the

majority of queries (63%) have only a single click pattern, over a third (37%) of queries have

multiple click patterns, and 11% have a mixture of different kinds of click patterns, as determined
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by a categorization of navigational, informational and semi-navigational patterns. The distribution

of click patterns shifts when we examine the most popular 5k queries. In this sample, we find

significantly fewer single-intent queries (29%) as well as many more mixed-intent queries (30%).

Based on this analysis, it is clear that click pattern’s richer representation of user behavior—as

compared to representations that assume each unique URL represents a distinct semantic intent—is

useful in capturing the observed behavior of a significant fraction of all queries, and is even more

important when focusing on the most popular queries or the high-entropy queries that are the hardest

to answer.

3.3 Click Patterns and Query Ambiguity

In this section, we show that our modeling of ambiguous search intent has immediate impact in

query analysis. We study the measuring of ambiguity level of queries (i.e. query ambiguity). Typ-

ically, query ambiguity is measured by “click entropy”, which is computed as the information en-

tropy of the distribution of user clicks. Formally, given query q and the set of clicked documents

Cq, the click entropy Hc(q) is computed by Equation 3.1:

Hc(q) =
∑
d∈Cq

−p(d) log p(d) (3.1)

where p(d) is the empirical probability of document d being clicked. A higher entropy value

indicates the query is more ambiguous. The concept of information entropy was originally proposed

by [63] to measure the value of information in a message. Click entropy, however, does not work

well in discriminating ambiguous queries, especially from information seeking queries, as both

scenarios may result in very similar distribution of clicks, although the search intent of the latter is

much clearer.

The fundamental assumption of using click entropy as a measure of query ambiguity is that each

document represent a unique “semantic meaning” of the search query. We think this is the reason

that click entropy is not able to discriminate ambiguous queries effectively. Even semantically

distinct web pages may not always increase query ambiguity if they play a complementary role

in fulfilling the user’s intent. Recently proposed measures such as domain entropy [74] begin to
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consider the relationship among multiple clicked URLs. However, they do not fully separate the

notion of a user’s intent from the lexical and task ambiguity of a query. As a result, they still cannot

represent and measure the ambiguity of complex mixtures of intents shown in Section 3.2 that exist

in real search logs.

3.3.1 Pattern Entropy

We propose to model query ambiguity as an empirical notion pertaining to user behaviors, in con-

trast to the previous measures that emphasize on the semantic ambiguity of the query. Particularly,

we compute the information entropy of the click profile of a query, i.e. the empirical distribution

over the click patterns as a measurement of query ambiguity. We refer to this measurement as

pattern entropy.

Formally, given the click profile Γq for query q, the pattern entropy Hp(q) is computed as:

Hp(q) =
∑
τq

−p(τq) log p(τq) (3.2)

where p(τq) is the empirical probability of τq, given by Γq.

Pattern entropy is superior to click entropy as an ambiguity measure. It yields low entropy values

to both navigational and informational queries where the search intents are clear, while maintaining

high entropy values for queries of ambiguous intents. Take two previously discussed queries ,

wedding dresses and auto rent, as examples. Although both queries have similar distribution of

clicks, they have distinct click profiles. For the query wedding dresses, most users tend to obey the

same informational pattern to explore all the URLs. For the query auto rent, different users form

three distinct navigational patterns, leading to a more complex click profile. With the entropy of

click profiles, we can recognize that auto rent is an ambiguous query and wedding dresses is a clear

query with an informational intent.
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3.3.2 Properties of Ambiguity Metrics

In this section, we identify three important properties of metrics of query ambiguity, i.e. discrimi-

native power, consistency and temporal stability. We then put the previous proposed measurements

to test with a synthetic search log and a real search log, according to the three properties.

• Discriminative power: The most important property of an ambiguity metric is the ability

to discriminate ambiguous queries from queries of clear search intents. That being said, the

metric should distinguish ambiguous queries not only from navigational queries, but also

from informational queries.

• Consistency: It is also important that an ambiguity metric generate consistent output for the

same type of queries. The number of log entries for different queries usually vary a lot, even

when they are of the same type (navigational, informational or ambiguous). A good query

ambiguity metric should not be affected too much by this factor.

• Temporal Stability: Temporal stability is a property of particular practical importance. Query

log is a continuous data stream and we can only process the log within a certain temporal pe-

riod at a time. The analysis on the query log needs to be updated from time to time. Therefore,

being able to generate temporal stable results is an important criteria for any query log anal-

ysis method.

In the following discussions, we first test the discriminative power and consistency of different

ambiguity metrics with a synthetic query log. Then we continue to study the temporal stability with

a real query log.

Discriminative Power and Consistency. To test the discriminative power and consistency of

different ambiguity metrics and to better understand their behaviors under controlled conditions, we

created a synthetic query log where different types of user behaviors were observed for different

queries. The query ambiguity metrics we study are click entropy, average entropy [74] and pattern

entropy. Essentially, average entropy is computed as the average of each user’s click entropy.

Table 3.2 shows a set of synthetic click logs representing different level of ambiguity. Table 3.3

shows the comparison for different ambiguity metrics on the synthetic queries, i.e. click entropy,

average entropy and pattern entropy.
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Table 3.2: Synthetic queries with different levels of ambiguity
Query Description
a All users click on one same URL.
b All users perform 10 random clicks on 10 URLs.
c Half of the users perform 10 random clicks on 10 URLs.
d All users perform 5 random clicks on 5 URLs.
e Two groups of users, each of first group click on the same URL, the

second group all click on a different URL.
f Two groups of users, each of first group performs 5 random clicks on

5 URLs; second group perform 5 random clicks on the 5 different URLs.
g Two groups of users, each of first group performs 5 random clicks on

URL 1-5; second group perform 5 random clicks on the URL 3-8.
h Three groups of users, each perform 3 random clicks on 3 different set

of URLs (1-3,4-6,7-9).
i Three groups of users, each perform 5 random clicks on 3 overlapping

set of URLs (1-5,3-8,6-10).

Table 3.3: Comparison of ambiguity metrics on synthetic queries
Query Click Entropy Avg Entropy Pattern Entropy
a 0.00 0.00 0.00
b 3.31 2.57 0.00
c 3.31 2.57 0.00
d 2.31 1.52 0.00
e 0.99 0.00 1.00
f 3.31 1.59 1.00
g 2.85 1.56 0.97
h 3.31 1.17 1.58
i 3.24 1.57 0.99

Query a is a clear navigational query where every user click on the same document. In this case

every metrics yields the lowest value 0. Query b, c and d are clear, informational queries intended

to test the consistency of the metrics. In each of the three queries, the users have a clear intention of

exploring a set of URLs. Query b has in total 20 users. Query c reduces the number of participants

by half to simulate the lack of data (data sparsity). Query d is different from b and c as it targets at

a document set of half the size. Yet they all have a clear informational intent. We see neither click

entropy nor average entropy is consistent on clear intent queries a − d as they give low value to

navigational queries and high value to informational queries. Pattern entropy, however, consistently

generates the lowest value for all these the four queries.
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Query e − i are all ambiguous queries. Query e, f and g each has two groups of users with

different behaviors. Query e has two different navigational patterns, while query f and g both have

two informational patterns. We see that either the click entropy metric and the average entropy

metric give consistent results to the three queries. They assign relative low entropies to queries with

navigational patterns and high entropies to the ones with more informational patterns. In contrast,

pattern entropy is consistent for the three queries. Query h and i both have three types of user

behaviors. They are even more ambiguous than Query e, f and g. There is, however, no reflection

of the increase in ambiguity in click entropy or average entropy. The average entropy of query h

even decreases as the number of individual clicks is reduced. Query h shows an increase in pattern

entropy which is in accordance with the increase in the level of ambiguity. However, our algorithm

does not recognize all the three patterns in query i. This is because the second click pattern on

documents 3-8 overlaps much with both the other two patterns on documents 1-5 and 6-10. As a

result, instances from the second random click patterns are mistaken as from the other two patterns.

Temporal Stability. The purpose of this study is to test whether a metric generates stable results

in different time periods. We first randomly sample a set of 5000 queries, denoted as rand5k, from

the MSN query log. The MSN query log spans over an entire month from May 1st, 2006 to May

31st, 2006. Therefore, we extract the log entries of the queries in rand5k and split them into two

buckets (May 1st to May 15th and May 16th to May 31st). We then compute the ambiguity metrics

on the two buckets of logs and draw the scatter plots of click entropy, average entropy and pattern

entropy in Figure 3.2, Figure 3.3 and 3.4, respectively. In addition, we compute the correlation

between the values of each metric calculated with different time period’s data:

cor(X,Y ) =

∑N
i=1 (xi − x̄)(yi − ȳ)√∑N

i=1 (xi − x̄)2
∑N

i=1 (yi − ȳ)2

(3.3)

We can see that both click entropy and pattern entropy show strong correlation in the two halves

of months’ data, with cor of 0.81 and 0.68, respectively. Therefore, they tend to generate stable

results across different time periods. Average entropy, on the other hand, does not show strong

visual correlation and has a low cor value of 0.54. This indicates that unlike the other two metrics,

the computation of average entropy is more volatile in terms of time. This makes it less dependable

for query log analysis and application purposes.
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Figure 3.2: Temporal stability of click entropy on 5000 random queries, cor = 0.81.

Figure 3.3: Temporal stability of average entropy on 5000 random queries, cor = 0.54.
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Figure 3.4: Temporal stability of pattern entropy on 5000 random queries, cor = 0.68.

It is interesting to see that in all three figures, many data points falls onto the axis. This phe-

nomenon is mostly caused by the volatility of users and queries on search engines. Such queries are

usually related to temporal events, such as what is May day (on the event “May day” which takes

place in May every year) or Typhoon Chanchu (on the event “Typhoon Chanchu” in 2006).

3.4 Classifying Ambiguous Queries

To further verify the effectiveness of the proposed ambiguity metric, we use a human labeled query

set to experiment with automatic classification of ambiguous queries.

3.4.1 Problem Setup

We use the same dataset as used in Wang and Agichtein’s work [74]. There are in total 150 queries in

the dataset, labeled as either “navigational”, “informational” or “ambiguous” by human annotators.

The Kappa value was 0.77. The query log is extracted from the MSN search query log released

in 2006. We target at identifying ambiguous queries from the query log. Therefore, instead of

performing three class classification, we merge together the “clear” and “informational” queries in
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the query log as all clear queries. Then we perform binary classification to separate ambiguous and

clear intent (“clear” and “informational”) queries. We use logistic regression as our classification

method. All results are generated by 10-fold cross validation. The feature sets we use are listed in

Table 3.4. The domain entropy features are computed by replacing the URLs with corresponding

domains, where domains are obtained by truncating the URLs of the clicked web pages to their top

level domain (truncating before the first “/” in the URL).

Table 3.4: Features used for classification
Feature set Description of features

clk-ent

length of query
frequency of query
click entropy
domain click entropy

avg-ent
average entropy
domain average entropy

pat-ent
pattern entropy
domain pattern entropy

3.4.2 Classification Results

Table 3.5 shows classification results. We can see that both average entropy and pattern entropy

features improve the overall accuracy of classification. Both sets of features improve the ambiguous

queries more than the clear queries. We also observe that pattern entropy features perform better

than average entropy features. This confirms that pattern entropy is a superior ambiguity metric.

However, we do not see further improvement in combining the average entropy features and pattern

entropy features. This is probably because the additional information delivered by the two set of

features overlapped with each other.

Table 3.5: Classification results
Overall Clear Ambiguous

Acc Prec Rec Prec Rec
clk-ent 0.77 0.80 0.95 0.14 0.07
w/ avg-ent 0.78 0.82 0.92 0.37 0.20
w/ pat-ent 0.81 0.83 0.96 0.42 0.21
w/ both 0.79 0.83 0.94 0.37 0.19
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3.4.3 Case Study

In Table 3.6 we show several examples of human annotated queries with different entropy values to

help understand how pattern entropy helps improving the classification of ambiguous queries.

Most navigational queries tend to have low entropy values for any ambiguity metrics. Therefore

they are easy to handle for any ambiguity metric. We see that for navigational queries, their patterns

are solely navigational patterns.

Both the two queries online auction and white pages are labeled as informational queries. The

average entropy for the former is relatively high. But the latter does not get the same high value.

By identifying click patterns, we find that online auction has a single semi-navigational pattern.

It therefore has a zero pattern entropy. The query white pages, however, has a mixture of both

navigational and informational patterns, and the majority of the users are with different navigational

patterns. This leads to the relatively low average entropy and pattern entropy.

The queries song lyrics and ares are labeled as ambiguous queries. The query song lyrics has

a mixture of navigational, informational and semi-informational patterns. A possible explanation is

depending on the “lyric” the user is looking for, he/she may have to try different number of websites

to get it. As a result, the query has a relative high average entropy and pattern entropy. For the query

ares, multiple navigational and semi-navigational click patterns are discovered. Since the individual

intents are mostly navigational, it has a low average entropy. However, the pattern entropy is high

because different patterns have comparable amount of users.

Overall, we see click pattern is quite consistent in separating the ambiguous queries from the

clear queries (both navigational and informational). However, the average entropy does not work

well in some cases when mixtures of click patterns exist for one query.

3.5 Click Patterns and Query Recommendations

In this section, we demonstrate the impact of our model for ambiguous search intent in the appli-

cation of query recommendation. The purpose of query recommendation is to help users explore

the query space so that they can quickly find the query that best describe their search intent. To

serve this purpose, we want to start from the close neighborhood of the given query and suggest

queries that share major intents with the given query. Baeza-Yates et al. proposed to use query log
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Table 3.6: Examples of entropies and patterns
Query Avg-Ent Pat-Ent Patterns

Clear Navigational Queries
chase 0.03 0.00 Nav.
ca lottery 0.01 0.13 Nav.

Clear Informational Queries
online auction 0.81 0.00 Sem.
white pages 0.13 0.78 Nav+Inf.

Ambiguous Queries
song lyrics 0.64 3.09 Nav.+Inf.+Sem.
ares 0.28 1.56 Nav.+Sem.

for query recommendation based on the notions of query similarity and support [3]. It was sug-

gested later that the reduction of query ambiguity of the query should also be accounted for in query

recommendation [78, 7].

We leverage our model for ambiguous search intent to improve the computation of query simi-

larity and ambiguity reduction. The reduction in ambiguity is naturally measured by pattern entropy.

We compute the pattern similarity between two queries q and q′ as:

Sp(q, q
′) =

∑
τ∈Γq

∑
γ∈Γq′

p(τ) · p(γ) · cos(τ, γ) (3.4)

where Γq is the set of click patterns and wτ is the weight of pattern τ .

3.5.1 Problem Setup

We devise query recommendation as a classification task by restricting the search space to queries

that add only one term to the original query. We randomly select 200 queries that have frequency

above 10 from MSN search query log release in 2006 and generate the candidate recommendations

in this way. The queries with no candidate suggestions are removed from the dataset, and we finally

have 127 queries. Instead of performing human annotation, we adopt an automatic annotating

process. Specifically, we count how many times a candidate suggestion appear after the original

query in a session with a different query log. We use the AOL search query log released in 2006 for
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this purpose. The reason to use a secondary query log is to avoid overfitting a single query log. As

the AOL query log is released the same year as the MSN query log, the changes in queries would not

be dramatic. We then label the candidate as recommendation or not by checking if the count is above

10 times. In total we have 848 queries labeled as recommendations out of 3416 candidates. We then

perform binary classification for each candidate query. Note that this experiment is intended to

demonstrate the usage of click pattern and pattern entropy in a real world application, rather than

compete with current state-of-the-art techniques for query recommendation.

3.5.2 Query Recommendation Results

Table 3.7 shows the classification result for query recommendation. We see by adding pattern

entropy and pattern similarity features, we can incrementally improve the performance of classi-

fication. The best performance by using both pattern entropy and pattern similarity with query

popularity.

Table 3.7: Results of Query Recommendation as a Classification Task
Overall Recommended

Acc Prec Rec
popularity 0.75 0.67 0.54
w/ pattern entropy 0.76 0.68 0.56
w/ pattern similarity 0.78 0.70 0.59
and pattern entropy

3.5.3 Case Study

In Table 3.8 we show the classification result for candidate query suggestions for “baby names”. We

can see that the recommended queries generally have high frequency, low pattern entropy and high

pattern similarity with the original query.

Once again, this application confirms the effectiveness of pattern entropy as an ambiguity met-

ric. Beside query recommendation, click pattern is also potentially useful in many other applica-

tions, e.g. personalized search and diversification of search results. In the future, we plan to further

study the applications of click pattern and pattern entropy.
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Table 3.8: Query recommendation for “baby names” (Hp(q)=2.76)
Query Rec Freq. Pat-Ent Pat-Sim
unique baby names Y 31 1.44 0.01
popular baby names Y 30 1.35 0.24
girl baby names Y 22 1.33 0.01
unusual baby names Y 18 1.38 0.49
top baby names Y 12 0.99 0.08

irish baby names N 19 2.38 0.00
celebrity baby names N 15 2.61 0.00
spanish baby names N 14 0.99 0.00
biblical baby names N 12 1.94 0.00

......

3.6 Conclusions

In this work, we propose and study the use of click patterns as an empirical representation of user

intent for queries with ambiguous search intents. We show how click patterns can be extracted

from logs of user behavior and demonstrate that click patterns provide a richer representation of

query intents, from multi-click intents such as high-recall research tasks to navigational intents, and

mixtures of query intents of various kinds. We examine real query logs and find that the richer

representation of query intents afforded by click patterns is critical for capturing the user behavior

for a significant fraction of queries, and especially for popular and high entropy queries. We further

demonstrate the integration of click patterns into existing query analyses by adapting traditional

query ambiguity and query recommendation tasks to use click patterns as the fundamental unit of

user behavior.
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Part II

Supporting Query Formulation
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CHAPTER 4

QUERY COMPLETION AND CORRECTION

4.1 Introduction

One major obstacle in accurate search intent understanding is the vocabulary gap between users’

queries and the intended information. Lacking knowledge of the relevant information, users are

usually unable to accurately describe their search intent in queries, making it challenging to infer

the real intent. In this chapter, we propose and study several approaches that alleviate the difficulty

of query formulation.

One strategy to alleviate the problem of vocabulary gap is to provide real time guidance in query

formulation through query completion and correction. By do so we can effectively guide the users

to choose the right terminologies to represent their search intent. In this work we study the problem

of real time query completion and correction by modeling search intents from search engine query

logs.

Particularly, we propose and study a generative model, where we assume the original search

intent is transformed through a noisy channel into a potentially misspelled query. By estimating the

intent popularity through click-through logs, we can capture the important search intent and provide

guidance to the users so that they can compose search queries that can effectively convey the intent.

With an accurate model for the noisy channel (i.e. the transformation between the target query and

the user entered query), we can make sure that we will guide the user toward the desired search

intent instead of biasing toward the common popular intent.

4.2 Problem Formulation

Most query reformulation models adopt a common generative framework:
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ĉ = argmax
c

p(c|q) = argmax
c

p(q|c)p(c) (4.1)

where q is the original query and c is a candidate suggestion. In this noisy channel model

formulation, p(c) is a query language model that describes the prior probability of c as the intended

user query. p(q|c) = p(c → q) is the transformation model that represents the probability of

observing the query q when the original user intent is to enter the query c.

In the setting of query completion and correction, we are given only the prefix q̄ of the potentially

misspelled input query q. Thus, the objective is to find the correctly spelled query ĉ that maximizes

the probability of yielding any query q that extends the given partial query q̄. More formally, we

want to find:

ĉ = argmax
c,q:q=q̄···

p(c|q) = argmax
c,q:q=q̄···

p(q|c)p(c) (4.2)

where q = q̄ · · · denotes that q̄ is a prefix of q. Modeling the query language model is usually

trivial. In this work, we use the popularity model as an empirical distribution of query language

model. The challenge is to achieve an accurate transformation model so that automatically complete

and correct users’ query based on the query intent.

As we can see from Equation 4.2, by relaxing q to be any query that extends the partial query

q̄, online spelling correction and completion significantly increases the theoretical search space.

However, with appropriate data structures and algorithms, this search can be done efficiently.

4.3 Transformation Model

In this work, we propose to study the joint sequence model for query correction and completion.

Joint sequence model was originally proposed for grapheme to phoneme conversion in speech

recognition [9].

Specifically, we segment the conversion from c to q as a sequence of substring transformation

units, or transfemes. For example, the transformation schwarzenegger → shwartzeneger can

be segmented into the transfeme sequence: {sch → sh, war → war, ze → tze, negg → neg,

er → er}. As another example, the transformation britney → britny can be segmented into the
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transfeme sequence {br → br, i→ i, t→ t, ney → ny}, where only the last transfeme, ney → ny,

involves a correction. By describing the sequence with a transfeme n-gram language model, we can

decompose the transformation model into a set of conditional transfeme probabilities. This allows

us to not only train the model from segmented correction pairs, but also generalize the model to

previously unseen transformations.

Given a sequence of transfemes s = t1t2, ..., tls , we can expand the probability of the sequence

using the chain rule. As there are multiple ways to segment a transformation in general, we further

model the transformation probability p(c→ q) as the sum of all possible segmentations. Formally,

p(c→ q) =
∑

s∈S(c→q)

p(s) =
∑

s∈S(c→q)

∏
i∈[1,ls]

p(ti|t1, ..., ti−1) (4.3)

where S(c → q) is the set of all possible joint segmentations of c and q. Further applying the

Markov assumption that a transfeme only depends on the previous M − 1 transfemes, similar to an

n-gram language model, we obtain:

p(c→ q) =
∑

s∈S(c→q)

∏
i∈[1,ls]

p(ti|ti−M+1, ..., ti−1) (4.4)

We define the length of a transfeme t = ct → qt, as:

|t| = max{|ct|, |qt|} (4.5)

In general, a transfeme can be arbitrarily long. To constrain the complexity of the transformation

model, we limit the maximum length of a transfeme to L. With both n-gram approximation and

transfeme length constraint, we obtain the final model with parameters M and L:

p(c→ q) =
∑

s∈S(c→q):∀t∈s,|t|≤L

∏
i∈[1,ls]

p(ti|ti−M+1, ..., ti−1) (4.6)

In the special case of M = 1 and L = 1, the transformation model degenerates to a model sim-

ilar to weighted edit distance. With M = 1, we assume that the transfemes are generated indepen-

dently of one another. As each transfeme contains substrings of at most one letter, we can model

the standard Levenshtein edit operations [48]: insertions ε→ α, deletions α→ ε, and substitutions
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Figure 4.1: Example transformation with L = 1

Figure 4.2: Comparing transformations with L = 1 and L = 2

α→ β, where ε denotes the empty string. However, unlike many edit distance models, the weights

in the transformation model represent normalized probabilities estimated from data, not just arbi-

trary score penalties. Thus, the transformation model not only captures the underlying patterns of

spelling errors, but also allows us to compare the probabilities of different completion suggestions

in a mathematically principled way. Figure 4.1 contains an example of such a transformation.

With L = 1, transpositions are penalized twice, even though it occurs as easily as other edit

operations. Similarly, phonetic spelling errors, such as ph → f , often involve multiple characters.

Modeling these transfemes as single character edit operations not only over-penalizes the transfor-

mation, but also pollutes the model as it increases the probabilities of edit operations, such as p→ f ,

that would otherwise have very low probabilities. By increasing L, we increase the allowable length

of the transfemes. Thus, the model is able to capture more meaningful trans-formation units and

reduce probability contamination that result from decomposing intuitively atomic substring trans-

formations. Figure 4.2 compares an example transformation with L = 1 and L = 2.

Instead of increasing L, we can also improve the modeling of errors spanning multiple charac-

ters by increasing M , the number of transfemes the model probabilities are conditioned on. Con-

sider the example from Figure 4.2 with L = 1. When M = 1, no context is considered in the

generation of each transfeme. When M = 2, the probability of each transfeme is dependent on its

36



previous transfeme. As a result, we are able to capture the fact that h→ ε has a much higher prob-

ability when following the transfeme p→ f . As a more interesting example, ie is often misspelled

as ei. A unigram model (M = 1) is not able to express such an error. A bigram model (M = 2)

captures this pattern by assigning higher probability to the transfeme e→ i when following i→ e.

A trigram model (M = 3) can further identify exceptions to this pattern when preceded by a c, as

cei is more common than cie.

4.3.1 Model Estimation

To learn the patterns of user spelling errors, we use a parallel corpus of input and output query pairs,

where the input represents the intended query with correct spelling and the output corresponds to the

potentially misspelled transformation of the input. If such data is pre-segmented into transfemes, we

can derive the transformation model directly using maximum likelihood estimation (MLE). How-

ever, such labeled training data is generally too costly to obtain in large scale. Thus, we devise an

expectation-maximization (EM) algorithm to estimate the parameters in the transformation model

from partially observed data.

Given a set of observed training pairs O = {Ok}, where Ok = ck → qk, we can write the log

likelihood of the training data as:

logL(Θ;O) =
∑
k

log p(ck → qk|Θ) =
∑
k

log
∑

sk∈S(Ok)

p(sk|Θ) (4.7)

where Θ = {p(t|t−M+1, ..., t−1)} is the set of model parameters. sk = tk1t
k
2, ..., t

k
ls , the joint

segmentation of each training pair ck → qk into a sequence of transfemes, is the unobserved vari-

able. By applying the EM algorithm [8], we can iteratively find the parameter set Θ that maximizes

the log likelihood.

For M = 1 and L = 1, where each transfeme of length up to 1 is generated independently, we

derive the following update formulas:

p(s; Θ) =
∏

i∈[1,ls]

p(ti; Θ) (4.8)
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e(t; Θ) =
∑
k

∑
sk∈S(Ok)

p(sk; Θ)∑
s′ ∈ S(Ok)p(s′; Θ)

#(t, sk) (4.9)

p(t; Θ′) =
e(t; Θ)∑
t′ e(t

′; Θ)
(4.10)

where #(t, s) is the count of transfeme t in the segmentation sequence s, e(t; Θ) is the expected

partial count of the transfeme t with respect to the transformation model Θ, and Θ′ is the updated

model. e(t; Θ), also known as the evidence for t, can be computed efficiently using a forward-

backward algorithm [9].

We can extend the EM training algorithm to higher order transformation models (M > 1),

where the probability of each transfeme now depends on the previousM−1 transfemes. Other than

having to take into account the transfeme history context when accumulating the partial counts, the

general EM procedure is essentially the same. Specifically, we have:

p(s; Θ) =
∏

i∈[1,ls]

p(ti|ti−1
i−M+1; Θ) (4.11)

e(t, h; Θ) =
∑
k

∑
sk∈S(Ok)

p(sk; Θ)∑
s′ ∈ S(Ok)p(s′; Θ)

#(t, h, sk) (4.12)

p(t|h; Θ′) =
e(t, h; Θ)∑
t′ e(t

′, h; Θ)
(4.13)

where h is a transfeme sequence representing the history context, and #(t, h, s) is the occur-

rence count of transfeme t following the context h in the segmentation sequence s. Though more

complicated, e(t, h; Θ), the evidence for t in the context of h, can still be computed efficiently using

the forward-backward algorithm.

As the number of model parameters increases with M , we initialize the model parameters using

the converged values from the lower order model to achieve faster convergence. Specifically,

p(t|hM ; ΘM ) = p(t|hM−1; ΘM−1) (4.14)
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where hM is a sequence ofM−1 transfemes representing the context, and hM−1 is hM without

the oldest context transfeme.

Extending the training procedure to L > 1 further complicates the forward-backward computa-

tion. But the general form of the EM algorithm remains the same.

4.3.2 Model Pruning

One challenge with a direct implementation of the above algorithms is that as we increase the model

parameters M and L, the number of potential parameters in the transformation model increases

exponentially. Assuming an alphabet size of 50, a M = 1,L = 1 model contains (50 + 1)2

parameters, as each component in t = ct → qt can take on any of the 50 symbols or ε. But a

M = 3,L = 2 model may contain up to (502 + 50 + 1)2.3 ≈ 2.8×1020 parameters! Although most

parameters are never observed in the data, model pruning techniques are still beneficial to reduce

the overall search space, during both training and decoding, and to reduce overfitting, as infrequent

transfeme n-grams are likely to be noise.

In this work, we employ two pruning strategies in each iteration of the training algorithm. First,

we remove transfeme n-grams with expected partial counts below a threshold τ e. Second, we

trim out transfeme n-grams with estimated conditional probabilities below a threshold τp. The

thresholds τ e and τp are tuned against a held-out development set. By filtering out transfemes with

low confidence, we significantly reduce the number of active parameters in the model and speed up

the running time of training and decoding.

4.3.3 Model Smoothing

As with any maximum likelihood estimation techniques, the EM algorithm has a tendency to overfit

the training data when the number of model parameters is large, for example when M > 1. The

standard technique in n-gram language modeling to address this problem is to apply smoothing

when computing the conditional probabilities. In our work, we study two smoothing techniques:

Jelinek-Mercer (JM) and absolute discounting (AD).
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In JM smoothing, the probability of a transfeme is given by the linear interpolation of its max-

imum likelihood estimation at order M (using partial counts) and its smoothed probability from a

lower order distribution:

pJM (t|hM ) = (1− α)
e(t, hM )∑
t′ e(t

′, hM )
+ αpJM (t|hM−1) (4.15)

where α ∈ (0, 1) is the linear interpolation parameter. Note that pJM (t|hM ) and pJM (t|hM−1)

are probabilities from different distributions within the same model. That is, in computing the

M -gram model, we also compute the partial counts and probabilities for all lower-order m-grams,

where m ≤M .

AD smoothing operates by discounting the partial counts of the transfemes. The removed prob-

ability mass is then redistributed to the lower order model:

pAD(t|hM ) =
max(e(t, hM )− d, 0)∑

t′ e(t
′, hM )

+ α(hM )pAD(t|hM−1) (4.16)

where d is the discount and α(hM ) is computed such that
∑

t p
AD(t|hM ) = 1. Note that since

the partial count e(t, hM ) can be arbitrarily small, it is not possible to choose a value of d such that

e(t, hM ) will always be larger than d. Consequently, we will trim the model if e(t, hM ) ≤ d. For

both smoothing techniques, all parameters are tuned on a held-out development set.

4.3.4 Mixture Models

When training from a dataset consisting of only query correction pairs, the resulting model is likely

to over-correct. To address this issue, we prepare another dataset of correctly spelled query pairs

and propose two ways of using the two datasets for training.

The first approach simply concatenates the two datasets together when estimating the transfor-

mation model. We refer to this method as data mixture. The second technique trains two trans-

formation models from the two datasets individually. It is easy to see that the model trained from

correctly spelled queries will only assign non-zero probabilities to transfemes with identical input

and output, as all the transformation pairs are identical. We linearly interpolate the two models as

the final model:
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p(t) = (1− λ)p(t; Θmisspelled) + λp(t; Θidentical) (4.17)

We label this approach as model mixture, where we can view each transfeme as probabilistically

generated from one of the two distributions, according to the interpolation factor λ. As with all other

modeling parameters, λ is tuned on a held-out development set.

4.3.5 Discussions

Observant readers may have noticed that the transformation model estimates the joint probability of

the input and output substrings in a transfeme. As the transformation probability is later multiplied

with the query language model in the generative formulation for online and offline spelling correc-

tions, we are essentially double counting the input query probability. A solution to this problem

is to normalize the transformation model for each input substring after training, so as to obtain a

conditional model. Although this solution is theoretically sound, initial experiments have failed to

improve the performance. As is common in speech recognition, where a “fudge factor” is introduced

to balance the language model score against the acoustic model, we reformulate the optimization

as:

ĉ = argmax
c

p(q|c)p(c) ≈ argmax
c

p(c→ q)p(c)γ (4.18)

where p(c → q) is still the transformation model probability, and γ is the fudge factor control-

ling the additional probability mass of the query language model. Empirically, this approach turns

out to be very effective in our experiments, although it lacks a theoretical foundation. We plan to

continue exploring this issue in future work.

4.4 Search

With a query language model and a transformation model, we are able to compute the probability

of any query q given an input query c. However, our task is to find the input query ĉ with highest

probability efficiently, so as to enable offline spelling correction. More generally for online spelling

correction, we want to find the top k completions of an observed query prefix q̄. To achieve this,
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Figure 4.3: Trie with highest probabilities

we propose to apply the A* search algorithm against a trie representing the query language model.

Below we first introduce the modified trie data structure that we use to store the queries and their

probabilities. We then present the A* search algorithm, followed by discussions on the pruning and

thresholding techniques necessary to improve the efficiency and quality of the suggestions.

4.4.1 Trie

As the search algorithm starts from the beginning of a query and incrementally traverses potential

corrections one letter at a time, we use a prefix tree (trie) to represent all queries in the query log.

Figure 4.3b shows a trie built over the set of strings in Figure 4.3a. To avoid ambiguity, we end each

string with an implicit $ character. Thus in the trie, all leaf nodes are associated with a complete

query. Internal nodes do not represent complete strings. For each node in the trie, we store the

largest probability among all queries represented by its descendant leaf nodes. As this represents

the largest value among all queries starting with the prefix associated with the node, we can apply it

an admissible heuristic function for A* search.
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5.2 A* Search 
We use the A* search algorithm to find the top 𝑘 corrected query 
completions for the prefix 𝑞 , given the query trie 𝑇  and 
transformation model Θ. We represent each intermediate search 
path as a quadruplet <Pos, Node, Hist, Prob>, corresponding to 
the current position in the query prefix 𝑞, the current node in trie 
𝑇, the transformation history so far, and the probability of this 
search path, respectively. The full algorithm is presented Figure 5.  

Input: Query trie 𝑇, transformation model Θ, integer 𝑘, query prefix 𝑞 
Output: Top 𝑘 completion suggestions of 𝑞  

A 
B 
C 
D 
E 
F 
G 
H 
I 
J 
K 
 

L 
M 
N 
O 
P 
Q 
R 
S 
T 
U 
V 
W 
X 
Y 

List l = new List() 
PriorityQueue pq = new PriorityQueue() 
pq.Enqueue(new Path(0, T.Root, [], 1)) 
while (!pq.Empty()) 

Path π = pq.Dequeue() 
if (π.Pos < |𝑞|) // Transform input query 

foreach (Transfeme t in GetTransformations(π,  𝑞, T, Θ)) 
int i = π.Pos + t.Output.Length 
Node n = π.Node.FindDescendant(t.Input) 
History h = π.Hist + t 
Prob p = π.Prob × (n.Prob / π.Node.Prob) × 
                   𝑃(𝑡, 𝜋.Hist; Θ) 
pq.Enqueue(new Path(i, n, h, p)) 

else // Extend input query 
if (π.Node.IsLeaf()) 

l.Add(π.Node.Query) 
if (l.Count  ≥  k) 

return l 
else 

foreach (Transfeme t in GetExtensions(π,  T,  Θ)) 
int i = π.Pos + t.Output.Length 
Node n = π.Node.FindDescendant(t.Input) 
History h = π.Hist + t 
Prob p = π.Prob × (n.Prob / π.Node.Prob) 
pq.Enqueue(new Path(i, n, h, p)) 

return l 

Figure 5: A* search algorithm for online spelling correction 

The algorithm works by maintaining a priority queue of 
intermediate search paths, ranked by decreasing probabilities. We 
initialize the queue with the initial path <0, T.Root, [], 1> (line C). 
While there is still a path on the queue, we dequeue it and check if 
there are still characters unaccounted for in the input prefix 𝑞 
(lines F). If so, we iterate over all transfeme expansions that 
transform substrings starting from the current node in the trie to 
substrings yet unaccounted for in the query prefix (line G). For 
each transfeme expansion, we add a corresponding path to the trie 
(line L). The probability of the path is updated to include 
adjustments to the heuristic future score and the probability of the 
transfeme given the previous history (line K). 
As we expand the search path, we will eventually reach a point 
where all the characters in the input query have been consumed. 
The first path in the search that meets this criterion represents a 
partial correction to the partial input query 𝑞. At this point, the 
search transitions from correcting potential errors in the partial 
input to extending the partial correction to complete queries. In 
this scenario (line M), if the path is associated with a leaf node in 
the trie (line N), indicating that we have reached the end of a 
complete query, we add the corresponding query to the suggestion 
list (line O) and return if we have sufficient suggestions (line P). 
Otherwise, we iterate over all transfemes that extend from the 
current node (line S) and add them to the priority queue (line X). 
As the transformation score is not affected by extensions to the 
partial query, we only update the score to reflect the changes in 

the heuristic future score (line W). When we run out of search 
paths to expand, we return the current list of correction 
completions (line Y). 
The heuristic future score we use in the A* algorithm, as applied 
in line K and W, is the probability value stored with each node in 
the trie. As this value represents the largest probability among all 
queries reachable from this path, it is an admissible heuristic that 
guarantees that the algorithm will indeed find the top suggestions. 
One problem with this heuristic function is that it does not 
penalize the untransformed part of the input query. Therefore, we 
can design a better heuristic by taking into consideration the upper 
bound of the transformation probability 𝑝(𝑐 → 𝑞). Formally, 
        heuristic∗(𝜋) = max

∈𝜋. .
𝑝(𝑐) 

                                                          × max 𝑝(𝑐′ → 𝑞[𝜋.Pos,| |]|  𝜋. 𝐻𝑖𝑠𝑡; 𝛩) 
(19)  

where 𝑞[𝜋.Pos,| |] is the substring of 𝑞 from position π.Pos to |𝑞|. 
For each query, we pre-compute the second maximization in the 
equation for all positions of 𝑞 using dynamic programming.  
The A* search algorithm can also be configured to perform exact 
match for offline spelling correction by simply substituting the 
probabilities in line W with line K. In effect, we continue to 
penalize transformations involving additional unmatched letters 
even after finding a prefix match. 
It is worth noting that a search path can theoretically grow to 
infinite length, as 𝜀 is allowed to appear as either the source or 
target of a transfeme. In practice, this does not happen as the 
probability of such transformation sequences will be very low and 
will not be further expanded in the search algorithm.  
A translation model with larger 𝐿 parameter (𝐿 bounds the length 
of transfemes) significantly increases the number of potential 
search paths. As we need to consider all possible transfemes with 
length less or equal to 𝐿 when expanding each path, models with 
larger 𝐿 are less efficient.  

5.3 Pruning 
To further improve the efficiency of A* search, we need to limit 
the search space and prune unpromising paths early. In practice, 
carefully designed beam pruning methods can usually achieve 
significant improvement in efficiency without causing much loss 
in accuracy. In our work, we employ two pruning techniques: 
absolute pruning and relative pruning. 

For absolute pruning, we limit the number of paths to be explored 
at each position in the target query 𝑞. As mentioned earlier, the 
complexity of our search algorithm is theoretically unbounded due 
to 𝜀 transfemes. However, by applying absolute pruning, we can 
bound the complexity of the algorithm by 𝑂(|𝑞|𝐿𝐾), where 𝐾 is 
the number of paths allowed at each position in 𝑞.  

With relative pruning, we only explore the paths that have 
probabilities higher than a certain percentage of the maximum 
probability at each position. The threshold values are carefully 
designed to achieve the best efficiency without causing a 
significant drop in accuracy. In practice we find relative pruning 
to be generally more effective for pruning unpromising paths.  In 
our system, we make use of both absolute pruning and relative 
pruning to improve search efficiency and accuracy. 

5.4 Thresholding 
From the perspective of user interface, it is not always a good idea 
to show a predefined number of suggestions for every query. 

Figure 4.4: A* search algorithm for online spelling correction

4.4.2 A* Search

We use the A* search algorithm to find the top k corrected query completions for the prefix q̄, given

the query trie T and transformation model Θ. We represent each intermediate search path as a

quadruplet < Pos,Node,Hist, Prob >, corresponding to the current position in the query prefix

q̄, the current node in trie T , the transformation history so far, and the probability of this search

path, respectively. The full algorithm is presented Figure 4.4.

The algorithm works by maintaining a priority queue of intermediate search paths, ranked by

decreasing probabilities. We initialize the queue with the initial path < 0, T.Root, [], 1 > (line

C). While there is still a path on the queue, we dequeue it and check if there are still characters

unaccounted for in the input prefix q̄ (lines F). If so, we iterate over all transfeme expansions that

transform substrings starting from the current node in the trie to substrings yet unaccounted for in

the query prefix (line G). For each transfeme expansion, we add a corresponding path to the trie
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(line L). The probability of the path is updated to include adjustments to the heuristic future score

and the probability of the transfeme given the previous history (line K).

As we expand the search path, we will eventually reach a point where all the characters in the

input query have been consumed. The first path in the search that meets this criterion represents a

partial correction to the partial input query q̄. At this point, the search transitions from correcting

potential errors in the partial input to extending the partial correction to complete queries. In this

scenario (line M), if the path is associated with a leaf node in the trie (line N), indicating that

we have reached the end of a complete query, we add the corresponding query to the suggestion

list (line O) and return if we have sufficient suggestions (line P). Otherwise, we iterate over all

transfemes that extend from the current node (line S) and add them to the priority queue (line X).

As the transformation score is not affected by extensions to the partial query, we only update the

score to reflect the changes in the heuristic future score (line W). When we run out of search paths

to expand, we return the current list of correction completions (line Y).

The heuristic future score we use in the A* algorithm, as applied in line K and W, is the proba-

bility value stored with each node in the trie. As this value represents the largest probability among

all queries reachable from this path, it is an admissible heuristic that guarantees that the algorithm

will indeed find the top suggestions.

One problem with this heuristic function is that it does not penalize the untransformed part of

the input query. Therefore, we can design a better heuristic by taking into consideration the upper

bound of the transformation probability p(c→ q). Formally,

heuristic∗(π) = max
c∈π.Node.Queries

p(c)×max
c′

p(c′ → q[π.Pos,|q|]|π.Hist; Θ) (4.19)

where q[π.Pos,|q|] is the substring of q from position π.Pos to |q|. For each query, we pre-

compute the second maximization in the equation for all positions of q using dynamic programming.

The A* search algorithm can also be configured to perform exact match for offline spelling

correction by simply substituting the probabilities in line W with line K. In effect, we continue to

penalize transformations involving additional unmatched letters even after finding a prefix match.
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It is worth noting that a search path can theoretically grow to infinite length, as ε is allowed

to appear as either the source or target of a transfeme. In practice, this does not happen as the

probability of such transformation sequences will be very low and will not be further expanded in

the search algorithm.

A translation model with larger L parameter (L bounds the length of transfemes) significantly

increases the number of potential search paths. As we need to consider all possible transfemes with

length less or equal to L when expanding each path, models with larger L are less efficient.

4.4.3 Pruning

To further improve the efficiency of A* search, we need to limit the search space and prune un-

promising paths early. In practice, carefully designed beam pruning methods can usually achieve

significant improvement in efficiency without causing much loss in accuracy. In our work, we em-

ploy two pruning techniques: absolute pruning and relative pruning.

For absolute pruning, we limit the number of paths to be explored at each position in the target

query q. As mentioned earlier, the complexity of our search algorithm is theoretically unbounded

due to ε transfemes. However, by applying absolute pruning, we can bound the complexity of the

algorithm by O(|q|LK), where K is the number of paths allowed at each position in q.

With relative pruning, we only explore the paths that have probabilities higher than a certain

percentage of the maximum probability at each position. The threshold values are carefully designed

to achieve the best efficiency without causing a significant drop in accuracy. In practice we find

relative pruning to be generally more effective for pruning unpromising paths. In our system, we

make use of both absolute pruning and relative pruning to improve search efficiency and accuracy.

4.4.4 Thresholding

From the perspective of user interface, it is not always a good idea to show a predefined number

of suggestions for every query. Showing more suggestions incurs a cost, as users spend more time

looking at them instead of completing their task. Moreover, showing irrelevant suggestions risks

annoying users. Therefore, we need to make a binary decision for each suggestion on whether it

should be shown to the user. Ideally, we want to measure the distance between the target query q and
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the suggested correction c. The larger the distance, the more risk we take to include it in the sug-

gestions. One way to approximate the distance is to compute the log of the inverse transformation

probability, averaged over the number of characters in the query:

risk(c, q) =
1

|q|
log

1

p(c→ q)
(4.20)

This risk function is not very effective in practice, as the input query q usually consists of

several words, of which only one is misspelled. It is unintuitive to average the risk over all letters

in the query. Instead, we can first segment q into words and measure the risk at the word level.

Specifically, we measure the risk of each word separately using the above formula and define the

final risk function as the fraction of words in q having a risk value above a given threshold.

4.5 Experiment

4.5.1 Datasets

Our primary focus in this work is to build a transformation model that is able to capture all the

misspelling behaviors of users. To obtain such behaviors, we make use of the click logs of search

engine recourse links. Recourse links are provided when the offline correction mechanisms of

search engines detect a potential misspelling. For example, in Google (Figure 4.5a), a recourse

link is shown in the sentence “Did you mean: important”. When the user clicks on this link, it

indicates that the user agrees with the correction. Therefore, the search engine will use the suggested

query to rerun the search. Similarly recourse links are provided in Bing as well (Figure 4.5b).

By recording such clicks, we accumulate a set of high quality corrections that represent real user

spelling behaviors.

It is worth noting that although the recourse links are provided by an offline spelling correction

system, it does not mean that our ability will be limited to that of the offline system. First, our

model captures the underlying patterns of spelling corrections instead of memorizing corrections at

the word or query level. For instance, in the example from Figure 4.5, a possible pattern is that im

tends to be misspelled as in. Second, our logs consist of recourse link clicks from multiple sites.
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Figure 4.5: Examples of recourse links

As the spellers of different search engines behave differently, we can learn from a diverse set of

correction pairs.

There are also other ways to obtain records of spelling corrections. For example, by analyzing

the webpage metadata for near-miss spellings, such those between title and anchor text, we can

extract possible spelling corrections. Similarly, such corrections can also be obtained using click-

through data from the query log, where a query-document mismatch would indicate a spelling error.

In our work, we view the extraction of correction records as a logical step that precedes transforma-

tion modeling. Our model can be easily extended to incorporate all sources of spelling correction

pairs.

Our dataset for training the transformation model contains 1.4 million recourse link clicks. The

statistics of the training data are shown in Table 4.1. Around 80% of all queries and 70% of all

unique queries are correctly spelled. 1/10 of the training data is held out for parameter tuning.

Table 4.1: Statistics of training data
Correctly Spelled Misspelled Total

Unique 101,640 (70%) 44,226 (30%) 145,866
Total 1,126,524 (80%) 283,854 (20%) 1,410,378

The query log we use for estimating the query popularity model consists of 21 million unique

queries. Our test set is a human annotated set which contains 9,959 unique queries. Table 3 provides

the statistics of the test data. The distribution over correctly spelled and misspelled queries is similar

to that of the training data. 1/10 of the test data is also held out for tuning additional parameters,

e.g. the coefficient λ for the mixture model. The remainder of the test queries is referred to as “all

queries” in our evaluation results. The subset of misspelled queries within all queries is referred to

as “misspelled queries”.
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Table 4.2: Statistics of test data
Correctly Spelled Misspelled Total

Unique 7585 (76%) 2374 (24%) 9959

4.5.2 Evaluation Metrics

We evaluate our methods with the following metrics:

R@N: Recall@N is the number of correct suggestions in the top ranked N suggestions gen-

erated by the system divided by the total number of suggestions in the ground truth. Since in our

ground truth, each query has exactly one correction, the total number of suggestions is the same as

the number of queries. Intuitively, Recall@N indicates the percentage of queries that the system

can correct within the top N suggestions. Therefore, it is a very natural measurement for perfor-

mance of correction. We take R@1 as our primary evaluation metric in experiment. Recall@N on

all queries is also referred to as accuracy in other works [32].

P@N: Precision@N is the number of correct suggestions in the top ranked N suggestions

generated by the system divided by the smaller value of N or the total number of suggestions

generated by the system. Precision reveals the quality of suggestions generated by the system.

Penalty is given to generating more incorrect suggestions. Note that this definition is different from

another widely used definition of P@N , where the denominator is fixed to be N . Our definition can

be interpreted as the precision of a system that limits its number of outputs to N at most. It is also

worth noting that while the micro average and macro average for recall are the same, it is not the

case for precision. For precision, we take the micro average because for queries where the system

provides no suggestion, precision is not well defined.

R@N and P@N are metrics for measuring offline spelling correction. We use these metrics to

evaluate our system in the exact match mode. Next, we introduce two metrics for measuring the

performance of online spelling correction.

MKS: Minimal Keystrokes measures the minimal number of key presses the user has to make

in order to issue the target search query. This metric simulates the scenario of users entering queries

to search engines. Suppose the users query is inportan and the correct query is important. The user

types in each letter in inportan sequentially. In the case that no suggestion is available, the user

types in all the letters in inportan and presses the Enter key. Then the user can click on the recourse
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link provided by the offline speller. Therefore, the total number of keystrokes the user makes is the

length of inportan, plus 1 for the Enter key, and 1 for the recourse link click. When suggestions are

provided while the user is typing, she can use arrow keys to select a query from the suggestion list.

For example, after typing in inpo, the user sees that important appears at the fifth position in the

suggestion list. Thus, she can select the query by pressing the Down Arrow key 5 times, followed

by the Enter key. In this case, the number of keystrokes is the number of letters the user enters

(4) plus the number of arrow keys the user hits (5), plus 1 for the Enter key. If the user continues

typing the rest of the query, she may see important increase to rank one for the input inpor. In this

case, the number of keystrokes is 5+1+1=7, which is the minimal number of keystrokes (MKS). A

good correction mechanism should have low MKS. In our experiments, we consider superstrings of

the target query as positive matches, too. That is, in the case that “important people” is suggested

instead of “important”, we still treat it as a match.

PMKS: PMKS refers to penalized MKS, which adds a penalty to MKS for each suggestion

generated by the system, as it takes effort for users to examine them for correctness. In this work

we heuristically assign 0.1 keystrokes as the penalty for showing each suggestion. Thus, reading

each query suggestion costs one tenth the effort of pressing a key. The essential idea of minimizing

effort in MKS and PMKS is of independent research interest and could be applied to a wide range

of research studies.

4.5.3 Experiment Results

In this section, we study the performance of our proposed system. We conduct all experiments on

both the all queries and misspelled queries test sets to demonstrate the overall performance as well

as the ability to handle misspelled queries.

We first compare our system with existing baselines in Table 4.3. The first baseline we include

is the edit distance model used by Chaudhuri and Kaushik [13]. To the best of our knowledge,

this is the only existing research study on online spelling correction. Our system outperforms the

edit distance model in terms of all evaluation metrics. Significance test (t-test) shows that the

improvement of our system is significant (p-value < 0.05) for all measurements except R@10. This

indicates that most misspellings are not very severe; therefore the edit distance model is able to rank

the best correction among the top 10 suggestions. However, the edit distance model is not able to
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further distinguish corrections within the same edit distance. We further observe that although we

see a big gap in R@1 for misspelled queries, the overall performance difference for all queries is

less than that of the misspelled queries. This is expected as the edit distance model will always rank

identical transformation on top (if it exists in the query log).

We also include Googles online query spelling suggestions1 as a baseline. As it is unclear how

Googles online spelling suggestion can be configured to run in exact match mode, we only measure

its performance with respect to the online correction metric, i.e. MKS. Not surprisingly, Google

outperforms the simple edit-distance model. On average users save 0.38 keystrokes per query using

Googles spelling suggestions over that of the edit distance model. For misspelled queries, nearly

1 keystroke is saved. Yet, our system further outperforms Googles suggestion system on MKS

with a statistically significant 1.1 and 1.5 keystrokes savings on all queries and misspelled queries,

respectively. It is worth noting that a larger search space (query log in our case) may result in worse

performance. Since the size of Googles search space is unknown, we cannot jump to the conclusion

that our system outperforms Googles spelling suggestion system.

Table 4.3: Comparison of performance with baseline systems
All Queries Misspelled Queries

R@1 R@10 MKS R@1 R@10 MKS
EditDist 0.899 0.973 13.39 0.579 0.887 14.53
Google N/A N/A 13.01 N/A N/A 13.49
Proposed 0.918 0.976 11.86 0.677 0.900 11.96

We also see in this experiment that the MKS metric is fairly consistent with Recall. Higher

recall values always correspond to lower MKS. This validates the use of MKS as a performance

metric.

To further understand how the proposed method works, we study the performance of the trans-

formation model with different configurations of L and M . Figure 4.6 shows the effect of the

transfeme Markov order M at L = 1 and L = 2. As we increase M from 1 to 2, we see a consistent

increase in performance; but from 2 to 3, the performance decreased instead. This is contradictory

with our intuition that higher order models result in better performance. We believe that this is be-

cause higher order models are more likely to suffer from data sparseness. Thus, with more training

data, we may find higher order models to further improve the performance overM = 2. We also ob-
1Based on results collected on August 4, 2010.
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MKS: Minimal Keystrokes measures the minimal number of key 
presses the user has to make in order to issue the target search 
query. This metric simulates the scenario of users entering queries 
to   search   engines.   Suppose   the   user’s   query   is   inportan and the 
correct query is important. The user types in each letter in 
inportan sequentially. In the case that no suggestion is available, 
the user types in all the letters in inportan and presses the Enter 
key. Then the user can click on the recourse link provided by the 
offline speller. Therefore, the total number of keystrokes the user 
makes is the length of inportan, plus 1 for the Enter key, and 1 for 
the recourse link click. When suggestions are provided while the 
user is typing, she can use arrow keys to select a query from the 
suggestion list. For example, after typing in inpo, the user sees 
that important appears at the fifth position in the suggestion list.  
Thus, she can select the query by pressing the Down Arrow key 5 
times, followed by the Enter key. In this case, the number of 
keystrokes is the number of letters the user enters (4) plus the 
number of arrow keys the user hits (5), plus 1 for the Enter key. If 
the user continues typing the rest of the query, she may see 
important increase to rank one for the input inpor. In this case, the 
number of keystrokes is 5+1+1=7, which is the minimal number 
of keystrokes (MKS). A good correction mechanism should have 
low MKS. In our experiments, we consider superstrings of the 
target query as positive matches, too. That is, in the case that 
“important people”   is   suggested   instead   of   “important”,  we   still  
treat it as a match. 
PMKS: PMKS refers to penalized MKS, which adds a penalty to 
MKS for each suggestion generated by the system, as it takes 
effort for users to examine them for correctness. In this work we 
heuristically assign 0.1 keystrokes as the penalty for showing each 
suggestion. Thus, reading each query suggestion costs one tenth 
the effort of pressing a key. The essential idea of minimizing 
effort in MKS and PMKS is of independent research interest and 
could be applied to a wide range of research studies. 

6.3 Experimental Results 
In this subsection, we study the performance of our proposed 
system. We conduct all experiments on both the all queries and 
misspelled queries test sets to demonstrate the overall 
performance as well as the ability to handle misspelled queries.  

We first compare our system with existing baselines in Table 4.  
The first baseline we include is the edit distance model used by 
Chaudhuri and Kaushik [6]. To the best of our knowledge, this is 
the only existing research study on online spelling correction. Our 
system outperforms the edit distance model in terms of all 
evaluation metrics. Significance test (t-test) shows that the 
improvement of our system is significant (p-value < 0.05) for all 
measurements except R@10. This indicates that most 
misspellings are not very severe; therefore the edit distance model 
is able to rank the best correction among the top 10 suggestions. 
However, the edit distance model is not able to further distinguish 
corrections within the same edit distance. We further observe that 
although we see a big gap in R@1 for misspelled queries, the 
overall performance difference for all queries is less than that of 
the misspelled queries. This is expected as the edit distance model 
will always rank identical transformation on top (if it exists in the 
query log). 

We also include Google’s online query spelling suggestions1 as a 
baseline.  As  it  is  unclear  how  Google’s  online spelling suggestion 
can be configured to run in exact match mode, we only measure 

                                                                 
1 Based on results collected on August 4, 2010. 

its performance with respect to the online correction metric, i.e. 
MKS. Not surprisingly, Google outperforms the simple edit-
distance model. On average users save 0.38 keystrokes per query 
using Google’s  spelling  suggestions over that of the edit distance 
model. For misspelled queries, nearly 1 keystroke is saved. Yet, 
our system further outperforms   Google’s   suggestion   system   on  
MKS with a statistically significant 1.1 and 1.5 keystrokes savings 
on all queries and misspelled queries, respectively. It is worth 
noting that a larger search space (query log in our case) may result 
in worse performance. Since the size of Google’s  search  space  is 
unknown, we cannot jump to the conclusion that our system 
outperforms  Google’s  spelling  suggestion  system.   

Table 4. Comparison of performance with baseline systems 

 

All Queries Misspelled Queries 

R@1 R@10 MKS R@1 R@10 MKS 

EditDist 0.899 0.973 13.39 0.579 0.887 14.53 

Google N/A N/A 13.01 N/A N/A 13.49 

Proposed 0.918 0.976 11.86 0.677 0.900 11.96 
 

We also see in this experiment that the MKS metric is fairly 
consistent with Recall. Higher recall values always correspond to 
lower MKS. This validates the use of MKS as a performance 
metric. 

 

 
To further understand how the proposed method works, we study 
the performance of the transformation model with different 
configurations of 𝐿  and 𝑀 . Figure 7 shows the effect of the 
transfeme Markov order 𝑀 at 𝐿 = 1 and 𝐿 = 2. As we increase 𝑀 
from 1 to 2, we see a consistent increase in performance; but from 
2 to 3, the performance decreased instead. This is contradictory 
with our intuition that higher order models result in better 
performance. We believe that this is because higher order models 
are more likely to suffer from data sparseness. Thus, with more 
training data, we may find higher order models to further improve 
the performance over 𝑀 = 2. We also observe that for a fixed 𝑀, 
increasing 𝐿 actually decreases the performance. We hypothesize 
that this may be due to overfitting, as increasing 𝐿 significantly 
increases the number of model parameters. As larger 𝐿  also 
significantly increases the cost of search, it is impractical for real-
time scenarios. Under the current setting, our best result is 
achieved with 𝐿 = 1,𝑀 = 2. Thus for all subsequent experiments, 
we fix the configuration to 𝐿 = 1,𝑀 = 2. 

To confirm the effect of smoothing, we experiment with two 
smoothing methods and compare their performance. In Figure 8 
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Figure 7: Performance with varying 𝑳 and 𝑴 
 

Figure 4.6: Performance with varying L and M

we see that absolute discounting (AD) outperforms Jelinek-
Mercer (JM) smoothing over every evaluation metric for both the 
all queries and misspelled queries test sets. This is in line with 
previous language modeling research that found discounting 
based smoothing to outperform simple interpolation techniques. 
This experiment confirms our hypothesis that employing proper 
smoothing methods substantially increases the performance of the 
transformation model. 

 

 
We present the effectiveness of our proposed methods for 
avoiding over correction in Table 5. As we can see, the non-
mixture model, which is trained with misspelled queries only, 
performs well for misspelled queries. However, the overall 
performance is not good because it tends to alter queries that are 
already correctly spelled. Both the data mixture and model 
mixture approaches improve the overall performance by reducing 
such overcorrections. For the all queries set, they perform equally 
well. For misspelled queries, model mixture performs just as well 
as the non-mixture model.  However the performance of the data 
mixture approach drops significantly. From an application 
perspective, it is the misspelled queries for which users need 
suggestions the most. Users are able to enter queries that they can 
spell no matter what our system suggests. In this sense, the model 
mixture approach is more preferable than the data mixture 
approach. Moreover, by estimating the two models separately, the 
model mixture approach can be updated more easily.  

Table 5. Performance study on overcorrection 

 
All Queries Misspelled Queries 

R@1 R@10 MKS R@1 R@10 MKS 

Non-Mix 0.893 0.966 11.94 0.678 0.899 11.98 

Data Mix 0.918 0.971 11.85 0.669 0.879 11.98 

Model Mix 0.918 0.976 11.86 0.677 0.900 11.96 
 

In Table 8, we study the effect of the proposed thresholding 
method for pruning irrelevant suggestions. As we can see, with 
suggestion pruning, the performance of online spelling correction 
substantially increases for both the all queries and misspelled 
queries sets in terms of P@1, P@10 and PMKS. This verifies the 
effectiveness of our proposed thresholding method. But in terms 
of R@1, R@10 and MKS, the performance actually decreased. 
The reason behind this pattern is that the first set of metrics (P@1, 
P@10 and PMKS) assigns penalty for showing irrelevant 
suggestions, while the second set of metrics does not. In fact, any 

pruning of suggestions can only decrease the recall, as some 
correct suggestions may be pruned by mistake. From our 
perspective, showing too many irrelevant corrections has a strong 
negative effect on the query completion user experience, 
increasing the risk of losing users. Given that the recall did not 
significantly decrease, we prune suggestions using risk 
thresholding in the implementation of our system. 

 

 
Finally, we address the efficiency of our approach. From our 
experiments, we observe that although a better heuristic function 
can reduce the running time of the search algorithm, beam 
pruning is still required to achieve practical performance. In 
Figure 9 we plot the performance and running times for different 
relative beam pruning thresholds. Based on our experiments on an 
unoptimized implementation, we observe that as we relax the 
pruning threshold, the running time increases exponentially. 
However, the increase in R@1 is slow and ceases beyond a 
relative threshold of 10 .  

Table 6. Examples suggestions 

Input Query Top Suggestion 

milk shak milkshake recipes 

hwo to tain ur dra how to train your dragon 

alice on wander land alice in wonderland 

mision inpos mission impossible 

 

In Table 6 we list some example correction pairs identified by our 
system. None of these input queries are in the training corpus. As 
we can see, our method is capable of capturing various kinds of 
spelling errors for multiple word phrases. By updating the query 
language model frequently, we can keep our online spelling 
correction system up-to-date with the latest query language. 

Table 7. Examples of transfeme probabilities 
𝑀 = 1 𝑀 = 2 

𝑝(𝑎 → 𝑢) 0.0001 𝑝(𝑎 → 𝑢|ℎ → ℎ) 0.0006 

𝑝(𝑢 → 𝑎) 0.0002 𝑝(𝑢 → 𝑎|𝑎 → 𝑢) 0.2 

𝑝(𝑒 → 𝑎) 0.002 𝑝(𝑒 → 𝑎|𝑎 → 𝑢) 0.007 

 
To further understand the internal mechanism of our model, we 
list some transfeme probabilities in Table 7. Clearly, for 𝑀 = 1, 
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Figure 4.7: Performance of transformation models with different smoothing methods

serve that for a fixed M , increasing L actually decreases the performance. We hypothesize that this

may be due to overfitting, as increasing L significantly increases the number of model parameters.

As larger L also significantly increases the cost of search, it is impractical for real-time scenarios.

Under the current setting, our best result is achieved with L = 1,M = 2. Thus for all subsequent

experiments, we fix the configuration to L = 1,M = 2.

To confirm the effect of smoothing, we experiment with two smoothing methods and compare

their performance. In Figure 4.7 we see that absolute discounting (AD) outperforms Jelinek-Mercer

(JM) smoothing over every evaluation metric for both the all queries and misspelled queries test sets.
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This is in line with previous language modeling research that found discounting based smoothing

to outperform simple interpolation techniques. This experiment confirms our hypothesis that em-

ploying proper smoothing methods substantially increases the performance of the transformation

model.

We present the effectiveness of our proposed methods for avoiding over correction in Table 4.4.

As we can see, the non-mixture model, which is trained with misspelled queries only, performs

well for misspelled queries. However, the overall performance is not good because it tends to alter

queries that are already correctly spelled. Both the data mixture and model mixture approaches

improve the overall performance by reducing such overcorrections. For the all queries set, they

perform equally well. For misspelled queries, model mixture performs just as well as the non-

mixture model. However the performance of the data mixture approach drops significantly. From

an application perspective, it is the misspelled queries for which users need suggestions the most.

Users are able to enter queries that they can spell no matter what our system suggests. In this

sense, the model mixture approach is more preferable than the data mixture approach. Moreover,

by estimating the two models separately, the model mixture approach can be updated more easily.

Table 4.4: Comparison of performance with baseline systems
All Queries Misspelled Queries

R@1 R@10 MKS R@1 R@10 MKS
Non-Mix 0.893 0.966 11.94 0.678 0.899 11.98
Data Mix 0.918 0.971 11.85 0.669 0.879 11.98
Model Mix 0.918 0.976 11.86 0.677 0.900 11.96

In Table 4.5 and Table 4.6, we study the effect of the proposed thresholding method for pruning

irrelevant suggestions. As we can see, with suggestion pruning, the performance of online spelling

correction substantially increases for both the all queries and misspelled queries sets in terms of

P@1, P@10 and PMKS. This verifies the effectiveness of our proposed thresholding method. But

in terms of R@1, R@10 and MKS, the performance actually decreased. The reason behind this

pattern is that the first set of metrics (P@1, P@10 and PMKS) assigns penalty for showing irrelevant

suggestions, while the second set of metrics does not. In fact, any pruning of suggestions can only

decrease the recall, as some correct suggestions may be pruned by mistake. From our perspective,

showing too many irrelevant corrections has a strong negative effect on the query completion user
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we see that absolute discounting (AD) outperforms Jelinek-
Mercer (JM) smoothing over every evaluation metric for both the 
all queries and misspelled queries test sets. This is in line with 
previous language modeling research that found discounting 
based smoothing to outperform simple interpolation techniques. 
This experiment confirms our hypothesis that employing proper 
smoothing methods substantially increases the performance of the 
transformation model. 
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suggestion pruning, the performance of online spelling correction 
substantially increases for both the all queries and misspelled 
queries sets in terms of P@1, P@10 and PMKS. This verifies the 
effectiveness of our proposed thresholding method. But in terms 
of R@1, R@10 and MKS, the performance actually decreased. 
The reason behind this pattern is that the first set of metrics (P@1, 
P@10 and PMKS) assigns penalty for showing irrelevant 
suggestions, while the second set of metrics does not. In fact, any 

pruning of suggestions can only decrease the recall, as some 
correct suggestions may be pruned by mistake. From our 
perspective, showing too many irrelevant corrections has a strong 
negative effect on the query completion user experience, 
increasing the risk of losing users. Given that the recall did not 
significantly decrease, we prune suggestions using risk 
thresholding in the implementation of our system. 

 

 
Finally, we address the efficiency of our approach. From our 
experiments, we observe that although a better heuristic function 
can reduce the running time of the search algorithm, beam 
pruning is still required to achieve practical performance. In 
Figure 9 we plot the performance and running times for different 
relative beam pruning thresholds. Based on our experiments on an 
unoptimized implementation, we observe that as we relax the 
pruning threshold, the running time increases exponentially. 
However, the increase in R@1 is slow and ceases beyond a 
relative threshold of 10 .  

Table 6. Examples suggestions 

Input Query Top Suggestion 
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In Table 6 we list some example correction pairs identified by our 
system. None of these input queries are in the training corpus. As 
we can see, our method is capable of capturing various kinds of 
spelling errors for multiple word phrases. By updating the query 
language model frequently, we can keep our online spelling 
correction system up-to-date with the latest query language. 

Table 7. Examples of transfeme probabilities 
𝑀 = 1 𝑀 = 2 

𝑝(𝑎 → 𝑢) 0.0001 𝑝(𝑎 → 𝑢|ℎ → ℎ) 0.0006 
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Figure 4.8: R@1/Running time vs. pruning threshold

experience, increasing the risk of losing users. Given that the recall did not significantly decrease,

we prune suggestions using risk thresholding in the implementation of our system.

Table 4.5: Effect of pruning for all queries
R@1 R@10 P@1 P@10 MKS PMKS

w/ pruning 0.916 0.969 0.927 0.304 11.87 19.42
w/o pruning 0.918 0.976 0.920 0.262 11.86 19.60

Table 4.6: Effect of pruning for misspelled queries
R@1 R@10 P@1 P@10 MKS PMKS

w/ pruning 0.669 0.875 0.704 0.241 12.00 19.21
w/o pruning 0.677 0.900 0.685 0.204 11.96 19.56

Finally, we address the efficiency of our approach. From our experiments, we observe that

although a better heuristic function can reduce the running time of the search algorithm, beam

pruning is still required to achieve practical performance. In Figure 4.8 we plot the performance

and running times for different relative beam pruning thresholds. Based on our experiments on

an unoptimized implementation, we observe that as we relax the pruning threshold, the running

time increases exponentially. However, the increase in R@1 is slow and ceases beyond a relative

threshold of 10−7.
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Table 4.7: Examples suggestions
Input Query Top Suggestion
milk shak milkshake recipes
hwo to tain ur dra how to train your dragon
alice on wander land alice in wonderland
mision inpos mission impossible

In Table 4.7 we list some example correction pairs identified by our system. None of these input

queries are in the training corpus. As we can see, our method is capable of capturing various kinds

of spelling errors for multiple word phrases. By updating the query language model frequently, we

can keep our online spelling correction system up-to-date with the latest query language.

4.6 Conclusion

This work addresses the problem of query completion and correction with a generative model. We

first propose a transfeme-based transformation model that is capable of capturing users completion

and correction behavior. We then estimate the transformation model with an EM algorithm based

on observed parallel queries. Next, we study various techniques to optimize the effectiveness of the

transformation model.

To efficiently retrieve the query corrections with the highest probability according to the gener-

ative model, we propose the use of an algorithm based on A* search. The A* search algorithm is

configured to deal with partial queries, so that online search is possible. We study different pruning

and thresholding methods to improve the efficiency of the A* search.

Finally, we propose two novel evaluation metrics for online spelling correction, i.e. minimal

keystrokes and penalized minimal keystrokes, based on the idea of minimal effort cost for users.

We conduct extensive experiments and conclude that the proposed method is both effective and

efficient for the task of online spelling correction.

54



CHAPTER 5

QUERY REFORMULATION WITH SYNTACTIC
OPERATORS

5.1 Introduction

Query languages of modern search engines usually include a set of advanced syntactic operators to

supplement traditional keyword query. For instance, a necessity operator (plus sign) preceding a

query term requires the term to be present in each relevant document; a phrase operator (a pair of

quotation marks) imposes that relevant documents must contain the phrase consisting of the quoted

terms. To distinguish from keyword query, we refer to a query with syntactic operators as a syntax

query. For example, Figure 5.1a shows a keyword query, while Figure 5.1b and Figure 5.1c show

two syntax queries which have the same set of terms as the keyword query shown in Figure 5.1a. In

the convenience of discussion, we further denote this type of syntactic operator-based reformulation

as syntactic reformulation.

If used appropriately, syntactic reformulation can strongly enhance the representation of search

intent, turning an otherwise ineffective query to an effective one. Figure 5.1 shows an example of

using syntactic reformulation to improve the top ranked results with a major US search engine. As

we can see from Figure 5.1a, none of the top ranked documents in the search results are relevant to

the query. In contrast, in Figure 5.1b, by using the syntactic query with the necessity constraint on

term “unix”, we are able to find two (2nd and 3rd) relevant documents out of the top three. This

is because the search engine overlooked the term “unix” in the original query, which is typically

due to the coarse estimation of term importance. By imposing the necessity constraint, the query

promotes the importance of the term and re-ranks the results according to whether it is contained in

each document. In Figure 5.1c, with an even more complicated syntactic reformulation, we further

put a phrase constraint on “default java”. This effectively eliminates the possible ambiguities of

the query caused by matching terms separately. As a result, all the top three ranked documents are
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Figure 5.1: Example of Using Syntactic Operators for Improving Search Result

relevant in this case. The proper use of syntactic operators not only clarifies users information need,

but also gives clues to the retrieval system to optimize the search results.

However, very few users make use of the syntactic operators in their daily search activities.

Statistics from a search engine query log show that only less than 0.5% queries used syntactic

operators1. This is either because they are unfamiliar with the semantics of the operator, or because

they lack the knowledge and statistics to formulate working syntax queries.

In this work, we propose to help users take advantage of the rich query syntax by automatically

formulating potentially effective syntax queries for keyword queries. Particularly, we propose to

automatically perform the query reformulation with syntactic operators when users encounter diffi-

culty in search. Such difficulty could be detected through monitoring users behaviors. For instance,

one possible indicator could be when a user skipped a page of top ranked results to the next page.

Our assumption is that if a user can find relevant documents in the top ranked results, the user is

likely satisfied with the original ranking and thus there is no much need for syntactic reformulation.

We thus focus on studying how to exploit query syntax reformulation to help users when it is ev-

ident that the user cannot find any relevant document in the top k results. This scenario is similar

to the case of negative relevance feedback [73][72] in the sense that there is a common goal of re-

ranking the unseen results based on a small number of negative examples already encountered by

the user. However, while existing negative feedback techniques primarily rely on word frequency

analysis in the negative examples to improve the query vector or language model [73], we study

how to leverage query syntax operators to improve the syntax of a query, which is a different and

complementary strategy and has two advantages over the existing methods for negative feedback:
1Based on a sample of MSN query log in 2006.
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first, it has better interpretability to users. i.e., the suggested reformulated query can be more eas-

ily verified by a user if deployed in an interactive feedback system; second, while most negative

feedback methods “blindly” treat a whole document as non-relevant, our method would attempt to

“diagnose” the cause of poor results and correct any missing semantic constraint via appropriate

syntactic operator.

To perform automatic syntactic reformulation, we adopt a supervised learning framework. Par-

ticularly, we cast the problem as to predict the potential benefit of each candidate syntax query in

improving the performance of a given keyword query. If we are confident on the potential improve-

ment, we can suggest the reformulation to the user or use it directly to refine the search result.

One problem in training the prediction model is that syntactic reformulations of different keyword

queries may not have comparable performances. To circumvent this problem, we make use of the

learning to rank techniques.

We propose and study three types of features to represent the characteristics of a syntax query.

Query difficulty measures the intrinsic difficulty of syntax query. Distinguishability computes the

amount of changes a syntax query brings to the original result. Negativity measures the similar-

ity between the candidate query and the negative relevance feedback. The three types of features

are all generalized features that can be computed for any filtering-based operators. Experiments

demonstrate their effectiveness in formulating highly beneficial syntax queries.

To evaluate our proposed method for automatic syntactic reformulation and to test its usefulness

on alleviating search difficulty, we conduct experiments with TREC dataset [71]. The experiment

results verified the effectiveness of our proposed method for query reformulation with different syn-

tactic operators. It is also demonstrated that our method can be easily applied to different retrieval

models to improve search qualities. As a negative feedback method, our approach not only out-

performs the state-of-the-art methods, but can also be combined with existing methods to further

improve the performance.
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Table 5.1: Performance Upper Bounds of Syntactic Operators in Alleviating Search Difficulty
Retrieval Model Query Type Operator NDCG@10
BM25 Description — 0.065
BM25 Description Necessity 0.120
BM25 Description Phrase 0.105
BM25 Title — 0.078
BM25 Title Necessity 0.094
BM25 Title Phrase 0.099
LM Description — 0.070
LM Description Necessity 0.120
LM Description Phrase 0.111
LM Title — 0.083
LM Title Necessity 0.100
LM Title Phrase 0.102

5.2 Syntactic Operators for Improving Search Results

Modern search engines typically include a set of syntactic operators in their query language to

complement the plain keyword query. Below we briefly introduce the two operators we study in this

work, i.e. the necessity operator and phrase operator.

Necessity Operator (+). A necessity operator preceding a query term imposes the constraint

that a relevant document must contain the particular term. For example, given a query computer

+virus, the search engine shall return all documents containing the term virus, but not necessarily

computer. In this way the query exaggerates the importance of the topical word to guarantee it will

not be missed in the returned documents.

Phrase Operator (“”). A sequence of query terms surrounded by a pair of quotation marks

indicates a phrase constraint. It requires a relevant document must contain the quoted phrase. For

example, given a query “computer virus” infection, it intends to find documents containing the

exact phrase computer virus, and better with the term infection. In effect, such a query would

discard or degrade (depending on the implementation) a document which mentioned computer and

virus multiple times but without mentioning the phrase.

Table 5.1 shows the performance upper bounds that can be achieved by applying syntactic refor-

mulations. It validates our hypothesis on the effectiveness of syntactic operators in alleviating search

difficulty, as we see huge performance improvements in syntactic reformulation compared with the
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baseline retrieval models. It is also observed that syntactic reformulations are more effective on long

queries. As long queries are more verbose and noisy, their topics are more likely to be distracted.

Syntactic operators are more helpful in this case as they emphasize on the underrepresented topics.

5.3 Automatic Reformulation with Syntactic Operators

We formulate the automatic syntactic reformulation of keyword queries as a supervised learning

problem. Particularly, we cast the problem as to predict the benefit in performance for each candi-

date syntax query given a keyword query.

Formally, given a keyword query q, a syntactic operator op and a target performance metric M ,

our goal is to find a list of syntactic reformulations of q with op, denoted as Sop(q) = q1, q2, , qn,

which is ranked according to M in descending order: M(q1) > M(q2) > ... > M(qn). When it

is required to output top m suggestions, the system will respond with a list consisting of q1, q2, qm.

When a syntactic reformulation is required to directly optimize the search results, the system will

output the top ranked query q1 if M(q1) > M(q), or the original query q otherwise. The training

process is to learn a function f , which takes a set of features of a syntax query qi, to predict the

performance improvement M ′(qi) = M(qi)−M(q).

Since there are an exponential number of possible syntax queries for each syntactic operator,

we limit the system to consider single appearance of each operator. Although we only explore the

limited scope of use of these operators, the proposed methodology is general and can be potentially

applicable to other filtering-based operators and multiple uses of each operator.

To solve the learning problem, a natural way is to use a regression model. In this method, a

model will be learned to predict the performance for any possible syntax query. One problem with

this method is that the performances of syntax queries reformulated based on different keyword

queries are usually not directly comparable. For instance, from the example of training data in

Table 5.2, we see that query 302 and query 313 have much different performances due to their

intrinsic difficulties. To circumvent the problem, we adopt the learning to rank framework. In

this setting, syntax queries generated from each keyword query are considered as a group; the loss

function is defined on the ranking order of members in each group instead of on the absolute value

of the performance. This loss function is more natural in our problem setting and avoids the issue of
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Table 5.2: Examples of Training Samples for Syntactic Reformulation with Necessity Operator
QID Syntax Query NDCG@10
302 disease poliomyelitis polio under control world 0.163
302#1 +disease poliomyelitis polio under control world 0.105
302#2 disease poliomyelitis +polio under control world 0.203
302#3 disease poliomyelitis polio under +control world 0
313 commercial uses magnetic levitation 0.081
313#1 +commercial uses magnetic levitation 0.077
313#2 commercial uses +magnetic levitation 0.081
313#3 commercial uses magnetic +levitation 0.333

incomparability. We then use the learned model to predict the potential benefit in performance for

each candidate in syntactic reformulation. Particularly, we use Ranking SVM [41] as the learning

method in our study.

5.3.1 Features

We propose three types of features, namely difficulty, distinguishability and negativity. All three

types of features are defined in a general way so that they can be computed for any type of filtering-

based operators. As used in previous discussions, we denote q as the keyword query, op as the target

operator and qx as a syntactic reformulation of q with operator op.

Difficulty. The difficulty feature aims to measure the intrinsic difficulty of a syntax query.

Query difficulty prediction has been widely studied in recent years. We modify the clarity feature

proposed by Cronen-Townsend et al. [20] slightly to make it applicable to syntax queries:

Clarity(qx) = KL(θm‖θC) =
∑
w∈V

p(w|θm) log
p(w|θm)

p(w|θC)
(5.1)

where θm is the language model estimated from the set of matched documents Sm of qx, θC is

the language model estimated from the entire collection. Queries with high clarity are more likely

to work well.

In addition to clarity, we propose another difficulty feature, which is inspired by the inverse

document frequency (IDF). We generalize this concept to compute the specificity of a syntax query:
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GIDF (qx) = log
Nc −NSm + 0.5

NSm + 0.5
(5.2)

where Nc and NSm are the number of documents in the entire collection and matched set,

respectively. Intuitively, a query matching fewer documents is more specific and meaningful.

To understand how these two features work, let us take a look at an example. Suppose we

are given a query Oscar winner selection. To reformulate with necessity operator, we evaluate the

queries +Oscar winner selection, Oscar +winner selection and Oscar winner +selection. It can

be expected that the first query would have much higher clarity and GIDF, as the word “Oscar”

is associated with fewer documents, which are more likely to be focused on a particular topic. In

reformulation with phrase operator, we consider the candidates “Oscar winner” selection and Oscar

“winner selection”. Similarly, we could imagine the first query will have higher clarity and GIDF

as the matched documents on “Oscar winner” is much fewer and more specific than documents

matching “winner selection”.

Distinguishability. The idea of the distinguishability feature is to quantify the changes a syntax

query brings to the original query. For this purpose, we define cross clarity between θm and θq, the

language model estimated from the search results of q:

CrossClarity(qx, q) = KL(θm‖θq) =
∑
w∈V

p(w|θm) log
p(w|θm)

p(w|θq)
(5.3)

This feature measures the change in the topical formation of the syntax query qx and the original

query q.

Besides measuring content changes, we use another feature to measure the change in the ranking

of documents. Particularly, we measure the correlation between the document rankings of q and qx:

Cor(qx, q) =
#concord(qx, q)−#discord(qx, q)

1
2Nq(Nq − 1)

(5.4)

where concord(qx, q) and discord(qx, q) are the sets of concordant pairs and discordant pairs

between the two ranking lists of search results of qx and q. The correlation feature quantifies the

changes qx brings to the original ranking of q.
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In the example of reformulating Oscar winner selection with phrase operator, we have two

candidate queries “Oscar winner” selection and Oscar “winner selection”. The first query will

have lower cross clarity and higher correlation with the original keyword query, as it captures the

essential topic of the query. It is therefore more suitable for a suggestion.

Negativity. The negativity feature measures the similarity between the syntax query qx and the

negative documents (e.g. skipped documents in browsing). A query less similar to the negative

documents naturally has higher chances of working well.

Again, we define the content based negativity feature as the cross clarity between the language

model estimated from the matched documents Sm and the language model estimated from the neg-

ative feedback documents Sn.

In addition, we define another negative feature as the generalized inverse negative frequency

(GINF):

GIDF (Sm, Sn) = log
NSn + 0.5

NSm∩Sn + 0.5
(5.5)

In effect, this feature indicates the necessity of requiring a particular operator in the original

keyword query.

By computing negativity features with different operators, we are actually “diagnosing” why the

original query does not work well. For instance, if the negative documents of query Oscar winner

selection discuss a lot about “Oscar winner”, but rarely mention “selection”, then it is probable that

the user intend to focus on the “selection” of “Oscar winner”, while the system is somehow biased

towards other popular topics on “Oscar winner”. In this case, the query Oscar winner +selection

might be able to amend the mistake. Or if the negative documents mention the three keywords fairly

well, but the phrase “Oscar winner” seldom occurs, it probably indicates that the retrieval system

overlooked the fact that “Oscar winner” must be matched as a phrase to maintain its meaning.

Therefore, the query “Oscar winner” selection might work well to serve the users purpose.
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5.3.2 Combining Operators in Prediction

Our proposed algorithm not only works for predicting each operator separately, but can also be

applied to predict different operators jointly, as filters can be applied additively. We refer to this

joint prediction method as Operator-Combination.

An alternative method is Result-Combination, in which we predict each operator separately and

select the reformulation with the best predicted performance. In practice we find this method not

only more effective but also more efficient than the Operator-Combination, as it considers much

fewer candidates in prediction.

5.4 Experiments

In this section, we present the experiment results for evaluating the proposed methods. We begin

by introducing the experiment setup, followed by the details of our evaluation results. Finally, case

studies are presented for better understanding of our system.

5.4.1 Experiment Setup

We use TREC 2004 Robust track [71] as our experiment dataset. The dataset includes TREC disk

4&5 minus congress reports. There are around 500,000 documents in the dataset. The query set

consists of 250 queries. The title field and description field are used to represent different types of

queries. The average length of title field and description field is 2.7 and 15.6 terms, respectively.

We refer the title field as (relatively) short query, and the description field as (relatively) long query.

Not all the queries are difficult queries. To simulate the scenario of search difficulty, we adopt

the minimum deletion method proposed by Wang et al. [73]. We use BM25 as our baseline. In addi-

tion, we also implement MultiNeg, a state-of-the-art method for using negative feedback [73]. It is

worth noting that our method does not conflict with existing methods for using negative feedback.

Instead, we use negative feedback in a different manner, which could potentially bring comple-

mentary factor to the existing methods. To test this idea, we further combine the use of syntactic

reformulation with the MultiNeg method.
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Table 5.3: Automatic Syntactic Reformulation to Directly Refine Search Results on Long Queries
(Description) with BM25

NDCG@10 P@1 MAP
BM25 0.065 0.157 0.089
Necessity† 0.077 0.205 0.104
Phrase 0.069 0.161 0.093
Operator-Combination 0.065 0.161 0.088
Result-Combination† 0.079 0.209 0.114
MultiNeg† 0.074 0.216 0.093
RC+MultiNeg†‡ 0.081 0.221 0.115

MultiNeg Wang et al. reported that the MultiNeg strategy outperforms all the other existing

methods for using negative feedback, including Rocchio like SingleQuery method and SingleNeg

method. Therefore, we implement MultiNeg methods for both BM25 as a baseline system. The

MultiNeg methods work by combining the original score of each document to be re-ranked with a

penalty score.

Scombined(Q,D) = S(Q,D)− βS(Qneg, D) (5.6)

where the penalty score is computed by looking at each negative document separately:

S(Qneg, D) = max
Q′∈N

S(Q′, D) (5.7)

where S(Q′, D) is the similarity of the negative document Q′ and document D. In this case, it is

the BM25 ranking score.

We evaluate automatic syntactic reformulation with necessity and phrase operator by using them

to directly refine search result by re-ranking unseen documents. NDCG@10 is used as the primary

metric. All the reported results are based on 5-fold cross validation.

5.4.2 Experiment Results

Table 5.3 and Table 5.4 show the performances on long queries (description) and short queries

(title) respectively. The base retrieval model we use is BM25. Runs that show statistical significant

improvement over the baseline model (p − value < 0.05) are marked by †. We also compare our

performances with another baseline system for using negative feedback, i.e. MultiNeg. Runs that
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Table 5.4: Automatic Syntactic Reformulation to Directly Refine Search Results on Short Queries
(Title) with BM25

NDCG@10 P@1 MAP
BM25 0.078 0.217 0.111
Necessity 0.081 0.229 0.115
Phrase 0.083 0.221 0.119
Operator-Combination 0.076 0.201 0.108
Result-Combination 0.082 0.225 0.119
MultiNeg 0.078 0.216 0.111
RC+MultiNeg†‡ 0.084 0.225 0.119

show statistical significant improvement over the MultiNeg methods (p−value < 0.05) are marked

by ‡.

We see that for long queries, reformulation with necessity operator achieves higher perfor-

mances than with phrase operator. However, for short queries, phrase operator tends to work better.

Long queries are much more verbose and noisy, and thus more likely have the central topic missed

in returned documents. Reformulation with necessity operator is more useful here as it discovers the

important but underrepresented topical term and ensures it to be matched. A short query has fewer

keywords and therefore less noise. However, the connection between keywords is usually lost as a

cost of being succinct. Reformulation with phrase operator alleviates the problem by imposing the

phrase constraint strongly connected terms. We also see the Result-Combination strategy always

outperforms Operator-Combination. Result-Combination usually brings further improvement to the

performance. More importantly, it provides a more robust solution compared with reformulation

with single type of operator.

Result-Combination outperforms MultiNeg. MultiNeg method takes the entire content of a

negative document as non-relevant. In our method, we try to find the commonly missing semantics

among negative examples. Compared with MultiNeg, this is a more precise way of using negative

feedback and is therefore more effective. The performance could be further improved by combining

syntactic reformulation with MultiNeg (RC-MultiNeg). Since our method does not directly use the

negative information to refine scores of documents, it is complementary with the existing methods

that work in this way.

We see that it is generally more difficult to improve the search results for short queries. Short

queries are typically more succinct. As a result, there is less room for applying syntactic operators.
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Table 5.5: Examples of Suggested Queries
ID Query NDCG
1 Original find instances plagiarism literary journalistic worlds 0.023

Suggested find instances +plagiarism literary journalistic worlds 0.137

2 Original fear open public places agoraphobia widespread disorder
relatively unknown 0.000

Suggested fear open public places +agoraphobia widespread disorder
relatively unknown 0.142

3 Original impact chunnel british economy life style british 0.046
Suggested impact +chunnel british economy life style british 0.201

4 Original commercial uses magnetic levitation 0.081
Suggested commercial uses “magnetic levitation” 0.333

5 Original maternity leave policies various governments 0.208
Suggested “maternity leave” policies various governments 0.330

5.4.3 Cases Studies

In order to better understand how syntactic reformulation works for improving retrieval perfor-

mance, we show some concrete examples of automatically reformulated syntax queries in Table

5.5.

From these examples, we see syntactic operators help convey query intents and clear ambigui-

ties. For instance, the original query of query 5 does not convey clearly that “maternity leave” is a

phrase with a specific meaning. It caused ambiguities as the terms are matched separately. Auto-

matic syntactic reformulation eliminates the ambiguities by stressing the phrase match on the two

terms.

Syntactic reformulation also discovers the underrepresented concepts in the keyword queries.

For instance, the term “chunnel” in query 3 is overlooked in the original query as there are other

popular topics in the collection that match the rest of keywords well. Our algorithm is able to detect

this problem and solve it by applying necessity operator on the term.

Our algorithm is also able to discover the representative terms in queries. In query 2, “agorapho-

bia” basically represents the entire query intent, while explanation terms are noisy and distractive.

By emphasizing on this term, it maintains relevance to the central topic and dismisses the unneces-

sary distractions.
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5.5 Conclusion

The ability to help users reformulate effective queries when their original queries do not work well

is an important enhancement to search intent representation. In this work we propose and study a

novel way of automatic query reformulation through the use of query syntax operators, i.e. syntactic

query reformulation. With appropriate use of syntactic operators, we are able to detect the missing

semantics in the original query and amend it in the reformulated query. We formulate automatic

syntactic reformulation as a supervised learning problem under the framework of learning to rank.

We propose a set of effective features to represent the characteristics of syntax queries. Extensive

experiments are conducted to demonstrate the effectiveness of the proposed methods.
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Part III

Deep Intent Modeling for Structured

Entity Retrieval
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CHAPTER 6

MODELING QUERY INTENT WITH ENTITY
STRUCTURES

6.1 Introduction

My previous work has focused on general techniques for search intent modeling and query refor-

mulation. Accurate and comprehensive modeling of search intent in Web search engines is usually

difficult as search intent takes various forms on the Web. Recently, large amount of structured

data are becoming available in many areas, such as e-commerce and medical information systems,

leading to an emerging and important issue in IR, i.e. structured entity search. The problem of struc-

tured entity search provides great opportunities for in-depth understanding and modeling of search

intents, but also raises many challenges. On one hand, the types of search intent are not as versatile

as in unstructured data, which allows us to focus on certain types of search intents, e.g. shopping

intent in e-commerce. On the other hand, there is a much more obvious gap between user described

intent (in unstructured keywords) and the searchable data (in structured representations) that need

to be solved, as compared to typical document retrieval. Due to these differences, existing methods

cannot be directly applied to achieve satisfactory results. More importantly, no existing work has

fully studied the problem of deep search intent modeling in document retrieval due to the lack of

sub-document structures. In this chapter, I study modeling query intent with entity structures.

In e-commerce, being able to let users explore the inventory conveniently has become a neces-

sary and critical service for online retailers. Usually, the product inventory is stored in a structured

/ semi-structured database, where each entry is an entity representing a particular product and each

column describes an aspect of the product. Table 6.1 shows an example database of laptops. In this

example, we have seven entities and four attributes. Each attribute may have one or more values. We

refer to each attribute-value pair as a specification (abbr. spec). Each entity is therefore represented
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Table 6.1: Example laptop database
Brand Hard Drive Graphics Blu-ray
HP 750G Radeon HD 7690M XT No
Dell 782G NVIDIA N13P-GS Yes
Acer 500G Intel HD No
Asus 128G UMA No
Acer 500G Radeon HD 7640G Yes
Asus 750G Intel HD Graphics 3000 No
Sony 640G Intel HD Graphics 4000 No

by a set of specifications (specs). Traditionally, such data storage can be conveniently accessed by

structured queries (e.g. SQL). For example, the query

select * from laptop where hard-drive > 500G and blu-ray = “Yes”

searches for laptops that have a large hard disk and blu-ray player. However, end users rarely

understand the semantics of such structured queries, and even for a user who is familiar with the

query language, it is still a challenge to construct effective queries due to the lack of knowledge of

the data. For example, to search for laptops with dedicated graphics cards, we may have to write

a long query listing all types of graphics cards except those integrated ones. It is thus necessary to

allow users to search for products using keyword queries to express their preferences. Unfortunately,

such natural language keyword queries do not clearly specify which products should be returned,

thus making it rather challenging to accurately rank product entities so that highly relevant products

would be ranked on the top. Traditional methods based on keyword matching are unlikely to work

well due to the vocabulary gap between the product specifications and the keywords people use

in search queries. Indeed, how to optimize ranking of product entities in response to a keyword

preference query has not been well studied in the existing work and is largely an open research

question. In order to solve this problem, we need to be able to model query intent with a data level

representation.

As repeatedly shown in many other information retrieval (IR) tasks, the accuracy of a search

system is largely determined by the soundness of the retrieval model adopted. The lack of a sound

retrieval model for product ranking, thus, has hindered the progress in optimizing the ranking ac-

curacy of keyword search in product database. The main goal of our work is thus to develop a

sound general probabilistic model for product entity retrieval that can be used in all keyword-based
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product entity search engines to optimize ranking accuracy. Since probabilistic retrieval models

have enjoyed much success for ad hoc text retrieval tasks and can be well justified theoretically

based on the probability ranking principle [59], and the query likelihood retrieval model, which can

be derived based on probability ranking principle using query generation decomposition [46], is

quite effective [54, 80], we follow a similar process of probabilistic reasoning, and propose a novel

probabilistic model for product entity retrieval based on query generation.

In the proposed model, ranking is primarily based on the probability that a user interested in an

entity will pose the query. The model attempts to simulate the query formulation process of a user

and score each entity e for a query q based on the conditional probability p(q|e) which captures

the likelihood that a user who likes entity e would use query q (to retrieve entity e). Essentially,

we associate with each candidate entity a hypothesis “user likes this entity” , and use the observed

query q as evidence to infer which hypothesis is true (equivalently which entity is liked by the user).

The posterior probability of each hypothesis (equivalently each entity) can then be used for ranking

product entities for a given query. Such a model can naturally incorporate prior preferences over

product entities into ranking in addition to modeling how well an entity matches a query; it can

also naturally separate the two subtasks, i.e., entity type matching and entity preference scoring.

As a first step in studying probabilistic models for product entity ranking, in this work we focus on

studying the second subtask of preference scoring. This is mainly because many existing product

retrieval systems allow a user to choose a product category (which is quite easy for a user to do) in

addition to entering keyword preferences, thus the main challenge in improving such a system is to

improve the preference modeling. Naturally, an important future work would be to also study the

orthogonal problem of entity type matching using the proposed general probabilistic framework.

A key component in our model from the perspective of preference scoring is to model the prob-

ability of using a word w in a query by a user who likes entity e, i.e., how we “generate” a query

word from an entity. We propose to refine this component based on the attributes of product enti-

ties, which roughly models the following generation process of a query. A query is generated by

repeatedly sampling a word as follows. A user who likes entity e would first sample an attribute to

query according to a specification selection model p(s|e) where s is a spec of e, and then sample a

word w from an attribute-specific unigram language model p(w|s). Such a decomposition allows

us to model a user’s preferences at the attribute level.
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Different ways of estimating each component model will lead to different variants of ranking

functions. We propose and study several ways to estimate the proposed model, leveraging the

product specifications as well as the associated text data such as product reviews and logged search

queries. In particular, in contrast to the existing way of using a text description as a whole for

ranking entities, we treat text data in a novel way by learning attribute-specific language models

from it, which can then be used to improve ranking accuracy for product entity retrieval.

Since product entity retrieval has not been well studied, there is no public available test collec-

tion that we can use for evaluation. To address this challenge, we created our own test collections

from two major e-commerce systems. We run comprehensive experiments to evaluate the proposed

models. Our experimental results show that the attribute-level modeling of relevance, enabled by the

proposed model, is more effective than the baseline approaches which straightly model relevance

at the entity level. Experiments also show that the proposed model can effectively leverage review

and search log data to significantly improve product ranking accuracy, and as in the case of text

retrieval, smoothing of the language models is critical and a robust estimate based on interpolation

of the proposed model with entity-level language model works the best on our datasets.

Although the probabilistic model introduced in this work is primarily proposed for the purpose

of improving product entity retrieval, it also serves as a general approach for modeling structured/semi-

structured entity data (e.g. product specifications) coupled with unstructured text data (e.g. user

reviews). The model naturally leads to many other interesting applications besides supporting key-

word search. We explore the use of the proposed model in two interesting applications: facet

generation and review annotation, and demonstrate the effectiveness with promising results.

6.2 Probabilistic Query Model for Ranking Product Entity

From the perspective of information retrieval, the problem of keyword search in product database

(i.e. product entity retrieval) is related to several other retrieval tasks, but is unique in many ways.

First, it is different from a regular text retrieval problem (e.g., ordinary Web search) in that the

“documents” are product entities, which are very well structured and that the relevance of a product

entity to a query is primarily based on how well the attribute values (i.e. specifications) of the prod-

uct match the preferences of the user expressed in the query. This calls for fine-grained modeling
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of relevance at the attribute level. Second, it is also different from the entity retrieval problem in the

form of expert finding [4] or entity search on the Web [17, 16] where the data assumed available are

free text data and information extraction techniques are often used to extract relevant entities. Third,

it is different from XML retrieval in that the schema for the entity database is generally assumed to

be fixed, while the queries are keyword preference queries as opposed to the more structured XML

queries. Finally, as a special case of keyword search on databases, our problem formulation has a

clearly defined unit for retrieval and emphasizes on modeling relevance at a finer level to satisfy the

preferences expressed in fuzzy keyword queries.

While many product search systems exist on the Web, there has been surprisingly little research

on developing general product entity retrieval models for optimizing ranking accuracy in this spe-

cial, yet important retrieval task. As was shown in other search tasks, developing computational

retrieval models to model relevance accurately is the key to optimizing ranking accuracy in a search

task.

To systematically optimize accuracy for product entity retrieval, we propose a novel general

probabilistic model adapted the general idea of query likelihood retrieval model, study various ways

to refine the model and estimate the component probabilities, and evaluate multiple specific product

entity ranking functions obtained through using different estimation methods. Below we first present

the proposed probabilistic entity retrieval model. Although our main motivation for developing this

model is to optimize product entity retrieval, the model is actually general and potentially applicable

to any entity retrieval problem where keyword queries are used to express preferences on various

attributes.

6.2.1 Probabilistic Entity Ranking Based on Query Generation

Formally, we are given a set of entities E. Each entity e in E is described by a list of specifications

Se:

Se = {s|s ∈ S} (6.1)

where each specification s = (as, vs) is an attribute-value pair represented by an attribute name as

(e.g. “brand”) and a value vs (e.g. “dell”), S is the set of all possible attribute-value pairs. Given a
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user entered keyword query q, our task is to rank the entities in E according to how likely they will

satisfy the user’s preferences encoded in q.

Following the derivation of the query likelihood retrieval model in [6], we model the relevance

of an entity with conditional probability p(e|q), which can be interpreted as the posterior probability

that entity e is liked by the user after we observe the user’s query q. With Bayes rule, we have:

p(e|q) =
p(q|e) · p(e)

p(q)
∝ p(q|e) · p(e) (6.2)

Since p(q) is only dependent on the query, it can be ignored for the purpose of ranking entities.

Therefore, the ranking function only depends on two component probabilities. The first is p(e),

which is the prior probability that entity e is liked by a user (the term “prior” can be interpreted

as our belief about the relevance of entity e before we even see a query). Intuitively, this prior

probability may prefer a popular entity to a non-popular one. The second is p(q|e), which is the

likelihood that we would observe query q if e is indeed relevant (i.e., liked by the user). This

conditional probability can capture how well entity e matches the query q in the sense that if a user

likes entity e, the user would likely pose a query matching the attribute values of entity e. The

posterior probability of relevance p(e|q) can be regarded as our updated belief about the relevance

of entity e after observing the query q; ranking based on this posterior probability would naturally

prefer an entity that has a high prior probability as well as matches the given query well.

From retrieval perspective, the inclusion of a prior probability p(e) naturally enables us to incor-

porate any query-independent factors into our ranking function (e.g. popularity statistics of prod-

ucts). In this work, however, we do not assume any knowledge about the entities, thus we simply

assume a non-informative (uniform) prior. Our ranking function would then boil down to ranking

solely based on p(q|e), which is essentially the query likelihood retrieval function which has proven

quite effective for regular text retrieval [54, 80]. However, the challenge is now how to further refine

p(q|e) so that we can accurately model the special notion of relevance in product search.

Conceptually, we can refine p(q|e) by modeling the process of query formulation of users. Imag-

ine a user likes an entity e, and we would examine the question how such a user would formulate

a query in order to retrieve entity e. Intuitively, the user would have to specify two components in

the query: 1) the entity type (e.g., “laptop”), and 2) preferences on attribute values for the target
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entity (e.g., “small”, “cheap”). We can thus assume our query has two parts correspondingly, i.e.,

q = (qt, qp), where qt is a term denoting the desired entity type and qp is a keyword query expressing

preferences on attribute values. A user’s choice of qt is logically independent of the preferences qp.

Thus we have p(q|e) = p(qt, qp|e) = p(qt|e)p(qp|e). That is, our task now is to model separately

how a user expresses the desired category of entity and how a user expresses preference of values

on each attribute.

While in general, the selection of entity category may also be uncertain, in virtually all real

applications of product search, the categories of all the products in a database are usually known.

Indeed, a user is often asked to select a category of products in addition to entering preference

keywords. That is, p(qt|e) is no longer uncertain in most applications and we have p(qt = c|e) = 1

if c is the category of e, and p(qt = c|e) = 0 for all other categories. The consequence of this

assumption is that we would only consider entities of the same category as the category selected by

the user (since all other entities would have a zero probability for p(qt|e), thus also a zero posterior

probability p(e|q)). In the following, we therefore focus on discussing how we further decompose

p(qp|e) and estimate the model. We want to stress, though, that our proposed model can easily

accommodate alternative ways of refining p(qt|e) (e.g., to accommodate inexact category matching

based on ontology).

Again, we refine p(qp|e) by exploring how a user expresses preferences if the user likes entity

e. Intuitively, if a user likes entity e, the user must have liked some of the specifications of e. Thus,

it is reasonable to assume that the user would formulate a preference query by first selecting an

interesting specification of e and then choosing appropriate words to describe his/her preference on

the value of the chosen specification. That is, the probability that a user, who likes entity e, would

use word w in the query is given by

p(w|e) =
∑
s∈S

p(w|s)p(s|e) (6.3)

where p(w|s) is the unigram language model probability that a user would use word w in the query

if the user likes specification s, satisfying the constraint
∑

w∈V p(w|s) = 1. Naturally, p(s|e)

captures the intensity that users are interested in spec s, as opposed to other specs of the entity. It

satisfies
∑

s∈S p(s|e) = 1.
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For example, if e is well known as a cheap small laptop, then we could assume that both

p(“size = small”|e) and p(“price = under $250”|e) are reasonably high, likely higher than

other specifications on “RAM” or “warranty”. Also, we would expect the language model con-

ditioned on the specification “(size = small)” would give higher probabilities to words such as

“small”, “portable”, or “lightweight” than other words such as “fast” or “powerful”.

Thus the probability of generating a multiword preference query qp based on entity e would be

p(q|e) =
∏
w∈V

[
∑
s∈S

p(w|s)p(s|e)]c(w,q) (6.4)

where c(w, q) is the count of word w in q. Note that for convenience, here we have dropped the

subscript p in qp and simply use q to denote preference query qp since there is no concern of ambi-

guity.

Clearly, our model allows a user to include preferences on multiple attributes in a single query

as it should. Intuitively, the model would favor those entities with attribute values whose preference

language model can explain the preference words in the query well, effectively capturing the rele-

vance criterion for product ranking, i.e., ranking product entities whose attribute values match the

user’s preferences in the query well on the top.

To avoid underflow caused by multiplication of small values, we can score an entity based on

the log-likelihood of the query given an entity, which leads to the following general scoring function

for product entity ranking:

score(q, e) = log p(q|e) =
∑
w∈V

c(w, q) log
∑
s∈S

p(w|s)p(s|e) (6.5)

Since in general, the available data for model estimation would be limited, appropriate smooth-

ing is necessary to avoid zero probabilities. To do this, we assume that there exists a “generic

specification” (sg) whose corresponding specification preference language model is a general back-

ground language model θB that would give a non-zero probability to every word (token) in our

specification database. By allowing such a generic specification to be chosen potentially for every

entity, we can ensure that our estimated models would not assign zero probability to any query

word that occurs in our database. Specifically, we can assume that with probability λ, the user

would choose this generic specification when formulating the query (i.e., p(sg|e) = λ), and thus
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have

score(q, e) =
∑
w∈V

c(w, q) log
[
λp(w|θB) + (1− λ)

∑
s∈S

p(w|s)p(s|e)
]

(6.6)

The background language model θB can be estimated based on normalized word counts in the

entire database.

It is now clear that in order to make such a general model actually work for product ranking, we

must be able to estimate the following two component models:

1. specification selection model (p(s|e)): this is the probability that a user who likes entity e

would include a preference on the specification s in the query.

2. specification preference language model (p(w|s)): this is the probability that a user would

use word w in the query to describe a preference if the user likes specification s.

By exploring different ways of estimating these two probabilities, we can derive many inter-

esting instantiations of this general model, which would lead to distinct ranking functions. In this

sense, our model not only provides a theoretical foundation for optimizing product entity search,

but also serves as a constructive road map for exploring many interesting ranking functions. In the

following, we will first discuss how to estimate these component models based solely on the product

specifications, and then we study how to leverage the available text data for product entities to solve

the vocabulary gap problem and improve the model estimation.

6.2.2 Model Estimation Based on Entity Specifications

As previously stated, the key question in model estimation is to estimate the preference selection

probability p(s|e) and preference language model p(w|s). Without assuming any further knowledge

or search log data available, we can only use the product specification data stored in the database to

estimate our model.

Let us first look at the specification selection probability. Indeed, without additional knowledge,

it is very difficult to guess which attributes are more interesting to a user who likes entity e. There-

fore a conservative estimate would be to assume each attribute of entity e is equally likely to be

selected. We refer to this estimate the
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Uniform Specification Selection (USS):

p(s|e) =

 1/|Se| s ∈ Se

o otherwise
(6.7)

Clearly, USS is a coarse estimation. As an alternative estimate, rather than assuming a uniform

posterior distribution, we assume a uniform prior p(s) = 1/|S|u, where |S|u is the count of unique

specs in S. Then we can derive the new estimate,

Uniform Prior Selection (UPS):

p(s|e) =
p(e|s)p(s)∑

s′∈S p(e|s′)p(s′)
=

p(e|s)∑
s′∈S p(e|s′)

(6.8)

where p(e|s) is assumed to be uniform distributed over all the entities containing spec s, and zero

otherwise:

p(e|s) =

 1/|Es| e ∈ Es

o otherwise
(6.9)

where Es is the set of entities that contain spec s.

In effect, this estimate is similar to the Inverse Document Frequency (IDF) used in document

retrieval. A specification unique to entity e would be more likely chosen by a user to express a

preference in the query, at least more likely than a very popular feature that is shared by many

entities.

For the preference language model p(w|s), a reasonable estimate would be to concatenate the

attribute name and value into a short text description and normalize the counts of words in such a

text description. That is,

Attribute-Value Text:

p(w|s) =
c(w, s)∑
w c(w, s)

(6.10)

where c(w, s) is the count of word w in the concatenated text description of specification s.

These estimates can be plugged into our general entity ranking model to obtain different specific

ranking functions, which we will evaluate later in the paper.
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6.2.3 Improve Estimation by Leveraging Associated Text Data

The estimators discussed above are based solely on the entity database, which make them general.

However, as the text data in the entity database is quite limited, these estimates would unlikely

be accurate in capturing users’ language models. To solve the problem of vocabulary gap, we

propose to leverage the user generated text data to improve the estimation of our model. The most

useful data is the search log of product search engine, where we can associate user queries with

entities by looking at user engagement behavior. However, this requires a product search engine

that have already works reasonably well and moreover, the search log data is usually proprietary

and thus can only be leveraged inside industry labs. User reviews, on the other hand, are public,

easy to obtain and does not have any prerequisite on search engines. Indeed, product reviews have

become increasingly available on the Web. They are composed by users and is thus a homogenous

datasource of search queries.

In this work, we propose a general method for taking advantage of any kind of text data asso-

ciated with product entities to improve keyword search in product database, including both logged

queries and user reviews, by treating them as data samples generated from the models of the corre-

sponding entities.

6.2.4 A Mixture Model of Review Text Data

Without loss of generality, let us consider a “training set” (for our model) composing of a set of

entities E and a set of text descriptions R. Each entity e ∈ E is associated with a text based

description re ∈ R. If more than one such descriptions are available for an entity, we can combine

them to form a long description if they are of the same type, or use them separately to estimate

parallel models if they are different. Our key insight in leveraging text descriptions for estimating

both the specification selection model and the preference language model is that we can assume the

text associated with entity e, re, is generated based on entity e through a similar generation process

of an expected query. For previous queries that resulted in clicking the entity, this is obvious; for

user reviews, we assume that when a reviewer writes a review, the reviewer would first sample a

specification of the entity to discuss in the review, and then sample words discussing the selected

corresponding attribute and value. Formally, the log-likelihood of observing text description re is
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thus:

log p(re|e) =
∑
w∈V

c(w, re) log
[
λp(w|θB) + (1− λ)

∑
s∈S

p(w|s)p(s|e)
]

(6.11)

We can then use the Maximum Likelihood estimator to estimate both the specification selection

model p(s|e) and the specification preference language model p(w|s) by maximizing the following

likelihood function of the entire dataset:

F =
∑
e∈E

∑
w∈V

c(w, re) log
[
λp(w|θB) + (1− λ)

∑
s∈S

p(w|s)p(s|e)
]

(6.12)

To do so we employ an Expectation-Maximization (EM) algorithm. In the E-step, we compute

the contribution of each specification in generating each word in the text data:

p(s|w, e) =
p(w|s)p(s|e)∑

s′∈S
p(w|s′)p(s′|e)

(6.13)

p(θB|w, e) =
λp(w|θB)

λp(w|θB) + (1− λ)
∑
s∈S

p(w|s)p(s|e)
(6.14)

In the M-step, we re-estimate the model parameters:

p(s|e) =

∑
w∈V

c(w, re)(1− p(θB|w, e))p(s|w, e)∑
s′∈S

∑
w∈V

c(w, re)(1− p(θB|w, e))p(s′|w, e)
(6.15)

p(w|s) =

∑
e∈E

c(w, re)(1− p(θB|w, e))p(s|w, e)∑
w′∈V

∑
e∈E

c(w′, re)(1− p(θB|w′, e))p(s|w′, e)
(6.16)

where V is the vocabulary set, c(w, re) is the count of word w in re.

It is important to note that p(s|e) should be non-zero only when s ∈ Se. That is, when selecting

attribute specifications to generate words, we can only select from those valid specifications for the

particular entity e, and for different entities, this “feasible” set of specifications would generally

be different (since products differ from each other on at least one attribute). We can ensure this
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property by initializing p(s|w, e) in the following way:

p(s|w, e) =

 1/|Se| s ∈ Se

o otherwise
(6.17)

It is also worth noting that the background language model θB is a necessary component in the

estimation in order to ensure the learned language models p(w|s) are discriminative.

6.2.5 Maximum a Posterior (MAP) Estimation of the Mixture Model

One problem with the MLE is that the EM algorithm can be easily trapped in local maxima. To

alleviate this issue, we need to provide some “guidance” to the estimator. Indeed, in practice, we

usually have some prior knowledge of the language people use to describe certain attributes of

entities. For instance, we expect to see words such as “cheap” and “expensive” when people talk

about “price”. If such prior knowledge can be incorporated into the estimator, it can guide the

algorithm to find more accurate models.

To do this we employ Maximum a Posterior (MAP) estimator. We assume the knowledge is

given in the same format as our model, and consider them as conjugate priors. Specifically, we use

p(w|ã) to denote the prior probability of using word w to describe attribute a, reflecting our belief

in the language people use in general. We then maximize the posterior probability of the model.

This is done by applying Dirichlet prior to Equation 6.16:

p(w|s) =

µp(w|ãs) +
∑
e∈E

c(w, re)(1− p(θB|w, e))p(s|w, e)

µ+
∑
w′∈V

∑
e∈E

c(w′, re)(1− p(θB|w′, e))p(s|w′, e)
(6.18)

where as is the attribute (name) of spec s.

Generating Prior Knowledge. Clearly, it is infeasible to manually create all priors. To automati-

cally discover such knowledge, we employ a co-occurrence analysis algorithm. More specifically,

we analyze the co-occurrences of attribute names and all keywords in the text data. We use normal-

ized pointwise mutual information (NPMI) [10] to compute the pseudo counts. NPMI for word w
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and attribute a is defined as:

in(w, a) =
log p(w,a)

p(w)p(a)

− log p(w, a)
=

log N ·c(w,a)
c(w)c(a)

log N
c(w,a)

(6.19)

where c(w) and c(a) are counts of sentences that word w and (the name of) attribute a appear,

respectively; c(w, a) is the count of sentences that w and a co-occur; N is the total number of

sentences in the text data. It is worth noting that an attribute name could be a multi-word phrase.

Therefore, we allow partial counts when dealing with occurrences. For instance, if a sentence

contains word “screen” but not “size”, we count it as 1/2 times of occurrence for attribute “screen

size”.

One nice property of NPMI is that its range of values is [−1,+1]. The upper bound and lower

bound indicate perfect positive and negative correlation, respectively; value 0 indicates complete

independence. We only keep words that have positive correlation to the attributes:

i′n(w, a) =

 in(w, a) in(w, a) > 0

o otherwise
(6.20)

Then we compute p(w|ã) by normalizing the above concurrence measure over all the words:

p(w|ã) =
i′n(a,w)∑

w′∈V i
′
n(a,w′)

(6.21)

6.2.6 Smoothing and Interpolation

While the estimated p(s|e) and p(w|s) can be directly plugged into the general ranking model,

the specification selection model cannot be used for “unseen” entities that are not associated with

any text data, because the above estimation methods do not estimate p(s|e) for them. One way to

circumvent this issue is to “back off” to p(s) for these entities, where p(s) is computed as:

p(s) =
∑
e∈E

p(s|e)p(e) (6.22)
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With the assumption of uniform distribution of p(e), this back-off model can be easily computed

based on the learned parameters.

An even better solution is to combine these estimates with the estimates discussed in Section

6.2.2 through interpolation. In general, such an interpolation would allow us to utilize all the avail-

able evidence and has been shown to be an effective strategy in our experiments.

Note that given the text data, we could also build a language model directly for each entity.

Indeed, such a “blackbox” strategy could give us a query generation model (i.e., p(w|e)) directly,

which we can use to compute the likelihood of a query q conditioned on entity e, thus allowing

us to rank these entities that have text data. Unfortunately, the model estimated using this strategy

can only be used to rank entities that have associated text data. In other words, this model is not

generalizable. In contrast, our proposed mixture model above enables us to learn generalizable

component models since p(w|s) can be used for ranking any product entities with specification

s. (Clearly such products do not have to have their own reviews/queries). However, for an entity

with sufficient text data, the blackbox strategy may help alleviate the potential errors introduced by

attempting to infer the latent specification selection process. Thus, a combination of this strategy

with the mixture model estimation can potentially improve the robustness of the retrieval model,

which is confirmed in our experiments.

6.2.7 Indexing and Search

With the estimated model parameters, we can use Equation 6.6 to rank product entities given any

query. However, due to efficiency concern, we usually cannot afford to score every product entity

for each query. Therefore, we need to build an indexing structure to allow the most promising

candidate to be retrieved efficiently.

To do so, we first aggregate the specification selection model and the preference language model

offline and compute a multinomial word distribution for each product entity:

p(w|e) =
∑
s∈S

p(w|s)p(s|e) (6.23)
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Table 6.2: Entity retrieval models based on estimation with entity specs on Bestbuy dataset
All Queries Hard Queries

NDCG@5 NDCG@10 NDCG@5 NDCG@10
LM 0.542 0.574 0.579 0.636
QAM 0.546 0.577 0.588 0.642
AM-USS 0.476 0.520 0.528 0.592
AM-UPS§ 0.525 0.564 0.567 0.614
AM-USS-LM§ 0.533 0.577 0.570 0.640
AM-UPS-LM†‡§ 0.579 0.611 0.630 0.672

Then we threshold p(w|e) to get a set of index words for each entity:

We = {w|p(w|e) > σ}

That is, we drop the binding between a term and an entity if we are not confident enough, in

order to avoid unnecessary computation wasted on non-promising candidates.

We then build inverted index for words and product entities, based on We and p(w|e). In the

meanwhile, we rewrite Equation 6.6 in the same way as in classic language modeling approach,

leading to the following scoring function:

score(q, e) =
∑

w∈q∩We

c(w, q) log
[
1 +

(1− λ)p(w|e)
λp(w|θB)

]
+ αq

∝
∑

w∈q∩We

c(w, q) log
[
1 +

(1− λ)p(w|e)
λp(w|θB)

] (6.24)

where

αq =
∑
w∈V

c(w, q) log λp(w|θB)

is a factor only dependent on query q. Therefore it does not affect ranking of product entities and

can be omitted in scoring. With this setup, we can efficiently retrieve the candidates through the

word-entity index and score them for ranking.
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6.3 Experiments

6.3.1 Datasets and Evaluation Metrics

Evaluation of the proposed models is challenging since no previous work has studied our problem

setup and as a result, there is no existing test collection that we can use for evaluation. We thus had

to construct our own datasets.

For this purpose we developed two different evaluation datasets. The first dataset consists of a

full crawl of the “Laptop & Netbook Computers” category of Bestbuy.com1, a popular e-commerce

website for electronics. Our crawl includes all the specs and reviews of each laptop. There are

in total 864 laptops in the database; on average, each entity has 44 specifications. Among these

laptops, only 260 of them have user reviews. For evaluation we construct a query set with the

following procedure. We first extract a set of simple queries by sampling “laptop” queries from a

commercial query log. We filter these queries so that each query contains a well written descriptor

on a single attribute. Examples in this query set are “thin laptop”, “quad core laptop”. We then

use the strategy introduced by Ganesan and Zhai [31] to develop a relatively harder query set,

simulating long and comprehensive preference queries that we expect users to enter. This is done

by randomly combining multiple descriptors from the simple queries. As discussed in [31], because

current product search engines cannot support such queries very well, it is difficult to find them in

the search log. Thus it is necessary to simulate the query set in such a manner. An example of

“difficult” query is “large screen quad core backlit keyboard laptop”. To quantitively evaluate the

performance of product entity retrieval, we pool together the retrieval results from several baseline

models and our proposed models. A well trained industrial annotator is then asked to label the pool

of candidates with 5 levels of relevance. On average, 60 entities are judged for each query. In total

we obtained 40 queries with annotations for this dataset. On average there are 2.8 keywords per

query, and 3.8 keywords per query for the hard queries.

The second dataset consists of several major categories in electronics from another popular e-

commerce website, Walmart.com2. This includes the categories of laptop, camera, camcorder, TV

and ebook reader. In total, the database consists of 1066 entities; on average, each entity has 14.0
1http://www.bestbuy.com
2http://www.walmart.com

85



Table 6.3: Entity retrieval models based on estimation with entity specs and reviews on Bestbuy
dataset

All Queries Hard Queries
NDCG@5 NDCG@10 NDCG@5 NDCG@10

LM 0.680 0.706 0.592 0.621
QAM 0.697 0.726 0.626 0.663
AM-Base 0.591 0.638 0.491 0.558
AM-MLE§ 0.686 0.721 0.625 0.653
AM-MAP§ 0.697 0.721 0.625 0.676
AM-Base-UPS § 0.662 0.718 0.587 0.651
AM-MLE-UPS†§ 0.698 0.736 0.637 0.682
AM-MAP-UPS†§ 0.711 0.755 0.666 0.710
AM-Base-LM§ 0.685 0.710 0.589 0.623
AM-MLE-LM†§ 0.702 0.730 0.633 0.655
AM-MAP-LM†§ 0.705 0.734 0.626 0.668
AM-Base-UPS-LM†‡§ 0.722 0.761 0.661 0.705
AM-MLE-UPS-LM†§ 0.708 0.752 0.651 0.706
AM-MAP-UPS-LM†‡§ 0.729 0.774 0.684 0.734

specifications. Each product entity is associated with a set of queries by thresholding the number

of clicks observed in a search log accumulated for over a year. Queries are randomly sampled from

commercial queries in Walmart search engine, and are annotated in the same way as the first dataset.

In total we obtain 425 queries with annotations. On average, each query has 2.4 keywords.

The two datasets are referred to as the Bestbuy dataset and the Walmart dataset, and they are used

to evaluate the effectiveness of our model estimated with review data and search log data, respec-

tively. The evaluation is based on the metric of Normalized Discounted Cumulative Gain (NDCG).

We use cutoff at 5, 10 as our primary metrics. Since the first impression is usually delivered by the

top results, NDCG@5 measures the immediate satisfaction to the users’ search. On the other hand,

NDCG@10 is more commonly interpreted as the first page satisfaction.

6.3.2 Experiment Results

Table 6.2 shows the comparison between the baseline models and our proposed probabilistic models

that are estimated solely based on entity specs data. LM is the baseline language model estimated

by treating all the specs of each entity as a single document. Language model is a well established

model for document retrieval [54, 80]. In this work, we use query likelihood language model with
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Jelinek-mercer smoothing [80]. Another baseline method we compare with is the Query Aspect

Modeling (QAM) method proposed by Ganesan and Zhai [31]. In this method, the search query is

assumed to be pre-segmented into multiple preference queries, each covering one aspect of the prod-

uct. Then the method evaluates each of these preference queries separately and combine the results

to obtain the ranking for the original query. The best combining method, i.e. average score method,

is implemented in our evaluation (denoted QAM). All the other models tested are attribute-value-

based models (AM) under the same general framework proposed in this work. The spec preference

language models p(w|s) of all AM models are estimated with the Attribute-Value Text method

(see Section 6.2.2). AM-USS uses Uniform Specification Selection as the estimate of specification

selection model (see Section 6.2.2). We consider AM-USS as another baseline system (where the

estimations are not optimized). These baseline models largely represent the state-of-the-art methods

for supporting keyword queries in probabilistic databases based on keyword matching.

AM-UPS refines the estimation of specification selection model by adopting the Uniform Prior

Selection estimate (Section 6.2.2). AM-Base-LM and AM-UPS-LM are the weighted interpolation

models with AM-Base and LM, AM-UPS and LM, respectively. The best performance on each

metric is shown in bold font. We use †, ‡ and § to mark the models that show statistically significant

improvement on all evaluation metrics over LM, QAM and AM-Base, respectively.

From the table we can see that when used alone, LM is a relatively strong baseline compared to

AM-USS. QAM slightly improves over LM, especially on hard queries. This is in accordance with

the findings in [31]. AM-UPS significantly improves over AM-USS with the more accurate esti-

mation for specification selection. Although AM-UPS used alone does not show improvement over

LM and QAM, the interpolated model AM-UPS-LM significantly outperforms all three baseline

methods. This verifies that the proposed models and the traditional language modeling approach

are complementary to each other in effect. While LM method estimates accurate language mod-

els for entities with sufficient data, our model provides the generalizability with language models

estimated on the attribute level.

Table 6.3 shows the comparison of different methods based on product review data. Here the

LM method is estimated with both specs and review data. AM-Base is another baseline method,

where each spec preference language model is estimated using MLE on a long review document

constructed by pooling together all the reviews of entities with this spec. In fact, this is just the result
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of the first iteration of our EM estimation algorithm. AM-MLE and AM-MAP are the MLE estimate

(Section 6.2.4) and MAP estimate (Section 6.2.5) of the query generation model, respectively. The

∗-UPS models use UPS estimate (Section 6.2.2) to interpolate with the corresponding specification

selection model. The ∗-LM models are models interpolated with general LM. Again, we use bold

font to show the best performance for each metric. †, ‡ and § are used to mark the models that

have statistically significant improvement on all evaluation metrics over LM, QAM and AM-Base,

respectively.

From the table, we can see that LM is a stronger baseline than AM-Base, and QAM outperforms

LM on the hard queries, which are in accordance with previous findings in Table 6.2. Similarly,

we also see AM-Base-LM slightly outperforms LM. This shows that even though sometimes the

estimation is not good enough to improve the baseline language model by itself, it still captures a

different level of relevance signals that could be used to alleviate the impact of data sparsity.

The proposed estimation methods, i.e. AM-MLE and AM-MAP, improve over the simple es-

timation method (AM-Base) significantly. This verifies the effectiveness of the MLE and MAP

estimation. We can also see that both MLE and MAP outperforms ML slightly, especial for the hard

queries. Between the two estimation methods, MAP estimation performs slightly better than MLE.

This validates the positive effect of incorporating prior knowledge in model estimation.

The UPS interpolated models (∗-UPS) all show significant performance boost from the original

models. This is also in accordance with our previous finding in Table 6.2. These findings con-

firm that the “IDF” effect in specification selection is indeed positively correlated with real users’

preferences.

We see improvements in almost all LM interpolated models (∗-LM) (over their base models).

The best performance is achieved by AM-MAP-UPS-LM. The results show that with the use of

advanced estimates and product review data, we can train effective models to capture the attribute

level of relevance. Compared with the entity language model which models a coarse level of rele-

vance, our models are superior. By interpolating the two types of models, we can achieve even more

robust and accurate estimates.

It is worth noting that in the evaluation, the “hard” queries do not necessarily have lower NDCG

values compared to the “easy” queries, as NDCG is a metric normalized by the ideal DCG value on

each query.
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Table 6.4: Entity retrieval models based on estimation with entity specs on Walmart dataset
NDCG@5 NDCG@10

LM 0.384 0.303
AM-USS 0.381 0.299
AM-UPS 0.392 0.308
AM-USS-LM 0.386 0.306
AM-UPS-LM 0.393 0.310

Table 6.5: Entity retrieval models based on estimation with entity specs and logged queries on
Walmart dataset

NDCG@5 NDCG@10
LM 0.501 0.392
AM-Base 0.507 0.394
AM-Base-UPS 0.509 0.401
AM-MAP 0.509 0.401
AM-MAP-UPS 0.515 0.406
AM-MAP-UPS-LM†§ 0.518 0.411

In Table 6.4 and Table 6.5 we run similar experiments with the Walmart dataset. Again, the ex-

periments confirm that UPS is a better estimate for specification selection model p(s|e) as compared

with USS. In general, the use of text data clearly improves the search performance. The experiments

also confirm that the mixture model (AM-MAP-∗) is a superior method for utilizing text data, as

it outperforms all baseline systems including LM, AM-Base and AM-Base-UPS. We also observe

that the combination of our model and language model would always lead to a performance boost.

As in consistent with the evaluation on the Bestbuy dataset, the best performance is achieved by

AM-MAP-UPS-LM.

It is worth mentioning that although in this work we separated the product type detection from

product preference matching and focused on modeling the latter component, the model we use can

actually provide a natural solution to product type detection, by treating product type as a special

attribute in product specification. Indeed, this method is used in the experiments with Walmart

dataset and achieved good performance.
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6.3.3 Search Efficiency

As discussed in Section 6.2.7, we can build index to ensure the efficiency of the proposed models

by computing an indexing word set for each entity using threshold σ. In this section, we study the

impact of the threshold on search efficiency and search accuracy. In Figure 6.1 we plot the average

running time (milliseconds) of AM-MAP-UPS model for different threshold σ. For comparison

we also plot the average running time of language model (LM). Both models are ran on a single

machine with Intel core i7 2.7GHZ processor and 8GB Ram.

We can see that our model is much more efficient than language modeling approach in general.

This is because the learned model is able to capture the most discriminative topical words for each

entity and demote/discard the meaningless general words. We also observe that both the running

time and the retrieval performance (in Figure 6.2) stabilized after σ < 1e−4 This indicates we have

included most of the word-entity associations produced by our model.

6.4 Other Applications Using the Probabilistic Query Model

Although the query generation model is primarily proposed for entity retrieval, it provides a general

probabilistic framework which could also lead to many useful applications. In this section, we

demonstrate the usability of our model by exploring two novel applications: facet generation and

review annotation. We show the parameters in our model can be easily adapted for these tasks and

achieve very encouraging results.

6.4.1 Facet Generation

Facet Generation is an important application for e-comme- rce websites. Its purpose is to engage

users and help them clarify their preferences for the product search engine. To do this, the result

page of a product search system usually provides a list of facets, i.e. attributes of products, on a

sidebar by the search results. Traditionally, the facet list is generated by hiring experienced analysts

to manually select a subset of attributes. The task is very laborious as we need to generate facets

for each category of products. Moreover, the manually generated facets do not necessarily match

users’ interests and cannot reflect the change of such interests over time.
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Figure 6.1: Average search time for different threshold σ

Figure 6.2: NDCG@10 for different threshold σ
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Table 6.6: Query independent facet generation for laptop category
Most Popular Facets Least Popular Facets
Graphics Card ENERGY STAR Qualified
Pointing Device Multi-Carrier
Audio Built-in Webcam
Hard Drive Type Product Height
Brand Wi-Fi Built In
Computer Hard Drive Size System Bus
Operating System BBY Software Installer
Processor Green Compliance
Video Memory Color Category
Battery Life Touchscreen

In this section we show how we can use the parameters of our proposed model as a building

block to automatically generate the facets based on popular interests. Besides the traditional (query

independent) facet generation, we further show that our model can also be used for generating facets

tailored to the search intent of each query.

6.4.2 Query Independent Facet Generation

Let us use p(a) to denote the probability that a user is interested in attribute a when searching

for products. p(a) can be computed by summing over the marginal probability p(s) of all the

specifications defined on attribute a:

p(a) =
∑

s∈{s|as=a}

p(s) =
∑

s∈{s|as=a}

∑
e∈E

p(s|e)p(e) (6.25)

With the assumption of uniform p(e), we can easily compute p(a) from our learned models.

In Table 6.6 we show the most and least popular attributes for the laptop category. The results are

intuitively very meaningful, as the attributes ranked at the top of the facet list (e.g. Graphics Card,

Audio, Hard Drive, Brand) are mostly the commonly concerned aspects when users shop for laptop

computers, while the facets at the bottom are product features that do not affect buying decisions

very much.
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Table 6.7: Query specific facet generation
q1: surround sound laptop
a1: Audio log p = −6.5

q2: gaming laptop
a1: Graphics Card log p = −7.3
a2: Gaming Series log p = −11.2

q3: ssd large screen laptop
a1: Computer Hard Drive Size log p = −12.5
a2: Screen Size log p = −18.1

q4: quad core blu ray laptop
a1: Graphics Card log p = −11.7
a2: Processor log p = −14.2
a3: Blu-ray Player log p = −14.4
a4: Optical Drive log p = −17.3

6.4.3 Query Specific Facet Generation

The facets are useful for engaging users and helping users refine their shopping preferences, but the

static facets are not very effective as they cannot capture the user intentions in the search query. To

solve this problem, we further study query specific facet generation.

Let p(a|q) denote the probability that users are concerned about attribute a when issuing query

q. p(a|q) can be computed as:

p(a|q) =
∑

s∈{s|as=a}

p(s|q)

∝
∑

s∈{s|as=a}

p(s)p(q|s)

∝
∑

s∈{s|as=a}

p(s)
∏
w∈q

[λp(w|θB) + (1− λ)p(w|s)]

(6.26)

Using p(a|q) as a scoring function, we can dynamically discover the important facets for each

query. Table 6.7 shows the top most suggestions with their probabilities (log p(a|q)) for several

example queries. In general we find our model performs very well, especially for short queries. For

all the queries in the examples, the most related facet (i.e. attribute) is ranked at the top or the second

position; for queries with multiple focuses (query q3, q4), all the related facets are successfully

discovered.
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Table 6.8: Sample review annotation for HP - ENVY Spectre Ultrabook
t1: Excellent display
s: Graphics Card: Intel HD Graphics 3000
t2 : the best sound on the planet for a notebook
s: Audio: Beats Audio
t3: very fast SSD hard drive
s: Hard Drive Type: SSD (Solid State Drive)
t4: WiFi is super fast
s: Networking: Built-in 10/100/1000 Gigabit
t5: and the weight is perfect for long use on a trip
s: Pointing Device: Multitouch Imagepad
t6: Touchpad is a bit skiddish
s: Pointing Device: Multitouch Imagepad

6.4.4 Review Annotation

Another interesting application we explore is review annotation. In this task, we want to automat-

ically detect what feature(s) of the product each review sentence is commenting on. This is done

by matching the review sentences with the specs of the corresponding product. With our learned

model, we use the conditional probability of p(s|t, e) to rank each sentence t in the review of entity

e:
p(s|t, e) ∝ p(s|e)p(t|s, e)

∝ p(s|e)
∏
w∈t [λp(w|θB) + (1− λ)p(w|s)]

(6.27)

Table 6.8 shows an example of annotated review. Such annotations can be used to better organize

the reviews and generate useful opinion summarizations. We can see that despite some mistakes,

the model works reasonably well for the task. Within six randomly selected examples, we found

that the method performs well on five of them (sentence t1, t2, t3, t4 and t6). A mistake was made

on sentence t5, where the intent of the description is mostly about “Weight”, but our algorithm

tagged it with “Pointing Device”. The reasons are that the sentence is relatively long containing

lots of distractive terms and “Pointing Device” is a generally popular attribute which has a high

probability of getting selected. In general, we observe the model works better annotating short

review sentences than long sentences. One potential solution to this problem may be to further

segment a long sentence into shorter clauses and apply the annotation algorithm to each clause.
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CHAPTER 7

DISCOVERING COORDINATED SHOPPING INTENT IN
PRODUCT SEARCH

7.1 Introduction

In Chapter 6, I proposed and studied query intent modeling with data level representations. Al-

though the proposed method is effective in matching query intent into entity structure information

and improving search accuracy, it does not provide much insight in understanding users’ shopping

preferences, as the intent analysis is performed on a per query basis. In product search, different

users may use the same query to express different intent, or use different queries to express the same

intent. It is important to explicitly model such ambiguities and represent users’ shopping intent in

product search at a higher conceptual level. In this chapter, I study the modeling and automatically

discovering of users’ shopping intent in product search.

Clearly, understanding such preferences is very useful for improving the product search engine.

Not only will it improve search accuracy, but it can also largely benefit the search experience as

a whole. For instance, when the user query is too specific, matching none or few products (e.g.

directly copied from product titles elsewhere), we can provide recommendations of similar products

based on the inferred preferences from the query. On the other hand, when a user query is too broad

or ambiguous, based on the potential intent of the query, we can better organize search results so

that representative products of different intents are displayed on top.

To achieve these benefits, I study the modeling and automatic discovery of user’s shopping

intent in product search. Because intent is not directly observable, we can only infer it from user’s

behaviors such as search engagement. However, such inference is no easy task. First, we cannot

determine user’s intent solely based on queries. Users with the same query could eventually buy

very different products, and different queries could be used for the same/similar intent. Second, it is

also difficult to infer the intent based on the target products. Users who purchased the same product
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Figure 7.1: Example of Search Intent

could be looking for different aspects of the product, and those who look for same properties may

end up buying different items. As an illustrating example, in Figure 7.1, the two users with the

query “lightweight laptop” are looking for very different products: the first user is looking for an

inexpensive lightweight laptop used for web browsing (Processor=Atom & Price¡$250); the second

user is looking for a portable but high performance laptop with more capabilities (Processor=Core

i3), and price is not the primary concern (Price¿$500). The third user, although having a similar

preference as the first user, ended up buying a different laptop.

Due to these difficulties, it is not easy to automatically discover user intent from their search

behaviors; and although the subject has been studied in the literature of information retrieval, no

existing work has explored search intent modeling in product search, where the fundamental units

are very different from those of document retrieval or Web search. In this work, we study the prob-

lem of modeling and discovery of shopping intent in product search. First, we solve the practical

challenge of intent representation. As we see in the previous examples (e.g. Figure 7.1), it is dif-

ficult to capture user’s shopping intent based on information on the query and product level. To

achieve an effective representation, we need to make use of more detailed information. Therefore,

a coordinated intent representation is proposed, where each intent is characterized together by the

targeted product features and the corresponding query terms. More specifically, three distributions

are used to represent a intent: an attribute distribution capturing the attributes that are important to

the intent (e.g. Processor), a feature value distribution for each attribute capturing the preference on
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the attribute (e.g. Processor=Atom), and a word distribution capturing the choice of search terms

(e.g. “netbook”).

We then propose a joint mixture model for automatically discovering the coordinated intent

representation in search logs. In this model, a basic generative process for the user’s search engage-

ments is assumed as follows. First, the user chooses an intent from a mixture of search intent. The

user then composes a query according to the word distribution of the chosen intent model. Upon

receiving the search results, the user decides which product to further engage with by generating the

most desired products by sampling the features on each of its attributes. Particularly, the user first

selects an attribute based on the attribute preference distribution, and then samples a value based on

the feature value distribution of the attribute. To estimate the joint mixture model, an expectation-

maximization (EM) algorithm is employed. In general, we can use all kinds of engagement signals

in product search (e.g. clicks and ordering events), and user engagement detection is naturally an

interesting preceding step of our work. Since in this work we mainly focus on modeling shopping

intent, we use a simple detector which consider every clicking behavior as positive engagement.

Nonetheless, we want to stress that our model is general and can be naturally applied on top of more

complex engagement detectors.

We empirically examine the fitted models on several large domains in online shopping. We show

that, the proposed model can be used as a fundamental building block for important analytical tasks

such as query ambiguity analysis. Compared to traditional methods which mainly capture the docu-

ment/category level ambiguity, the new analysis based on our model is more effective as it captures

the intent level ambiguity that are more intrinsic to users’ behaviors. We then incorporate the intent

models in product search. We show that the models can be easily adapted in the language model-

ing framework. With the intent model, we can achieve significant improvement in search accuracy.

To further demonstrate the usefulness, we use the intent model to compute an additional similarity

signal for product recommendation. Therefore, different products could be related although they

do not share exact same features (e.g. Processor=Atom vs. Processor=Opteron X). Experiment

results confirm the effectiveness of our model in both product search and product recommendation.

Although not studied in this work, the intent model has potential in improving many other related

applications such as query suggestion and search result diversification.

Our contribution of this work can be summarized as follows:
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• We recognize the importance of modeling user intent from product search. We proposed a

coordinated representation to capture such intent.

• We propose a joint mixture model for automatically discovering the coordinated user intent

from search engagement. We develop an EM algorithm for the estimation of the model.

• We apply the proposed intent representation and modeling technique on a large domain of

products and examine the intent models we discover.

• Beside improving the accuracy of product search, we demonstrate the usefulness of the pro-

posed intent modeling technique in a variety of applications, including query ambiguity anal-

ysis and product recommendation.

Although in this study we primarily experiment with click engagements for discovering user’s

shopping intent, the technique we use for modeling intent is general and can naturally incorporate

other types of user engagements. In the future, we plan to enhance the intent discovery by taking

into account of all types of engagements. We also plan to further improve our model by expanding

the span of search engagements we use, e.g. utilizing the session information.

7.2 Discovering Coordinated Shopping Intent in Product Search

In product search, a search intent is essentially a stereotype of users’ shopping preference embodied

in search behavior. Typically, such behavior includes query formulation and engagement with search

results, such as clicks and other further actions. For example, users who search for “lightweight

laptop” might be mainly categorized as those looking for convenient netbooks for personal use

and those looking for business class portable laptops. Obviously, being able to understand such

stereotypes would greatly benefit the search experience. It can not only improve search accuracy, but

also enables a variety of applications such as recommendation, diversification and personalization.

However, the problem is challenging as such stereotypes (i.e. shopping intent) are usually not

directly observable. Although some techniques in document understanding could be adapted for the

task, the results are usually suboptimal. In particular, the topic modeling approach, when applied to

engagement data, could discover meaningful feature clusters. While these clusters can be regarded

as shopping intent as they group together the common product features in users’ engagements, their
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data structure is not specifically designed for intent modeling and they do not contain sufficient

information to comprehensively represent shopping intent.

In this work, we propose to study modeling and automatically discovering shopping intent in

product search from search engagement logs. To the best of our knowledge, no existing work has

studied this problem before. One major obstacle in modeling shopping intent in product search

is intent representation. Since intent is not observable, it is important to develop an appropriate

representation. Ideally, a good representation should not only contain sufficient information to

uniquely represent a shopping intent, but also be easy to interpret. Following this line of thought

and also taking into consideration the structures of product information, we propose a coordinated

intent representation, where each intent is characterized collectively by the target product features

and corresponding search terms.

With the coordinated representation, we propose a joint mixture model, which models the gen-

erative process of the observations (i.e. user engagements) based on the intent models. We then

employ an EM algorithm for the estimation of the joint mixture model, so that the intent models can

be discovered automatically by fitting to a real log of user engagements in product search.

Notations. In the convenience of discussion, we introduce a set of notations and will use them

throughout the rest of the section. We use E to denote the set of product entities in the database.

Each product entity is represented by a feature vector on a predefined attribute space A. For a

product e ∈ E, the value on attribute a ∈ A is denoted by ve,a. We also use S to denote a set of

sessions acquired from product search logs, where each session s ∈ S consists of a query qs and a

set of relevant product entities Es. Each query q is a set of keywords, i.e. q = {w|w ∈ W}, where

W is the word vocabulary.

Note that our definition of session is different from the typical definition of session, as each

session contains only one query. In case multiple queries are present during a session, we split

them into separate ones. The reason for this is that we can safely assume that a user’s shopping

intent remains invariant during the search of a single query. The same assumption may not apply

for multiple query sessions because users may change minds on what they are shopping abruptly

and alternately during a time period. Despite this simplification in our modeling framework, the

method we propose in this work can be easily adapted to work with multi-query sessions when
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reliable session detecting method is available. The discussion of such methods falls out of the scope

of this work.

In the rest of the section, we first review the topic modeling approach. We show how it can be

adapted for intent discovery and study the limitations of the method. We then introduce the novel

coordinated intent representation, followed by the joint mixture model for discovering shopping

intent and the corresponding estimation method.

7.2.1 Topic Modeling Approach Adapted for Intent Discovery

With loss of generality, we use probabilistic latent semantic analysis (PLSA) [36] to show how topic

modeling approach can be adapted to discover shopping intent in product search. PLSA was initially

proposed as a method to automatically discover the salient topics from a set of text documents. The

method essentially assumes a document generation process where a user iteratively selects a topic

and sample a word from the topic. PLSA has been widely used in document understanding and

document similarity computation. To adapt PLSA for the purpose of discovering shopping intents,

we can conceptually transform the product engagement data into text document set in the following

way. First, we consider each instance of product feature as a word. That is, we discard the attribute

value structure of entities and simply regard each attribute-value pair as a word. For example,

Processor=Atom and Processor=i3 are different words, and they are as different as Processor=Atom

and Backlit Keyboard=Yes. Second, we treat all the products that a user engages with in a search

session as a single document. By performing such combination, product features capturing the same

intent will “co-occur” with each other in the same “document”. Since topic modeling approach rely

on co-occurrence information, we expect the product features that can coherently represent unique

shopping intent will emerge.

Formally, let T be a set of feature clusters and each t ∈ T represents a unique shopping intent

as a multinomial distribution over product features. This method estimates the parameters of T by

maximizing the following likelihood function:

L =
∑
s∈S

∑
e∈Es

∑
a∈A

log
(
(1− λ)

∑
t∈T

p(ve,a|ti)p(t|s) + λp(ve,a|tG)
)
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where tG is a generic intent model and λ is an interpolation parameter controlling the amount of

content generated from the generic intent, s.t. 0 ≤ λ ≤ 1 Typically, tG can be estimated by

normalizing the counts of words (i.e. product features) under the entire collection. By setting λ to a

relative large value, we can ensure the discovered intent models are discriminative.

However, this method suffers from several important issues, making it less ideal for modeling

and discovering shopping intent. First, although the uses an intuitive representation of shopping

intent using the product features, it fails to take into consideration the structure of products. In

this model, product features are simply regarded as “words” and the relations between features are

overlooked. As a result, each product feature competes not only with the features from the same

attribute (e.g. Processor=Atom and Processor=i3 ), but also with the features from other attributes

(e.g. Processor=Atom and Backlit Keyboard=Yes). As a result, the model cannot achieve accurate

estimations of feature probabilities, hence the intent models are not accurate. Also, because of the

disregard of product structures, the discovered intent models are difficult to interpret. For instance,

we cannot easily find answer to the question “which product attribute is the most concerned for

users who enter a particular query?” with the current intent representation.

Another problem with the model is that it does not take into consideration the search queries in

estimating the shopping intent models. Consequently, the intent models estimated in this way may

not comply with the queries users use in product search. As pointed out in previous discussions, due

to the ambiguity in user behavior, neither product or search query can be used to solely represent

shopping intent. Failing to incorporate the search queries makes the model less accurate in discov-

ering shopping intent. Another drawback due to this inconsideration is that the discovered shopping

intent does not contain sufficient information to interpret, i.e. it misses the terminologies users use

to describe and search for particular intent.

Finally, the generative process in this model allows each product feature in a session to be

generated using different intent models by choosing separately from the intent mixture. Because

of this modeling assumption, the consistency of intent within single sessions cannot be guaranteed,

hence affecting the quality of the discovered intent models.

In the following discussions, we will introduce a novel coordinated intent representation and a

joint mixture model for discovering shopping intent from product search. We will show that all the

problems suffered by the topic modeling approach will be addressed in the proposed model.
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7.2.2 Coordinated Representation of Shopping Intent in Product Search

In product search, users mainly interact with search queries and products. Both of them contain

important information in characterizing shopping intent. The queries capture the users’ language

in describing the intent and the products capture the target of the intent. In order to make the

discovered shopping intent useful in real applications, the intent models need to be able to explain

both queries and products in search sessions. Because the queries are in free text and the products

are represented by well structured feature information, they need to be modeled separately.

Based on these considerations, we propose a coordinated intent representation to compressively

capture user’s shopping intent. Essentially, we use three distributions to characterize a shopping

intent. Formally, let I be a set of intent models, let k be the size of I and Ii be the ith intent in I ,

where 1 ≤ i ≤ k. We then have

Ii = {ψi,Γi,Θi}

where ψi is a multinomial distribution over search termsW , capturing the importance of the terms in

describing the intent. For example, given a shopping intent looking for portable TV set, words such

as “potable” and “compact” will likely have high probabilities, while words such as “signal” and

“wifi” may have relatively low probabilities. Γi = {γi,a|a ∈ A} is a set of Bernoulli distributions

over all the attributes of products A. Each γi,a captures how likely the corresponding attribute is

concerned in this intent (vs. the generic intent). A small γi,a value corresponds to a high probability

that the user want to impose a preference on the attribute, rather than complying with the popular

preference. For example, in the portable TV set intent, the Size attribute will have a very high

probability, possibly close to 1; whereas other attributes like Refresh Rate and Warranty will have

low probabilities, possibly close to 0. The third parameter Θi is a set of multinomial distributions,

defined on the product attributes, too. Each θi,a ∈ Θi is multinomial distribution over product

features, capturing the preference on the given attribute. Taking the previous example again, the

Size attribute will have high probabilities on the small sizes such as Size=10” and Size=18”.

With this intent representation, we can effectively capture all the most useful information in a

shopping intent. Compared to the topic modeling approach, this representation not only makes the

intern models more interpretable, but also makes it easier to apply the models to real applications,
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hence making it more useful. In the next section, we will introduce how such intent models can be

automatically discovered from user engagements in product search logs.

7.2.3 Joint Mixture Model for Discovering Shopping Intent

With the coordinated intent representation, we propose a novel joint mixture model to automatically

discover shopping intent in product search logs. In this model, the observations of user engage-

ments in search sessions are generated using the following generative process. At the beginning of

a session s, the user chooses an intent Ii by sampling from a mixture of intent. After the intent is

decided, the user will use the corresponding intent model {ψi,Γi,Θi} to generate all the observa-

tions in the session, i.e. the query qs and the engaged product set Es. To do so, the user first selects

a query qs by repeatedly sampling a word from the word distribution ψi. Although a specific intent

model has been selected, the user still has the freedom to choose to either generate a topic specific

word or a more general word from the generic word distribution ψG. Second, each product e ∈ Es

is generated in the following way. For each attribute, the user first decides whether he/she has strong

preferences on the features of the attribute, versus just wants to go with popular choices. Essentially,

the user chooses between the selected intent model Ii or the generic intent model IG by sampling

a binary variable from the Bernoulli distribution γi,a. Based on the decision, the user generates the

value of the feature ve,a by sampling from the corresponding value distribution (θi,a or θG,a).

The joint mixture model has many advantages. First, it is consistent with our intuition that

user’s shopping intent remains unchanged throughout a single search session. Second, it takes into

consideration both the query and the products in a user engaged session. Therefore, the intent

models discovered will be coherent and less likely to be affected by users’ behavioral ambiguity

in choosing queries and engaging with products. Finally, we incorporate the structure of product

in modeling shopping intent. The feature generation is modeled separately on different attributes.

This ensures that the estimation of one product feature will not affect other features on different

attributes. The intent models is therefore more meaningful and interpretable. As an illustration,

consider a session with a query “kitchen TV” and a clicked product featuring Size=7” and Color=

Black. To generate this observation, first, an intent is sampled from the mixture of intent based

given this session, e.g. the portable TV set intent. Given this intent, query terms “kitchen” and

“TV” are generated according to the word distribution of the portable TV set intent. To generate
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the observed product, we generate the feature value on each individual attribute. We first generate

a indicator variable zG to select which model to use in generating the value (i.e. the selected intent

model vs. the generic intent model). For Size attribute, the indicator variable is likely 1 based on

the selected intent model; for the Color attribute, the indicator variable could be zero. Based on

these two indicator variables, we finally generate the value Size=7” and Color=black according to

the selected intent model and the generic intent model, respectively.

7.2.4 Model Estimation

Given a set of observed sessions S, we can write down the data likelihood based on the joint mixture

model:

L =
∑
s∈S

log

[
k∑
i=1

p(Ii|s)
∏
w∈qs

(
(1− λ)p(w|ψi) + λp(w|ψG)

)
·
∏
e∈Es

∏
a∈A

(
(1− γi,a)p(ve,a|θi,a) + γi,ap(ve,a|θG,a)

)] (7.1)

To estimate the model parameters, we want to maximize this likelihood of data. To do so we

employ an expectation-maximization (EM) algorithm. The algorithm maximizes the likelihood by

iteratively applying an expectation step (E-step) and a maximization step (M-step).

In the E-step, the algorithms computes the expectation of the likelihood by inferring the identity

variables:

p(zi = 1|s) =
p̃(zi = 1|s)∑k
i′=1 p̃(zi′ = 1|s)

(7.2)

p(zG = 1|s, e, a, Ii) =
γi,ap(ve,a|θG,a)

(1− γi,a)p(ve,a|θi) + γi,ap(ve,a|θG,a)
(7.3)

p(ξG = 1|s, w, Ii) =
λp(w|ψG)

(1− λ)p(w|ψi) + λp(w|ψG)
(7.4)

where

p̃(zi = 1|s) =p(Ii|s)
∏
w∈qs

(
(1− λ)p(w|ψi) + λp(w|ψG)

)
·
∏
e∈Es

∏
a∈A

(
(1− γi,a)p(ve,a|θi) + γi,ap(ve,a|θG,a)

) (7.5)
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Here ψG is a generic word preference distribution and θG,a is a generic value preference dis-

tributions on attribute a. Both can be estimated using the entire collection data. zi, zG and ξG are

indicator variables. If zi = 1, the ith intent, i.e. Ii, will be selected. If zG = 1, the generic intent

model will be used to generate the feature value; if zG = 0, the selected intent model Ii will be used

instead. The same semantic is applied to ξG for generating words.

In the M-Step, the algorithm reestimate the model parameters based on the values of the latent

variables inferred in the previous iteration:

p(v|θi,a) =

∑
s∈S

∑
e∈Es

δ(ve,a, v)(1− p(zG = 1|s, e, a, Ii))p(zi = 1|s)∑
s∈S

∑
e∈Es

(1− p(zG = 1|s, e, a, Ii))p(zi = 1|s)
(7.6)

γi,a =

∑
s∈S

p(zi = 1|s)
∑
e∈Es

p(zG = 1|s, e, a, Ii)∑
s∈S

p(zi = 1|s)|Es|
(7.7)

p(w|ψi) =

∑
s∈S

c(w, s)(1− p(ξG = 1|s, w, Ii))p(zi = 1|s)∑
w′∈V

∑
s∈S

c(w′, s)(1− p(ξG = 1|s, w′, Ii))p(zi = 1|s)
(7.8)

p(Ii|s) = p(zi = 1|s) (7.9)

where δ(v1, v2) is an indicator function assigning value 1 if v1 = v2, and 0 otherwise.

7.2.5 Combining Similar Intent Models

In the previous discussions, we fix the number of intent models in I to k. In practice, we can de-

termine the number of intent models dynamically by using a relatively large k and combine similar

intent models int the end. To do so we need a measure of similarity between intent models. In

our work, we use the KL-Divergence of the word distributions as the similarity function for intent

models. Essentially,

sim(Ii, Ij) = −KL(ψi||ψj) (7.10)
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Table 7.1: Corpora statistics
Laptop TV Camera

#Product 328 272 370
#Session 9633 25489 10819
#Engagement 35808 97995 42269
#Engagement per session 3.7 3.8 3.9

Appropriate smoothing for both ψi and ψj using the generic word distributionψG is necessary as

we need to avoid zero probabilities in computing the KL-Divergence. By thresholding the similarity,

we can combine the similar intent models. The combination can be done by modifying the indicator

variables in the E-step and reestimate the model parameters. Using this method, the size of intent

models can be set dynamically.

7.3 Discovered Shopping Intent

By fitting the joint mixture model to a product search log, we can automatically discover a set of

shopping intent in the form of coordinated representation. In this section, we empirically examine

the discovered intent models using search engagement logs from a popular commercial product

search engine. Particularly, we consider three major categories in online shopping, “Computer

Laptops”, “TVs” and “Cameras”. For each category, we have around 300 products. We obtain a

month’s search logs and extract engagements for the three categories separately by matching the

engaged product entities to the corresponding category’s database. Queries that have at least one

engagement in the given category will be selected for the category. In total, we have more than 9000

sessions for the “Computer Laptops” category with user engagements (each session containing one

query), more than 25000 sessions for the “TVs” category and more than 10000 sessions for the

“Cameras” category. On average, there are 3.8 observations of user engagements in each session.

The detailed statistics of the corpora are summarized in Table 7.1.

Additional information on intent models. Although the intent models we discovered are

easily interpretable, some additional information will have us to better understand the model. Par-

ticularly, we need to know the importance of each intent and the representative queries of each

intent. Both can be obtained using the estimated parameters from the joint mixture model.

106



Intent popularity. Intent popularity is an important piece of information that we need to know

in order to draw insights from the discovered intent models. Essentially, we want to know how

likely users will have a particular intent. Given the ith intent Ii, its popularity is captured by p(Ii),

which can be computed as the marginal probability using the joint mixture model parameter p(Ii|s):

p(Ii) =
∑
s∈S

p(Ii|s)p(s) (7.11)

Since we don’t have any prior knowledge on each session, it is reasonable to assume p(s) is

uniformly distributed. With p(Ii), we can determine which intent is more popular in search.

Representative queries Although our intent models capture the preference over query terms,

they do not directly relate to queries. It is much more intuitive and easier to understand shopping

intent in search if each intent is associated with a set of representative queries. To select represen-

tative queries, first we need to rank queries according to the intensity of their relationship with the

given intent. According to the generative procedure, we can compute the probability of generating

a query q using the word distribution ψi given ith intent Ii:

p(q|Ii) =
∏
w∈q

((1− γ)p(w|ψi) + γp(w|ψB)) (7.12)

We may be tempted to use p(q|Ii) to rank and select queries. However, p(q|Ii) is biased as

shorter queries will tend to have a higher probability. To conquer this issue, we instead use the

posterior probability of intent Ii, p(Ii|q) as a scoring function for ranking queries. p(Ii|q) can be

computed as

p(Ii|q) =
p(q|Ii)p(Ii)∑
j p(q|Ij)p(Ij)

(7.13)

where p(Ii) is the intent popularity computed by Equation 7.11.

Given the ranked list of queries, we still need to select a sub set of them so that they can well

represent the intent. To do so, we use the coverage of word probability mass as the selection criteria.

More specifically, we keep selecting queries according to the ranking order of the queries until the

aggregated probability mass of the words in the selected queries reach a pre-specified threshold.

For instance, if the words “portable”, “kitchen” and “TV” have probabilities of 0.1, 0.1 and 0.2,

respectively, then by selecting two queries “portable TV” and “kitchen TV” we have a coverage of
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0.4. If the threshold is smaller than 0.3, we only select the first query; otherwise both queries are

selected.

With the additional information, we summarize the discovered most popular intent models in the

three categories, “Laptop”, “TV” and “Camera”, in Table 7.2, Table 7.3 and Table 7.4, respectively.

For each intent model Ii, we first show the probability p(Ii) as an indication of intent popularity. We

then show the representative queries, the top 5 words in ψi, the top 5 attributes ranked by 1 − γi,a,

and up to 3 top feature values on each attribute a according to θi (values with probabilities smaller

than 0.01 are ignored).

Judging from the representative queries in Table 7.2, we can see that the top 3 intent models in

“Laptop” category can be interpreted as “laptop bundles”, “netbook laptop” and “sony laptop”, with

“laptop bundles” being the most dominating intent. Looking into the words and features, we can

see the three intent models are clearly different from each other. The first one is mostly concerned

with the “bundle” feature; the second has emphases on a particular type of processor and the size

of the laptop; the third intent model preferences the high end CPUs and specific brands and colors.

From the discovered intent models for the “TV” category, we can see that the user difference is

mostly captured by the screen sizes. Different intent models have clear distinctions on the “Price”

attribute and the “Screen Size” attribute. For the “Camera” category, the top 3 intent models are

clearly different in the “Type” attribute, emphasizing on “Point Shoot”, “Ultra-zoom” and “DSLR”,

respectively. Each intent model also has a unique selection of price ranges.

Overall, we can see that the proposed intent modeling method can successfully capture the

user behavioral difference and generate meaningful intent models as well as interpretable repre-

sentations. The queries selected based on the proposed query selection procedure can effectively

represent the intent models.

In the following discussions, we will introduce how we perform quantitive evaluations of the

discovered intent models through applications including product search and product recommenda-

tion. It is worth noting that it is generally difficult to perform direct quantitative evaluation on the

discovered intent models because users have very little prior knowledge of them and as a result their

judgement could be very subjective. However, it is possible to evaluate certain aspects of the intent

models through carefully designed user studies. For example, we could evaluate the coherence of

intent models by showing part of the coordinated intent representation (e.g. queries) and ask a user
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Table 7.2: Top discovered intent models in “Laptop” category
Intent 1. p(I) = 0.52

Queries laptop bundle
Words laptop, computer, bundle, gateway, refurbished

Type Bundle
Processor Celeron, Core 2 Duo, Core i3

Features RAM 2GB, 4GB
Screen size 11”-14”, 17” & larger, 15”-16”
Brand Dell, Acer, HP

Intent 2. p(I) = 0.11

Queries netbook, hp mini, acer netbook, hp netbook, mini laptop
Words laptop, netbook, acer, computer, mini

Processor Atom
RAM 1GB, 2GB

Features Screen size 10” & under, 11”-14
Type Netbook, Bundle
Hard Drive 250GB-640GB, 250GB&under

Intent 3. p(I) = 0.10

Queries pink laptop, sony vaio, sony, sony laptop
Words laptop, sony, pink, computer, vaio

Processor Core i5, Core i3, Core i7
Brand Sony, HP

Features Color White, Silver, Pink
RAM 8GB, 4GB, 6GB
Screen size 11”-14”, 15”-16”, 17”&larger
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Table 7.3: Top discovered intent models in “TV” category
Intent 1. p(I) = 0.21

Queries vizio 47, vizio 47 class, vizio 42 class, vizio 47 class theater, vizio 3d
Words tv, vizio, 3d, led, smart

Price $500-$750, $250-$500, $750-$1k
Screen Size 40”-49”, 50”-59”

Features Resolution 1080p
Brand Vizio, LG, RCA
Refresh 120Hz, 60Hz

Intent 2. p(I) = 0.18

Queries 32 inch tv, 32 tv, pink tv, 32 inch, 32 in tv, 32 class, sceptre
Words tv, 32, vizio, inch, lcd

Price $200-$250, $250-$500, $150-$200
Screen Size 30”-39”, 21”-29”

Features Brand Sceptre, Vizio, RCA
Refresh 60Hz
Technology LCD, LED

Intent 3. p(I) = 0.11

Queries 19 inch tv, tv with dvd, 19 inch flat screen tv, 22 tv, 22 inch tv, vizio 22
Words tv, dvd, vizio,with, combo

Price $100-$150, $150-$200, $200-$250
Screen Size 21”-29”, 20”&Smaller, 30”-39”

Features Brand Vizio, RCA, Emerson
Technology LED, LCD
Refresh 60Hz, 120Hz
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to choose from a list of candidates for the remaining part of the intent representation (e.g. product

features). We leave this for future work because it requires a lot of human efforts.

Table 7.4: Top discovered intent models in “Camera” category
Intent 1. p(I) = 0.19

Queries canon powershot, nikon coolpix, point shoot camera
Words camera, digital, canon, shoot, point

Type Point Shoot, Ultra Zoom
Price $50-$100, $100-$150, $150-$200

Features Features Image Stabilization, HD Video,
Face Detection

Optical 2x - 8x, 9x - 18x
Brand Canon, Nikon, Samsung

Intent 2. p(I) = 0.15

Queries ultra-zoom camera, olympus, ge camera
Words camera, ultra-zoom, dslr, digital, olympus

Price $150-$200, $100-$150, $200-$250
Type Ultra Zoom, DSLR, Point Shoot

Features Optical 20x & Up, 9x - 18x
Features HD Video, Image Stabilization
Brand GE, Olympus, Samsung

Intent 3. p(I) = 0.14

Queries nikon d5100, nikon d3100, nikon d3200, canon t3i, nikon dslr
Words nikon, camera, dslr, d5100, d3100

Price $500-$750, $250-$500, $750-$1000
Type DSLR, Ultra Zoom

Features Features HD Video, Image Stabilization
Color Black
Brand Nikon, Canon

7.4 Applications

The proposed query intent model enables a wide arrange of applications. Below we discuss some

of them.

7.4.1 Intent-Oriented Query Ambiguity Analysis

Query ambiguity analysis is an important task in query understanding. It has impact in many prac-

tical applications such as search result personalization and diversification. Traditionally, query am-
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biguity is measured by dispersion of user engagements. In terms of Web search, this mainly corre-

sponds to the click behavior. In particular, a widely used metric is a straight forward computation

of information entropy over the distribution of clicks, i.e. click entropy:

Clk.Ent(q) =
∑
e∈Eq

p(e|q) log
1

p(e|q)
(7.14)

where q is a query, Eq is the set of user clicked entities and p(e|q) is an empirical distribution of

clicks given the query q.

One issue with the click entropy metric is that it captures the document level ambiguity, not the

behavioral level ambiguity. Previously, we proposed click pattern to capture the behavioral differ-

ences in analyzing query ambiguity [26], but the method relies on observation level analysis and

could not gain insight into the behavioral differences due to the lack of structure in text documents.

In this study, we propose to study intent-oriented query ambiguity analysis for product search.

Rather than analyzing based on the observations, we directly measure query ambiguity based on

shopping intent. This is done by computing the Intent distribution for each query using the intent

we discovered in the joint mixture model. Particularly, the intent distribution given a user query is

computed exactly the same as in Equation 7.13. With the intent distribution p(I|q), we can compute

the intent entropy for a query as follows:

Int.Ent(q) =
k∑
i=1

p(Ii|q) log
1

p(Ii|q)
(7.15)

In Table 7.5 and Table 7.6 we show examples of queries and the computation of ambiguity mea-

sures. The left side of the table shows the queries with the highest intent entropy and the right side

shows the queries with lowest intent entropy. For each query we show the intent entropy and the

click entropy. We can see queries with high intent entropy are mostly the ones that only specify

preferences on few attributes, e.g. “hp”, “refurbished laptops”. For these queries, the users have

not decided what product they want to purchase when they issue the query, therefore displaying

differences in future search engagement. With the intent entropy measure, we can effectively iden-

tify these queries, then we can perform better diversification or personalization of search results.

Although the click entropy of these queries also tend to be larger, they are not as consistent as intent
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Table 7.5: Queries with High Intent Entropy in Laptop Category
Query Int.Ent Clk.Ent
hp 0.83 1.34
hp laptops 0.78 1.17
refurbished laptops 0.73 0.96
dell laptops 0.73 0.7
asus 0.72 1.16
hp laptop 0.72 1.22
refurbished laptop 0.71 0.93
laptop 0.69 1.2
refurbished 0.69 0.91
laptop pc with intel 0.64 1.26

Table 7.6: Queries with Low Intent Entropy in Laptop Category
Query Int.Ent Clk.Ent
hp - pavilion g6-1c58dx / amd quad-core a6-3400m ... 0 0.59
acer - gateway 15.6’ laptop - 4gb memory - 500gb ... 0 0.48
samsung 13.3’ amd dual-core a6-4455m laptop ... 0 0.28
acer aspire one ’ao722 0473’ ’11 6 inch’ hd netbook ... 0 0.41
tyhe dark purple laptop bundle optional matching ... 0 0.45
the blue laptop bundle with optional matching ... 0 0.8
lenovo thinkpad x130e 062223u 11.6-inch led ... 0 0.28
hp 14” g4-2149se butterfly blossom design laptop ... 0 0
17.3’ hp laptop amd quad core accelerated processor 0 0.48
hp envy 15-3040nr 15.6 inch laptop (black/silver) 0 0.3

entropy, as the values ranges from 0.7 to 1.34. For the queries with small intent entropy, they are

mostly long queries where detailed preferences on all aspects are specified. Some of the queries

could be directly copied from the Web. In these cases, the users have clear targets in mind. How-

ever, the search results may not contain the specified product, or contain more interesting products

that can substitute the product the user has in mind. As a result, the user may still engage with mul-

tiple products. Consequently, the click entropy metric is problematic in measuring the ambiguity

of the query, as it will regard each engaged product as individual semantic unit. In computing in-

tent entropy, we are able to detect that that although the user engaged with multiple products, these

products obey a coherent intent, as their features can be well explained by a single intent model.
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7.4.2 Improving Product Search

The most intuitive and important usage of shopping intent models in practical applications is to im-

prove the accuracy of product search. In this section, we study how to incorporate the intent models

with existing IR model. Particularly, we integrate the discovered intent models with language model

for IR. With the KL-Divergence language model, the scoring function is essentially the negative

KL-Divergence of the query language model and the document/product language model:

score(q, e) =
∑
w∈W

p(w|q) log p(w|e) (7.16)

Without any assumption of feedback data, the query language model is simply estimated us-

ing the query itself. Typically, the document language model is estimated by the content of the

document, and smoothed by the collection language model. In the case of product search, we can

only use the limited product information (i.e. words describing each feature) for estimating the

product language model. Our intent model provides a natural bridge of products and query words.

Therefore, we can augment the product language model by computing a new intent based model:

p(w|e) =
k∑
i=1

p(w|Ii)p(Ii|e) (7.17)

where

p(Ii|e) =
p(e|Ii)p(Ii)∑k
j=0 p(e|Ij)p(Ij)

(7.18)

where

p(e|Ii) =
∏
a∈A

(1− γi,a)p(ve,a|θi) + γi,ap(ve,a|θG,a) (7.19)

There are two ways to combine the language models. One is to merge the two models to get one

model. The other way is to keep two separate models and combine the scores. Interestingly, we find

the second method tend to perform better than the first one. Therefore, we use linear interpolation

of scores to integrate the intent based product language model with the base language model. The

interpolation weight is set by cross validation.

To evaluate the performance of product search, we created an evaluation set by randomly se-

lecting queries and asking experienced industrial annotators to label the returned products from the
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search engine into 5 relevance degrees. In total we obtain 96 queries for the “Laptop” category, 146

for “TV” and 98 for the “Camera” category. We evaluate the search systems based on NDCG@3

and NDCG@10.

Table 7.7 shows the experiment of product search. In this experiment, we compare several

methods. The first is a base language model approach, Base.LM, where the product language models

are estimated based on product features. Int.LM is the method which estimates product language

models based on the intent models we discovered. A combination of the two different types of

language models is also evaluated. We then modify our intent discovery method to discard the

use of product structure. This can be easily done by fixing the γia to a constant value in the joint

mixture model in Section 7.2.3 (same as λ). We compute another type of language model based

on this method, denoted as Int.LM−. The reason we include Int.LM− in our study is that we

want to see if we can gain advantage by incorporating the product structure in modeling intent.

Because the intent modeling methods all use product search logs for estimation, they are indirectly

using relevance feedback information. Therefore, we also include a language model with relevance

feedback (FB.LM) for comparison. We follow the method proposed by Zhai and Lafferty [79] to

implement FB.LM.

From Table 7.7 we can see that both Int.LM and Int.LM− outperforms Base.LM. This is ex-

pected as we make use of feedback information in estimating the intent models. However, we also

observe that Int.LM almost always outperform the typical feedback method FB.LM, and by com-

bining Int.LM and Base.LM we can significantly improve over both Base.LM and FB.LM in all

three categories. This shows that the intent modeling approach is a superior way of using relevance

feedback. One main reason is that through intent modeling, we can generalize the knowledge from

the feedback information, whereas the existing feedback method only use the feedback information

for the corresponding query (i.e. queries with no feedback will not be treated). In comparison with

Int.LM−, Int.LM consistently performs better. This shows that our method is effective in modeling

the structure of products. Finally, we find that for both Int.LM and Int.LM−, the search accu-

racy could be further improved by combining with the Base.LM model. The best performance is

achieved by Base+Int.LM in all three categories. In combining the two types of language models,

we also find that the score-interpolation tend to generate better results than model-interpolation.
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Table 7.7: Evaluation of product search
Category Method NDCG@3 NDCG@10

Base.LM 0.275 0.161
FB.LM 0.387 0.222

Laptop Int.LM− 0.383 0.218
Int.LM 0.390 0.223
Base+Int.LM− 0.399 0.234
Base+Int.LM 0.409 0.240
Base.LM 0.527 0.366
FB.LM 0.640 0.439

TV Int.LM− 0.641 0.442
Int.LM 0.647 0.445
Base+Int.LM− 0.656 0.459
Base+Int.LM 0.661 0.461
Base.LM 0.512 0.395
FB.LM 0.593 0.463

Camera Int.LM− 0.588 0.459
Int.LM 0.597 0.461
Base+Int.LM− 0.605 0.475
Base+Int.LM 0.607 0.477

7.4.3 Improving Product Recommendation

Product recommendation is an important task in e-commerce. To make product recommendations,

we need to be able to measure the similarity of two products. Typically, the similarity can be

measured by the product features. Essentially, we can compute the similarity of two products as

the promotion of the same features. One problem with this method is that it cannot distinguish the

importance of different attributes. If two products differ on only a few important attributes, they

could still have high similarity since their majority features are the same, although they are likely

designed for very different purposes.

To solve this problem, we study use the discovered intent models. Conceptually, our intent mod-

els not only bridge the products and queries, but also connect products with other products. If two

products have similar intent distributions, we could infer with a high confidence that they are good

recommendations for each other. But sometimes products don’t have similar intent distributions,

but they both have high probabilities on same intent. In this case, they could still be good recom-

mendation candidates for each other. To capture this intuition, we use cosine similarity to measure

the similarity of intent distributions. In particularly, given two products e1 and e2, their similarity is
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computed as:

cos(e1, e2) =

∑k
i=1 p(Ii|e1)p(Ij |e2)√∑k

i=1 p(Ii|e1)2

√∑k
i=1 p(Ii|e2)2

(7.20)

Similarly to product search, we add this new similarity as an additional signal for product rec-

ommendation. The weight is set by cross validation.

To evaluate product recommendation, we create an evaluation set by extracting highly related

products based on session co-occurrence in product search. To avoid bias, we use a different time

stamp from the data we use to estimate intent models. The two logs used are half a year apart.

We use a high threshold so that only we only extract those recommendation candidates that we are

confident with. Using this method, we generated recommendations for 133 products in “Laptop”

category (out of 328 products), 95 products in “TV” category (out of 272) and 190 products in

“Camera” category (out of 370). On average, each of these products has 2.8 recommendations. To

evaluate different methods, we use each to generate a ranking of products based on an input product.

We then select top 5 products and measure the precision, recall and F1 score.

Table 7.8 shows the evaluation of several methods for product recommendation. In this table,

co-occurrence counting (Co.Cnt) is a baseline method where the same process of generating the

evaluation ground truth is used to generate product recommendations, using the training search log

(which has a different time stamp than the one used for generating ground truth). A low threshold

was used in this method to guarantee the coverage. Feat.Sim method uses the proportion of same

product features to define product similarity. Tpc.Sim and Int.Sim are the cosine similarities based

on the discovered topics and intent models, respectively. From the table, we can see that by in-

corporating the Intent similarity, we can always improve the accuracy of product recommendation.

The topic similarity could also improve the performance in some of the categories, but overall it is

suboptimal compared to intent similarity. This is mainly because that the intent similarity benefits

from simultaneously modeling queries and products in search engagement. As shown in our pre-

vious discussions, since both queries and product engagements are ambiguous, by modeling them

in a single mixture model, we can effectively eliminate the ambiguity in discovering the represen-

tative intent models. We also find that the co-occurrence counting method is not very consistent

across different categories. This is because the method mainly does not perform any generalization

of the knowledge. Depending on the fluctuation of user behavior, such a method may not work
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Table 7.8: Evaluation of product recommendation
Laptop

Method Precision Recall F1
Co.Cnt 0.103 0.195 0.136
Feat.Sim 0.131 0.203 0.159
Feat+Tpc.Sim 0.126 0.204 0.156
Feat+Int.Sim 0.135 0.202 0.162
Feat+Int.Sim+Co.Cnt 0.166 0.272 0.207

TV
Method Precision Recall F1
Co.Cnt 0.103 0.207 0.138
Feat.Sim 0.119 0.247 0.162
Feat+Tpc.Sim 0.132 0.285 0.181
Feat+Int.Sim 0.147 0.310 0.200
Feat+Int.Sim+Co.Cnt 0.152 0.329 0.207

Camera
Method Precision Recall F1
Co.Cnt 0.174 0.325 0.227
Feat.Sim 0.138 0.282 0.136
Feat+Tpc.Sim 0.141 0.277 0.187
Feat+Int.Sim 0.144 0.299 0.194
Feat+Int.Sim+Co.Cnt 0.197 0.402 0.264

well when used alone due to the lack of coverage. However, by combining the Co.Cnt signal with

Feat+Int.Sim, we can always improve the accuracy of recommendation. The direct co-occurrence

counting and the Intent similarity complements each other as co-occurrence counting captures the

most confident recommendation signal and intent similarity provides more coverage by successfully

generalizing the co-occurrence knowledge in user engagement data.

7.5 Conclusion and Future Work

In this work, we introduced and studied a novel problem of search intent understanding in prod-

uct search. To comprehensive characterize users’ shopping intent in product search, we proposed

a coordinated representation of intent, where each intent is collectively represented the query term

preference, product attribute importance and product feature preference. To discover such intent

representations, we proposed a novel joint mixture model to simultaneously model the unstructured

queries and the structured products in search engagements. By employing an EM algorithm, we
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can automatically discover the representative shopping intents in a product search log. Evaluation

results show that the model is effective for discovering distinct, coherent and interpretable shopping

intents. The discovered intents are quite meaningful and representative, and can serve as a ”sum-

mary” of user interests and preferences. We further proposed several applications of the proposed

intent model, including query ambiguity analysis, product search and product recommendation. The

results of both qualitative and quantitative evaluation demonstrated clear benefits of leveraging the

proposed intent model in all the applications.

Our work opens up many interesting future directions. First, it opens up new ideas in search

intent modeling, where detailed intent representation is the key for improvement. Second, it opens

new direction in search log mining where both unstructured data and structured data need to be

modeled simultaneously. Finally, the novel intent model we proposed in product search will en-

able/improve many practical applications. In the future, we plan to continue improving the intent

model by taking into account more types of user engagements and investigate into its values in more

critical applications such as business intelligence.
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CHAPTER 8

SUMMARY AND FUTURE DIRECTIONS

8.1 Summary

This thesis is focused on the general problem of search intent modeling and query reformulation in

search engine systems. It explored three main topics: Modeling ambiguous search intent, Support-

ing query formulation and Deep intent modeling in structured entity retrieval.

In Modeling ambiguous search intent, I proposed to capture ambiguous search intent based on

behavioral difference instead of content difference as most typical ambiguity metrics do. I proposed

to use click pattern as a building block for search log analysis. Each query is characterized by a

set of click patterns, i.e. a click profile. A measurement based on this behavioral analysis, i.e.

pattern entropy, was then proposed to quantify the intent ambiguity in search queries. I proposed

and analyzed three important aspects of ambiguity measurements. Experiments showed that pattern

entropy is a consistent and robust metric that can accurately quantify search intent ambiguity.

As part of the findings in Modeling ambiguous search intent, we know that a large portion of

search queries are illy composed. Users’ lack of domain knowledge has largely affected the query

formation process. In order to guide users to form the most effective queries based on their search

intent, I studied the topic of Supporting query formulation. Particularly, I studied two problems.

First, I studied the problem of automatically completing and correcting users’ queries based on

their search intent. To solve this problem, I employed joint sequence model to model the query

transformation. With an EM algorithm, the model can be estimated from past observations of users’

query correction behaviors. Experiments confirmed that the proposed model can help users form

more effective search queries based on their search intent with less effort. Second, I studied the

effect of query representation in expressing search intent. Particularly, I studied whether the typical

keyword query representation is sufficient for expressing search intent. Through the comparison
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with an augmented query representation space with syntactic query operators, I found that the aug-

mented query space can be significantly more effective in capturing search intent, as it constantly

results in better search performance. Since users are usually not familiar with syntactic query op-

erators, I then studied the feasibility of automatic reformulation from keyword queries to syntactic

queries. Experiments showed that the reformulation can be effectively performed in scenarios when

users encounter search difficulty and certain negative feedback information becomes available.

The previous two parts of work have focused on general techniques for search intent modeling

and query reformulation. Indeed, accurate and comprehensive modeling of search intent in regular

document retrieval is difficult due to the variety of intent types and the lack of document structures.

On the other hand, structured entity retrieval, an increasingly important retrieval task, uses mainly

structured data and has less variety of intent types, raising opportunities as well as challenges in

search intent modeling. Therefore, in the third part of the thesis work, I studied Deep intent model-

ing in structured entity retrieval. First, I studied query intent modeling with data level representation

(i.e. entity structures). I proposed and studied a probabilistic retrieval model that can effectively

match query intent into entity structure representation. The model can be estimated using any text

data source associated with the entities, such as user reviews and observed search queries. Experi-

ments confirm that with the proposed model, product search in keyword queries can be significantly

improved. This study bridged the gap between intent representations in queries and entities in prod-

uct search, but it does not provide much insight in understanding users’ shopping intent. In product

search, different users may use the same query to express different intent, or use different queries

to express the same intent. To model such ambiguities and accurately capture users’ shopping in-

tent, I studied automatic discovery of users’ shopping intent in product search. A coordinated intent

representation was proposed, which can simultaneously capture the topical words and the charac-

teristic product features of each intent. I then proposed a novel joint mixture model to automatically

discover the coordinated intent representations from search engagement logs. Experiments show

that the discovered shopping intent models can not only improve search accuracy, but also bene-

fit many search related applications such as product recommendation. Also, as a building block

for query analysis, this also extended our work on Modeling ambiguous intent with click pattern,

which performs query analysis mainly on the observation level. With the automatically discovered,
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comprehensive intent models in the coordinated representation, we can perform accurate ambiguity

analysis on all search quires, even if they have not been observed before.

In conclusion, this thesis work is a systematic study of search intent understanding, and how to

leverage it to improve the performance of search engine systems. The contributions of the thesis

work are:

• Behavior analysis in query intent understanding. As shown in my work on modeling

ambiguous search intent with click pattern, behavior analysis is of critical importance in un-

derstanding search intent in queries. Compared traditional query analysis methods based on

search result contents, behavior analysis can lead to more accurate understanding of search

intent.

• Supporting search intent expression. The work on query completion and correction is

among the pioneering works in the area. The importance of the task is established and it is

shown that real time support is feasible and can be achieved with high accuracy.

• Understanding query space in intent representation. The impact of query representation

on intent expression is analyzed. It is shown that with syntactic query operators, we can

achieve an augmented query space that can greatly improve the expressing of search intent

from the keyword query space. It is also shown automatic reformulation from keyword query

to the augmented query representation is possible when users encounter difficulty in search,

so that their search intent can be “diagnosed” and refined.

• Modeling query intent with data level representation. The study shows that in special IR

domains, we can deep intent models with a date level representation, which has critical impact

on search accuracy. It is confirmed through experiments that the proposed probabilistic model

can effectively match search queries with the product feature representation of search intent,

and successfully incorporate the information in product search to improve search accuracy.

• Discovering coordinated shopping intent. The study shows the importance of modeling

search intent at a higher conceptual level, where queries and products serving similar shop-

ping intent can be identified and grouped together. The proposed coordinated representation is

122



shown to be effective in characterizing users’ shopping intent, and the proposed joint mixture

model can automatically identify and capture such intent in search engagement logs.

8.2 Discussions and Future Directions

Although the thesis work is logically separated into three parts, it follows a clear road map of study-

ing intent modeling and query reformulation, and none of the parts is isolated work. As aforemen-

tioned, the work on deep intent modeling extends the work on modeling ambiguous search intent,

because it enables a meaningful, data level representation for each intent group whereas the previous

modeling method is based on behavior observations. The data level representation not only differ-

entiates each intent group, but also provides an explanation of their differences. In terms of click

patterns, we can discover that a certain type of click behavior is formed because the related items

obey a data specific distribution determined by the intent group. This allows us to more accurately

model the ambiguity in search queries, and also to gain insights into users’ behavior. Meanwhile,

the work on deep intent modeling also has potential impact on supporting query formulation. For

instance, the coordinated intent representation enables many potentially useful features for syntactic

query reformulation. Because query terms are clustered into different intent groups, we can lever-

age this information to determine the importance of terms and improve the prediction for necessity

operator. It would be interesting to further explore how to use the intent models we discovered to

improve query analysis and query reformulation.

In this work, we have mainly focused on structured data retrieval for studying deep intent model-

ing. Another important future direction is to explore the data level intent modeling in text retrieval.

Deep intent understanding is generally difficult for text data due to the lack of structures. In re-

cent years, there has been great effort in the semantic web community to transfer text data into

structured/semi-structured data. Since it has been shown that our proposed techniques can effec-

tively model structured entity data with unstructured text data, we can leverage the information

extraction techniques to obtain the necessary structural information from text data, and adapt our

methods to model the underlying user intent.

We have also mostly focused on studying users’ intent in a static time period in this work. In

reality, users’ intent could change or shift over time. Understanding such changes of intent is not
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only useful for improving search accuracy but also important to business intelligence. Consider

product search for example, being able to predict the trend of shopping intent can help merchants

make smart purchasing plans and better organize their stock. Furthermore, certain types of user

intent also show periodical behaviors. Detecting such periodicity is also important for making shelf

arrangement. To capture the changes of user intent, we need to incorporate the temporal aspect into

our intent models. Particularly, we can impose proper regularizations based on time specific models.

Yet another interesting future direction is to capture term dependency in intent mining. For

example, given a query “cheap laptop case”, we should understand the primary intent is “laptop

case” instead of “laptop”. Such dependency has been studied in our work on syntactic query re-

formulation (Chapter 5). But in the search intent modeling work we have mostly assumed term

independency. In product search, we have made similar assumption for product attributes. Typi-

cally, such assumptions can simplify the modeling work and achieve robust results. But as shown

in our work on syntactic query reformulation, with proper use of dependency we can potentially

further improve the accuracy of intent modeling. Thus an interesting future direction would be to

refine the proposed intent models by taking into account term and attribute dependencies.
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