
c© 2013 Parya Moinzadeh

I-ADMIN: A FRAMEWORK FOR DERIVING ADAPTIVE SERVICE
CONFIGURATION IN WIRELESS SMART SENSOR NETWORKS

BY

PARYA MOINZADEH

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2013

Urbana, Illinois

Doctoral Committee:

Professor Gul Agha, Chair
Professor Tarek Abdelzaher
Professor Nitin Vaidya
Dr. Ranveer Chandra, Microsoft Research

ABSTRACT

Facilitating application development for distributed systems has been the

focus of much research. Composing an application from existing compo-

nents can simplify software development and has been adopted in a number

of domains such as wireless sensor networks, mobile computing, ubiquitous

systems, cloud computing, etc. Efficient application development in wire-

less smart sensor networks (WSSNs) generally faces more restrictions and

is the focus of this thesis. Inherent limitations of wireless sensor networks

such as memory size, bandwidth, computational capacity, and energy have

driven WSSN application development towards low-level programming ap-

proaches which provide efficiency but hinder sharing and reuse. Varying

environmental conditions, faults, and changing application requirements are

also common in long-term deployments of WSSNs. Environmental conditions

and faults are important considerations in this domain since they can affect

the availability of resources such as energy. For example, a stretch of cloudy

weather can affect the energy availability of sensor nodes that are equipped

with solar panels. On the other hand, requirements of WSSN applications

vary considerably and can include energy consumption, time synchronization

error, packet loss, etc. The increased dynamicity and complexity of WSSN

applications require open systems that interact with their environment while

addressing application constraints and hardware limitations.

Our goal is to facilitate WSSN application development by allowing com-

ponent sharing and reuse and dynamicity. Due to the importance of energy

management on the lifespan of WSSN applications, our primary focus is on

optimizing energy consumption while satisfying constraints that are derived

from application requirements.

We model applications as a composition of services. Services are self-

contained software components with self-describing interfaces that represent

their inputs and outputs as well as their non-functional properties. We illus-

ii

trate the need for service sharing and dynamic service composition and their

challenges through examples of real-world applications, namely structural

health monitoring (SHM) and environmental and agricultural monitoring.

In fact, our experience in the design, development, and implementation of

these applications resulted in our effort to build a framework that facilitates

software development for WSSN applications. We have developed middle-

ware services that are deployed in two main testbeds. On the first testbed,

the Jindo Bridge in Korea, 113 nodes are deployed for long-term monitoring

of structural health. The second testbed aims at environmental observation

(soil moisture and nitrate) in a 40 acre field in Champaign, Illinois that has

4 types of vegetation.

The proposed solutions can be divided into three parts. First, we design a

framework called I-AdMiN, which provides component deployment to enable

dynamic service composition and adaptive reconfiguration, while respect-

ing the resource constraints and efficiency requirements of wireless sensor

networks. Second, we address the effect of deployment characteristics and

environmental conditions by dynamically deriving energy characteristics of

services that comprise the WSSN application. This is done in a component

called Monitor by using aggregate information on system energy consump-

tion. Dynamic and on-line profiling of services is important for two main

reasons: i) many service characteristics such as energy consumption cannot

be accurately determined until the full-scale deployment of the service, and

ii) dependency relationships between different services and between the hard-

ware platform and services can affect the overall behavior of the system and

must be taken into account in the course of service selection. Many such de-

pendencies cannot be determined apriori and depend on the environment and

run time characteristics. Finally, we design and implement a system called

S4 to enable automatic selection of components and parameters to satisfy

application requirements. S4 derives a constraint satisfaction problem from

application constraints and service specifications and solves it to derive a

selection of available services that form the application. Whenever avail-

able, S4 leverages dynamic information from the Monitor on service energy

characteristics to optimize the energy consumption of the sensor network.

iii

In memory of my grandmother, Fatemeh Kashani.

To my dear family.

iv

ACKNOWLEDGMENTS

I am deeply grateful to my advisor, Professor Gul Agha, for his patient guid-

ance and invaluable support throughout my graduate studies. His knowledge,

vision, and moral support have been invaluable on both academic and per-

sonal levels. I would like to express my sincere gratitude to Professor Tarek

Abdelzaher for his contributions as a thesis committee member and research

collaborator. I would also like to thank my other committee members, Pro-

fessor Nitin Vaidya and Dr. Ranveer Chandra for their valuable feedback

on this work. In particular, Dr. Chandra’s mentoring during my 7-month

internship at Microsoft Research had a significant impact on my academic

development. I am also grateful to Dr. Yinglian Xie for all I learned from her

during my internships at Microsoft Research. I would like to thank Professor

Bill Spencer, with whom I have collaborated on structural health monitoring.

My deepest appreciation goes to my colleagues and collaborators who have

made this dissertation possible. I would especially like to thank Dr. Kirill

Mechitov, with whom I worked at the Open Systems Laboratory at the Uni-

versity of Illinois. His vast knowledge of distributed systems and his support

have greatly helped me along the way. His ideas particularly influenced

Chapters 3, 4, and 6. Chapter 4 was done in collaboration with Kirill Me-

chitov and will appear in subsequent papers. I would also like to express my

gratitude to Reza Shiftehfar, with whom I have worked on many occasions,

including the energy management middleware service presented in Chapter 3.

I would like to thank my group members and collaborators at the Open Sys-

tems Laboratory and the Smart Structures Technology Laboratory: Rajesh

Kumar Karmani, Vijay Anand Korthikanti, Peter Dinges, Ashish Vulimiri,

Minas Charalambides, Shinae Jang, Hongki Jo, Jian Li, and Robin Kim.

I am deeply grateful for the love and support of my parents, Maryam and

Kazem Moinzadeh, and my sisters, Ramona and Pardis. This thesis would

not have been possible without their help and encouragement. A special

v

thanks to my mother and father in law, Homa and Hossein Fatemieh and my

sister in law, Tannaz, for their continuous help and support. Last but not

least, I would like to thank my husband Omid, for his eternal support and

understanding of my goals and aspirations. His love and support have been

and will remain a true source of encouragement for me.

vi

TABLE OF CONTENTS

LIST OF TABLES . ix

LIST OF FIGURES . x

CHAPTER 1 INTRODUCTION . 1
1.1 Thesis Statement . 4
1.2 Contributions . 4
1.3 Organization . 6

CHAPTER 2 RELATED WORK . 8
2.1 Wireless Sensor Network Macroprogramming 8
2.2 Service Oriented Architecture 10
2.3 General-purpose Middleware Solutions 12
2.4 Software Reconfiguration in Sensor Networks 14
2.5 Mobile Agent Systems for Wireless Sensor Networks 16
2.6 Web Service Composition . 18
2.7 Constraint Satisfaction Problems 20
2.8 Summary . 21

CHAPTER 3 APPLICATION-CENTRIC APPROACH TO SYS-
TEM REQUIREMENTS . 24
3.1 Motivating Examples . 24

3.1.1 Structural Health Monitoring 25
3.1.2 Environmental and Agricultural Monitoring 28

3.2 Goals and Challenges . 30
3.2.1 Service Interaction . 31
3.2.2 Environmental Conditions 34

CHAPTER 4 ARCHITECTURE OVERVIEW 37
4.1 Deriving Dynamic Network Information 38
4.2 Service Selection . 38
4.3 Service Representation . 40

4.3.1 Service Description . 41
4.3.2 Service Composition 42

4.4 Adaptive Middleware Framework 43

vii

4.4.1 Adaptation . 44
4.4.2 Two-level Actor Model 46
4.4.3 Actor Roles . 47
4.4.4 Runtime Support System 50

4.5 Discussion . 50

CHAPTER 5 MONITORING SERVICE ENERGY CONSUMP-
TION . 53
5.1 Analysis Data . 55
5.2 Estimating Service Energy Consumption 56

5.2.1 Approach . 58
5.2.2 Experimental Results 63

5.3 Detecting and Isolating Energy Spikes 67
5.3.1 Detecting Energy Spikes 67
5.3.2 Isolating the Cause of Energy Spikes 68
5.3.3 Integrating Energy Anomaly Information 69
5.3.4 Experimental Results 71

CHAPTER 6 SERVICE SHARING AND SELECTION 77
6.1 System Requirements . 79
6.2 Service Selection . 80

6.2.1 CSP Formulation . 81
6.2.2 Service Selection Module 81
6.2.3 Applying Dynamic Deployment Data 83
6.2.4 Configuration File Generation 84

6.3 Implementation . 85
6.4 Experimental Results . 90

6.4.1 Local Policy-based Adaptation 90
6.4.2 Global Policy Changes 92

CHAPTER 7 CONCLUSIONS AND FUTURE WORK 95
7.1 Summary . 95
7.2 Limitations and Future Work 98

REFERENCES . 100

viii

LIST OF TABLES

2.1 A comparison of WSSN programming approaches. 22

3.1 Offset change due to frequency change on Imote2. 33

5.1 Sample processed data from Jindo Bridge deployment. 57
5.2 Variance of battery voltage drain for different AutoUtil counts. 59
5.3 Variance of error for different values of AutoUtil count. 62
5.4 Analysis of the relationship between error term variance σ2

and Xj for groups 1..j. 62
5.5 Dataset characteristics for data gathered from ISHMP Jindo

Bridge deployment. 63
5.6 Dataset groups based on AutoUtil count value. 64
5.7 Estimated battery voltage drain for AutoUtil service using

WLS regression. 64
5.8 Mean and median of battery voltage draw values for data

points with only AutoUtil as the active service compared
to results from WLS regression. 65

5.9 Dataset groups based on RemoteSensing count value. 65
5.10 Estimated battery voltage drain for RemoteSensing service

using WLS regression. 66
5.11 Effect of threshold θ on the percentage of data points re-

garded as energy anomalies. 73
5.12 Student t-test results for three services: TimeSync, DVS

and TS-DVS. 75
5.13 Student t-test results for RemoteSensing. 75

6.1 Estimated non-functional properties for a subset of services
considered in the service selection. 87

6.2 Results of service selection for an SHM application using
CSP solver. 88

6.3 Current draw measurements and duration of phases for a
data acquisition application. 91

6.4 Reconfiguration cost for new service selection. 94

ix

LIST OF FIGURES

3.1 Twin Jindo Bridges connecting Jindo Island with the Ko-
rean Peninsula. 27

3.2 Sensor locations for the environmental observation application. 29
3.3 Sensor network deployment for environmental and agricul-

tural monitoring. 30
3.4 Effect of changing CPU Frequency on different sensor platforms. 32
3.5 Variance in clock offset change due to CPU frequency change. 32
3.6 Effect of CPU frequency change on clock offset. 33
3.7 Comparison of time synchronization error growth under

different frequency switching policies. 34

4.1 Actor model of computation. 41
4.2 An abbreviated interface specification for a sensing service. . . 42
4.3 Simplified service interaction specification for a structural

health monitoring application. 44
4.4 An adaptive middleware framework. 45
4.5 Two-level actor model for adaptive sensor network middleware. 47

5.1 Comparison of energy consumption of RemoteSensing ser-
vice deployed on Imote2 platform with two different sensors. . 54

5.2 Scatter plot showing AutoUtil count, RemoteSensing count
and voltage draw. 60

5.3 Comparison of battery voltage draw estimates. 66

6.1 The process of generating a configuration file from appli-
cation specifications. 86

6.2 Comparison of energy saving using a static method and
dynamic, policy-driven adaptation. 91

6.3 Effect of global policy changes in multi-hop and single-hop
networks. 93

6.4 Comparison of energy consumption between a classical DVS
service and frequent resynchronization with a modified TS-
DVS service. 94

x

CHAPTER 1

INTRODUCTION

Wireless sensor networks have evolved from simple systems of sensors into

networks of smart devices with increased efficiency, functionality, and relia-

bility. This allows Wireless Smart Sensor Networks (WSSNs) to penetrate

new application areas. WSSNs are used today in complex applications such

as structural health monitoring and earthquake monitoring. Deployments

of such WSSN applications face varying environmental conditions that af-

fect application requirements as well as the availability of resources such as

energy. The increased dynamicity and complexity of WSSN applications re-

quire open systems that interact with their environment while addressing

application constraints and hardware limitations.

Developing software for WSSNs is challenging for two main reasons:

1. Small changes in application behavior or hardware often require signif-

icant software modifications. For example, a structural health moni-

toring (SHM) application may need long-term monitoring of structural

condition, as well as shorter-term investigative structural monitoring

campaigns to diagnose specific problems. Each of these campaigns re-

quires different services for sensing, data collection, etc. Hardware spec-

ifications can also affect software requirements. For example, switch-

ing from a battery-powered energy source to solar charging power can

change the requirements of the underlying energy management service.

1

2. Not only does an application consist of many concurrent tasks, but

several applications may be scheduled and executed concurrently.

This motivates the need for modular programming languages and tools for

software development as individual modules may be used by different tasks

or applications. Building applications by composing components can also

increase flexibility. However, motivated by the need for efficiency, wireless

and sensor network software developers have traditionally used one of two

approaches: (1) development of software tailored to a specific application,

and (2) use of architectures and models that allow software reuse but aim

at general-purpose applications. The former prevents reuse and sharing of

software components but satisfies application requirements while the latter

approach is usually used to develop general-purpose sensor network applica-

tions or those without critical constraints.

Software development for long-term deployments of WSSN applications

faces the additional challenge of dynamic environmental conditions and vary-

ing application needs [1]. Addressing environmental changes is especially

important in domains where the availability of resources is affected by the

surrounding conditions. For example, in applications where the energy sup-

ply is provided by solar panels, weather factors (e.g. sunlight and tempera-

ture) as well as local node characteristics such as the direction of the solar

panel can significantly impact energy availability of individual nodes. As a

result, application behavior should be tailored to the available resources to

ensure long-term network operation. Application requirements can also vary

at times. For example, a structural health monitoring application may have

a periodic monitoring campaign for studying general structural conditions,

and an intense short-term monitoring for diagnosing specific problems.

The goal of this research is to bridge the gap between developing reusable

2

software for WSSNs and satisfying application requirements. We take this

one step further and provide a framework that allows dynamic selection and

configuration of services in response to environmental conditions that af-

fect their energy characteristics. The energy consumption of services that

compose an application can significantly affect the lifespan of the sensor net-

work. Service energy consumption depends on deployment characteristics

and environmental conditions and cannot be accurately determined until the

full-scale deployment of the sensor network. Our framework embodies com-

ponents that estimate energy consumption of services and detect and isolate

energy anomalies based on aggregate information from the sensor network.

We call our framework Illinois Adaptive Middleware for wireless smart

sensor Networks, or I-AdMiN. The design of I-AdMiN is motivated by our

experience in the design and development of middleware services such as re-

liable multi-hop communication and energy management that address the

specific needs of data-intensive applications. The design of these middle-

ware services is a good illustration of services that are tied to hardware and

environmental characteristics and can address application requirements by

allowing adaptation and dynamic parameterization. The implemented ser-

vices have successfully been deployed in two testbeds: Jindo Bridge in Korea,

and a 40 acre agricultural field in Champaign, Illinois.

We consider applications that can be fully represented as a composition

of services where a service is a self-contained software components with self-

describing interfaces that represent not only the service’s inputs and outputs

but also non-functional properties. Our framework allows for automatic ser-

vice selection from a pool of available services such that the selected services

address application needs. This ensures sharing and reuse. We address the

dynamicity in environmental conditions and application requirements by de-

3

signing a light-weight monitoring system that captures energy characteristics

of services. Service selection and configuration can be dynamically adapted

in response to energy consumption of services or their detected anomalies.

1.1 Thesis Statement

This research focuses on the problem of software development for large-scale

WSSN applications. We have an application-centric view in that the ulti-

mate goal is the satisfaction of requirements of dynamic WSSN applications.

Among the main axes of our design goals are sharing and reuse, separation

of concerns, and more importantly, adaptivity. Our proposed solutions can

be divided into three parts. First, we design an adaptive middleware frame-

work that allows for agile and policy-driven adaptation . Second, we design

and implement a light-weight monitoring system to capture dynamic service

properties, as well as constraint violations. Finally, we design and implement

a framework called S4 for automatic selection of services that address specific

application needs. We summarize the thesis statement as follows:

WSSN applications require adaptive and dynamic selection, configuration,

and sharing of components. Such adaptation can be achieved by on-line mon-

itoring of sensor network behavior and solving constraints to update compo-

nent configuration.

1.2 Contributions

To summarize, this thesis has the following main contributions.

• We have investigated and implemented two real-world WSSN applica-

tions, namely structural health monitoring and environmental and agri-

4

cultural monitoring. Specifically, we have identified the requirements

for successful long-term deployment of these applications. The study

of these applications motivates our work to design a framework that

facilitates software development for WSSNs while allowing dynamic

configuration based on environmental characteristics (Chapter 3).

• We have designed a framework called I-AdMiN that uses on-line moni-

toring and service selection to enable dynamic service composition and

adaptive reconfiguration. In this model, we follow principles of service

oriented architecture and use the Actor model of computation to rep-

resent service instances and their interactions. Actors are concurrent

active objects interacting via asynchronous message passing. Our pro-

posed model breaks the static linkage and pre-determined customiza-

tion of the service parameters in favor of dynamic service composition,

where such actions take place at runtime (Chapter 4).

• We have designed and implemented a light-weight, on-line monitor-

ing system to derive energy characteristics of services which may be

composed to implement a WSSN application. We follow a data-driven

approach for the monitor where coarse-grained data is used to derive

service-specific information. The proposed monitoring system is com-

prised of two parts. The first part dynamically estimates energy con-

sumption of individual services using weighted least squares regression.

The second part identifies and isolates energy anomalies. We focus on

three classes of energy anomalies: hardware issues, service issues and

interaction issues. We have designed a Bayesian belief revision sys-

tem where each hypothesis states the probability of having high energy

consumption when a set of services are running. As new data becomes

5

available, the probability of each hypotheses is revised using Bayesian

methods. In both of these parts we use data from ISHMP Jindo Bridge

deployment [2] (Chapter 5).

• We have developed a systematic method to support the use of component-

based customizable and adaptive services in application development

and have applied it to WSSNs. Specifically, we design an approach us-

ing specifications of application requirements and service descriptions.

We consider the service selection as a constraint satisfaction problem

(CSP). Each service provides a set of specifications, defining the re-

quirements it satisfies. These specifications will be used in the CSP as

variable domains, and the constraints are generated from application

requirements. A set of services that match application requirements is

chosen, and a configuration file with service parameters and dependen-

cies is automatically generated (Chapter 6).

1.3 Organization

We illustrate the important considerations in our framework design through

examples of real-world applications, namely structural health monitoring

(SHM) and environmental and agricultural monitoring.

In Chapter 2 we present a review of related work. Specifically, we overview

previous work in the areas of WSN macroprogramming, service oriented ar-

chitecture, general-purpose middleware solutions, software reconfiguration in

sensor networks, mobile agent systems for WSNs, web service composition

and constraint satisfaction problems.

In Chapter 3, we briefly overview SHM and environmental and agricultural

monitoring applications, and their requirements and challenges. Following

6

the discussion of the different WSSN applications’ characteristics, we elabo-

rate their impact on system design. Specifically, we discuss the importance of

service selection and sharing as well as dynamic configuration and the associ-

ated challenges. We use examples from our own experience in designing and

implementing middleware services such as reliable multihop communication

and energy management.

In Chapter 4, we introduce our high level architecture and its components.

We leverage the Actor model of computation to represent services and their

interactions. Our architecture is comprised of three main components, each

of which is represented by an actor with specific responsibilities. The first

component is a light-weight on-line Monitor. The goal of the Monitor is to

provide the rest of the system with necessary information for an efficient con-

figuration in response to environmental, application and hardware changes.

We discuss the Monitor in Chapter 5. The Monitor has two main goals. First,

it should find dynamic service properties using aggregate data from the de-

ployment. Dynamic service properties include non-functional properties such

as energy consumption and runtime and can greatly impact the network life-

time. Second, it detects constraint violations and finds their cause. Here

again, the Monitor uses aggregate information to keep the logging overhead

at minimum. In Chapter 6, we discuss our service selection component.

We have designed S4 for automatic selection and parameterization of ser-

vices that constitute a WSSN application. S4 allows application developers

to configure component-based applications and their constituent middleware

services in order to ensure that application constraints are satisfied. S4 solves

application constraints to derive component configurations. The component

configurations are then matched with particular parametrized services. We

conclude the thesis in Chapter 7 and discuss future directions.

7

CHAPTER 2

RELATED WORK

Six areas are related to the research described in this thesis. In this chapter,

we first describe related systems and will then discuss how they are different

from our approach.

2.1 Wireless Sensor Network Macroprogramming

The goal of macroprogramming is to facilitate Wireless Sensor Network

(WSN) programming by hiding low-level details of the distribute implemen-

tation. Specifically, macroprogramming enables programmers to specify the

global behavior of a distributed system which may then be used to derive

the behaviors of individual nodes automatically. Among the widely cited ap-

proaches to macroprogramming are database-like systems such as Cougar [3]

and TinyDB [4]. The database-like approaches allow the user to use declara-

tive SQL-like queries for accessing sensor data. The database-like approaches

focus on efficient sensor data acquisition. These methods are usually static

in terms of service selection and are optimized for processing users’ queries

from a collection of sensor nodes.

Kairos [5] and Pleiades [6] provide abstractions for expressing the global

behavior of distributed computations. These systems allow the programmer

to implement a central program that conceptually has access to the entire

distributed system. Macrolab [7] provides a macroprogramming framework

8

that offers a vector programming abstraction. Macrolab allows the user to

write a single program for the entire distributed system, which is automat-

ically decomposed to microprograms that run on individual nodes. Macro-

Lab introduces a new data structure called a macrovector, each element of

which corresponds to a different node in the network. The Macrolab pro-

vides deployment-specific code decomposition in that a central, distributed

or hybrid decomposition is chosen based on the target deployment. Enviro-

Suite [8] proposes environmentally immersive programming, an object-based

programming model in which individual objects represent physical elements

in the external environment. The runtime system dynamically generates ob-

ject instances when corresponding environmental elements are detected and

destroys them when these elements leave the network.

ATaG data-driven macroprogramming language [9] and the Regiment macro-

programming system [10] are among compilation-based approaches. AtaG

follows a hybrid approach in that communication among nodes is described

in a declarative manner, whereas the local computation is expressed using

an imperative language. Regiment compiles queries into stream-processing

dataflow graphs, and thus is not suitable for highly dynamic applications.

Moreover, Regiment is based on specific communication assumptions which

hurts its flexibility and generality.

Finally, authors in [11] argue that node-level microprogramming can be

made easier by using the right set of programming abstraction. They present

µSETL, a programming abstraction for sensor networks based on set theory.

The main purpose in the design of µSETL is to allow programmers to write

event-driven programs from a node-level viewpoint while offering a high level

of abstraction.

Similar to macroprogramming approaches, we aim to facilitate software de-

9

velopment for WSSN applications. Towards this aim, we focus on three main

design principles, namely separation of concerns, sharing and reuse, and dy-

namicity. Macroprogramming addresses separation of concerns by hiding low

level details from application developers. However, macroprogramming ap-

proaches do not target component sharing. Our proposed framework better

addresses modular functionality and component sharing and reuse by fol-

lowing a service-oriented approach in which services may be shared between

applications. Services can be automatically selected based on application

requirements and service specifications. Service selection is done in a module

called S4 which maps the service selection problem to a constraint satisfac-

tion problem.

2.2 Service Oriented Architecture

Service oriented architecture aims to address challenges of WSSN application

programming through the use of well-defined services that together compose

an application [12, 13, 14]. The services provide a description, called an

interface, of their inputs, outputs, and functionality, along with their non-

functional aspects such as timeliness, resource requirements, etc. In this

architecture, services are not tightly coupled with each other and do not

need to know how the input data they require is provided. An important

advantage of SOA for application development is that it enables separation

of concerns [12]: application users are concerned only with application be-

havior and high-level requirements, while services and the middleware are

implemented by service and systems programmers, respectively. The design

of customizable services in this context promotes reuse as services for a given

application domain can be adopted by a multitude of other applications.

10

We limit our discussion of SOA to those intended for sensor networks. A

discussion of SOA for distributed systems in general can be found in [15].

SONGS [13] is a service-oriented programming model that is built on top

of a hierarchical architecture consisting of sensors, field servers, and gateway

servers. Field servers provide the library and manage the execution of seman-

tic services, and gateway servers accept user tasks and derive optimal service

composition plans. In SONGS, an application is composed of semantic ser-

vices which are components that convert between elements in the information

structure. A service description includes descriptions on data semantics re-

quired for the services to execute, called pre-condition, as well as the new

semantics the service creates at its output ports, called post-condition.

Work in [14] proposes design principles and an SOA architecture for dy-

namic and concurrent execution of WSN applications. An application is

comprised of a composition of middleware service requests, with meta-actors

being responsible for handling the interaction among the services. Meta-

actors are are control threads supervising deployment and execution of the

services. Work in [16, 12] adopts SOA to improve portability for hetero-

geneous wireless sensor networks and cyber-physical systems. A two-level

architecture is used separating the execution and controlling of the execu-

tion process. This model uses actor model of computation [17] for service

interaction. In this architecture actors represent services, and meta-actors

supervise deployment and execution of the services. The aforementioned ap-

proaches on SOA for WSNs lack a method for selecting services based on

specific application needs. Our automatic service selection module can be

used with any of these SOA architectures to facilitate service composition.

OASiS [18] follows an object centric, ambient-aware, and service-oriented

approach. OASiS is different from our approach in that it is designed for

11

data flow applications. A physical phenomenon of interest is represented

by a finite state machine (FSM). Each FSM mode corresponds to a different

physical state, and contains a service graph specifying the appropriate actions

to take for the specific situation. Service discovery is passive in OASiS in

that services are not advertised until there is a request for them. Requests

are flooded a limited number of hops and service providers respond with their

node ID, location, and power level. OASiS employs a globally asynchronous,

locally synchronous (GALS) model for service communication.

2.3 General-purpose Middleware Solutions

Middleware has been devised to facilitate software development for distributed

systems by masking problems of heterogeneity and distribution. There are

many approaches to middleware with different requirements and performance

characteristics. Middleware approaches for distributed software development

can be divided into four categories based on the communication model they

adopt: transactional, message-oriented, procedural, and object or component

middleware [19].

Transactional middlewares, such as TUXEDO [20] and CICS [21] provide

an interface to run transactions among different components of a distributed

system. The two-phase commit protocol is used in transactional middleware

to support distributed transactions. Transactional middleware can impose an

undesirable overhead if there is no need to use transactions. Message-oriented

middleware (MOM) allows communication between parties via message ex-

changes. MOM can be divided into two types: message passing/queuing, or

message publish/subscribe [22]. Examples of message-oriented middleware

are MQSeries from IBM [21], Sun’s Java Message Queue [23], Tibco Ren-

12

dezvous (TIB/RV) [24], and SonicMQ from Progress [25]. In MOM, the

marshalling code has to be written by the programmer, which complicates

the use of message-oriented middleware. Procedural middleware is based

on the Remote Procedural Call (RPC) protocol. It defines services as RPC

programs, establishes synchronous communication, and provides marshalling

and unmarshalling of parameters that are sent via messages. The primary

example of procedural middleware is DCE (Distributed Computing Environ-

ment). Object and component middleware can be considered as an evolution

of procedural middleware. This class of middleware supports distributed ob-

ject requests and provides marshalling and unmarshalling of exchanged data.

Examples of object and component middleware include Common Object Re-

quest Broker Architecture (CORBA) [26], Microsoft’s Component Object

(COM) [27], Enterprise Java Beans [28], Jini, and Java RMI. Service Ori-

ented Architecture (SOA) is another step forward from component-based

programming towards the development of dynamic, heterogeneous, and dis-

tributed applications using self-describing software components called ser-

vices [29, 30, 31].

Traditional middlewares lack performance and memory optimizations [32]

and are thus unsuitable for WSSNs. The incurred overhead in these mid-

dleware is due to heavy data copying, sharing of context data, object and

service discovery, and internal message buffering strategies. Moreover, most

traditional middleware for distributed systems aim at providing transparency

abstractions by hiding the context information while WSN-based applications

are usually context-aware [33].

13

2.4 Software Reconfiguration in Sensor Networks

Solutions to enable software reconfiguration in sensor networks range from

full software image updates to programming models and middleware solu-

tions that aim to enable lightweight and dynamic reconfiguration. Early ap-

proaches targeting dynamism in sensor networks such as Deluge [34] involved

re-installing the full software image which imposes an unacceptable energy

overhead especially in systems where frequent software updates are common.

Modular software update during runtime, as provided by Contiki [35] can

reduce the reconfiguration overhead.

Component-based reconfiguration approaches aim to provide dynamic com-

position of software modules capable of interaction with each other and the

environment. FlexCup [36] provides a code update algorithm that allows

exchanging only the components of a program that have changed. FlexCup

has high memory overhead as each sensor node maintains metadata that is

used to update the software. For updates, the compiled image of changed

components along with the new symbol and relocation tables are transmit-

ted. OpenCOM [37] is a lightweight reflective component model based on

COM and can be used to construct a reconfigurable middleware platform.

OpenCom has been extended by GridKit middleware [38] to implement a

flood monitoring sensor network.

FiGaRo [39] provides a component and distribution model which enables

control over what is configured and where. FiGaRo provides run-time sup-

port for dynamic reconfiguration using library functions that are linked against

the Contiki kernel. LooCI [40] is another component based approach and

provides a loosely-coupled, event-based binding model for Java devices. Re-

Wise [41] is a component model for lightweight reconfiguration and adapta-

14

tion in sensor applications. ReWise focuses on the reconfiguration degree of

software modules and aims at providing fine-grained reconfiguration where

the reconfiguration is narrowed to the part of a component that needs to be

updated rather than the entire component. This is achieved by implementing

an interface in a separate component, called TinyComponent, containing just

the implementation of that interface rather than implementing an interface

as a method within the component body.

Middleware architectures can facilitate software development for distributed

systems by masking problems of heterogeneity and distribution. Impala [42]

is one of the early middleware platforms targeting dynamic reconfiguration.

It is a middleware system and API which aims at providing sensor network

application adaptivity. Software updates are handled in a distributed fashion

in Impala which imposes high memory and energy overhead. The event-based

programming model of Impala is designed for a particular application, Ze-

braNet, and does not offer a mechanism for changing the triggering events.

The RUNES [43] middleware is based on a two-level architecture: a light-

weight component model above which there is a middleware layer providing

dynamic reconfiguration. DAVIM [44] is an adaptable middleware for dy-

namic service management and targets simultaneously running applications

in sensor networks. DAVIM uses virtual machines to isolate and run appli-

cations. It groups high-level operations in a virtual machine’s instruction set

as libraries and allows users to add, update, or remove them at runtime.

WiSeKit [45] provides a component-based middleware approach for dy-

namic adaptation and reconfiguration of sensor networks. WiSeKit offers lo-

cal adaptivity at the node level by allowing parameter adaptation according

to context information and adaptation policies. Component reconfiguration

is provided at the cluster and the entire network level and requires predefined

15

component interface implementations. WiSeKit follows a situation-action

rules adaptation policy while our approach is goal oriented. In our view, a

goal-oriented approach is better suited for resource-constrained domains and

where policy changes are expected. RemoWare [46] is the run-time system

supporting the in-situ reconfiguration of REMORA component model [47]. A

reconfiguration middleware consisting of a set of dedicated services provides

support for reconfiguration of REMORA components. These dedicated ser-

vices act as a set of static components and rely on low-level system function-

alities. For the dynamic parts of the system, the middleware exhibits an API

that allows the programmer to use the reconfiguration features. One chal-

lenge with dynamic middleware solutions such as RemoWare is the binding

model, and more specifically, the linking of dynamic components. RemoWare

for example, uses a Dynamic Linking Table (DLT) for static components and

a Dynamic Invocation Table (DIT) for dynamic components to resolve dy-

namic links. This approach however has a high memory overhead, especially

with a large number of services. There is also an additional overhead for

forwarding function calls to the correct service memory address and also for

keeping the table up-to-date.

2.5 Mobile Agent Systems for Wireless Sensor

Networks

Using proactive mobile agents can provide flexibility in reprogramming and

operating WSNs and substantially reduce energy consumption by reducing

the amount of communication required. Mate [48] is one of the first mobile

agent platform designed for WSNs. It is specifically designed for highly

memory restricted sensor nodes. Mate has high level instructions which

16

result in a small code size and an efficient code migration. Agilla is another

mobile agent platform for WSNs [49]. Like Mate, Agilla is a stack-based

virtual machine with special instructions for code mobility. Additionally,

Agilla supports multiple applications running on a single node and features

a Linda-like tuplespace that decouples data from the spatial constraints [50].

However, in these systems, the programmability and the code maintainability

pose a challenge due to the low level of language abstraction.

The mobile agent platform SensorWare [51] provides high level language

abstractions for WSNs. Specifically, SensorWare supports an event-based

Tcl-like script language. This not only improves increases the programma-

bility but also reduces the code size. Currently, SensorWare is implemented

for larger platforms like PDAs.

The Melete system is based on the Mate virtual machine and provides a

method for on-the-fly deployment and concurrent execution of applications

in a sensor network [52]. Each application is executed on a subset of nodes

that form a group for the application. Compared to Melete, our method

provides more flexibility in code updates as well as context awareness and

adaptivity.

ActorNet [53] is a mobile agent platform for WSNs, designed to support

multiagent applications on resource-limited systems. It provides services such

as virtual memory, context switching and multi-tasking. ActorNet agents,

are light-weight actors, and are based on the actor model of computation.

Actors are concurrent active objects that interact via asynchronous message

passing [17]. The actor model can be used as a formal programming model

for agents [54, 55, 56, 57].

17

2.6 Web Service Composition

Automatic composition of Web services has been proposed to facilitated Web

application development. Web services are self-contained and self-describing

modular units [58] that are created and updated on the fly. Languages have

been proposed to define a standard for service specification, discovery, and

invocation. Such languages include Universal Description, Discovery, and

Integration (UDDI) [59], Web Services Description Language (WSDL) [60],

Simple Object Access Protocol (SOAP) [61]. Web service composition allows

building applications from existing services. Dynamic composition methods

have been proposed to facilitate the development of Web service applica-

tions. Workflow-based composition methods can be static or dynamic [58].

Static workflow-based composition only automate the selection and bind-

ing of atomic Web services [62], while dynamic workflow-based compositions

create process model and select atomic services automatically. Web service

composition has also been solved via AI planning approaches [63, 64, 65, 66].

Work in [67] considers end-to-end quality of service (QoS), and presents

SLAng. SLAng defines Service Level Agreements (SLAs) that accommodate

agreements between network services, storage services and middleware ser-

vices. SLAng’s reference model assumes the use of component oriented mid-

dleware and concentrates on application server technologies such as J2EE,

and CORBA. QUEST [68] aims at managing generic quality-of-service (QoS)

provisioning. QUEST provides initial service composition based on QoS con-

straints such as response time and availability as well as dynamic recomposi-

tion of services to recover from service outages during runtime. The service

composition model in QUEST first maps each user request to a composite

service template based on application specific requirements. The template

18

is then mapped to an instantiated service path based on distributed per-

formance (e.g., response time) and resource availability conditions. Work

in [69] further improves dynamic QoS-aware service composition by support-

ing parallelism and branching. It presents AgFlow, a middleware platform

that enables the quality-driven composition of Web services and provides an

adaptive execution engine.

Constraint satisfaction problems have been widely used to reduce the com-

plexity and time needed to generate a composition from the best possible

available services. Work in [70] has reduced the dynamic composition of the

web services to a constraint satisfaction problem which can be solved by any

linear programming solver. Work in [71] encodes the problem of issuing re-

quests to a composition of Web services as a constraint-based problem. [72]

presents a constraint-based distributed framework for the provisioning of ser-

vices. [73] considers two types of constraints: soft constraints and hard con-

straints. The constraints in [73] are mainly configuration parameters rather

than full constraint consistency. Full constraint consistency is important for

complex WSSN applications and ensures that all application requirements

are satisfied. Work in [74] extends constraint based systems for service com-

position by addressing the need for a semantic candidate selection process.

Composite Web service framework (CWSF) [75] uses semantic information of

the Web services for composition. Thus, in CWSF, the selection of services

that may satisfy the constraints does not rely on syntactic features, but uses

the semantic model of the services.

Service selection and configuration for WSSN application development is

different from Web service composition in a number of ways. First, in WSSNs

there are many more axes and resources, along which the system should be

optimized. This is due to hardware limitations of WSSNs as well as en-

19

vironmental effects. An additional abstraction layer is required to address

low-level hardware characteristics. Second, unlike Web service composition,

WSSN application development requires service parameter selection. Service

parameterization can change the behavior of services and should address ap-

plication constraints. Finally, the dynamically changing application require-

ments and the environmental characteristics requires adaptive modification

of low-level behavior where service configuration and parameterization is no

longer static.

2.7 Constraint Satisfaction Problems

Constraint satisfaction problems (CSP) involve finding a set of values for vari-

ables in the system such that specific constraints are satisfied. A large num-

ber of computer science problems can be considered as a special case of CSP.

Examples include map coloring [76], scheduling [77], resource allocation [78],

and satisfiability problem. Backtracking is a very common method for solving

CSP [76]. Various methods have been proposed to improve the performance

of backtracking, including constraint propagation, reason maintenance, in-

telligent backtracking, and variable ordering and instantiation [76]. CSP can

be unary, involving a single variable, binary involving pairs of variables, or

n-ary which involves n variables. The problem addressed in this work is an

n-ary CSP, as it involves a large number of variables depending on applica-

tion constraints. Distributed constraint satisfaction problem was introduced

in [79]. As the name suggests, in distributed CSP variables and constraints

are distributed among multiple agents. Other variations of CSP include hi-

erarchical Domain CSP where the domain of variables are organized in a

hierarchy [80], dynamic CSP [81] where the set of variables cannot be de-

20

termined a priori, and meta CSP where the problem is decomposed into

subproblems. Meta constraint satisfaction problems were originally designed

to deal with the complexity of solving a problem by solving an equivalent

problem, represented at a different level of abstraction, which can be solved

more efficiently. Our CSP for selecting a set of services that address applica-

tion needs is represented as a meta CSP, where each metavariable represents

selection of a particular type of service.

2.8 Summary

In this section we summarize previous work on WSN programming approaches.

Table 2.1 compares our approach with that of others. The comparison is

based on WSSN application deployment challenges that we encountered dur-

ing our real-world applications (Chapter 3), as well as our design principles.

The main deployment challenges that we consider in this analysis are sat-

isfying application requirements, efficient service selection, dynamic recon-

figuration, and extracting dynamic service properties. Dynamic properties

of services refer to service properties such as energy consumption and run-

time that cannot be accurately determined prior to the deployment and may

change over time. We follow three main principles: separation of concerns,

sharing and reuse (modularity), and adaptivity. We also strive to provide

resource efficiency and flexibility to address resource limitations of WSSNs.

Approaches such as Deluge [34] that provide full-image software updates

provide flexibility but are not resource efficient. SOS [82] and Contiki [35]

allow modular binary updates which improves modularity and resource ef-

ficiency but offers less flexibility. Component-based reconfiguration meth-

ods such as FlexCup [36], OpenCOM [37], FiGaRo [39], LooCI [40] and

21

Table 2.1: A comparison of WSSN programming approaches.

Approach Resource
Effi-
ciency

Flexibility Separation
of Con-
cerns

Modularity Dynamic
Reconfig.

Service
Selection

Dynamic
Proper-
ties

Full soft-
ware image
updates

X

Modular
upgrades

X X X

Virtual
machines

X

Mobile
agents

X X

Component-
based
reconfig.

X X X X

Reconfig.
middle-
ware

X X X X X

I-AdMiN X X X X X X X

REMORA [47] provide flexible dynamic reconfiguration and modularity while

addressing resource limitations of sensor networks. Reconfiguration middle-

ware approaches such as Impala [42], RUNES [43], and WiSeKit [45] im-

prove on component-based reconfiguration by providing separation of con-

cerns. Dynamic reconfiguration of applications that are built using compo-

nent composition requires an efficient method for service selection. Moreover,

the system needs to automatically find dynamic service properties such as

energy consumption and runtime that can not be accurately determined prior

to system deployment. I-AdMiN provides automatic and efficient service se-

lection by mapping the service selection problem to a constraint satisfaction

problem which is solved in a module called S4. Another module, called moni-

tor, derives energy characteristics of services by dynamic and on-line profiling

of services during the WSSN deployment. The monitor follows a data-driven

approach where coarse-grained data is used to derive service-specific infor-

22

mation.

I-AdMiN provides modularity, separation of concerns, and dynamic recon-

figuration by using a two-layer actor model (Chapter 4). The base layer is

comprised of services that constitute an application, each of which is repre-

sented by an actor. The meta layer contains meta-actors that are responsi-

ble for automatic service selection (Chapter 6) as well as on-line monitoring

(Chapter 5), and provide dynamic adaptation in response to application and

environmental changes.

Variations of the two-layer actor model have previously been used to solve

problems of distributed systems. [83] introduces a meta-architecture where

objects of a real-time program are represented by a variant of the actor model.

A high-level programming language called RTsynchronizer then defines the

temporal constraints between actors. Work in [84] extends [85] and [83] by

providing a formal treatment of the model. Distributed Connection Lan-

guage (DCL) [86] uses the actor model to provide a two-layer architecture

description language. At the meta-level, architectural policies are applied to

a collection of actors. Each collection of actors (called module actors) imple-

ments a particular computational behavior. A meta-architectural framework

based on the actor model, called the Two-Level Actor Model (TLAM), is

presented in [87]. TLAM enables cost-effective QoS in distributed multime-

dia systems by providing a model for specifying and reasoning about the

components.

23

CHAPTER 3

APPLICATION-CENTRIC APPROACH TO
SYSTEM REQUIREMENTS

WSSN applications have unique requirements that are crucial to their suc-

cessful deployment. These requirements vary widely from one application

to another and can change over time. Unfortunately, finding application

requirements is by nature an ad-hoc process and cannot be done automati-

cally. Moreover, these requirements may change over time or in response to

environmental changes. Application developers should therefore work closely

with application users to have a clear understanding of the application and

its specification.

3.1 Motivating Examples

Our research is motivated by two types of WSSN applications: applications

with bursty and high-throughput data transfer, which we cal data-intensive

applications, and applications with low data rate communication. High-

throughput applications impose specific requirements such as high sampling

rates, timely data collection and analysis, large volume of data, and reliable

communication. This results in data storms-intense bursts of high-volume

data transfer from multiple nodes in the network. Example applications in-

clude monitoring the structural health of civil infrastructure and rare event

detection (earthquake, mudslide, etc.) [88, 89]. Low-throughput applications

require relatively low-frequency data gathering, and do not come close to

24

saturating the available network bandwidth. Example applications include

medical monitoring, environmental observation and forecasting systems, and

habitat monitoring [90, 91, 92].

We overview two applications that we have been investigating. The first

application, structural health monitoring, is a high-throughput application

with bursty traffic. The second application is environmental and agricultural

monitoring and falls into the low-throughput category. Below, we will briefly

introduce these applications and their deployments.

3.1.1 Structural Health Monitoring

Objective evaluation of structural performance can facilitate effective and ef-

ficient maintenance of aging infrastructure. Manual inspection of civil infras-

tructures can be costly and unreliable. Typical wired monitoring systems are

also costly and are hard to deploy. Wireless smart sensor networks (WSSNs)

offer the potential for dramatic improvements in the capability to capture

structural dynamic behavior and evaluate the condition of structures. Sens-

ing devices are becoming smaller, less expensive, more robust, and highly

precise, allowing collection of high-fidelity data with dense instrumentation

employing multi-metric sensors. SHM using WSSNs has been recognized as

an important emerging applications of sensor networks [93, 94, 2, 95]. WSSNs

can be employed for medium- and long-term monitoring of structural con-

dition, as well as for shorter-term investigative structural monitoring cam-

paigns to diagnose specific problems.

Vibration (accelerometer) and strain (strain gage) are common sensor

modalities for SHM. Sensor measurements are collected periodically or in

response to a high level of excitation, over the span of several months or

25

even years. In the design of large-scale SHM systems, application-specific

characteristics and requirements must be considered:

Large data size In SHM applications, each sensor node usually has mul-

tiple sensing channels, each of which samples surface vibration with frequen-

cies as high as 1000 Hz. The measurement data must be divided into a large

number of packets for transmission.

Dense deployment of sensor nodes in large spatial regions Civil

infrastructure is typically extremely large and the communication protocol

needs to support large and dense multi-hop networks.

Radio communication environment The radio communication environ-

ment on the bridge can be complex due to RF reflection, refraction, absorp-

tion, and other phenomena. Some bridge components may be between two

WSS nodes, interrupting direct line-of-sight communication. Therefore, the

communication range on a bridge will vary from place to place, and its esti-

mation prior to on-site tests is challenging.

Nodes at fixed locations For most structural health monitoring ap-

plications, sensor installation locations are predetermined based on design

drawings and structural considerations. These installation locations do not

necessarily correspond with locations that are desirable with respect to RF

communication.

Need for prompt data collection/analysis Structural vibration mon-

itoring applications generally require prompt data collection and analysis,

though data collection does not necessarily need to be in real-time. In par-

ticular, performance evaluation after extreme events such as earthquakes and

26

Figure 3.1: Twin Jindo Bridges connecting Jindo Island with the Korean
Peninsula.

typhoons must be done as soon as possible to address safety concerns. As for

monitoring campaigns where operation time is limited, data collection must

be done in a timely manner.

High requirement on reliability Reliability of transporting acquired

sensor data is vital. Most scenarios assume measurement data is available

from all the nodes without intermittent loss. For example, many damage de-

tection algorithms require sensing data from predetermined locations, while

only a few algorithms so far have been extended to provide robustness against

node failure.

The software developed in our research has been used in a SHM deployment

in Jindo Bridge, Korea (Figure 3.1). This deployment is part of the Illinois

Structural Health Monitoring Project (ISHMP) [2] and serves as an inter-

national testbed for wireless smart sensor network technology. The primary

goal of the Jindo Bridge SHM project has been to realize the first large-scale,

autonomous WSSN for structural health monitoring, taking advantage of the

27

advanced computational capabilities of the Imote2 nodes. The monitoring

application is built from statically-linked middleware services for a variety of

application-independent as well as domain-specific tasks. All sensor nodes

are equipped with a solar energy harvesting system and report their available

voltage, charging current and temperature periodically. In total, 113 Imote2

leaf nodes have been installed on the Jindo Bridge measuring acceleration.

At the time of this writing, the sensor network remains in operation on the

bridge.

3.1.2 Environmental and Agricultural Monitoring

Wireless and sensor networks can be used in agricultural and environmental

applications to study nitrate uptake and run-offs. Fertilizer is applied in the

Fall and a significant fraction of it ends up in water streams due to run-offs

before it can be taken up by plants in the Spring. The run-offs result in

the release of Nitrous Oxides, Greenhouse Gases that are approximately a

hundred times more potent than Carbon Dioxide. By developing methods

to understand the nitrous uptake in a field at a fine spatial and temporal

granularity, fields could be instrumented to minimize such run-offs.

Increasingly, researchers are turning to empirical observation of the holis-

tic environmental system using networks of remote and embedded sensors.

Given the scale of the observation area and the large number of potential

events to be monitored, sensing resources will necessarily be limited and

must be managed intelligently to achieve an acceptable level of network sens-

ing performance. In environmental and agricultural monitoring applications,

measurements of soil moisture, temperature, and humidity are taken by the

wireless network sensors as often as every 15 minutes over the span of sev-

28

Figure 3.2: Sensor locations for the environmental observation application.

eral months or even years. In each interval, if the data is interesting in

some respect, e.g. it contains a deviation from the model-predicted behav-

ior, it is stored and periodically aggregated at an Internet-connected base

station, where it can be further processed and categorized. Unlike SHM,

environmental and agricultural applications do not require large numbers of

samples or high sampling rates, and the requirement on reliability is not

strict. The data collected from a WSSN that monitors environmental char-

acteristics is typically used for estimating crop yield which does not require

prompt data collection and analysis. However, environmental monitoring

applications require very frequent data collection which is a challenge due

to energy limitations. Moreover, the large areas that need to be monitored,

and the field vegetation complicate wireless communication. Similar to SHM

applications, node locations are determined based on soil characteristics, and

not radio communication quality.

We have used our software for a deployment of an environmental monitor-

ing application that is part of the IACAT Virtual Environmental Observatory

project. Currently, two types of sensors (soil moisture and nitrate) are de-

ployed in a 40 acre field that has 4 types of vegetation (Figure 3.2). The

29

(a) A sensor node powered
by a solar panel.

(b) Each node supports
four soil moisture sensors.

Figure 3.3: Sensor network deployment for environmental and agricultural
monitoring.

sensor network includes 7 nodes, each equipped with 4 soil moisture sen-

sors(Figure 3.3). The sensors measure soil moisture at four depths: 5cm,

10cm, 20cm, and 50cm. The measurements are taken every 15 minutes and

are transfered to an Internet-connected base station, where it can be further

processed and categorized.

3.2 Goals and Challenges

Successful realization of real-world WSSN applications relies on the devel-

opment of scalable, robust, and efficient software capable of operating in

this environment. Moreover, WSSN applications face varying environmental

conditions and their requirements may change over time. During our experi-

ence with SHM and environmental monitoring applications we have learned

that even a deep understanding of application and its requirements cannot

ensure efficient and long-term network operation. This is because many re-

quirements, interactions and specifications cannot be determined until the

full-scale deployment of the application. Issues of this kind are the focus of

30

this section and reflect the challenges we encountered during the course of

software development for SHM and environmental monitoring applications.

In the next chapters we discuss the design and implementation of components

that address these challenges.

The applications we have worked on are built as a composition of services.

Services are self-contained software components with self-describing inter-

faces that represent their inputs and outputs as well as their non-functional

properties. Our discussions are therefore centered around challenges of de-

veloping reliable WSSN applications by linking together a set of services.

3.2.1 Service Interaction

Service interaction can affect the overall behavior of the system. The WSSN

is treated as a collaborative distributed computing platform, with policy goals

acting on the entirety of the system, including multiple nodes and middleware

services. Dependency relationships between different services and between

the hardware platform and services must be taken into account in the course

of service selection.

An example of service and hardware interdependencies is the relationship

between time synchronization and an energy management service that uses

processor frequency switching. In the course of designing an energy manage-

ment service for SHM applications we discovered that the CPU frequency

switching actions of a dynamic voltage and frequency (DVFS) service has an

adverse effect on processor-based clocks. In other words, for embedded archi-

tectures with variable frequency CPUs that use the processor tick counter as

a clock source, the act of changing the frequency can momentarily disrupt the

local clock, causing a time lapse. Thus, changing the processor frequency also

31

1380

1390

1400

1410

1420

0 40 80 120 160 200

Clock Offset (ms)

Time(s)

Processor Speed/ 15

Processor Speed/ 2

Processor Speed/ 10

Processor Speed/ 12

(a) MICAz

150

170

190

210

230

250

0 20 40 60 80 100

Processor Speed Change

Clock Offset (ms)

Time(s)

(b) Telosb

0

50

100

150

200

250

300

350

0 20 40 60 80

Time(s)

Clock Offset (μ s)

CPU Freq. Change: 13 to 104
CPU Freq. Change: 13 to 208
CPU Freq. Change: 13 to 416

(c) Imote2

Figure 3.4: Effect of changing CPU Frequency on different sensor
platforms. Frequency change causes a sudden change in clock offset.

Clock Offset (μ s)

-200

-100

0

100

200

300

400

0 20 40 60 80 100

Time(s)

Node 1
Node 2
Node 3

(a) Effect of CPU frequency
change for three nodes

0

50

100

150

200

250

300

350

0 20 40 60 80 100

Time(s)

Clock Offset (μ s)

Run 1
Run 2
Run 3
Run 4

(b) Effect of CPU frequency
change on the same pair.

Figure 3.5: Variance in clock offset change due to CPU frequency change.

changes the clock offset, measured as the difference between local clocks of

different nodes. We call this effect the time-keeping anomaly [96]. The time-

keeping anomaly is observed in three widely used sensor platforms: namely

MICAz, Telosb, and Imote2 (Figure 3.4).

The new clock offset is not accurately predictable. Different offset changes

are measured for different instances of the experiment for the same node pair.

Using different nodes for multiple instances of identical frequency changes

likewise leads to variable magnitude changes. Figure 3.5a shows the effect of

frequency change on the relative offset for three different Imote2 nodes and

Figure 3.5b shows this variance for different runs on the same node pair.

Note that, the amount of mean offset jump and mean offset error intro-

duced due to DVFS also depends on the source and target states. It is

possible to quantify the offset change and its variance for each frequency

32

0

50

100

150

200

250

300

350

0 20 40 60 80

Processor Frequency Change

Time(s)

Clock Offset (μ s)

(a) 13 to 104 MHz

0

100

200

300

400

500

0 10 20 30 40 50 60 70 80 90

Processor Frequency Change

Time(s)

Clock Offset (μ s)

(b) 208 to 13 MHz

0

50

100

150

200

250

300

350

0 10 20 30 40 50 60 70 80 90

Processor Frequency Change

Time(s)

Clock Offset (μ s)

(c) 208 to 416 MHz

Figure 3.6: Effect of CPU frequency change on clock offset. The
measurement is repeated multiple times on the same pair of nodes.

Table 3.1: Offset change due to frequency change on Imote2.

Frequency
Change

Median
Offset
Change
(µs)

Offset
Change
Range
(µs)

Frequency
Change

Median
Offset
Change
(µs)

Offset
Change
Range
(µs)

13 - 104 83 13 104 - 13 -95 11
13 - 208 92 8 208 - 13 -98 9
13 - 416 93 5 416 - 13 -102 14
104 - 208 3 2 208 - 104 -8 4
104 - 416 4 3 416 - 104 -8 8
208 - 416 - - 416 - 208 - -

pair through multiple runs and CPU frequency changes. Figure 3.6 and Ta-

ble 3.1 summarize the results of offset change due to frequency switching

for Imote2. The results show that the most significant change in the relative

clock offset happens when switching CPU frequency to or from 13 MHz. The

greater difference in the PLL divisor (8x, compared to 2x and 4x for the other

frequency pairs) explains this behavior.

The disruption has a significant impact on the accuracy of local clocks,

thereby greatly increasing the need for frequent resynchronization to main-

tain clocks within a fixed error bound. Traditional DVFS techniques have not

considered the adverse effect of DVFS on clock synchronization and therefore

are not suitable for sensor network applications that need tightly synchro-

nized data. Fig. 3.7b shows the growth of synchronization error if DVFS

33

0

10

20

30

40

50

60

1 1000 1999 2998 3997

Time(s)

Synchronization Error (µs)

Error Threshold

(a) Constant CPU
frequency, TResync = 20 min

0

50

100

150

200

250

0 889 1773 2653 3533

Time(s)

Synchronization Error (µs)

Error
Threshold

(b) Classical DVFS,
TResync = 20 min

0

10

20

30

40

50

60

0 874 1600 2470 3313

Synchronization Error (µs)

Error Threshold

Time(s)

(c) Sync-aware DVFS
determines TResync

Figure 3.7: Comparison of time synchronization error growth under
different frequency switching policies. Synchronization error threshold is
violated under classical DVFS.

is implemented without concern for the effect of CPU frequency changes on

time synchronization. Note that the maximum possible error jumps with each

frequency switch, and exceeds the maximum allowable value well before the

20 minute resynchronization period. In this case, while energy consumption

may be lower than a synchronization-aware DVFS algorithm, synchroniza-

tion requirements for SHM are violated. A synchronization-aware DVFS al-

gorithm can address this deficiency by embedding the synchronization cost of

frequency switching in the algorithm. Figure 3.7c confirms that our method

presented in [96] meets SHM requirements: the overall energy consumption

is significantly lower than that at constant CPU frequency, while the syn-

chronization error is always within the acceptable bound.

3.2.2 Environmental Conditions

Environmental conditions affect WSSN application development in a num-

ber of ways. First, service configuration should reflect environmental con-

ditions and deployment characteristics. This means that laboratory and

small-scale experiments cannot ensure efficient service configuration once the

sensor network is deployed. This is challenging due to the large gap between

34

high-level application requirements and low-level details of service implemen-

tation. Manual and heuristic service configuration can be cumbersome and

error-prone.

An example of complex service configuration, one that we have experi-

enced is the deployment of a reliable multi-hop communication service for

the SHM deployment on the Jindo Bridge. For this service deployment we

selected parameters for the reliable multihop communication services (e.g.

delay timers, number of route request packets, randomized wait times, etc.)

based on laboratory and small-scale field experiments. Our experience with

selecting these parameters showed that first, experimental parameter values

can be far from optimal values; and second, lab-scale tests cannot provide

proper parameters for full-scale deployments.

Another effect of environmental conditions becomes apparent when the

availability of resources such as energy is affected by the surrounding con-

ditions. Consider the environmental and agricultural monitoring applica-

tion. The system is deployed for long-term monitoring and thus each node

is equipped with a solar panel for the energy source. An efficient energy

management system for this network should be able to adopt to environmen-

tal changes in two levels. At the local level, it should adjust node activities

(sensing, data transport and processing, etc.), and middleware parameters

(e.g., routing around a node) based on local parameters such as the available

energy reserves. At the global level, the system should be able to respond

to conditions (environmental, hardware-related, etc.) that have a system-

wide effect. An example would be consecutive cloudy days which can change

frequency of data collection.

For this application, any statically configured parameters for energy man-

agement in the various components of the application (routing, sensing, data

35

processing, etc.) would necessarily have to be overly conservative. Otherwise,

over-exploitation of the energy supply of the entire network or some select

nodes would lead to failure as the energy supply is prematurely exhausted.

36

CHAPTER 4

ARCHITECTURE OVERVIEW

In this chapter we present a framework that embodies components we de-

veloped to facilitate software development for WSSNs while addressing ap-

plication requirements and the dynamism in environmental conditions. We

call our framework I-AdMiN, Illinois Adaptive Middleware for wireless smart

sensor Networks. 1

Service sharing and reuse can significantly reduce the overhead of software

development in WSSNs. In order to ensure that the services that compose

an application satisfy its varying requirements and address the dynamism in

environmental conditions the following challenges should be addressed:

1. How to derive dynamic network information with low overhead.

2. How to efficiently select services in a way that application requirements

are satisfied.

3. How to represent services and their interaction to allow efficient and

dynamic service selection and parameterization.

4. How to apply dynamic network information to service selection.

We first introduce the components we have developed to enable 1 and 2.

We then discuss how services are represented in I-AdMiN to address 3 and

4.

1Parts of this Chapter are done in collaboration with Kirill Mechitov and will appear
in a subsequent paper.

37

4.1 Deriving Dynamic Network Information

Services that form an application can have varying properties which are used

in deriving a service selection. It is important to derive service properties

such as energy consumption during network runtime for two main reasons.

First, many service properties such as service run time and energy consump-

tion highly depend on the deployment characteristics such as network size

and radio communication quality and cannot be accurately determined until

the full-scale deployment of the service. Second, dependency relationships

between different services and between the hardware platform and services

can affect the overall behavior of the system and must be taken into account

in the course of service selection. Many of such dependencies are unknown

and depend on the environment and run time characteristics.

We have designed and implemented a light-weight monitoring system that

uses aggregate information to derive dynamic service properties. For this

component we focus on energy consumption and leave investigation of other

properties as future work. The monitoring system is discussed in detail in

Chapter 5 and has two main goals. First, it attributes aggregate energy

consumption from logged data to individual services. Second, it detects

energy anomalies and finds and isolates the cause. This information is used

in service selection to ensure efficient network operation.

4.2 Service Selection

Service sharing and reuse requires a systematic method for service selection.

Otherwise, application developers should investigate all available services

without being able to efficiently verify if a service selection meets application

requirements in the long term.

38

However, because of the diversity in available software components, select-

ing and sharing the right components to meet application requirements can

be challenging. Service selection is challenging for two main reasons. First,

current programming approaches in WSSNs lack a universal language for

describing non-functional service properties. This is because programming

in WSSNs has traditionally been done statically and manually. The need

for a universal language for describing non-functional service properties is

only recognized when a part of the code is to be automatically generated.

The functional descriptions of services and their inputs and outputs are not

sufficient to determine whether a service can satisfy certain requirements.

For example, in order to determine the energy footprint of a service, detailed

timeliness and resource consumption information are required. A univer-

sal description language is required to facilitate the interpretation of these

specifications. The second challenge is due to the large number of available

services and their varying requirements and parameters. Doing the selection

manually makes the process not only complex and error prone, but defeats

the goal of facilitating incremental change.

We provide a systematic method to support the use of component-based

customizable and adaptive services in wireless sensor network application

development. We have developed S4 to enable sensor network application

developers exploit a pool of existing services, while satisfying application

requirements. Application requirements and service specifications form a

constraint satisfaction problem to select a set of services. S4 takes advantage

of dynamic data provided by the monitoring system. The monitor contin-

uously profiles the deployed services and provides S4 with dynamic service

specifications and dependency relationships. The details of S4 are discussed

in Chapter 6.

39

4.3 Service Representation

We follow the principles of service-oriented architecture (SOA) [12] and con-

sider applications that can be fully represented as a composition of services.

Services are self-contained software components with self-describing inter-

faces that represent their inputs and outputs as well as their non-functional

properties. A set of services can therefore be linked together to build an appli-

cation with services interacting with one another through their well-defined

interfaces. Services can be customized to the requirements of different ap-

plications through the assignment of specific values to their parameters, or

service parameterization. A service invocation is called a service request and

is what allows sharing of services between different applications.

We use the Actor model of computation [17] to represent service instances

and their interactions. Actors are concurrent active objects interacting via

asynchronous message passing (Figure 4.1). Compared to the component

model, actors are a better fit for highly dynamic applications operating in

open and changing environments. Actors may be created and destroyed dy-

namically, they can change their behaviors, and migrate to different physical

locations. Following this model, we represent service instances as actors. A

service interface is the set of messages the actor representing the services

sends and receives. Service instances connect services to each other and to

the application. Note that only the interactions between services need to

follow the actor model; we do not restrict the internal implementation or se-

mantics of the services themselves, or their tight coupling to the underlying

operating system.

40

State

Methods

Mailbox

Thread

State

Methods

Mailbox

Thread

State

Methods

Mailbox

Thread

create

msg

Figure 4.1: Actor model of computation. Actors are concurrent objects
that communicate through message-passing and may in turn create new
actors. An actor has its own thread of control, a mailbox, and a globally
unique immutable name.

4.3.1 Service Description

Currently, a universal language for non-functional descriptions of service

properties has not been adopted by the WSSN programming community.

Without these specifications automatic service selection cannot be achieved

and the application developer should go over service implementations in or-

der to verify that they do not violate application constraints. In many cases,

the programmers choose to develop the required services from the beginning

instead.

Our proposed service interface specification (Figure 4.2) allows for the def-

inition of service properties which describe non-functional service specifica-

tions. Non-functional service specifications can be specified either statically,

or dynamically. Static descriptions correspond to those that are determined

by the service developer prior to system runtime and are viewed as estimates

that can be different from actual specifications depending on the scale of the

deployment and environmental characteristics. Dynamic specifications are

41

service Sensing(modality, numSamples, sensingFreq)

{

implementation SensingC;

parameters {

modality = enum {"acceleration", "strain", "temperature", "humidity"},

numSamples = range {100, 700000},

sensingFreq = enum {25, 50, 100, 280}

}

static properties {

energy = func1(modality, numSamples, sensingFreq),

duration = func2(modality, numSamples, sensingFreq)

}

dynamic properties {

}

command startSensing(startTime);

command abortSensing();

event dataReady(sensorData);

event sensingFailed(reason);

}

Figure 4.2: An abbreviated interface specification for a sensing service. To
facilitate automated service selection and configuration, service properties
can optionally be specified.

derived dynamically (Chapter 5) and reflect the environment and runtime

characteristics. When available, dynamic service specifications overwrite the

static properties for service evaluation and selection.

4.3.2 Service Composition

Service invocation may be subject to interactions with other services and

the corresponding dependencies. Service dependencies can be considered

in two main categories: causal and temporal. Causal dependencies include

data and logical dependencies. For example, the data aggregation and flash

storage services have data dependency with the sensing service that generates

42

the sensor data. An example of a temporal dependency is network clock

resynchronization, which is enabled after a certain interval after the preceding

synchronization event.

In the actor model, the dependencies between services are resolved by mes-

sage transfers between actors. In other words, services are initially blocked,

and then enabled based on message arrivals. For instance, in the example

depicted in Figure 4.3, the Flash Storage service waits for a data ready mes-

sage from the actor representing the Sensing service before performing its

task of storing data. In this context, a single service may enable (i.e., send

a message) to a number of other services (actors). Also, one service may

require a message from more than one other service in order to be enabled.

A service can send messages to itself to enable the next round of operation.

We also use a service composition language to define the control flow be-

tween services, which is based on their dependencies and a sequence of in-

vocations by the application. Figure 4.3 shows service dependencies and

invocation for the SHM application described above using our service com-

position language. Each service is represented by an actor and arrows show

message exchanges between actors. In this example, the TimeSync service is

enabled after a certain time from the previous invocation, the Sensing service

waits for the TimeSync service and enables the LocalStorage and DataAggre-

gation services. As illustrated in Figure 4.3, concurrent execution of services

is allowed provided that the corresponding dependencies are satisfied.

4.4 Adaptive Middleware Framework

In this section we discuss how our framework integrates the discussed com-

ponents to enable dynamic service selection and configuration to address

43

// system initialization

System.init() -> TimeSync.startSync()[GatewayNode];

// main sensing cycle

TimeSync.syncAchieved()[SensorNodes]

-> Sensing.startSensing(TIME + 10 s)[LeafNodes];

Sensing.dataReady(sensorData)[NODE]

-> LocalStorage.store(sensorData)[NODE],

DataAggregation.aggregate(sensorData)[NODE];

DataAggregation.complete()[LeafNodes] -> TimeSync.stopSync()[SensorNodes];

// periodic sensing

DataAggregation.complete()[LeafNodes]

(delay = 60 m)-> TimeSync.startSync()[SensorNodes];

// fault handling

TimeSync.syncLost()[NODE] -> Sensing.abortSensing()[NODE];

Figure 4.3: Simplified service interaction specification for a structural
health monitoring application.

changes in application requirements and environmental conditions. It is crit-

ical that the middleware framework must be implemented in a way that only

incurs overhead costs when service interactions happen (service invocation

by the application, data transfer between services, etc.) and not for the na-

tive implementation of the services and their interaction with the operating

system (Figure 4.4). The latter would impose unacceptable resource use and

latency costs on resource-constrained embedded systems.

4.4.1 Adaptation

We propose a model that breaks the static linkage and pre-determined cus-

tomization of the service parameters in favor of dynamic service composition,

where such actions take place at runtime. We combine system-wide adap-

tation in response to changing global conditions or application requirements

with efficient, low-latency local adaptation in response to location-specific

44

SHM
Environmental

Monitoring

Sensing
Local

Storage

Data

Aggr.

Time

Sync.

Operating System:

TinyOS/Contiki/SOS/RTX

Middleware Adaptation Layer

Figure 4.4: An adaptive middleware framework. This framework mediates
low frequency interactions between coarse-grained application components
and middleware services, but not low-level interactions with the operating
system.

events and conditions.

By local adaptation we refer to changes in behavior decided at an individual

node or within a single middleware service. This is needed when local pa-

rameters and environmental conditions promote localized changes behavior.

Some examples of local adaptation would be the change of resynchroniza-

tion frequency (TimeSync service) and sensing parameters such as length

of sensing and sampling rate (Sensing service) based on the energy reserves

available at a node, or a change in routing metrics for certain links to route

around a congested node (Routing service). Such changes are often in re-

sponse to transient and ephemeral events or localized phenomena, and as

such a centralized, coordinated response is neither needed or feasible with a

low latency.

System-wide adaptation, on the other hand, is global and is required when

the entire middleware layer must make coordinated changes that are neither

localized nor limited to a single service. Global constraints are not known

by any individual service or node and can change the aggregate function of

45

the system. Global constraints can change system policies which in turn can

change the acceptable range for parameters. An example requiring global

adaptivity is adjusting the frequency of data collection for the environmental

monitoring application, and thus affecting all of the middleware services, in

response to lower than expected solar panel output due to a stretch of cloudy

weather.

While diverse requirements exist on when and how middleware services

need to adapt their behavior, we follow a minimalistic approach in specifying

these requirements from the point of view of the middleware adaptation layer.

Each service, when it is instantiated by the system, is assigned a policy, which

gives it a range for one or more of its configuration parameters. The service

is then free to make independent decisions about selecting the appropriate

configuration value within that range, and can adjust it at any point due

to local adaptation decisions. An example would be the DataAggregation

service, which may be allowed to vary the bandwidth usage within a certain

limit, trading off throughput for increased energy draw.

4.4.2 Two-level Actor Model

We want to maintain a separation of concerns between the principal func-

tionality of the system represented by the composition of actors and the func-

tionality of the adaptive middleware framework. The adaptive middleware

framework is concerned with monitoring the relevant system state, exercising

adaptive control over service selection as well as the configuration parameters

of the deployed services, and the deployment and reconfiguration of service

instance actors.

To achieve this objective, we develop a two-level actor model. At the base

46

Meta
Level

Base
Level

Dynamically
Composed and

Deployed Application

Service1
 Actor

Service2
 Actor Service3

 Actor

Global
Coordinator
Meta Actor

Monitor
 Meta Actor Parameter

Adaptation
Controller

Meta Actor

Service1
Meta
Actor

Service2
Meta
Actor

Service3
Meta
Actor

Figure 4.5: Two-level actor model for adaptive sensor network middleware.

level, the principal functionality of the application and middleware services

is represented by a collection of base-actors, which implement the functional

behavior of the system. The adaptation is realized through the meta-level,

represented by a meta-actor associated with each base-actor, as well as ad-

ditional specialized actors responsible for coordination, monitoring, and dis-

tributed control (Figure 4.5). All actor types communicate with each other

exclusively through message passing.

4.4.3 Actor Roles

As shown in Figure 4.5, actors can be of two types: base-actors and meta-

actors. Base-actors represent the services that constitute an application.

Several types of meta-actors exist in the system. Below, we briefly introduce

each meta-actor.

47

Monitor The responsibility of the Monitor is to periodically provide mea-

surements of important system values (energy levels, load, etc.) to other

meta-actors. It does so by collecting information from the system about the

behavior of each node and the deployed services. In order to keep the network

monitoring overhead at minimum, the Monitor uses aggregate information

from relatively long durations of network operation. In this work, we focus

on energy management and leave investigation of other system values for

future work.

The Monitor has two main goals. First, it attributes aggregate energy

consumption to individual services that are running in the network. Second,

it detects energy anomalies and finds their cause. An energy anomaly can

occur due to selection of high energy services, anomalous interaction of dif-

ferent services, or hardware issues. In Chapter 5 we discuss how the Monitor

achieves these goals in detail.

The Monitor shares dynamic service specifications and the detected energy

anomalies with Global Coordinator meta-actor to ensure efficient service se-

lection and parameterization.

Global Coordinator The Global Coordinator meta-actor (GC) is respon-

sible for deploying applications and services within the WSSN. It uses ap-

plication requirements and service specifications to derive an optimal service

selection and parameterization and provides it to the Parameter Adaptation

Controller meta-actor. Service selection is done using a CSP solver module

within the GC meta-actor. For service selection, the GC meta-actor uses ser-

vice properties provided by service developers, as well as dynamic properties

derived by the Monitor meta-actor. The service selection module of the GC

meta-actor is called S4 and is discussed in detail in Chapter 6.

48

Parameter Adaptation Controller The Parameter Adaptation Con-

troller meta-actor (PAC) is responsible for distributing updates received

from the Global Coordinator meta-actor regarding service and parameter

selection as well as dynamic service properties to the corresponding Service

meta-actors. PAC provides Service meta-actors with acceptable range of

parameter values which are derived from information provided by the GC

meta-actor.

PAC is responsible for the initial instantiation of all of the services and also

for the dissemination of global policy changes. In actor semantics, actors can

only communicate with a set of actors that they know, that is they have

been given the unique actor name for them. Since PAC creates all the other

actors in the system, it knows their addresses and can disseminate them as

needed to the service actors. This would include the names of the actors

from which inputs and dependency satisfaction notifications can be delivered

to a service actor, as well as the list of actors that the service needs to notify

upon completion or some other event. When new service actors are added

to the system, PAC can also send notifications to existing services to update

the dependency relationship graph.

Once the service instances are deployed and notified of their dependencies

by PAC, all subsequent interactions between services are direct, without go-

ing through the mediator actor. This allows for significant savings in network

traffic volume, particularly for service instances collocated at the same node,

where message sends are translated into direct function calls.

Service meta-actors Service meta-actors are tightly coupled to the base

level service actors and are responsible for enacting low-latency, localized

control over the service parameters, within the range dictated by the PAC.

49

4.4.4 Runtime Support System

Besides static configuration and parametrization at instantiation time, dy-

namic service composition and system-wide adaptation require additional

support from the middleware system at runtime. For our actor-based ap-

proach, this involves the asynchronous message passing functionality for ser-

vice interactions, initial service deployment and configuration, and the run-

time monitoring system.

The runtime system can be though of as a graph, with each node repre-

senting a service interface, or an actor. The edges define service dependencies

(causal and temporal) and are executed by message transfers between actors.

The services send asynchronous messages that may contain parameters and

the inputs required for service invocation. This model allows for concurrent

execution of services while satisfying data and temporal constraints. In our

implementation, links between service instances are determined at run time.

We note that there is not a single centralized location where the graph

data structure exists in the system. Rather, the data structure is fully dis-

tributed, with parts of it being stored with each service instance (e.g., service

configuration parameters) and others being part of the messages in transit

(invocations, dependency notifications, etc.). In this way, the graph can be

evaluated recursively and concurrently without requiring expensive round-

trip message exchanges with a centralized entity for every service interaction.

4.5 Discussion

In this chapter we presented an overview of our architecture. I-AdMiN has a

two-layer architecture. The base layer is comprised of services that constitute

an application. Service instances and their interactions are represented by

50

actors.

The meta layer is the main focus of this work. This level contains meta-

actors that are responsible for automatic service selection and parameteri-

zation and provide dynamic adaptation in response to application and en-

vironmental changes. It is worth noting that the main distinction between

base-actors and meta-actors and between the different meta-actors is only

their responsibilities. Each meta-actor is given distinct responsibilities that

together ensure the efficient operation of the sensor network application.

Let us demonstrate I-AdMiN’s work flow. Assume that a pool of services is

available and a set of application requirements are provided. Each service is

associated with initial specifications. These specifications are generally pro-

vided by the service developer and do not reflect the effect of the surrounding

environment. In the beginning, the application developer uses the service se-

lection module from the Global Coordinator to select a set of services that

satisfy application constraints. Once the sensor network application is de-

ployed, the Monitor collects runtime information that are used in deriving

dynamic service specifications. Dynamic service specifications are used to up-

date the initial service descriptions provided by service developer and replace

the static specifications. Another role of the Monitor is to detect instances

where application constraints are violated and find the cause. The cause of

a constraint violation can be an anomalous service or service interaction, or

hardware issues. The derived service specifications and constraint violations

are shared with the Global Coordinator to update service selection and/or

parameterization if necessary. Any change in service selection or parameteri-

zation is shared with the Parameter Adaptation Controller to be distributed

in the system. If there is a change in the range of acceptable parameters

of a service, PAC sends a message to the corresponding Service meta-actors

51

informing them of the change. Similarly, PAC sends Service meta-actors mes-

sages to indicate new service instantiation or deactivation. During system

runtime, the Monitor updates its information on service specifications and

constraint violations. This allows GC and PAC to adjust service selection

and parameterization in response to changes in application requirements or

the environment.

In the next chapters we will discuss the modules that implement each meta-

actor’s functionality. The Monitor is comprised of two main modules. The

first module attributes dynamic service properties to individual services us-

ing aggregate information. The second module detects constraint violations

during sensor network runtime and finds the cause. Both these modules are

discussed in detail in Chapter 5. The Global Coordinator’s main module

is called S4 and is responsible for automatic service selection in a way that

application constraints are satisfied(Chapter 6). S4 uses dynamic informa-

tion from the sensor network deployment made available by the Monitor.

Finally, the Parameter Adaptation Controller meta-actor and Service meta-

actors work together to dynamically adapt service configuration in response

to information from GC.

52

CHAPTER 5

MONITORING SERVICE ENERGY
CONSUMPTION .

In this chapter we discuss our monitoring system. Due to the importance of

energy consumption on the lifespan of WSSN applications, we focus on deriv-

ing energy characteristics of services. In the WSSN domain, static properties

such as energy consumption that are derived by service developers may not

reflect the exact behavior of services once they are deployed. This is due to

varying hardware platforms and environmental conditions. We thus propose

dynamic and on-line profiling of services during the WSSN deployment. The

need for an on-line monitoring system is motivated by the following factors.

Hardware platform. There are many different hardware platforms used

in the deployment of WSSNs. TelosB [97], MICAz [98], and Imote2 [99] are

a few popular off-the-shelf platforms. These platforms have different proces-

sor, memory, radio, and energy characteristics which affect their behavior.

To add to the variability, each of these platforms can be used with differ-

ent sensors (e.g. sensor boards that mount on the platform such as ISM400

sensor board [100] versus analog sensors such as soil moisture sensors [101]).

Exact specification of services such as their energy consumption depend on

the underlying platform which is not known at the time of service imple-

mentation. Figure 5.1 compares the energy consumption of a service called

Remote Sensing on Imote2 when two different sensors are attached to it.

The Remote Sensing service collects sensor data from multiple sensors and

comprises seven sequential phases: setup, communication, computation, net-

53

0

5

10

15

20

25

30

35

En
e

rg
y

C
o

n
su

m
p

ti
o

n
 (

m
W

h
)

ISM400

10hs

Figure 5.1: Comparison of energy consumption of RemoteSensing service
deployed on Imote2 platform with two different sensors. Soil moisture
sensor Decagon 10hs shows higher energy consumption compared to
ISM400 sensor that measures acceleration.

work initialization, idle, sensing and data storage. Service parameters and

runtime are exactly the same in the two cases and the only difference is in

the sensor board.

Environmental characteristics. Deployment and environmental char-

acteristics can affect service specifications. Properties such as runtime and

energy consumption can be very different in an indoor lab test and a full-scale

outdoor deployment. For example, the time needed for route construction

in a multi-hop routing algorithm increases as the number of nodes, their

distance and radio communication obstacles increase.

Non-functional dependencies. Functions performed by services that

comprise an application may affect the non-functional properties of other

employed services. This phenomena is often platform dependent and changes

service properties. For example, according to the time-keeping anomaly dis-

cussed in Chapter 3, changing the frequency of an embedded processor can

negatively impact time synchronization [96]. The impact on time synchro-

nization has to be considered if a service that changes the frequency for

energy conservation is to be used in an application requires tight time syn-

54

chronization. It is often the case that such dependencies and interactions are

not known in advance.

Resource limitations of WSSNs imply that any monitoring system should

be light weight and energy efficient. A monitoring system that can esti-

mate service properties without needing information about their parameters

and environmental conditions is desired. Such a system should provide fre-

quent updates on service properties as deployment conditions change. We

should note that the monitoring system under discussion is different from

on-line monitoring of program properties which investigates temporal logic

and causal dependencies.

We follow a data-driven approach for the monitor where coarse-grained

data is used to derive service-specific information. The proposed monitor-

ing system comprises of two parts. The first part estimates service energy

consumption and the second part identifies and isolates energy anomalies.

In both of these parts our focus is on energy consumption and will use our

ISHMP Jindo Bridge deployment [2] as the basis of our analysis. We leave

estimation of service properties other than energy consumption and the de-

tection of other constraint violations for future work.

5.1 Analysis Data

In an effort to design a monitoring system with the least possible overhead,

we leverage existing data logging services of the ISHMP Jindo Bridge deploy-

ment [2]. Therefore, no additional overhead is incurred for data collection.

The deployed Illinois SHM Toolsuite stores output data from multiple ser-

vices in the form of text files. When scheduled to run, each service collects

information from the network and sends it to the base station where it is

55

stored. Examples of such services include RemoteSensing and AutoUtil. Re-

moteSensing is a distributed service used to collect measurements of accel-

eration from all nodes. AutoUtil collects measurements of battery voltage,

temperature and light. The output from each service is a text file showing

data collected from each node. The output files of different services can be

easily differentiated by their size and output format.

For our analysis, we focus on energy consumption and exploit existing

measurements to deduce the effect of each service on energy consumption.

The battery voltage measurement from the AutoUtil service is a viable op-

tion for this purpose. We can read battery voltage measurements before

and after a set of services were running and estimate total energy consump-

tion. The challenge is finding the effect of each individual service on energy

consumption from aggregate data that shows energy consumption when a

combination of services were running. In the following sections we discuss

how we use a large number of such data points to find per-service estimates

of energy consumption.

5.2 Estimating Service Energy Consumption

In this section we provide a method to attribute aggregate energy consump-

tion to individual services. For this purpose, we analyze each node individu-

ally and then use the mean of estimated energy across all nodes as the final

estimate. The reason for considering each node individually is that in the

deployment from which we collected the data each node is equipped with a

solar panel. The pattern in the battery voltage draw of a node can vary based

on the direction of its solar panel and weather conditions. Once estimates

are gathered across all nodes, we combine them to fortify the final result.

56

In order to get necessary data for estimating service energy consumption,

the monitor reads all output files from the services that are running. Out-

put files from AutoUtil service are the only files that contain battery voltage

information. For each node, the monitor reads battery voltage in two con-

secutive AutoUtil files and takes the difference as the voltage draw. It also

counts the number of AutoUtil and RemoteSensing services that ran during

this time on the node under consideration. The battery voltage reading is an

8 bit value that does not have the required accuracy to read small changes in

battery voltage and may return the same value when battery voltage draw

is small. For this reason, the monitor continues on reading the output files

when the battery voltage draw is zero until it reaches an AutoUtil output file

that shows battery voltage drain. In such cases, all AutoUtil and Remote-

Sensing occurrences are counted for the participating nodes. Data points

that include durations of battery charge from the solar panel are discarded.

Table 5.1 shows a sample of data generated in the monitor for service energy

estimation.

Table 5.1: Sample processed data from Jindo Bridge deployment. Each
data point shows node id, the amount of battery voltage draw, number of
RemoteSensing occurrences and number of AutoUtil occurrences.

Node Id Battery Voltage
Draw

AutoUtil Count RemoteSensing
Count

3 0.093 2 6
3 0.011 2 2
3 0.083 2 2
69 0.062 2 1
69 0.031 1 0
86 0.041 2 4

57

5.2.1 Approach

Let’s assume the application under consideration has N services

S = {s1, s2, ..., sN} . Each data point di from the set of all data points

D includes the following:

• A duration ti at which the data is collected.

• A node ID ni for which the data is collected.

• A set of services sk, k ∈ 1..M that were running during ti.

• For each service sk, a count ck of the number of times sk was running

during ti.

• Total battery voltage draw V Dropi during ti.

The goal is to find V Dropsk for each service in S = {s1, s2, ..., sN} using the

aggregate energy consumption data in D. In other words, we have equations

of the form

V Dropi =
N∑
i=1

(ck ∗ V Dropsk) (5.1)

where V Dropsks are unknown. We are not able to solve this as a system of

linear algebraic equations as the noise in the data creates a conflicting system

of equations (e.g. rows 2 and 3 in Table 5.1). Instead, we use regression to fit

a linear line with V Dropi as the dependent variable, ck as the independent

variables and V Dropsks as the unknown parameters.

Let us investigate data characteristics before discussing our method. Since

AutoUtil is the only service that measures battery voltage, we can find

many data points with only AutoUtil as the active service (i.e. ck = 0

for sk 6= AutoUtil). This means that we can analyze AutoUtil separately in

58

advance and find its battery voltage draw estimate. We can then subtract

the estimated battery voltage attributed to AutoUtil from the dependent

variable and continue our analysis for the rest of the independent variables.

Note that we follow the same method in analyzing AutoUtil and all other

services but do so in two separate steps for increased accuracy.

We have observed a non-negligible amount of noise in data points with

small AutoUtil and RemoteSensing count. The high variance of battery

voltage draw for these data points, shown in Figure 5.2 and Table 5.2, is

an indicator of this noise. This phenomenon is due to battery characteris-

tics. Accurate battery voltage readings require a period of battery rest time

following a duration of activity [102]. During the rest time, the battery

will gain some of its charge back allowing a more realistic reading of bat-

tery drain. Therefore, consecutive battery voltage readings that are within a

short amount of time are subject to a high amount of noise and in many cases

show an inaccurate spike in battery voltage draw. The smaller the AutoUtil

and RemoteSensing counts, the shorter the amount of time between battery

voltage readings, and the less reliable the data is.

Table 5.2: Variance of battery voltage drain for different AutoUtil counts.
Groups with smaller values of AutoUtil count show higher variance.
Smallest amount of variance is observed for AutoUtil count values of 7 and
more.

AutoUtil Count Variance

1 0.0047
2 0.0028
3 0.0021
4 0.0017
5 0.0023
6 0.0032
≥7 0.00041

59

0
2

4
6

8
10

0
2

4
6

8

10
0

0.1

0.2

0.3

0.4

AU CountRS Count

V
ol

ta
ge

 D
ra

w

Figure 5.2: Scatter plot showing AutoUtil count, RemoteSensing count and
voltage draw.

The non-constant amount of variance for different values of the indepen-

dent variable, as observed in Figure 5.2 and Table 5.2, suggests the presence

of heteroscedasticity in the data. Let us investigate this property more thor-

oughly. Consider the regression model:

Yi = β0 + β1Xi+ εi (5.2)

Let residual (observed error) ei = Yi − Ŷi and true error εi = Yi − E {Yi}.

For the above regression model, the εis are assumed to be independent nor-

mal random variables with mean 0 and constant variance σ2. If the model

is appropriate for the data at hand, the observed residuals, ei, should then

reflect the properties assumed for the εi [103]. However, when the error vari-

ance is not constant over all cases, we have heteroscedasticity in the dataset.

Heteroscedasticity is inherent when the response in regression analysis follows

a distribution in which the variance is functionally related to the mean [103].

When heteroscedasticity prevails but other conditions of regression model

60

are met, the estimated regression coefficients are still unbiased and consis-

tent, but they are no longer minimum variance unbiased estimators [103].

Table 5.3 shows the error variance, the variance of the residuals for the un-

weighted least squares regression, for groups of data, each with a value of

AutoUtil count. Data is grouped according to the value of the independent

variable (AutoUtil count in this example). The data shown in this table

confirms that heteroscedasticity is present for our data set.

When the variance of the observed values are unequal (i.e. heteroscedas-

ticity is present), but no correlations exist among the observed variances,

weighted least squares (WLS) regression can be used. Weighted least squares

regression is a special case of generalized least squares (GLS) regression. Un-

like simple linear regression which weights each Y observation equally, WLS

criterion assigns different weights:

Qw =
n∑

i=1

wi(Yi − β0 − β1Xi)
2 (5.3)

where wi is the weight of the ith observation. WLS regression is a good

fit for our problem due to the high noise observed in data points with small

values of AutoUtil and RemoteSensing count. It will allow us to give a higher

weight to data points that show more accurate values while not ignoring the

less reliable data points completely.

In order to use WLS regression, we should determine the appropriate

weights. We first investigate if the error term variance has a simple re-

lationship with each group of the independent variable. Table 5.4 shows

possible relationships between AutoUtil count groups and error term vari-

ance. Since none of these relationship show the required stability, we will use

the reciprocal of the variance as the weight. Once the weight of each group

61

Table 5.3: Variance of error for different values of AutoUtil count. Error
variance is the variance of the residuals for the unweighted least squares
regression on each group.

Group AutoUtil Count Error Variance

1 1 0.0029
2 2 0.0026
3 3 0.0027
4 4 0.0039
5 5 0.0017
6 6 0.0019
7 ≥7 0.0044

Table 5.4: Analysis of the relationship between error term variance σ2 and
Xj for groups 1..j. If a group has more than one value for the independent
variable the midpoint is used as Xj.

Group σ2
j/Xj σ2

j/X
2
j σ2

j/
√
Xj

1 0.0029 0.0029 0.0029
2 0.0013 0.00065 0.0018
3 0.0009 0.003 0.0015
4 0.000975 0.00024 0.00195
5 0.00034 0.00068 0.000729
6 0.000316 0.0000527 0.000778
7 0.000624 0.0000897 0.016

62

is determined, it is given as one of regression parameters to determine the

unknown variables V Dropsk .

5.2.2 Experimental Results

In order to evaluate our method of attributing aggregate battery voltage

draw to individual services, we use data gathered from ISHMP Jindo Bridge

deployment. We compare our results with measurements of battery voltage

draw on several nodes.

Table 5.5 shows characteristics of the data used in our analysis.

Table 5.5: Dataset characteristics for data gathered from ISHMP Jindo
Bridge deployment.

Dataset Number of
Files

Number of
Nodes

Total Number
of Data Points

Jindo Deck 2010 1241 33 7424
Jindo Deck 2012 3805 32 23845

We first separate data points at which AutoUtil is the only active service.

For Jindo Deck 2010 dataset, this includes 5758 data points which is 77% of

all data. The Jindo Deck 2012 dataset contains 20721 data points which is

87% of all data. For the datasets with only AutoUtil as the active service,

we run weighted least squares regression crossing the origin. In order to

determine the wieghts for the WLS regression, we first group the data based

on the value of AutoUtil count. Table 5.6 shows these groups and their

characteristics. For the data points in each group, the reciprocal of the

variance is considered as the wieght. We discard data points with AutoUtil

count of 1 in this analysis due to their high noise. We first do the analysis

on a per-node basis and then take the mean of the per-node estimates as the

final result. Table 5.7 shows the estimated value for battery drain attributed

63

to AutoUtil service using the discussed method.

Table 5.6: Dataset groups based on AutoUtil count value.

Group AutoUtil Count Group Size
Jindo Deck 2010 Jindo Deck 2012

1 1 3247 11949
2 2 1128 3447
3 3 613 2313
4 4 367 1272
5 5 148 656
6 6 84 455
7 ≥7 171 629

Table 5.7: Estimated battery voltage drain for AutoUtil service using WLS
regression.

Jindo Deck 2010 Jindo Deck 2012

Mean of Estimated
AutoUtil Battery Volt-
age Draw Across all Nodes
(V)

0.0021 0.0048

Variance of Estimated
AutoUtil Battery Voltage
Draw Across all Nodes

7.3841e-007 6.11e-006

Table 5.8 shows the mean and median of battery voltage draw for data

points with only AutoUtil as the active service and compares them with

results from WLS regression. For this comparison we take data points with

only AutoUtil as the active service and divide the battery voltage draw value

by the AutoUtil count. As shown in this table, the mean an median have

much higher values that the estimated value using WLS regression. This is

because in calculation of mean and median all data points, including data

points with high levels of noise, are given the same weight. As discussed

previously, battery voltage reading inaccuracies cause a spike in battery drain

for data points with small AutoUtil counts, resulting to a high value for

average battery drain readings.

64

Table 5.8: Mean and median of battery voltage draw values for data points
with only AutoUtil as the active service compared to results from WLS
regression.

Jindo Deck 2010 Jindo Deck 2012

Mean Battery Voltage
Draw for AutoUtil

0.024 0.0331

Median Battery Voltage
Draw for AutoUtil

0.01 0.0121

Battery Voltage Draw Esti-
mate for AutoUtil

0.0021 0.0061

Once the battery voltage drain estimate for AutoUtil service is determined,

we subtract it from the aggregate battery voltage draw in the rest of the data

and follow the same approach to determine battery voltage drain attributed

to RemoteSensing. Table 5.9 shows data grouping according to Remote-

Sensing values and Table 5.10 shows the estimated battery voltage draw at-

tributed to RemoteSensing using WLS regression. The estimate for battery

voltage drain of RemoteSensing is higher for the Jindo Deck 2010 dataset.

This is expected since the 2012 version of RemoteSensing service included

energy optimizations which included changing CPU frequency in different

phases of the application.

Table 5.9: Dataset groups based on RemoteSensing count value.

Group RemoteSensing
Count

Group Size

Jindo Deck 2010 Jindo Deck 2012

1 1 1049 2217
2 2 302 612
3 ≥3 60 313

Figure 5.3a compares our results with lab measurements of battery volt-

age drain when running RemoteSensing service. The measurements are not

conducted on the Bridge where the analysis data is gathered due to difficulty

in getting node access and may thus include an error that is caused by differ-

65

Table 5.10: Estimated battery voltage drain for RemoteSensing service
using WLS regression.

Jindo Deck 2010 Jindo Deck 2012

Mean of Estimated Re-
moteSensing Battery Volt-
age Draw Across all Nodes
(V)

0.0170 0.0121

Variance of Estimated Re-
moteSensing Battery Volt-
age Draw Across all Nodes

5.2721e-005 7.1259e-005

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

Jindo Deck 2012 Jindo Deck 2010

B
at

te
ry

 V
o

lt
ag

e
 D

ro
p

Measurement

WLS Estimate

(a) Laboratory measurements and
battery voltage draw estimates of
RemoteSensing service

(b) Effect of linearization.

Figure 5.3: Comparison of battery voltage draw estimates.

ence in environmental characteristics. However, in an attempt to fortify our

comparisons for the services under investigation, we have chosen the same

parameters and settings as the Jindo Bridge deployment. Another source of

error is linearization. As discussed previously, we have assumed that battery

voltage drop is linear which means that the WLS method overestimates the

battery voltage drop (Figure 5.3b). We have reduced the effect of lineariza-

tion by limiting the battery voltage readings (nodes with battery voltage less

than 3.7V are disregarded).

66

5.3 Detecting and Isolating Energy Spikes

In this section we discuss our method of detecting energy spikes and isolating

the cause. When new data from the sensor network becomes available to the

Monitor, it first detects and diagnoses instances of high energy consumption.

This information is then used in a Bayesian belief revision system where each

hypothesis states the probability of having high energy consumption when

a set of services are running. The probability of the hypotheses which is

inferred using Bayesian methods is used at the time of service selection by

the S4 module.

We focus on three classes of issues: hardware issues, service issues and

interaction issues. Interaction issues can happen between services or between

services and hardware.

Our analysis is based on the assumption that samples are drawn from a

normal distribution. We will confirm this assumption in Section 5.3.4. Each

data point that is investigated in the detection and isolation steps includes

node ID ni, duration ti, service counts ck for services sk (k ∈ 1..M) and total

energy consumption Ei.

5.3.1 Detecting Energy Spikes

We follow a straight forward approach in detecting energy spikes. Assume

the independent variable (energy consumption) follows a normal distribution

N(µ, σ2) with µ and σ2 estimated from the data. A data point with total en-

ergy consumption Ei is detected as an energy anomaly if the probability of Ei

coming from N(µ, σ2) is less than a threshold θ. We will see in Section 5.3.4

how the choice of θ affects the detection of energy anomalies.

67

5.3.2 Isolating the Cause of Energy Spikes

Once an energy spike is detected, the monitor determines what caused it.

Energy anomalies are categorized as hardware issues, service issues, service

interaction issues and service and hardware interaction issues.

Given a data point with high Ei according to the detection step, we ex-

amine all services sk (k ∈ 1..M) that were running during ti as well as the

hardware, represented by node ID, ni. We call each of the services sk and

the node ID, ni a factor and aim to find the factor that contributes to high

energy consumption. In order to take into account the effect of service inter-

actions we add another factor for each j-combination cj of the set of services

sk (k ∈ 1..M, j ∈ 1..M) that were active during ti. We also add a factor for

the interaction between node ni and each j-combination of the set of services.

For each factor fi we examine all data points and divide them into two

classes: one that contains fi, denoted by Di, and one without fi, denoted by

Di. Specifically, we use two normal distributions Ni(µ1, σ
2
1) and Ni(µ2, σ

2
2)

to approximate Di and Di, and estimate the means and the variances from

data. We adopt Student’s t-test to determine whether Di and Di, with

unequal sizes and unequal variances, are drawn from the same distribution,

with 95% confidence error bounds. If the two distributions are different and

µ1− µ2 ≥ ε, then factor fi is considered to be significant with respect to the

detected high energy consumption. Here, ε is an adjustable threshold and is

determined based on the desired granularity of isolation.

If the factor fi that is identified as the cause of high energy consumption

represents a service, the monitor classifies it as a high energy service. Simi-

larly, if a combination cj of services is identified during the isolation step, a

selection with services in cj is classified as high energy. High energy factors

68

that include the node ni are reported to the system administrator for fur-

ther analysis. A high energy consumption instance that is correlated to the

sensor node can be caused by a variety of issues such as hardware platform

problems, solar panel direction and connection, connection to the sensor, etc.

5.3.3 Integrating Energy Anomaly Information

Optimized service selection necessitates sharing of information on high energy

services and anomalous interactions as identified in the detection and isola-

tion steps with the service selection module. We have designed a Bayesian be-

lief revision system for this purpose that is continuously updated as the mon-

itor receives new information from the deployed sensor network. Bayesian

methods provide probabilistic predictions on a set of hypotheses which be-

come more or less probable as more data is observed [104]. Below, we will

describe our set of hypotheses and how they are revised to address new in-

formation from the detection and isolation steps.

Assume the service repository includes N services s1..sN . For each j-

combination of services cj, j ∈ 1..N , hypothesis hj states the belief that

running this set of services has high energy consumption. We will therefore

have H = 2N hypotheses. We assign each hypothesis a probability value

P (hj) that quantifies the degree of confidence in the hypothesis. We use

Bayes theorem to dynamically derive P (hj) as new data becomes available

from the sensor network deployment and the detection and isolation steps.

In other words, we aim to calculate P (hj|D) where D is the newly available

data:

P (hj|D) =
P (D|hj).P (hj)

P (D)
(5.4)

69

where P (hj|D) is the posterior probability of hypothesis hj that cj has high

energy consumption and reflects our confidence that hj holds after we have

seen the training data D. P (hj) is independent of D and is the prior prob-

ability of hj and may reflect background knowledge about hj. P (D|hj) is

the probability of observing D if hypotheses hj holds. Finally, P (D) is the

prior probability that training data D will be observed [104]. Consider event

Aj, where the set of services in cj are running. We can assume that events

A1..AN are mutually exclusive with
∑n

i=1 P (Ai) = 1. We thus have:

P (D) =
N∑
i=1

P (D|Ai).P (Ai) (5.5)

According to 5.4, the probability of a hypothesis is determined by combin-

ing prior knowledge with observed data. Prior knowledge can be provided by:

(1) stating a prior probability of each hypothesis and (2) stating a probability

distribution over observed data for each possible hypothesis [104].

In the beginning of system runtime, prior probabilities for the hypotheses

can be determined by either using static service properties provided by service

developers or setting the same prior probability for all hypotheses. We use

the latter approach for two reasons. First, many already developed services

lack a description of their non-functional properties which impedes the ability

to derive prior probabilities. Second, assigning equal prior probabilities to

services allows a fair comparison of services as more information becomes

available from the deployment. Therefore, in the beginning we have P (hi) =

P (hj) = p for all i, j ≤ H.

The posterior probability P (hi) of each hypothesis hj is recalculated as the

isolation step identifies service combinations that cause energy anomalies.

We use Jeffrey’s rule ([105], and [106]) to account for any uncertainty in the

70

new coming information. Assuming that the new data D is attached with a

probability α, we have:

P (hj|(D,α)) = αP (hj|D) + (1− α)P (hj|D̄) (5.6)

For each hypothesis hj, P (D|hj) is 1 if the isolation step has identified cj

as a source of high energy consumption and is 0 otherwise. P (hj) is the prior

probability (with respect to D) of having high energy consumption when

running cj. P (D) is calculated using equation 5.5.

As the probabilistic predictions of hypotheses are modified the monitor

sorts them in descending order which means services or service interactions

with the highest predicted probability of having high energy consumption are

at the top of the list. This ranking of services and their interactions based

on their energy consumption is shared with the service selection module for

optimization of future service selection and is mostly helpful when the service

pool includes multiple service implementations for the same functionality. We

will discuss service selection in detail in Chapter 6.

5.3.4 Experimental Results

For the evaluation of our detection and isolation methods we use a simplified

SHM application that is comprised of three main services: a sensing service,

a time synchronization service and an energy management service. The col-

lected data is from two sources. We use the battery voltage data used in the

previous section for the sensing service. Data for time synchronization and

energy services is from our laboratory measurements of the amount of current

draw in Imote2 when these services are running. We have done extensive mea-

surements for all combinations of available time synchronization and energy

71

management services and calculated the corresponding energy consumptions.

We have considered a sensing service called RemoteSensing, a time synchro-

nization service called TimeSync, and two energy management services called

DVS and TS-DVS. RemoteSensing is the same sensing service discussed in

the previous section. TimeSync is an implementation of the Flooding Time

Synchronization Protocol. DVS and TS-DVS both use dynamic voltage and

frequency scaling to reduce the total energy consumption when the appli-

cation is comprised of different phases. The energy consumption data for

TimeSync, DVS and TS-DVS consists of aggregate energy consumption (in

mWh) for approximately every 15 minutes of system runtime. It includes

more than 200 energy consumption measurements that range between 56.22

mWh and 83.23 mWh. The mean value of energy consumption is 67.08 mWh

and the standard deviation is 5.08.

As discussed previously, our analysis is based on the assumption of nor-

mality. In order to confirm this assumption, we perform the JarqueBera

test which is a goodness of fit test for normal distribution. [107] shows that

Jarque-Bera test is superior to Kolmogorov-Smirnov and Cramervon Mises

type, Shapiro-Wilk test, and Kuiper test for symmetric distributions with

medium up to long tails and for slightly skewed distributions with long tails.

JarqueBera test investigates the null hypothesis that the sample data has

the skewness and kurtosis of a normal distribution (samples from a normal

distribution have an expected skewness of 0 and an expected excess kurto-

sis of 0). In other words, the null hypothesis is the joint hypothesis that

both skewness and excess kurtosis are zero. The Jarque-Bera test statistic is

defined as:

JB =
n

6
(S2 +

1

4
(K − 3)2) (5.7)

72

where n is the number of observations, S is the sample skewness, and K is

the sample kurtosis. S and K are defined as:

S =
µ̂3

σ̂3
=

1
n

∑i=1
n (xi − x)3

(1
n

∑i=1
n (xi − x)2)3/2

(5.8)

K =
µ̂4

σ̂4
=

1
n

∑i=1
n (xi − x)4

(1
n

∑i=1
n (xi − x)2)2

(5.9)

For the null hypothesis h that our sample data comes from a normal dis-

tribution, the Jarque-Bera test returns h = 0 which means that it cannot

reject the null hypothesis at 5% significance level.

We first examine our anomaly detection method. Our data has normal

distribution N(µ, σ2) with µ = 67.08 and σ2 = 25.85. Let Pi denote the

probability that a data point Di with total energy consumption Ei is drawn

from this normal distribution. Di is identified as an energy spike if Ei > µ

and Pi < θ. Table 5.11 shows the effect of θ on the percentage of data

points that are considered as energy anomalies. We consider θ = 5% for our

analysis.

Table 5.11: Effect of threshold θ on the percentage of data points regarded
as energy anomalies.

θ Energy Anomaly Percentage

5% 11%
3% 5%
1% 1%

Let us investigate the cause of the detected energy anomalies. In our

measurement data for TimeSync, DVS and TS-DVS, the node and the sensing

service were kept constant. Also, the two energy management services cannot

run together. We thus have a total of 5 factors that should be analyzed for

their significance towards the energy spike: 3 individual factors, one for each

73

of the services TimeSync, DVS and TS-DVS and 2, two-way interaction

factors. The Jindo Bridge data for RemoteSensing includes data points were

either RemoteSensing, AutoUtil or both were running. Since here we are

only interested in RemoteSensing, we will have one factor for this service.

We therefore have a total of 6 factors to consider.

For each factor fi, we divide the entire dataset to two classes Di and Di and

perform the Student’s t-test. Tables 5.12 and 5.13 show the results of the t-

tests. We have separated RemoteSensing results from the rest of the services

because their data source is different. The energy data for RemoteSensing

is from node battery drain measurements in Jindo Bridge which are done at

irregular intervals. Data for the other services shows energy consumption of

the entire application for durations of 15 minutes. Based on these results

and a critical value of 0.05, the TimeSync service’s effect on high energy con-

sumption is significant. This is confirmed by our laboratory measurements

for the energy consumption of the TimeSync service. Our measurements

show that every run of TimeSync consumes 1.89 mWh which is high for a

simple time synchronization service. RemoteSensing also shows high energy

consumption. Laboratory measurements for RemoteSensing shoe and energy

consumotion of 11.6 mWh.

Another more interesting result is that the DVS service does not have

a significant effect on high energy consumption but when it runs with the

TimeSync service, the energy consumption significantly increases. Running

the alternative energy management service TSDVS with the TimeSync ser-

vice does not show such an increase in energy consumption. At a first glance,

this result seems unexpected since and energy management service is designed

to reduce total system energy consumption. We have investigated this phe-

nomenon in [96]. We have found that in certain embedded platforms, the

74

CPU frequency switching actions of a dynamic voltage scaling (DVS) service

has an adverse effect on processor-based clocks causing the time synchroniza-

tion service to run more frequently to maintain clocks within a fixed error

bound. Since the time synchronization service has high energy consumption,

running it more frequently causes energy spikes.

Table 5.12: Student t-test results for three services: TimeSync, DVS and
TS-DVS.

Factor Di Di T-test
Mean Variance Mean Variance

TimeSync 67.80 19.69 61.88 40.58 1.14e-4
DVS 67.36 25.26 66.52 26.92 0.27
TS-DVS 66.52 26.92 67.36 25.26 0.27
TimeSync and DVS 68.88 7.14 65.01 39.55 1.5e-07
TimeSync and TS-
DVS

67.25 23.91 67.01 26.76 0.76

Table 5.13: Student t-test results for RemoteSensing.

Factor Di Di T-test
Mean Variance Mean Variance

RemoteSensing 0.034 0.0016 0.028 0.0017 3.52e-5

The energy anomaly isolation results show that from the 11% detected en-

ergy spikes, 4% are false positive. The false positives are related to instances

where only DVS or TS-DVS services were running. In the rest of 96% energy

spikes either TimeSync service, RemoteSensing service, or both Time-Sync

and DVS were running.

We now discuss how the detected energy anomalies are used in a Bayesian

belief revision system to achieve optimized service selection. Assume that the

service pool includes the four discussed services: RemoteSensing, TimeSync,

DVS and TS-DVS. We will therefore have H = 16 hypotheses, including the

following:

75

• h1: TimeSync has high energy consumption.

• h2: DVS has high energy consumption.

• h3: TS-DVS has high energy consumption.

• h4: RemoteSensing has high energy consumption.

• h5: Interaction of TimeSync and DVS has high energy consumption.

• h6: Interaction of TimeSync and TS-DVS has high energy consumption.

• h8: Interaction of RemoteSensing, TimeSync, and TS-DVS have high

energy consumption.

In the beginning, P (hi) = P (hj) = p for all i, j ≤ 16. Let p = 1/16.

We recalculate these probabilities as soon as the isolation step identifies ser-

vices or service interactions with high energy consumption. From Tables 5.12

and 5.13 we can conclude that TimeSync, RemoteSensing and the interaction

of TimeSync and DVS have high energy consumption. We recalculate P (hi)

assuming a degree of uncertainty α = 0.95. Using Equations 5.4 and 5.5,

P (h1), P (h4), and P (h5) will change from 0.0625 to approximately 0.32.

The probability P (hi) for i /∈ {1, 4, 5} changes from 0.0625 to approximately

0.004. The monitor shares the modified probabilities with the service selec-

tion module. An example of the effect of this analysis to service selection

is that when TimeSync is selected and both DVS and TS-DVS satisfy the

constraints, TS-DVS will be selected instead of DVS.

76

CHAPTER 6

SERVICE SHARING AND SELECTION

Much of the effort in wireless sensor network research aims at overcoming

the challenges of software development to build applications that exploit the

capabilities of these systems while satisfying the underlying constraints. We

aim to accomplish this goal by exploiting reuse and adaptability provided

by service-oriented architecture (SOA) [16] while at the same time selecting

services that satisfy application requirements. SOA allows a wide variety of

services (possibly of different implementation languages) to be selected and

shared between different applications and modules [108].

The contributed code in the TinyOS-2.x repository is a good example

to illustrate the importance of service sharing. TinyOS is an open source

operating system that has been widely used in low-power wireless devices

such as Imote2, MICAz, and TelosB. The TinyOS-2.x index of contributed

code [109] includes 16 applications, 32 libraries, 5 system components, and

21 tools. It supports 8 different chips, 17 different platforms, and 5 sensor

boards. It is highly desirable for a WSSN application developer to be able

to exploit the developed components to build a new application.

This is a challenging problem since services for sensor networks face vary-

ing application requirements [110]. The diversity in the available components

results in a dilemma for sensor network application developers. On the one

hand, they are eager to exploit the opportunities offered by available ser-

vices. On the other hand, the increasing heterogeneity and complexity of the

77

available services for sensor networks jeopardizes their use.

Consider the selection of a multi-hop communication protocol, a time syn-

chronization service, and an energy management scheme for a structural

health monitoring application under strict energy, memory, synchronization

error, and packet loss budgets. Consider a per-hour energy consumption bud-

get BE, memory budget BMem, time synchronization error budget BTS, and

packet loss budget BPckt. Also consider three sets of available services SMH ,

STS, and SE for multi-hop communication, time synchronization, and energy

management respectively. SMH , STS, and SE sets include 35 (considering

multihop communication services discussed in [111] and [112]), 9 (services

chosen from schemes discussed in [113]), and 50 (using energy management

services presented in [114]) services respectively and at least one service from

each of these sets should be chosen. The selection of each service changes the

available budgets non-deterministically, introducing non-linearity in service

selection. For example, selection of service Ei that uses frequency scaling for

energy management changes (increases) the available energy budget BE by

εi, and decreases the time synchronization error budget BTS by δi, and mem-

ory budget BM by µi. Another energy management service Ej that works

based on periodically putting nodes to sleep would only affect the energy and

memory budgets by εj and µj respectively. The selection of the multi-hop

and time synchronization services can thus have varying constraints based

on which energy management service has been chosen. The large number of

available services and their varying requirements render the manual selection

of services computationally intractable.

Currently, a suitable selection of any of the aforementioned services for a

specific application needs knowledge on the details of each of these protocols.

Efficient service selection from the large number of available services and their

78

varying requirements and parameters can greatly facilitate the application

development task. In this chapter, we first elaborate on the requirements of

automatic service selection for application requirement satisfaction. We then

describe S4, a system for service selection for large sensor network applica-

tion development which allows automatic service selection while satisfying

application constraints.

6.1 System Requirements

We support service sharing and reuse by allowing services to be used in

the development of a multitude of applications. S4 enables sensor network

application developers exploit a pool of existing services, while satisfying

application requirements. For this purpose, the followings are required:

1. Specification of application requirements.

2. Specification of service properties.

3. A match between available services and application requirements.

4. Generation of a configuration file that links the selected services.

We aim to maintain separation of concerns and provide a suitable level of

abstraction for application users, application developers and service develop-

ers. Application users will submit high level requirements of the application

such as maximum allowed energy consumption, maximum packet drop, time

synchronization error, etc. The high-level requirements vary widely from one

application to the other. Specifying these requirements should not require

detailed information about software toolsuite and the underlying hardware

platform. Application developers can use S4 to take advantage of the pool of

79

available services in a way that application requirements are satisfied. Service

developers provide the implementation of services that constitute a pool of

available services. They also provide an estimate of non-functional properties

of services.

In addition to service specifications provided by service developers, S4

takes advantage of dynamic data provided by the monitoring system (Chap-

ter 5). The monitor continuously profiles the deployed services and provides

S4 with updated service specifications and dependency relationships.

6.2 Service Selection

We consider the service selection as a constraint satisfaction problem (CSP).

A constraint satisfaction problem consists of a set of n variables, {x1, ..., xn};

a domain Di of possible values for each variable xi, 1 ≤ i ≤ n; and a collection

of m constraints {c1, ..., cm}. Each constraint ci, 1 ≤ i ≤ m, is a constraint

over some set of variables called the scheme of the constraint. The size of

this set is known as the arity of the constraint. A solution to a CSP is

an assignment of a value ai ∈ Di to xi, 1 ≤ i ≤ n, that satisfies all the

constraints [76].

We cast the service selection problem as a CSP in terms of variables,

values and constraints. Each of the underlying services provides a set of

specifications, defining the requirements it satisfies. These specifications will

be used in the CSP as variable domains, and the constraints are generated

from application requirements.

80

6.2.1 CSP Formulation

Let us consider the high-level requirements of the SHM application. An

important constraint on many WSSN applications is the memory require-

ment and energy consumption of the system. SHM applications have ad-

ditional constraints on maximum time synchronization error and maximum

data packet loss [115].. To formulate the requirements as a CSP, we define

the variables to be the employed policies: MaxEnergy, MaxMem, MaxTSEr-

ror, and MaxPcktLoss. Variable domains are determined by values listed in

service descriptions.

Let us consider a maximum energy consumption of 20K, maximum time

synchronization error of 40, maximum packet loss of 3 and maximum mem-

ory requirement of 4K. These constraints are unary and limit the value of

MaxEnergy, MaxTSError, MaxPcktLoss, and MaxMem to a number less than

20K, 40, 3, and 4K respectively:

CMaxEnergy = {MaxEnergy ∈ DMaxEnergy|MaxEnergy < 20K}
CMaxTSError = {MaxTSError ∈ DMaxTSError|MaxTSError < 40}
CMaxPcktLoss = {MaxPcktLoss ∈ DMaxPcktLoss|MaxPcktLoss < 3}
CMaxMem = {MaxMem ∈ DMaxMem|MaxMem < 4K}

(6.1)

The constraint graph includes four nodes: MaxEnergy, MaxTSError, Max-

PcktLoss, and MaxMem with no edges.

6.2.2 Service Selection Module

At this stage the CSP formulation is complete and the task is to find a

set of services, from the available pool of services, that satisfy all applica-

tion constraints. We will exploit meta constraint satisfaction [116] for the

purpose of service selection. Meta constraint satisfaction problems were orig-

81

inally designed to deal with the complexity of solving a problem by solving

an equivalent problem, represented at a different level of abstraction, which

can be solved more efficiently. In our case, the nature of the problem calls

for a meta constraint satisfaction problem. This is because an application

requires different types of services, each of which can be provided by a mul-

tiple of implementations. For example, an application may require a time

synchronization service, a multi-hop communication service, and an energy

management service. We need to choose a service for each of these required

services such that:

1. Each service satisfies application constraints that include variables pre-

sented in the service’s specifications.

2. The interaction between all selected services conform with the detailed

application requirements.

At the meta level, we can decompose the problem into subproblems, each

for selecting one of these services. Each subproblem includes a subset of the

variables in the original problem, together with the values for these variables

and the constraints relating variables within this subset [80]. The subprob-

lems are represented by metavariables. The domain of a metavariable is the

set of solutions to the subproblem (i.e. a set of services satisfying the first

item above). Metavariables can overlap by sharing common variables. These

common variables define the interactions between services. A metaconstraint

between two metavariables must enforce all the original constraints, involving

variables from the corresponding subproblems. This ensures that the second

item above is satisfied. Furthermore, if the same variable appears in both

subproblems, the metaconstraint must ensure that this variable receives the

same value in the solution chosen as metavalue for each of them.

82

We can think of each service as a meta-variable in the CSP, containing

a subset of variables present in the constraints. The variables within each

service, as well as variables from different services may be connected via

the derived constraints and different services can share variables. Additional

constraints can be used to relate variables in a single service.

The CSP solver may return more than one solution that satisfies applica-

tion constraints. In the next section we will discuss how S4 chooses a solution

from the available options.

6.2.3 Applying Dynamic Deployment Data

The Monitor provides on-line data regarding dynamic properties of services.

S4 leverages this data in two ways. First, whenever available, dynamic service

properties derived from the sensor network deployment replace static service

properties determined by the service developer. The dynamic properties of

each service define the CSP variables that correspond to that services and

their values are used in the CSP solver.

We allow the CSP solver to return all solutions that satisfy application

constraints. The second use of data from the Monitor is in choosing one

solution from the available options. The Bayesian belief revision system of

the Monitor is used for this purpose (Chapter 5). The Bayesian belief revision

system provides a list of hypotheses that state the probability of having high

energy consumption when a set of services are running. The probability of

each hypotheses is updated as new information becomes available from the

sensor network.

Let us consider a set R = {R1, R2, ..., RN} of N possible CSP solutions.

For each solution Ri with services {s1, s2, ..., sm}, we calculate the probability

83

Ph(Ri) of having high energy consumption. Ph(Ri) is calculated as follows.

Ph(Ri) =
∑

forallωj∈P (Ri)

Ph(ωj) (6.2)

where P (Ri) = {ω1, ω2, ..., ω2m} is the power set of Ri. A solution with

the minimum Ph is finally chosen as the service selection. This approach of

choosing a service selection provides flexibility in the degree of sensitivity to

dynamic data from the network.

6.2.4 Configuration File Generation

We generate the configuration file in nesC language for embedded applica-

tions that use TinyOS. TinyOS [117] is a component-based operating system

and platform for wireless sensor networks, written in the nesC programming

language [118] as a set of cooperating tasks and processes. nesC has a C-like

syntax with support for the TinyOS concurrency model.

Building embedded applications in nesC involves linking software compo-

nents. Each component provides and uses a number of interfaces. There

are two types of components in nesC: modules and configurations. Modules

provide application code, implementing one or more interface while configura-

tions are used to assemble other components together, connecting interfaces

used by components to interfaces provided by others. Our code generation

module generates the nesC configuration file with the information given by

the CSP solver output, and leaves the implementation of the module to the

application developer. The interfaces that the application provides are given

a priori with its requirements specification. The interfaces that are used are

derived from the CSP solver. The information for the used and provided in-

terfaces are given to the configuration generator module to provide the nesC

84

configuration file. Figure 6.1 shows this process.

6.3 Implementation

We have implemented our system for a simplified SHM application to col-

lect distributed sensor data from multiple sensors. This application requires

timestamped data to be reliably collected from the sensor nodes. The high-

level requirements for this application are the same as the SHM application,

and Equation 6.1 shows the high-level CSP. The SHM application requires

four services: Sensing, Time Synchronization, Remote Invocation, Multi-hop

Communication, and Energy Management.

Current implementations of services for WSSNs do not provide their non-

functional properties. In order to evaluate our system we have chosen 2

sensing, 10 time synchronization, 2 remote invocation, 42 multihop commu-

nication, and 30 energy management services from the previously developed

schemes [112, 111, 119, 113, 114]. We have derived service specification for

the considered services by evaluating their memory consumption, time syn-

chronization error, computation and packet loss in a fixed amount of time,

and for a fixed network size of 10 nodes. Due to the lack of detailed non-

functional specifications for these services, only rough estimates for each of

these parameters were derived. In the first step, each parameter was eval-

uated as extra low (XL), low (L), medium (M), high (H), and extra high

(XH). Next, these estimates were translated to exact numbers based on the

type of the parameter. For example, memory consumption is translated to

Bytes of memory, time synchronization is translated to micro seconds of er-

ror, etc. Table 6.1 shows a subset of these values for the considered services.

85

CSP Solver

Application

Requirements and

Specifications

Service

Specifications

System

Properties

Provided

Interfaces

Used

Interfaces

Selected

Services

Configuration

Generator

Figure 6.1: The process of generating a configuration file from application
specifications.

The pool of services, their interfaces, and specifications are given to the

CSP solver module. We have five metavariables: Sensing, TimeSynchroniza-

tion, RemoteInvocation, MHCommunication, and EnergyManagement in this

meta constraint satisfaction problem. The variables in this CSP are memory,

tsError, energy, and pcktLoss with the following ranges.

memory ∈ {250, 300, 350, 400, 450}

tsError ∈ {10, 20, 50, 100, 200}

energy ∈ {100, 120, 150, 200, 300}

pcktLoss ∈ {1, 5, 10, 20, 50}

(6.3)

Note that a service description may not contain all variables. In such cases,

the variable takes a don’t-care value in the CSP. Moreover, for some vari-

ables the cumulative value represented in each of the services should satisfy

the constraints. This is different from traditional CSPs where the problem

is to find a single value, from the provided range, that satisfies the con-

straints. For example, consider the runTime variable. In order to satisfy the

maximum energy consumption policy (em-PolicyMaxEnergy), the sum of all

86

Table 6.1: Estimated non-functional properties for a subset of services
considered in the service selection.

Service Name Memory Time
Sync
Error

Energy Pckt
Loss

Est. Value Est. Value Est. Value Est. Value

Sensing XH 450 - - M 150 - -
SensingUnit H 400 - - M 150 - -
RemoteSensing H 400 - - L 120 - -
FTSP L 300 XL 10 L 120 - -
Gradient Clock M 350 H 100 M 150 - -
RemoteInvoc XL 350 - - L 120 M 10
ReliableComm M 250 - - L 120 XL 1
ReliableInvoc M 250 - - L 120 L 3
AODV XL 250 - - XL 100 M 10
Agile AODV XL 250 - - L 120 XL 1
Rumor XL 250 - - H 200 H 20
OLSR L 300 - - XH 300 L 5
DVS L 300 - - XL 100 - -
TS-DVS L 300 - - H 200 - -

values of runTime variable in the five metavariables should be considered.

Similarly, in order to satisfy the maximum time synchronization error policy

(em-PolicyMaxTSError) the maximum value of tsError variable should be

considered. Thus, in order to take into account the cumulative values of

variables, the constraints are accompanied by a suitable operator from the

set {min,max,
∑
,
∏
}.

For solving the CSP we use the Constraint Class from Microsoft’s Solver-

Foundation library. The variables, their domains and the constraints are

given to the ConstraintSystem which can provide the solution using its Solve

method. The output from the solver module (i.e. the selected services) are

given to the configuration generator.

Table 6.2 shows results from the CSP solver. The CSP solver can return

more than one service selection that satisfy the constraints. In this case

87

Table 6.2: Results of service selection for an SHM application using CSP
solver.

Service Selection
R1 R2 R3

Sensing RemoteSensing RemoteSensing RemoteSensing
Time Sync. FTSP FTSP FTSP
Remote Invoca-
tion

ReliableInvoc ReliableComm ReliableComm

Multihop
Comm.

Agile AODV Agile AODV AODV

Energy Mng. TS-DVS DVS TS-DVS

information from the Bayesian belief revision module of the Monitor is used

to break the tie. In the beginning, Ph(Ri) = Ph(Rj), for all i, j ∈ {1..3}

and any of the solutions can be selected. The service selection can change in

response to information from the Monitor on the probability of having high

energy consumption for each of the solutions. From results in Chapter 5 we

know that the Monitor has derived the following probabilities after receiving

data from the sensor network:

• Ph(RemoteSensing) = 0.32

• Ph(FTSP) = 0.32

• Ph(FTSPandDV S) = 0.32

• Ph(DV S) = 0.004

• Ph(TS −DV S) = 0.004

• Ph(RemoteSensingandTS −DV S) = 0.004

• Ph(RemoteSensingandDV S) = 0.004

• Ph(RemoteSensingandFTSP) = 0.004

88

1 c o n f i g u r a t i o n RemoteSensingC
2 {

4 prov ide s {
5 i n t e r f a c e RemoteSensing ;
6 i n t e r f a c e Retr ieveData ;
7 }
8 }

10 implementation
11 {
12 components Main ,
13 RemoteSensingM ,
14 SensingC ,
15 TSDVSC,
16 FTSPC,
17 AgileAODVC ,
18 Rel iab le InvocC ;

20 Main . StdControl −> RemoteSensingM ;

22 RemoteSensingM . Sens ing −> SensingC ;
23 RemoteSensingM .FTSP −> FTSPC;
24 RemoteSensingM .TSDVS −> TSDVSC;
25 RemoteSensingM . AgileAODV −> AgileAODVC ;
26 RemoteSensingM . Re l i ab l e Invoc −> Rel iab le InvocC ;
27 }

Listing 6.1: Configuration file for a simplified SHM application. The
configuration file is generated in nesC.

In calculating Ph(Ri), terms for which the Monitor does not have data are

ignored. We thus have: Ph(R2) > Ph(R1) and Ph(R1) = Ph(R3). This results

in selecting either R1 or R3 for the SHM application under consideration.

Listing 6.1 shows the generated configuration file. The arrows bind inter-

faces (on the left) to implementation (on the right). This configuration file

shows that Sensing, FTSP, TSDVS, Agile AODV and Reliable Invoc services

are chosen and linked to build the application.

89

6.4 Experimental Results

In order to assess the impact of dynamic policy-based service adaptation and

global policy changes, we consider the energy consumption of a WSN system

with rechargeable batteries supplied by solar panels. For this purpose we use

data gathered from a long-term continuous monitoring deployment of over

100 Imote2 sensor nodes on the Jindo Bridge in South Korea.

We have used the charging current and voltage data collected in the course

of 28 consecutive days for modeling the energy supply and consumption in

our system.

We first assess the effect of dynamic policy changes at the node level.

Each node is able to adapt service parameters within the range dictated

by the global policy. We then discuss the effect of global policy changes

such as service selection change in response to dynamic information from the

Monitor.

Estimated power charging per day =

Daily charging current× 4.1V × Estimated Hours of Sunlight
(6.4)

6.4.1 Local Policy-based Adaptation

First, we compare the energy level on two nodes, one employing a static

monitoring scheme and the other employing our policy-driven adaptation

method. The nodes are programmed with a data acquisition application with

4 phases: wakeup, sensing, data processing, data transfer, and are in deep

sleep mode when inactive. Energy consumption on the nodes is calculated

based on current draw measurement and duration of each phase, as depicted

90

Table 6.3: Current draw measurements and duration of phases for a data
acquisition application. Nominal input voltage for the Imote2 is 4.5 V.

Phase Current(mA) Power(mW) Duration(s) Energy
Consump-
tion (mWh)

Wake-up 48 216 30 1.8
Sensing 169 760.5 900 190.125
Data Pro-
cessing

80 360 10 1

Data
Transfer

55 247.5 40 2.75

Sleep 0.1 0.45

0

1000

2000

3000

4000

5000

6000

0 5 10 15 20 25

Available Energy (mWh)

Day

(a) Static

0

1000

2000

3000

4000

5000

6000

0 5 10 15 20 25

Available Energy (mWh)

Day

(b) Policy-driven Adaptation

Figure 6.2: Comparison of energy saving using a static method and
dynamic, policy-driven adaptation. Arrows indicate adaptation actions.

in Table 6.3. On each node, the available energy is derived based on the

energy consumption of running the data acquisition application, and the

provided daily solar charging power as described above. The static scheme

runs the application 10 times per day. The policy-based adaptation model

adjust the number of remote sensing events based on the average of available

daily charging current in the last five days. The range of allowed sensing

events per day is determined by the system-wide policy and in this case

is between 1 and 10. Figure 6.2 compares these two approaches. In the

static scheme, the node runs out of available energy after only 18 days of

operation, while the policy-based scheme maintains an acceptable level of

91

available energy at all times by adjusting the number of samplings per day.

The arrows in Figure 6.2b show adjustments in the number of sensing events

in a day based on the average charging current in the last 5 days. Arrows

pointing down show a decrease in the number of sensing events, while upward

arrows show an increase.

6.4.2 Global Policy Changes

We consider the effect of dynamic global policy changes at two levels. First,

we evaluate the effect of system-wide policy changes that alter the acceptable

range of parameters across the network. Next, we evaluate a more aggressive

global policy change which triggers a change in service selection.

In order to evaluate the effect of system-wide policy changes to the accept-

able range of parameters, we consider two separate networks: one single-hop

and the other multi-hop with up to a 5-hop radius. The multi-hop net-

work consumes more energy, which results in several nodes running out of

power and becoming unresponsive. An increase in the number of unrespon-

sive nodes complicates routing and can even cause network fragmentation.

Thus, in the adaptive scheme, the system-wide policy is changed based on

the percentage of responsive nodes. The policy change mechanism alters the

range of acceptable sensing events in a day based on the reported number of

responsive nodes. As the number of responsive nodes decreases, the adopted

policies become more conservative to ensure long network lifetime. At the

node level, each node uses this range and the available charging current to

choose the number of sensing events in a day.

Figure 6.3a shows the percentage of responsive nodes in the two networks.

The multi-hop network generally has a smaller number of responsive nodes

92

Percentage of Awake Nodes

Day
0

0.2

0.4

0.6

0.8

1

0 6 11 16 21 26

Multihop Network

Singlehop Network

(a) Fraction of awake nodes.

0

1000

2000

3000

4000

5000

6000

0 6 11 16 21 26

MultihopNetwork

SingleHopNetwork

Available Energy (mWh)

Day

(b) Effect of policy changes.

Figure 6.3: Effect of global policy changes in multi-hop and single-hop
networks. Arrows indicate adaptation actions.

and shows a larger variance. Figure 6.3b shows the effect of system-wide

policy adjustments on the available level of energy. The multi-hop network

has a larger number of policy changes, which is due to the large variance in

the number of responsive nodes. It also adopts a more conservative policy

to maintain network connectivity at all times.

To evaluate the effect of the adaptive middleware framework on service

selection, we consider the SHM application with an initial service selection

corresponding to R2 from the CSP solver. As discussed in the previous sec-

tion, the information from the Bayesian belief revision module of the Monitor

leads to the conclusion that this service selection has a higher probability of

having high energy consumption compared to a selection that replaces DVS

service with TS-DVS. This is due to a time-keeping anomaly of embedded

devices that use the CPU tick counter as their clock source [96]. In these

embedded devices, the CPU frequency switching actions of the DVFS service

disrupt the local clock, causing a time lapse.

The time synchronization error problem under classical DVFS can be miti-

gated by running the time synchronization service more frequently. However,

the time synchronization service itself has relatively high energy consump-

93

-20

0

20

40

60

80

100

120

140

0

1
8

1

3
5

9

5
6

4

7
4

2

1
0

6
4

1
2

4
4

1
4

2
2

1
6

0
0

1
7

8
1

1
9

5
9

2
1

6
4

2
3

4
2

2
6

6
4

2
8

4
5

3
0

2
3

3
2

0
1

3
3

8
2

3
5

5
9

3
7

6
5

3
9

4
2

4
2

6
5

En
e

rg
y

(m
W

h
)

Time (s)

TS-DVS Energy Saving

DVS Energy Saving

(a) Energy consumption

y = 0.1539x

-5

0

5

10

15

20

25

30

35

40

0
1

7
8

3
5

6
5

3
3

7
1

1
8

8
9

1
0

6
7

1
2

4
5

1
4

2
2

1
6

0
0

1
7

7
8

1
9

5
6

2
1

3
4

2
3

1
2

2
4

8
9

2
6

6
7

2
8

4
5

3
0

2
3

3
2

0
1

3
3

7
8

3
5

5
6

3
7

3
4

3
9

1
2

4
0

9
0

To
ta

l D
V

S
Ee

n
rg

y
-

To
ta

l T
S-

D
V

S
En

e
rg

y

Time (s)

(b) Energy difference

Figure 6.4: Comparison of energy consumption between a classical DVS
service and frequent resynchronization with a modified TS-DVS service.
The TS-DVS service takes resynchronization cost into account.

tion, causing an overall increase in the energy consumption due to more

frequent resynchronizations. This excessive energy consumption is detected

by the adaptive middlware framework, triggering a new service selection.

Figure 6.4 compares the energy consumption of the classical DVS scheme

with that of the modified service selection. In the calculation of total energy

consumption for the new service selection we have considered the cost of

service reconfiguration. Table 6.4 shows the reconfiguration cost calculation.

Table 6.4: Reconfiguration cost for new service selection.

Cost Item Time (s) Energy (mWh)

Transmission 0.03 0.0019
Processing 0.02 0.0013
Total 0.05 0.0031

These results confirm that even a relatively simple rule-based adaptive

policy can greatly benefit a resource-limited system, increasing its longevity

and robustness. While we focus on energy in this paper, similar effects can be

seen in network congestion, load balancing, and other facets of middleware

services.

94

CHAPTER 7

CONCLUSIONS AND FUTURE WORK

In this section we provide a summary of this dissertation. We will also discuss

its limitations and future directions.

7.1 Summary

In this dissertation we studied the problem of software development for large-

scale wireless smart sensor networks (WSSNs). Energy management is im-

portant to increase the lifespan of sensor nodes. We therefore focus on op-

timizing energy consumption of the sensor network in the face of varying

application requirements and environmental conditions.

Our work is motivated by the requirements of two real-world WSSN appli-

cations, namely structural health monitoring (SHM) and environmental and

agricultural monitoring. It was during the course of developing and deploy-

ing middleware services for these applications that we recognized the need

for a framework to facilitate software development for dynamic and complex

WSSN applications. We follow three main principles for this purpose: sepa-

ration of concerns, sharing and reuse, and adaptivity. The result is I-AdMiN:

Illinois Adaptive Middleware framework for wireless smart sensor Networks.

In the design of I-AdMiN, we consider applications that can be fully rep-

resented as a composition of services. In this model, a set of services can

be linked together to build an application with services interacting with one

95

another through their well-defined interfaces. We use the Actor model of

computation to represent service instances and their interactions. A service

interface is thus the set of messages the actor representing the services sends

and receives. Service instances connect services to each other and to the

application. For service interface representation, we define service properties

which describe non-functional service specifications. Service properties can

be either static or dynamic. Static service properties are determined by ser-

vice developer at the time of its implementation and therefore do not reflect

the effect of the environment. Environmental conditions can greatly affect

service properties such as energy consumption which in turn affects the effi-

ciency and lifetime of the sensor network. Dynamic service properties reflect

the effect of the environment and are determined during the runtime of the

sensor network.

The architecture of I-AdMiN has two layers. The base layer is comprised of

service actors which together constitute the main functionality of the WSSN

application. The meta layer is the main focus of this dissertation and is

comprised of different meta-actors that enable dynamic service configuration.

The Monitor meta-actor is responsible for deriving energy characteristics of

services as energy anomalies. It does so by leveraging coarse-grained periodic

data from the sensor nodes.

The monitor uses weighted least squares (WLS) regression to attribute

aggregate energy consumption to individual services that are running in the

sensor network. Another responsibility of the Monitor is to detect energy

spikes and isolating the cause. The cause of an energy anomaly can be ser-

vice or service interaction issues, or hardware problems. When new data

from the sensor network becomes available to the Monitor, it first detects

and diagnoses instances of high energy consumption. This information is

96

then used in a Bayesian belief revision system where each hypothesis states

the probability of having high energy consumption when a set of services are

running. The probability of the hypotheses which is inferred using Bayesian

methods is shared with the Global Coordinator meta-actor to be used at the

time of service selection. The Global Coordinator meta-actor is responsible

for automatic service selection based on dynamic service properties and the

detected energy anomalies in a way that application requirements are satis-

fied. We represent service selection as a meta-constraint satisfaction prob-

lem and choose a solution based on dynamic network information from the

Monitor. Updates on service selection and parameterization are sent to the

Parameter Adaptation meta-actor to be distributed to Service meta-actors

on individual nodes. Service meta-actors are tightly coupled to the base level

service actors and are responsible for enacting low-latency, localized control

over service parameters.

I-AdMiN facilitates software development for WSSNs by allowing efficient

and automatic service selection. It also finds dynamic properties of services

which cannot be accurately determined off-line and can change over time.

The actor model in turn allows dynamic reconfiguration and parameteriza-

tion of the selected services based on application requirements as well as

environmental conditions. The approaches taken in I-AdMiN are vastly ap-

plicable to other areas of distributed systems. For example, this framework

can be used in the HomeOS [120] project to allow dynamic selection of dif-

ferent modules of a home deployment. As another example, many mobile

distributed systems can use I-AdMiN for the monitoring of their components

from coarse-grained data, which can then optimize component selection and

operation.

97

7.2 Limitations and Future Work

WSSN applications impose unique requirements that are crucial to their suc-

cessful deployment. We therefore focus on satisfying application constraints

in the design of I-AdMiN. Our service selection module, S4 satisfies all ap-

plication constraints submitted by application user. However, in deriving

dynamic service properties and constraint violations our focus is only on en-

ergy. We devised a method to attribute aggregate energy consumption to

individual services. This can be extended to other service properties such

as runtime, packet loss, etc. We also only discussed the detection and isola-

tion of energy anomalies while other constraint violations can be investigated

during system runtime.

The adaptive middleware framework employs a policy-based adaptation

where each service instance is assigned a policy, which gives it a range for

one or more of its configuration parameters. The service is then free to make

independent decisions about selecting the appropriate configuration value

within that range, and can adjust it at any point due to local adaptation

decisions. Our work does not specify how parameter ranges are derived

and how a service can choose a parameter that improves the efficiency of

the sensor network. An area which can be investigated in future work is

parameter derivation based on dynamic network properties. In the beginning,

a set of parameters can be assigned to each service in a way that application

constraints are satisfied. A monitoring scheme can be used to attributed total

energy consumption to different service parameter values and a selection that

optimizes energy consumption can be picked.

Another area for future work is optimizing when service selection and pa-

rameterization updates are distributed in the network. Service updates can

98

be distributed either periodically or in the event of specific occurrences. We

followed an event-driven approach where service configuration updates are

distributed as soon as new dynamic information becomes available. We leave

a thorough investigation of this optimization for future work.

In this work we employed an implicit enforcement of the assigned policies to

services by changing service selection when an energy anomaly is detected.

Another module that can be added to our framework is a regulator that

imposes the assigned policies and ensures that service properties reflect their

true behavior during network runtime. Such a system can also enforce failure

semantics to improve fault tolerance. Ideally, each component has its own set

of failure semantics for additional flexibility. Such behavior can be realized

by the use of a language such as DIL [121], which allows per-component

protocol specifications to transparently enforce failure semantics.

99

REFERENCES

[1] J. Li, T. Nagayama, K. Mechitov, and B. F. Spencer, “Efficient
campaign-type structural health monitoring using wireless smart sen-
sors,” in Sensors and Smart Structures Technologies for Civil, Mechan-
ical, and Aerospace Systems, vol. 8345, 2012.

[2] “Illinois structural health monitoring project (ishmp) service tool-
suite.” [Online]. Available: http://shm.cs.uiuc.edu/

[3] Y. Yao and J. Gehrke, “The cougar approach to in-
network query processing in sensor networks,” SIGMOD Rec.,
vol. 31, no. 3, pp. 9–18, Sep. 2002. [Online]. Available:
http://doi.acm.org/10.1145/601858.601861

[4] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and
W. Hong, “Tinydb: an acquisitional query processing sys-
tem for sensor networks,” ACM Trans. Database Syst.,
vol. 30, no. 1, pp. 122–173, Mar. 2005. [Online]. Available:
http://doi.acm.org/10.1145/1061318.1061322

[5] R. Gummadi, O. Gnawali, and R. Govindan, “Macro-programming
wireless sensor networks using kairos,” in Distributed Computing in
Sensor Systems, ser. Lecture Notes in Computer Science, V. Prasanna,
S. Iyengar, P. Spirakis, and M. Welsh, Eds. Springer Berlin / Heidel-
berg, 2005, vol. 3560, pp. 466–466.

[6] N. Kothari, R. Gummadi, T. Millstein, and R. Govindan,
“Reliable and efficient programming abstractions for wireless sensor
networks,” in Proceedings of the 2007 ACM SIGPLAN conference
on Programming language design and implementation, ser. PLDI
’07. New York, NY, USA: ACM, 2007. [Online]. Available:
http://doi.acm.org/10.1145/1250734.1250757 pp. 200–210.

100

[7] T. W. Hnat, T. I. Sookoor, P. Hooimeijer, W. Weimer, and
K. Whitehouse, “Macrolab: a vector-based macroprogramming
framework for cyber-physical systems,” in Proceedings of the 6th
ACM conference on Embedded network sensor systems, ser. SenSys
’08. New York, NY, USA: ACM, 2008. [Online]. Available:
http://doi.acm.org/10.1145/1460412.1460435 pp. 225–238.

[8] L. Luo, T. F. Abdelzaher, T. He, and J. A. Stankovic, “En-
viroSuite: an environmentally immersive programming framework
for sensor networks,” Transactions on Embedded Computer Sys-
tems, vol. 5, pp. 543–576, August 2006. [Online]. Available:
http://doi.acm.org/10.1145/1165780.1165782

[9] A. Pathak, L. Mottola, A. Bakshi, V. K. Prasanna, and
G. P. Picco, “Expressing sensor network interaction patterns
using data-driven macroprogramming,” in Proceedings of the
5th IEEE International Conference on Pervasive Computing and
Communications Workshops, ser. PERCOMW ’07. Washington,
DC, USA: IEEE Computer Society, 2007. [Online]. Available:
http://dx.doi.org/10.1109/PERCOMW.2007.46 pp. 255–260.

[10] R. Newton, G. Morrisett, and M. Welsh, “The Regiment
macroprogramming system,” in Proceedings of the 6th International
Conference on Information Processing in Sensor Networks, ser.
IPSN ’07. New York, NY, USA: ACM, 2007. [Online]. Available:
http://doi.acm.org/10.1145/1236360.1236422 pp. 489–498.

[11] M. Hossain, A. Alim Al Islam, M. Kulkarni, and V. Raghunathan,
“µsetl: A set based programming abstraction for wireless sensor net-
works,” in Information Processing in Sensor Networks (IPSN), 2011
10th International Conference on, april 2011, pp. 354 –365.

[12] K. Mechitov and G. Agha, “An architecture for dynamic service-
oriented computing in networked embedded systems,” in Software Ser-
vice and Application Engineering, M. Heisel, Ed., 2012, pp. 147–164.

[13] J. Liu and F. Zhao, “Towards semantic services for sensor-rich infor-
mation systems,” in Broadband Networks, 2005. BroadNets 2005. 2nd
International Conference on, oct. 2005, pp. 967 –974 Vol. 2.

[14] K. Mechitov, R. Razavi, and G. Agha, “Architecture design principles
to support adaptive service orchestration in wsn applications,”
SIGBED Rev., vol. 4, no. 3, pp. 37–42, July 2007. [Online]. Available:
http://doi.acm.org/10.1145/1317103.1317110

101

[15] M. P. Papazoglou and W.-J. Heuvel, “Service oriented architec-
tures: approaches, technologies and research issues,” The VLDB
Journal, vol. 16, no. 3, pp. 389–415, 2007. [Online]. Available:
http://dx.doi.org/10.1007/s00778-007-0044-3

[16] J. Leguay, M. Lopez-Ramos, K. Jean-Marie, and V. Conan, “An effi-
cient service oriented architecture for heterogeneous and dynamic wire-
less sensor networks,” in Local Computer Networks, 2008. LCN 2008.
33rd IEEE Conference on, oct. 2008, pp. 740 –747.

[17] G. Agha, Actors: A Model of Concurrent Computation in Distributed
Systems. MIT Press, 1986.

[18] M. Kushwaha, I. Amundson, X. Koutsoukos, S. Neema, and J. Szti-
panovits, “Oasis: A programming framework for service-oriented sen-
sor networks,” in Communication Systems Software and Middleware,
2007. COMSWARE 2007. 2nd International Conference on, jan. 2007,
pp. 1 –8.

[19] W. Emmerich, “Software engineering and middleware: a roadmap,” in
Proceedings of the Conference on The Future of Software Engineering,
ser. ICSE ’00. New York, NY, USA: ACM, 2000. [Online]. Available:
http://doi.acm.org/10.1145/336512.336542 pp. 117–129.

[20] C. L. Hall, Building client/server applications using TUXEDO. New
York, NY, USA: John Wiley & Sons, Inc., 1996.

[21] E. S. Hudders, CICS: a guide to internal structure. Somerset, NJ,
USA: Wiley-QED Publishing, 1994.

[22] V. Issarny, M. Caporuscio, and N. Georgantas, “A perspective
on the future of middleware-based software engineering,” in 2007
Future of Software Engineering, ser. FOSE ’07. Washington,
DC, USA: IEEE Computer Society, 2007. [Online]. Available:
http://dx.doi.org/10.1109/FOSE.2007.2 pp. 244–258.

[23] M. Hapner, R. Burridge, and R. Sharma, “Java message service speci-
fication,” Sun Microsystems, Tech. Rep., 1999.

[24] Tibco Rendezvous, http://www.tibco.com/products/soa/messaging/rendezvous/.

[25] Progress SonicMQ, http://www.progress.com/en/sonic/sonicmq.html.

[26] R. Orfali, D. Harkey, and J. Edwards, Instant CORBA. New York,
NY, USA: John Wiley & Sons, Inc., 1997.

[27] D. Box, Essential COM, 1st ed. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 1997.

102

[28] B. Burke and R. Monson-Haefel, Enterprise JavaBeans 3.0 (5th Edi-
tion). O’Reilly Media, Inc., 2006.

[29] M. Singh and M. Huhns, Service-Oriented Computing: Semantics, Pro-
cesses, Agents. John Wiley and Sons, 2005.

[30] M. P. Papazoglou, P. Traverso, S. Dustdar, F. Leymann, and B. J.
Krämer, “Service-oriented computing: A research roadmap,” in Ser-
vice Oriented Computing (SOC), F. Cubera, B. J. Krämer, and M. P.
Papazoglou, Eds., no. 05462, 2006.

[31] W. Tsai, “Service-oriented system engineering: A new paradigm,” in
IEEE International Workshop on Service-Oriented Systems Engineer-
ing, 2005, pp. 3–8.

[32] L. Jingyong, Z. Yong, C. Yong, and Z. Lichen, “Middleware-based
distributed systems software process,” in Proceedings of the 2009
International Conference on Hybrid Information Technology, ser.
ICHIT ’09. New York, NY, USA: ACM, 2009. [Online]. Available:
http://doi.acm.org/10.1145/1644993.1645058 pp. 345–348.

[33] M.-M. Wang, J.-N. Cao, J. Li, and S. Dasi, “Middleware for wireless
sensor networks: A survey,” Journal of Computer Science and Tech-
nology, vol. 23, pp. 305–326, 2008.

[34] J. W. Hui and D. Culler, “The dynamic behavior of a data
dissemination protocol for network programming at scale,” in
Proceedings of the 2nd international conference on Embedded networked
sensor systems, ser. SenSys ’04. New York, NY, USA: ACM, 2004.
[Online]. Available: http://doi.acm.org/10.1145/1031495.1031506 pp.
81–94.

[35] W. Dong, C. Chen, X. Liu, J. Bu, and Y. Liu, “Dynamic linking and
loading in networked embedded systems,” in Mobile Adhoc and Sen-
sor Systems, 2009. MASS ’09. IEEE 6th International Conference on,
2009, pp. 554–562.

[36] P. J. Marrón, M. Gauger, A. Lachenmann, D. Minder, O. Saukh, and
K. Rothermel, “Flexcup: a flexible and efficient code update mecha-
nism for sensor networks,” in Proceedings of the Third European confer-
ence on Wireless Sensor Networks, ser. EWSN’06. Berlin, Heidelberg:
Springer-Verlag, 2006, pp. 212–227.

[37] G. Coulson, G. Blair, P. Grace, F. Taiani, A. Joolia, K. Lee,
J. Ueyama, and T. Sivaharan, “A generic component model
for building systems software,” ACM Trans. Comput. Syst.,
vol. 26, no. 1, pp. 1:1–1:42, Mar. 2008. [Online]. Available:
http://doi.acm.org/10.1145/1328671.1328672

103

[38] D. Hughes, P. Greenwood, G. Blair, G. Coulson, P. Grace,
F. Pappenberger, P. Smith, and K. Beven, “An experiment
with reflective middleware to support grid-based flood monitoring,”
Concurr. Comput. : Pract. Exper., vol. 20, no. 11, pp. 1303–1316,
Aug. 2008. [Online]. Available: http://dx.doi.org/10.1002/cpe.v20:11

[39] L. Mottola, G. P. Picco, and A. A. Sheikh, “Figaro: fine-grained
software reconfiguration for wireless sensor networks,” in Proceedings
of the 5th European conference on Wireless sensor networks, ser.
EWSN’08. Berlin, Heidelberg: Springer-Verlag, 2008. [Online].
Available: http://dl.acm.org/citation.cfm?id=1786014.1786039 pp.
286–304.

[40] D. Hughes, K. Thoelen, W. Horré, N. Matthys, J. D. Cid, S. Michiels,
C. Huygens, and W. Joosen, “Looci: a loosely-coupled component
infrastructure for networked embedded systems,” in Proceedings of
the 7th International Conference on Advances in Mobile Computing
and Multimedia, ser. MoMM ’09. New York, NY, USA: ACM, 2009.
[Online]. Available: http://doi.acm.org/10.1145/1821748.1821787 pp.
195–203.

[41] A. Taherkordi, F. Eliassen, R. Rouvoy, and Q. Le-Trung, “Rewise:
A new component model for lightweight software reconfiguration in
wireless sensor networks,” in Proceedings of the OTM Confederated
International Workshops and Posters on On the Move to Meaning-
ful Internet Systems: 2008 Workshops: ADI, AWeSoMe, COMBEK,
EI2N, IWSSA, MONET, OnToContent + QSI, ORM, PerSys, RDDS,
SEMELS, and SWWS, ser. OTM ’08. Berlin, Heidelberg: Springer-
Verlag, 2008, pp. 415–425.

[42] T. Liu and M. Martonosi, “Impala: a middleware system for managing
autonomic, parallel sensor systems,” in Proceedings of the ninth
ACM SIGPLAN symposium on Principles and practice of parallel
programming, ser. PPoPP ’03. New York, NY, USA: ACM, 2003.
[Online]. Available: http://doi.acm.org/10.1145/781498.781516 pp.
107–118.

[43] P. Costa, G. Coulson, R. Gold, M. Lad, C. Mascolo, L. Mottola,
G. Picco, T. Sivaharan, N. Weerasinghe, and S. Zachariadis, “The
runes middleware for networked embedded systems and its applica-
tion in a disaster management scenario,” in Pervasive Computing and
Communications, 2007. PerCom ’07. Fifth Annual IEEE International
Conference on, 2007, pp. 69–78.

104

[44] W. Horré, S. Michiels, W. Joosen, and P. Verbaeten, “Davim:
Adaptable middleware for sensor networks,” IEEE Distributed Systems
Online, vol. 9, no. 1, pp. 1–, Jan. 2007. [Online]. Available:
http://dx.doi.org/10.1109/MDSO.2008.2

[45] A. Taherkordi, Q. Le-Trung, R. Rouvoy, and F. Eliassen, “Wisekit:
A distributed middleware to support application-level adaptation in
sensor networks,” in Proceedings of the 9th IFIP WG 6.1 International
Conference on Distributed Applications and Interoperable Systems, ser.
DAIS ’09. Berlin, Heidelberg: Springer-Verlag, 2009, pp. 44–58.

[46] A. Taherkordi, F. Loiret, R. Rouvoy, and F. Eliassen, “Optimizing
Sensor Network Reprogramming via In-situ Reconfigurable Compo-
nents,” ACM Transactions on Sensor Networks, vol. 9, no. 2, pp.
1–37, May 2013. [Online]. Available: http://hal.inria.fr/hal-00658748

[47] A. Taherkordi, F. Loiret, A. Abdolrazaghi, R. Rouvoy, Q. Le-Trung,
and F. Eliassen, “Programming sensor networks using remora compo-
nent model,” in Proceedings of the 6th IEEE international conference
on Distributed Computing in Sensor Systems, ser. DCOSS’10. Berlin,
Heidelberg: Springer-Verlag, 2010, pp. 45–62.

[48] P. Levis and D. Culler, “Maté: a tiny virtual machine for sensor
networks,” SIGPLAN Notices, vol. 37, pp. 85–95, October 2002.
[Online]. Available: http://doi.acm.org/10.1145/605432.605407

[49] C.-L. Fok, G.-C. Roman, and C. Lu, “Mobile agent middleware for sen-
sor networks: an application case study,” in Proceedings of the 4th In-
ternational Symposium on Information Processing in Sensor Networks,
ser. IPSN ’05. Piscataway, NJ, USA: IEEE Press, 2005. [Online].
Available: http://portal.acm.org/citation.cfm?id=1147685.1147747

[50] N. Carriero and D. Gelernter, “Linda in context,” Communications
of the ACM, vol. 32, pp. 444–458, April 1989. [Online]. Available:
http://doi.acm.org/10.1145/63334.63337

[51] A. Boulis, C.-C. Han, and M. B. Srivastava, “Design and implementa-
tion of a framework for efficient and programmable sensor networks,”
in International Conference on Mobile Systems, Applications, and Ser-
vices. USENIX Association.

[52] Y. Yu, L. J. Rittle, V. Bhandari, and J. B. LeBrun, “Supporting
concurrent applications in wireless sensor networks,” in Proceedings
of the 4th International Conference on Embedded Networked Sensor
Systems, ser. SenSys ’06. New York, NY, USA: ACM, 2006. [Online].
Available: http://doi.acm.org/10.1145/1182807.1182822 pp. 139–152.

105

[53] Y. Kwon, S. Sundresh, K. Mechitov, and G. Agha, “ActorNet: an
actor platform for wireless sensor networks,” in Proceedings of the 5th
International Joint Conference on Autonomous Agents and Multiagent
Systems, ser. AAMAS ’06. New York, NY, USA: ACM, 2006.
[Online]. Available: http://doi.acm.org/10.1145/1160633.1160871 pp.
1297–1300.

[54] G. Agha, N. Jamali, and C. A. Varela, “Agent naming and coordina-
tion: Actor based models and infrastructures,” in Coordination of In-
ternet Agents: Models, Technologies, and Applications, 2001, pp. 225–
246.

[55] N. Jamali, P. Thati, and G. Agha, “An actor-based architecture for
customizing and controlling agent ensembles,” in IEEE Intelligent Sys-
tems, vol. 14, no. 2, April, 1999.

[56] A. Ricci, R. H. Bordini, and G. A. Agha, “Agere! (actors and agents
reloaded): splash 2011 workshop on programming systems, languages
and applications based on actors, agents and decentralized control,”
in OOPSLA Companion, C. V. Lopes and K. Fisher, Eds., 2011, pp.
325–326.

[57] A. Ricci, G. Agha, and R. H. Bordini, “Agere! (actors and agents
reloaded): splash 2011 workshop on programming systems, languages
and applications based on actors, agents and decentralized control,” in
SPLASH Workshops, C. V. Lopes, Ed., 2011, pp. 143–146.

[58] J. Rao and X. Su, “A survey of automated web service composition
methods,” in Semantic Web Services and Web Process Composition,
ser. Lecture Notes in Computer Science, J. Cardoso and A. Sheth,
Eds. Springer Berlin / Heidelberg, 2005, vol. 3387, pp. 43–54.

[59] T. Bellwood, L. Clement, D. Ehnebuske, A. Hately, M. Hondo,
Y. Husband, K. Januszewski, S. Lee, B. McKee, J. Munter,
and C. Riegen, “Universal description discovery and integration
(uddi) specification,” Tech. Rep., 2005. [Online]. Available: http
://www.oasis-open.org

[60] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana,
“Web services description language (wsdl),” W3C Web Site,
vol. 2008, no. 2008-01-07, pp. 1–32, 2001. [Online]. Available:
http://www.w3.org/TR/wsdl

[61] D. e. a. Box, “Simple object access protocol (soap),” Tech. Rep., 2001.
[Online]. Available: http://www.w3.org/TR/soap/

106

[62] F. Casati, S. Ilnicki, L.-J. Jin, V. Krishnamoorthy, and M.-C. Shan,
“eflow: a platform for developing and managing composite e-services,”
in Research Challenges, 2000. Proceedings. Academia/Industry Work-
ing Conference on, 2000, pp. 341 –348.

[63] S. McIlraith, T. Son, and H. Zeng, “Semantic web services,” Intelligent
Systems, IEEE, vol. 16, no. 2, pp. 46 – 53, mar-apr 2001.

[64] B. Medjahed, A. Bouguettaya, and A. K. Elmagarmid, “Com-
posing web services on the semantic web,” The VLDB Journal,
vol. 12, no. 4, pp. 333–351, Nov. 2003. [Online]. Available:
http://dx.doi.org/10.1007/s00778-003-0101-5

[65] S. Narayanan and S. A. McIlraith, “Simulation, verification and
automated composition of web services,” in Proceedings of the
11th international conference on World Wide Web, ser. WWW
’02. New York, NY, USA: ACM, 2002. [Online]. Available:
http://doi.acm.org/10.1145/511446.511457 pp. 77–88.

[66] S. R. Ponnekanti and A. Fox, “Sword: A developer toolkit for web
service composition,” in Proceedings of the 11th International WWW
Conference (WWW2002), Honolulu, HI, USA, 2002.

[67] D. D. Lamanna, J. Skene, and W. Emmerich, “Slang: A
language for defining service level agreements,” in Proceed-
ings of the The Ninth IEEE Workshop on Future Trends of
Distributed Computing Systems, ser. FTDCS ’03. Washington,
DC, USA: IEEE Computer Society, 2003. [Online]. Available:
http://dl.acm.org/citation.cfm?id=795675.797134 pp. 100–.

[68] X. Gu, K. Nahrstedt, R. Chang, and C. Ward, “Qos-assured service
composition in managed service overlay networks,” in Distributed Com-
puting Systems, 2003. Proceedings. 23rd International Conference on,
may 2003, pp. 194 – 201.

[69] L. Zeng, B. Benatallah, A. Ngu, M. Dumas, J. Kalagnanam, and
H. Chang, “Qos-aware middleware for web services composition,” Soft-
ware Engineering, IEEE Transactions on, vol. 30, no. 5, pp. 311 – 327,
may 2004.

[70] N. Channa, S. Li, A. W. Shaikh, and X. Fu, “Constraint satisfaction
in dynamic web service composition,” in Database and Expert Systems
Applications, 2005. Proceedings. Sixteenth International Workshop on,
aug. 2005, pp. 658 – 664.

107

[71] A. Lazovik, M. Aiello, and R. Gennari, “Encoding requests to web ser-
vice compositions as constraints,” in Principles and Practice of Con-
straint Programming - CP 2005, ser. Lecture Notes in Computer Sci-
ence, P. van Beek, Ed. Springer Berlin / Heidelberg, 2005, vol. 3709,
pp. 782–786.

[72] E. Monfroy, O. Perrin, and C. Ringeissen, “Dynamic web services pro-
visioning with constraints,” in On the Move to Meaningful Internet Sys-
tems: OTM 2008, ser. Lecture Notes in Computer Science, R. Meers-
man and Z. Tari, Eds. Springer Berlin / Heidelberg, 2008, vol. 5331,
pp. 26–43.

[73] A. Ben Hassine, S. Matsubara, and T. Ishida, “A constraint-based
approach to horizontal web service composition,” in The Semantic
Web - ISWC 2006, ser. Lecture Notes in Computer Science, I. Cruz,
S. Decker, D. Allemang, C. Preist, D. Schwabe, P. Mika, M. Uschold,
and L. Aroyo, Eds. Springer Berlin / Heidelberg, 2006, vol. 4273, pp.
130–143.

[74] R. Thiagarajan and M. Stumptner, “Service composition with
consistency-based matchmaking: A csp-based approach,” in Web Ser-
vices, 2007. ECOWS ’07. Fifth European Conference on, nov. 2007,
pp. 23 –32.

[75] E. Karakoc and P. Senkul, “Composing semantic web ser-
vices under constraints,” Expert Systems with Applications,
vol. 36, no. 8, pp. 11 021 – 11 029, 2009. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0957417409002462

[76] V. Kumar, “Algorithms for constraint satisfaction problems: A sur-
vey,” AI MAGAZINE, vol. 13, no. 1, pp. 32–44, 1992.

[77] V. Dhar and N. Ranganathan, “Integer programming vs. ex-
pert systems: An experimental comparison,” Commun. ACM,
vol. 33, no. 3, pp. 323–336, Mar. 1990. [Online]. Available:
http://doi.acm.org/10.1145/77481.77485

[78]

[79] M. Yokoo, E. Durfee, T. Ishida, and K. Kuwabara, “The distributed
constraint satisfaction problem: formalization and algorithms,” Knowl-
edge and Data Engineering, IEEE Transactions on, vol. 10, no. 5, pp.
673 –685, sep/oct 1998.

[80] D. Sabin and E. C. Freuder, “Configuration as composite constraint
satisfaction,” in in Proc. Artificial Intelligence and Manufacturing. Re-
search Planning Workshop. AAAI Press, 1996, pp. 153–161.

108

[81] S. Mittal and B. Falkenhainer, “Dynamic constraint satisfaction
problems,” in Proceedings of the eighth National conference on Artificial
intelligence - Volume 1, ser. AAAI’90. AAAI Press, 1990. [Online].
Available: http://dl.acm.org/citation.cfm?id=1865499.1865503 pp.
25–32.

[82] C.-C. Han, R. K. Rengaswamy, R. Shea, E. Kohler, and M. Srivastava,
“Sos: A dynamic operating system for sensor networks,” in Third In-
ternational Conference on Mobile Systems, Applications, And Services
(Mobisys), 2005, pp. 163–176.

[83] S. Ren, G. A. Agha, and M. Saito, “A modular approach to program-
ming distributed real-time systems,” Journal of Parallel and Distributed
Computing, vol. 36, no. 1, pp. 4 – 12, 1996. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0743731596900866

[84] B. Nielsen, S. Ren, and G. Agha, “Specification of real-time interaction
constraints,” in ISORC, 1998, pp. 206–214.

[85] S. Ren and G. Agha, “Rtsynchronizer: Language support for real-
time specifications in distributed systems,” in Workshop on Languages,
Compilers, and Tools for Real-Time Systems, R. Gerber and T. J.
Marlowe, Eds., 1995, pp. 50–59.

[86] M. Astley and G. A. Agha, “Customization and composition of
distributed objects: Middleware abstractions for policy management,”
in Proceedings of the 6th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, ser. SIGSOFT ’98/FSE-
6. New York, NY, USA: ACM, 1998. [Online]. Available:
http://doi.acm.org/10.1145/288195.288206 pp. 1–9.

[87] N. Venkatasubramanian, C. L. Talcott, and G. Agha, “A formal model
for reasoning about adaptive qos-enabled middleware,” ACM Trans.
Softw. Eng. Methodol., vol. 13, no. 1, pp. 86–147, 2004.

[88] S. Kim, S. Pakzad, D. Culler, J. Demmel, G. Fenves, S. Glaser, and
M. Turon, “Health monitoring of civil infrastructures using wireless
sensor networks,” in Information Processing in Sensor Networks, 2007.
IPSN 2007. 6th International Symposium on, april 2007, pp. 254 –263.

[89] T. Nagayama, B. F. Spencer, K. Mechitov, and G. Agha, “Middleware
services for structural health monitoring using smart sensors,” Smart
Structures and Systems, vol. 5, no. 2, 2008.

[90] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson,
“Wireless sensor networks for habitat monitoring,” in Proc.of the 1st
ACM Intl. Workshop on Wireless Sensor Networks and Applications
(WSNA), 2002, pp. 88–97.

109

[91] W. Kim, K. Mechitov, J. Choi, and S. Ham, “On target tracking with
binary proximity sensors,” in Proc. of the 4th Intl. Symp. on Informa-
tion Processing in Sensor Networks (IPSN), 2005.

[92] L. Luo, T. Abdelzaher, T. He, and J. Stankovic, “EnviroSuite: An envi-
ronmentally immersive programming framework for sensor networks,”
ACM Trans. Embed. Comput. Syst., vol. 5, pp. 543–576, 2006.

[93] A. Eisenberg, “Keeping tabs on the infrastructure, wire-
lessly,” The New york Times, March 2011. [Online]. Available:
http://www.nytimes.com/2011/03/13/business/13novel.html? r=1

[94] “Superstructures,” The Economist, De-
cember 2010. [Online]. Available:
http://www.economist.com/node/17647603?story id=17647603&fsrc=rss

[95] J. Rice, K. Mechitov, S. H. Sim, B. F. Spencer, and G. Agha, “En-
abling framework for structural health monitoring using smart sen-
sors,” Structural Control and Health Monitoring, vol. 15, p. 574587,
2011.

[96] P. Moinzadeh, K. Mechitov, R. Shiftehfar, T. Abdelzaher, G. Agha,
and B. Spencer, “The time-keeping anomaly of energy-saving sensors:
Manifestation, solution, and a structural monitoring case study,” in 9th
Annual IEEE Communications Society Conference on Sensor, Mesh
and Ad Hoc Communications and Networks (SECON), ser. SECON
’12, 2012.

[97] TelosB Hardware Reference Man-
ual, MEMSIC, 2003. [Online]. Available:
http://www.memsic.com/support/documentation/wireless-sensor-
networks/category/7-datasheets.html?download=152%3Atelosb

[98] MicaZ Hardware Reference Man-
ual, MEMSIC, 2005. [Online]. Available:
http://www.memsic.com/support/documentation/wireless-sensor-
networks/category/7-datasheets.html?download=148%3Amicaz

[99] Imote2 Hardware Reference Manual, MEMSIC, 2007. [Online].
Available: http://web.univ-pau.fr/ cpham/ENSEIGNEMENT/PAU-
UPPA/RESA-M2/DOC/Imote2 Hardware Reference Manual.pdf

[100] J. Rice and B. Spencer, “Structural health monitoring sensor develop-
ment for the IMote2 platform,” in SPIE Smart Structures/NDE, 2008.

[101] I. Decagon Devices, 10HS Soil Moisture Sen-
sor, Decagon Devices, Inc., 2010. [Online]. Available:
http://www.decagon.com/assets/Manuals/10HS-Manual.pdf

110

[102] J. Aylor, A. Thieme, and B. Johnso, “A battery state-of-charge indica-
tor for electric wheelchairs,” Industrial Electronics, IEEE Transactions
on, vol. 39, no. 5, pp. 398–409, 1992.

[103] J. Neter, W. Wasserman, and M. H. Kutner, Applied linear regression
models, 2nd ed. Boston, MA, USA: Irwin (Homewood, IL.), 1989.

[104] T. M. Mitchell, Machine Learning, 1st ed. New York, NY, USA:
McGraw-Hill, Inc., 1997.

[105] J. Pearl, Probabilistic reasoning in intelligent systems: networks of
plausible inference. Morgan Kaufmann, 1988.

[106] H. E. Kyburg Jr, “Bayesian and non-bayesian evidential updating,”
Artificial Intelligence, vol. 31, no. 3, pp. 271–293, 1987.

[107] T. Thadewald and H. Büning, “Jarque–bera test and its competitors for
testing normality–a power comparison,” Journal of Applied Statistics,
vol. 34, no. 1, pp. 87–105, 2007.

[108] K. Mechitov and G. Agha, “Building portable middleware services
for heterogeneous cyber-physical systems,” in Third International
Workshop on Software Engineering for Sensor Network Applications
(SESENA’12), pp. 31-36, 2012.

[109] “Tinyos 2.x index of contributed code.” [Online]. Available:
http://docs.tinyos.net/tinywiki/index.php/TinyOS 2.x index of contributed code

[110] K. Mechitov, W. Kim, G. Agha, and T. Nagayama, “High-frequency
distributed sensing for structure monitoring,” in in Proc. First Intl.
Workshop on Networked Sensing Systems (INSS 04, 2004.

[111] K. Akkaya and M. Younis, “A survey on routing pro-
tocols for wireless sensor networks,” Ad Hoc Networks,
vol. 3, no. 3, pp. 325 – 349, 2005. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1570870503000738

[112] J. Al-Karaki and A. Kamal, “Routing techniques in wireless sensor
networks: a survey,” Wireless Communications, IEEE, vol. 11, no. 6,
pp. 6–28, 2004.

[113] B. Sundararaman, U. Buy, and A. D. Kshemkalyani, “Clock
synchronization for wireless sensor networks: a survey,” Ad Hoc
Networks, vol. 3, no. 3, pp. 281 – 323, 2005. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1570870505000144

111

[114] G. Anastasi, M. Conti, M. D. Francesco, and A. Passarella, “Energy
conservation in wireless sensor networks: A survey,” Ad Hoc
Networks, vol. 7, no. 3, pp. 537 – 568, 2009. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1570870508000954

[115] T. Nagayama, P. Moinzadeh, K. Mechitov, M. Ushita, N. Makihata,
M. Ieiri, G. Agha, B. F. Spencer, Y. Fujino, and J.-W. Seo, “Reliable
multi-hop communication for structural health monitoring,” Smart
Structures and Systems, vol. 6, no. 5, pp. 481–504, 2010.

[116] E. C. Freuder, “2. constraint solving techniques,” vol. 131, pp. 51–74,
1992.

[117] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse,
A. Woo, D. Gay, J. Hill, M. Welsh, E. Brewer, and D. Culler, “Tinyos:
An operating system for sensor networks,” in Ambient Intelligence,
W. Weber, J. M. Rabaey, and E. Aarts, Eds. Springer Berlin
Heidelberg, 2005, pp. 115–148, 10.1007/3-540-27139-2-7. [Online].
Available: http://dx.doi.org/10.1007/3-540-27139-2-7

[118] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler,
“The nesC language: A holistic approach to networked embedded sys-
tems,” ACM SIGPLAN Notices, vol. 38, no. 5, pp. 1–11, 2003.

[119] F. Sivrikaya and B. Yener, “Time synchronization in sensor networks:
a survey,” Network, IEEE, vol. 18, no. 4, pp. 45 – 50, july-aug. 2004.

[120] J. Scott, A. Brush, and R. Mahajan, “Augmenting homes with custom
devices using. net gadgeteer and homeos,” in Proceedings of the Fourth
ACM Workshop on Embedded Sensing Systems for Energy-Efficiency
in Buildings. ACM, 2012, pp. 213–214.

[121] D. Sturman and G. Agha, “A protocol description language for cus-
tomizing failure semantics,” in Reliable Distributed Systems, 1994. Pro-
ceedings., 13th Symposium on, 1994, pp. 148–157.

112

