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Abstract 

 

The inspiration for stereo vision in computer vision systems is derived from the human 

binocular visual system. In this, two views are captured by the left and right eyes and are 

merged into one three-dimensional (3D) scene representation in the brain. One of the important 

elements of ‘stereopsis’ involves the stereo correspondence estimation. Stereo correspondence 

refers to generating the location disparity for the same object in two images to retrieve distance 

information. A disparity map contains all 3D depth cues of a scene, and it is estimated by using 

stereo matching algorithms. Therefore, the quality of correspondence matching is an essential 

component, which affects the accuracy of 3D scene reconstruction. 

 

Dense stereo correspondence is one category of matching methods, which, normally, operates 

at pixel level in order to reconstruct 3D views of the real world. As this is not a trivial task, 

among others, neural networks have been introduced and studied by researchers as a powerful 

nonlinear method. In this thesis, we introduce systems to perform dense stereo correspondence 

for disparity generation based on simple neural networks (NNs), multiple neural networks, and 

convolutional neural networks (CNNs). These calculate matching degrees between paired 

pixels in order to identify the best matched pair at maximum disparity range of stereo images. 

The contributions of this thesis refer to feature analysis for network training and disparity 

computation, network design involving structure construction and model optimisation, speed 

improvement for the disparity map computation, post processing for raw disparity maps, and 

comparisons: a) between the three networks and state-of-the-art-methods, and, b) among the 

three different types of networks, on the basis of quality of the generated disparity map. 

 

Experimental investigations for feature selection and network model optimisation are 

discussed to define specific network architectures and model parameters. Moreover, the 

performance of the three networks introduced are compared with state-of-the-art approaches. 

Our results show that these three networks are all capable of matching corresponding pixels 

between left and right (stereo) images. The multiple neural networks-based system outperforms 

the other two in general. However, the system, which uses convolutional neural networks 

produces very similar performance in all cases. Finally, although both multiple and 

convolutional neural networks systems were shown to have the capacity for high performance 

in dense stereo correspondence estimation, the convolutional NNs shows better scalability. 
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Chapter 1: Introduction 

 

Applications endowed with intelligent autonomous functions which are related to visual 

analysis nowadays are being widely used in areas such as vehicle automation, visual object 

recognition and robotics path planning. Products integrating this type of intelligent system are 

becoming to play assistant roles in the society of human being more and more in order to 

improve the qualities of human lives.  

 

In order to reach a higher intelligent level, the essential theory for this category of technology 

is found on emulating the behaviour of human vision so that to make machines to acquisition 

the ability to perform automatic vision interaction from surrounding environment involved 

with visualisation information gathering and understanding. Computer vision represents such 

interdisciplinary scientific field of intelligent computer or machine systems mincing human 

vision system. 

 

1.1 Research background 

 

The concept of Computer vision can trace its history back to the early period of the 1970s, 

which was used to provide human imitation robots with intelligent competency by the pioneer 

of artificial intelligence, at that point, a computer was connected with a camera for attempting 

to accomplish the goal [1]. From then on, computer vision as a visual understanding theory has 

been continued investigating and developing by researchers. At the present time, computer 

vision especially the strategy of stereo vision is being used to extensively range of applications 

domain. Figure 1.1.1 shows an application instance of an automatic driving system utilizing 

the technologies of stereo vision [2]. Examples of popular fields with computer vision 

technique are listed as below [1]: 

 

• Biometrics verification and recognition for identity authentication. 

• Self-driving vehicle: environment sensing, automatic pilot and obstacles avoidance. 

• Object recognition: to recognise objects from given images of video sequences. 

• Traffic detection: monitoring of traffic flow and pedestrians and road conditions. 

• Automatic navigation of robotics: path planning, automatic localisation and 

environmental map analysis. 
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• Medical symptoms analysis: diagnosis of a state of an illness through the medical visual 

instrument. 

• 3D model reconstruction: to reconstruct objects or scenes into three-dimensional form. 

• Motion inspection and tracking: to detect movements of subjects to structure motion 

flow models. 

 

 

Figure 1.1.1 Drive system with stereo vision 

 

The definition of making a computer or machine to have sight is not only just the meaning of 

image capture, but also includes the capability of brain function on processing graphical 

information. Visual information of the real world is captured and passed through on to the 

retina by Human eyes, following by transmitting signals of perception data to be processed by 

the brain to finally make decision of which action to execute.  

 

According to such theory, moreover, as the purpose of computer vision is to interpret human 

vision for computer or machine by implementing mathematical algorithms to reconstruct the 

world, the processing procedure can be divided into three main steps: image extraction, data 

processing and output decision. Data extracted from images usually captured by media like 

cameras, and are applied with algorithms of image processing and analysis to produce output 

for the system to determine which decision would be the appropriate choice. 
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In terms of the characteristic of computer vision, depth estimation referring to retrieve three-

dimensional depth of objects and scenes has been considered as an important component of 

intelligent applications that require visual perceptions in the form of machine visualization. For 

this reason, how to retrieve depth information significantly affects the performance of such 

applications. The fundamental core theory for depth extraction is accordingly in respect of how 

to determine the depth in a precise way. Theoretical processes of computer vision on depth 

recovery combine a series of techniques that obtaining, retrieving and analysing localization 

information in a three-dimensional spatial architecture. Depending on the inherent typicality 

of visual perception, the most common theory for estimating depth can be categorised into 

following two methodologies: depth estimation from a single image or stereo vision. According 

to the observations of state-of-the-art, stereo vision possesses the closest nature to the trait of 

human binocular vision and is the focus of most researches.  

 

To recover depth from a single image is also called monocular depth estimation. This single 

vision approach examines values of 3D depth from a monocular image by analysing monocular 

cues. Human has the talent of recreating 3D scenes in the brain with a single view, which is to 

be achieved by estimating clues from single vision [3]. 

 

For example, objects with larger size would be considered as closer than smaller objects that 

both have similar known size. When an object is closer, the appearance on this object is sharp 

and clear, on the other hand, the texture shows undetailed surface for a farther object. Lighting 

produces different shadow and bight areas on objects. Those cues together contribute to in aid 

of perceiving depth in monocular vision. 

 

Stereo vision based on video extracted images generates 3D views simulating the process of 

human vision with two eyes. After the images are captured, the 3D coordinates are computed 

based on the intersection of lines from the coordinate frame of each image. Then the global 3D 

coordinate is derived in accordance with the mathematical principle of binocular vision which 

is known as triangulation computation. The final global 3D coordinate is the 3D position of the 

object. In respect that the computation is in need of disparities between corresponding points 

in stereo images, one of the core processes of building the stereo vision from images is disparity 

estimation. The computation of disparity is to obtain the difference value of X coordinates of 

corresponding points. An example of robotics navigation adopting stereo vision is given in 

Figure 1.1.2 [4]. 



	 4 

 

Figure 1.1.2 A robot setting up with stereo vision for navigation 

 

Stereo matching is a field of approaches to match points have correspondence. This is 

implemented by searching corresponding pixels on the same row between rectified left and 

right images. Based on the observation of stereo correspondence methods, normally, strategies 

of stereo vision can be divided into two categories: dense and sparse [5]. Dense correspondence 

focus on global estimation (every pixel computation) in contrast to sparse method involves 

feature points based analysis. 

 

This thesis focuses on investigating and developing techniques to improve the estimation of 

the 3D depth of stereo vision and in particular by investigating algorithms on dense disparity 

estimation by using artificial intelligence techniques such as Artificial Neural Networks (ANNs) 

and deep learning. Deeper descriptions of state-of-the-art will be presented in Chapter 2. 

 

1.2 Challenge, motivation and objective 

 

Along with the development of computer vision, the implementation of simulating vision 

system results in a variety of challenges which affect the quality and reliability of applications. 

The fundamental traits of its nature with a specific type of data and applying field cause issues 

to be faced. 

 

The trends of researches in the community have met problems to be addressed in terms of how 

to make systems able to perform the level of the simulation as high as possible in an efficient 

way. General prominent problems issuing in wretched performance, in the current scenario, 

that have the need to be settled for application domain utilising computer vision technologies 

are shown below: 
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• Quality of Data:  

One in the first place is data collection. The input image data for the computer vision 

system plays an essential role as the starting point of the whole system. Noises could 

make an influence on and reduce the quality of data such as alt and pepper noise, image 

distortion and periodic noise. The performance of entire system thereby will be 

seriously dragged to low phase 

 

• Real-time implementation: 

Real-time execution of computer vision has been a hard topic to be tackled all the time, 

as one of the characteristics of vision processing is to process huge amount of data as 

input, in this matter, to develop algorithms which can deal with vast quantities of 

information as speedy as possible to satisfy the demand of intelligent function 

nowadays is being attempted to solve by scientist. 

 

• Hardware limitation: 

More advanced in technology, more hardware resources are required for the improved 

vision system design. 

 

 Currently, there is particular necessary of improvement on the processing ability of 

hardware such like the capability of memory, central processing unit (CPU), and 

especially the graphics processing unit (GPU) that specifically is useful for vision 

processing, and as well as the long-lasting power support. The inventions of hardware 

resources especially for adapting computer vision system are one problem imperatively 

to be resolved. 

 

• Autonomous algorithm improvement: 

By adopting the vision system, a human can determine their geographical and physical 

position effortlessly by themselves to accomplish diverse interactions with the real 

world. Being successful at simulating this talent so as to endue computers and 

mechanical applications with closest intelligent competence to human has been being 

desired by human society since the concept of AI appeared, which makes this target 

extraordinarily challengeable. 
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• Learning efficiency: 

As one of the domains constituting the interdisciplinary architecture of computer vision, 

Machine learning provides the intelligent capability of understanding concepts of 

images videos. In the interest of superior intelligent level training stage in most cases 

is given copious data, in this circumstances, efficiency on time-consuming and 

abstraction of integrant knowledge during the learning procedure leads to difficulties 

on keeping up the accelerated advancement of technology. 

 

• Complexity understanding: 

For the purpose of to be suitable for wide range of applications, artificial vision systems 

are requested to equip with functions of understanding complex environment in 

consideration of the complexity of the actual world. For instance, there are various 

objects and subjects could be included in an image like animals, human, plants, cars, 

etc. These scenarios increase the complicacy of vision sensing. How to precisely 

recognise and distinguish every identity and relationship with each other and even 

further context of what are their intentions from motions comes to be a quite a challenge 

to attain. 

 

The outline illuminated above are the general ones for computer vision. Regarding conceptions 

of stereo vision that imitating human stereopsis, the following is the digest of typical challenges 

and problems on this scope to be considered: 

 

• Rectification quality: 

The matching of corresponding points in a stereo-pair image is carried out by 

contrasting similarities of potential points on the same row coordinates of left and right 

images. A stereo-pair is thus rectified to be projected onto a conjunct plane with the 

aim of decreasing matching procedure to the one-dimensional issue. On account of this, 

the quality of rectification directly affects the accuracy of matching outcome. 

 

• Correspondence matching performance: 

To match the corresponding points is the centre phase of stereo vision, in view of 

functional duty supplied that the projection intersection of matched points represents 

the true point in a scene. This is a difficult topic, especially with dense computation. A 
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large number of researches has been carried out on developing algorithms to improve 

the performance of stereo matching. Nevertheless, there is still a distance to be 

shortened to actually recurrence the theme of human perception. 

 

• Disparity map computation speed 

The computation of dispraise is a time expensive issue, especially when implementing 

with dense algorithms. This work is done by searching corresponding pixels for every 

reference pixel in the reference image within a disparity range, which occupying a load 

of hardware resources, in consequence longer processing time. The expectation of The 

development of optimization algorithms has become a growing area of interest. 

 

• Disparity range accuracy: 

As mentioned above, the principle of searching correspondence indicates that the 

matching procedure between a reference pixel and candidate pixel performed within a 

range that the potential matched pixel should not be beyond. The inaccurate defined 

maximum range of disparity could result in an incorrect pixel matched to reference 

pixel. 

 

• Occlusion issue: 

Due to the peculiarity of visual perception, occlusions always appear in stereo images, 

which missing matched region in the other image. By consequence of this phenomena, 

the matching process may cause error detection that regions in another image could be 

erroneously matched to occlusion region  

 

At the very least, computer vision has been developed steadily and appeared to have a rapid 

growth of advancement during the recent period. More and more issues are being attempted to 

solve by researches gradually. 

 

The motivation of investigating in this subject above all is that the stereo vision has been 

considered as a technology in computer vision which can generate the depth in the way of 

simulating human vision instead of using extra facilities, and the accuracy of depth retrieve of 

the stereo vision is one of the core factors to affect the accuracy of the 3D reconstruction and 
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depth localisation. In respect that stereo vision can extract the 3D data, more information can 

be extracted from digital images as compared to the traditional two-dimensional information.  

 

Moreover, the usage of stereo vision is to gather the depth information to perform the 3D 

reconstruction and depth localisation, therefore, such accuracy of the 3D reconstruction and 

depth localisation are then dependent on the depth information in the stereo representation. 

Furthermore, the depth information is one of the significant foundations for establishing 3D 

scene and localisation for application such as robotics navigation. Thus, it can be seen that, in 

order to have a better result of 3D re-establishment and depth localisation, the improvement of 

the performance of the depth information generated in the stereo vision has a significant effect 

on improving the localisation and environment mapping processes, wherefore disparity 

estimation comes to a considerable status. 

 

A large amount of methodologies has been recommended for disparity estimation, meanwhile, 

each approach is being constantly reformed in a way of fusion or parallel with each other. 

Algorithms that exploiting techniques of Neural Network (NN) and deep learning (DP) in the 

family of Artificial Neural networks (ANN) appears to be started to investigate to the 

accompaniment of evolving. ANN simulates neural systems of the brain to create artificial 

intelligent models for computer evolvement. On the basis of the inspiration coming from 

human neural architecture, NN and DP have been proved that can be adequate to tackle 

complex problems in need of human thinking pattern.  

 

NN is capable to train and learn a circumstance with non-linear and intricate connections, also 

after training NN can infer the nature of unknown scenario from unobserved information, in 

addition, a variety of variables can be adapted as input by this special neural structure. DP as a 

form found on NN has an advanced ability that creating features in layers itself and the 

capability of adapting a vast number of input data without decreasing proceeding speed. 

Moreover, the concept of DP can generate plenty of flexible models with curtailing the cost of 

feature engineering simultaneously to suitable for handling the diversity of occasions among 

the real living lives. Both of these two systems are been adopting by the field of computer 

vision. These motivations have made this study in the interest of investigating the 

implementation of disparity computation on the basis of stereo correspondence approaches 

with NN and DP. 
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Different algorithms can produce different outcomes. The objective of this study is to 

investigate the effectiveness of dense stereo matching algorithms found on different designs of 

NNs and DP systems that find corresponding points between stereo images to form dense 

disparity maps which represent overall depth related representations for captured scenes. In 

order to achieve the goal, there are three major architectures used to carry out the evaluation: 

simple neural network, multiple structured neural networks and convolutional neural network. 

The research is mainly carried out in aspects as shown below: 

 

• Feature engineering  

• Design of network structures  

• Model optimisation for stereo estimation networks 

• Disparity map optimisation 

• And so on. 

 

To summarise, this research aims to discover and present the effect of stereo vision exploiting 

different types of ANNs cooperating with the dense matching method in the hope of revealing 

the potential benefits of proposed methodologies. Detail methodologies, experiments and 

evaluations will be expatiated from Chapter 3 to Chapter 6. 

 

1.3 Contribution to knowledge 

 

Systems that produce dense disparity map have been developed by adopting the theory of 

simple, multiple and convolutional neural networks to derive stereo correspondences for 

disparity computation. Some issues are addressed by this thesis on the basis of examining 

through these systems. Summarised contributions of this thesis are outlined below: 

 

• Feature Extraction: 

Methodologies in relation to data selection for extracting features from left and right 

images with their reference pixels as the centre of feature windows form matched and 

unmatched pairs for network training, where the extraction are based on some designed 

constraints. 
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• Feature Types Impact: 

Estimation of performances uses three types of features in respect to the degree of 

numerical information contained in feature vectors, as these conditions affect the level 

of accuracy on account of the aspect that computer understands images in the form of 

numerical values.  

 

• Network Structure Design: 

An assembled multiple neural networks consisting of three backpropagation sub-

networks, and a convolutional neural network have been devised. Each network 

structure is designed in a basic form initially and improved to reformative architecture. 

The experimental results uncover the path of creating the advanced structure of 

networks. 

 

• Network Layers and Parameter and Model Optimizations: 

Typical parameters for training involve learning rates and training functions for simple 

neural network, hidden layer construction for multiple neural networks, fully connected 

layer design and parameters for convolutional layer and training algorithms for 

convolutional neural network are examined with different settings to show the effect 

on accuracies. Detailed experiments and evaluations are discussed to present the 

connections among those layers and parameters for providing the idea of adjusting 

cooperation between them in order to maximize performance. 

 

• Speed Improvement for Disparity Map Computation: 

The formation of a dense disparity map normally consumes long execution time, that 

makes difficulty on experiments or applying with applications. On account of this 

matter, to a degree, optimisation of processing time is created with two phases: features 

extraction from stereo images, and disparity computation in accordance with matching 

degrees. 

 

• Refinement of Raw Disparity Map: 

A refinement procedure is often applied to the raw disparity map to enhance the quality 

in respect to cleanness and resolution. A series of refinement methodologies always 

been implemented at this stage. This study implements refinement methods that can 
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provide functional post-processing in a compact way for the purpose of reducing the 

complicacy causing resources consuming. 

 

• Comparisons: 

The performances of the three networks are compared in two aspects. The first 

comparison is between three networks and state-of-the-art approaches, and the second 

comparison is carried out among three networks. The results of comparisons can give 

clues of systems are good at which aspects, moreover, the effectiveness of each network 

is as well as observed and evaluated, which is conducive to understand the recondite 

principles behind the surface that how algorithms using such networks to make a 

service to the field of stereo correspondence estimation. 

 

The work of this study makes contributions to stereo vision, also with the hope of making 

assistant for other further researches. 

 

1.4 Structure of thesis 

 

This Chapter as the start point of the thesis presents the background of research field as well 

as involving the issues in such region, which gives us the motivation to study proposed topic, 

accordingly, address the goal expected to achieve. Contributions from our research are also 

depicted in this Chapter.  

 

The second Chapter systemically introduces the family of computer vision from the theory of 

visual perception system to practical algorithms for implementing applications, especially 

stereo vision reconstructing 3D view in the way of estimating stereo correspondence. 

 

Chapter three presents the pipeline of feature extraction on the basis of epipolar geometry, and 

methodologies of feature selection and different data type, furthermore, relative experiments 

are evaluations are explicated. Moreover, the dataset used in our research are illustrated. 

 

In the fourth Chapter, neural networks and state-of-the-art of stereo correspondence algorithms 

with neural network and two types of neural networks built in our research will be presented 

for stereo corresponding task. The first one is a simple neural network and the second one is a 
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multiple neural networks found on the first one. Interrelated methodologies and experiments 

are explicated and analysed. 

 

Chapter Five presents deep learning and state-of-the-art stereo corresponding algorithms that 

adopting deep learning techniques. A devised convolutional neural network for the purpose of 

finding pixel corresponding is given in the Chapter, moreover, methodologies will be depicted 

and experiments with analysis will be discussed. 

 

The evaluation with disparity maps for all three network structures will be presented in Chapter 

Six. The methodologies of disparity map computation and algorithms for computational speed 

optimization are explicated. After retrieving initial disparity maps, post-processing is 

introduced to implement refinement. The systems with three types of networks are evaluated 

with different image datasets and are compared with state-of-the-art, and with each other. 

 

The last Chapter makes conclusions based on all of the investigation and contributions explored 

in this thesis, and the possible future work will be listed for further study so as to further 

advance development on the interrelated field.  

 

1.5 Chapter summary 

 

On the whole, the theoretical concepts that have been summarised in this Chapter depicted 

research background regarding computer vision, moreover, practical applications were 

introduced. furthermore, the importance of stereo correspondence for stereo 3D vision 

reconstruction and relevant challenges have been addressed in this Chapter. The general ideas 

of system constructions with technologies of ANN (simple neural network, multiple neural 

networks and convolutional neural network built in our research) have been presented. 

Relevant contributions derived from motivations and objectives were as well as listed in this 

Chapter. Finally, the organization of the thesis was outlined by breaking down into each 

individual Chapter introduction.  
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Chapter 2: Computer vision and 3D stereo view reconstruction 

 

According to the objective of this project, the literature survey has focused on several different, 

but closely related areas of previous work. This includes the visual perception system in 

computer vision and specifically stereo vision as a popular thread for disparity estimation and 

comparisons with other  

 

2.1 Overview of computer vision 

 

Computer vision can be referred to make improvements of intelligence of computer based on 

the simulation of activities of human vision. By applying computer vision, the ability and 

efficiency of a computer interacting with human and environment can be significantly 

improved.  

 

To reach to the level today, computer vision has been experiencing a long evolutionary process. 

As introduced by Szeliski [1], in the earlier age of 1970s, the original techniques of computer 

vision started from processing images extracted through digital means which focused on 

understanding the scene through 2D information processing with the hope of computer 

recognizing the world easier like mentioned in Chapter 1, such as making labels for edges in a 

form of 2D lines to extrapolate 3D figure, furthermore, later in the 1970s, 3D construction and 

stereo matching begun to be studied. 

 

In the wake of advancement, during 1980s, researches were concentrated on developing 

mathematical algorithms to resolve the quantitative problems [1]. In this period, a method 

called image pyramids which could implement down-sampling to break an image into a series 

of sub-images to obtain the required information. The stereo technique was utilised to deal with 

shape related targets, for instance, to extract a shape from shading, focus and texture. Moreover, 

Markov Random Field was introduced and tried to tackle regularization issues as an alternative 

optimization method.  

 

From the 1990s to 2000s, some of the fields developed previously became more popular than 

others on the area of recognition, e.g. projective reform, multiple views 3D analysis, advanced 

segmentation of images, and one of the significant milestones is learning theories got arisen 
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primarily on the range of facial identification [1]. The learning algorithms increased the 

capability of image understanding from vast inform in an effective route. Till the century 

nowadays, by combining different algorithms have been discovered, computer vision has 

become a theoretical system that is used on various of areas, such as robotics navigation, 

clinical image diagnosis, and so on, which are supplying the demand of computational machine 

mainly on providing intellectual power at the present time [6], as also mentions in Chapter 1. 

 

The goal of computer vision is to re-establish the world in a reverse means which is to derive 

attributes of nature and living creature, such like a form of an outline, colour, texture, lighting 

and depth from data captured through physical equipment [1], [6]. In order to achieve this 

simulation, scenario information like animals and houses is generally given to computer as 

input, under these circumstances, how to distinguish which one belongs to which category is 

simple and natural ability for human to work out, while comparatively speaking, this is a 

formidable job to complete for computer which including quantities of mathematical 

algorithms targeting on every area of visual data analysis. 

 

Human is naturally born with powerful brain architecture that is able to recognize everything 

observed through eyes and reflected on the retina in this world. In computer vision, the eyes 

are represented by tools like cameras, and brain functions consist of arithmetical algorithms 

and various of electrical hardware, which requests a great variety of elaborate, intricate and 

advanced scientific approaches. As pointed out, a human can achieve these actives without an 

effort, nevertheless which is a hard topic to accomplish with a computer, in the respect that the 

theory of such area is to transform the data obtained from video or image to mathematical 

functions to generate computational determination [1], [7].  

 

The whole process of computer vision can amply and principally be divided into three aspects: 

feature extraction, reprocessing features and rebuilding vision [6], [8]. The main work of image 

extraction is to gather images from cameras following by feature extraction from images 

according to the requirements of applications such as gradient, texture and so on. During 

reprocessing phase, the extracted features are computed using different methodologies for 

instance image processing and machine learning to output decisions. In reference to which type 

of visual perception to be reconstructed in the form of simulating human abilities, the most 

common visual re-establishment is 3D reconstruction.  
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At the recent period, 3D scene extraction is quite a popular research area in computer vision 

and has been widely used for a variety of fields, e.g. biometrics application, building models, 

robotics, etc. For example, one of the famous robotics application that utilizing 3D depth 

technologies is the Mars rover created by NASA in Figure 2.1.1 ([9], image is used following 

NASA copyright guidelines: https://www.nasa.gov/multimedia/guidelines/index.html). Face 

recognition as one of the common biometrics fields has started to adopt 3D information to 

improve performance. After all, the concept of computer 3D sense is the approach that can 

represent the intelligent ability of human visual activities as much as possible. 

 

 

Figure 2.1.1 Mars rover 

 

On account of the reconstructed 3D scene will represent a 3D environment, which contains 3D 

information for computer understanding its surrounding better. The more accurate 3D scene 

reconstruction is, the more efficient interacting capability of the computer will be. Therefore, 

how to improve the accuracy of 3D scene reconstruction is a significant matter. The core 

component, which affects accuracy in establishing the 3D scene, is the 3D depth estimation 

that obtaining 3D localization information from the real world. 3D depth can be recovered from 

images (single or multiple images), or from the flow of a video, or from a 3D sensor.  

 

2.2 Computer depth perception 

 

A distance of an object in the real world is represented as the depth from its surroundings, 

furthermore, the localization information can be determined by predicting depth value [10]. 

The field of depth estimation is in relation to a collection of approaches that recover depth data 

of every projection spot of the digital visual prospect through mathematical theories so as to 

endue machines with the autonomous ability of this area.  
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2.2.1 Overview of depth estimation 

 

Figure 2.2.1.1 shows the theory of how scenarios are mapped into an image. As shown in this 

figure, every point of the scene projects its reflection onto a common plane by shooting a series 

of rays passing through an aperture, in other terms, this is like a “mirror” standing in the front 

of the scene, thereupon all reflections shape an image representing the entire projection of 

visual scene [10].  

 

 

Figure 2.2.1.1 Scene projection 

 

By the reason of this principle, some issues are caused during this projection procedure. the 

projection leads to the loss of 3D information that is the depth information. A formed image 

normally does not contain the data of the third dimension indicating the relative depth of spatial 

position in the real scene. In another word, the trait of this process is to acquire a 2D image 

representing a vision that has the benefit of decreasing implementing duration but the deficit 

of 3D depth information. Under these circumstances, an approach which can extrapolate depth 

data is in the need of implementation. 3D depth estimation hereby playing an essential role is 

exploited to handle the challenge. 

 

Generally speaking, depth estimation takes into effect from two aspects: definite region, and 

occlusion region [10]. Furthermore, a projection mapping to form an image regularly happens 

at a certain point from an angle. In the real world, arrangements of objects in a scene place 

intricately with each other in most cases, as well as including complicated interactions. Some 

objects may be blocked by other objects, that is to say, parts of objects locate at the back of 

other objects since vision performs from a particular point of view. In the consequence of sight 

angle, some regions are certainly projected into images, in contrast to there are some fragments 
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of objects are missing in the formation of optic perception, this is so called as occlusion area. 

The research of this these concentrates on estimating definite area. 

 

2.2.2 Active and passive schemes 

 

Although many techniques are investigated around the form of analyzing images to make 

computer predict depth itself automatically, other methods that exploit extra instruments to 

detect depth as well as reveal the productive capability at the meantime Among a quantity of 

approaches has been discovered, active and passive as two classes can be the representative of 

common schemes for depth estimation technologies nowadays [10].  

 

The scheme of active algorithms aims to derive depth value through a way of directly gathering 

clues from objects through means of functions supplied by devices. The feedback information 

generated by those media imply and evolve as qualitative trails for producing a depth map. As 

illustrated by Bhatti [10], two types of such class are regarded as popular theoretical bases: 

illumination and ultrasound. 

 

 

Figure 2.2.2.1 Layout of structure light approach 

 

Such kind of active methods applies lighting irradiation and ultrasonography on objects in a 

fashion of scan to attain depth cues. As an example, the paper [11] describes a typical method 

that is to make use of structured light generated by projectors to produce a pattern for labelling 

each pixel following by matching computation with those decoded cues. Figure 2.2.2.1 displays 

one of standard setup for a structur light system [12]. The research of [12] uses the flow of light 

to tackle challenges of exterior enhancement. From the figure we can see, such structure 
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contains one or more projector casting light on objects to create lighting stripes to real distance 

hints for camera capture. Another common method in the illumination field is called Time-of-

flight (ToF) approach that counting the duration of light reach on objects [13], [14]. Techniques 

based on ultrasound adopting techniques of ToF act on and are widely implemented in aid of 

medical inspections [10], [15]. 

 

Passive based algorithms seek the path of evaluating depth on the basis of ideas that putting 

much more effort on computational terminal instead of early data acquiring stage. The purpose 

of this strategy is to devise algorithms that can formulate human behaviour for creating human 

imitation based intelligent machine. In general terms, there are three categorise as passive 

approaches to accomplish this mission, that is monocular vision, stereo vision and over two 

visions.  

 

The basic theory is to implement a series of mathematical algorithms on images captured by 

devices as to say the most common one camera, in this matter, these technologies great benefits 

in aid of improving the capability of computational intelligence [10]. As likewise introduced 

in Chapter 1, the human is not only good at vision reconstruction from stereoviews, but is also 

adept in estimating depth from a single view.  

 

According to this inspiration and thinking of the intention of developing and advancing 

intelligent applications, scientific models are being devised based upon these strategies: 

monocular computer vision that retrieving spatial sight from one captured view, and thus the 

visual perception re-establishment from stereo image pair representing the principle of stereo 

vision, moreover a scene restoration through more than two views. Further discussion of these 

algorithms will be expounded next in detail. 

 

No matter active or passive scheme, their own characteristics make these approaches can exert 

their functions effecting on different ranges of interests. Some area may require active 

contributions, and some quest may apply with passive functions. Even more, some applications 

not only utilise an active approach, but also take advantages of a passive method, in other terms, 

the fusion of active and passive, which sometimes can produce a superior class outcome. For 

example, researches [13], [16], [17] suggests approaches that can improve depth detection of 

scene and surface content by combing active technique (structured light) and passive (stereo 

measurement) method. 
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2.3 Monocular vision with depth estimation 

 

In computer vision, depth perception can be achieved by studying not only multiple images but 

also a single image. To obtain depth information from one image is a methodology inspired in 

terms of monocular vision which representing a field of visual ability in reference to perceiving 

spatial environment with one eye/view. This scheme is always adopted as a low-cost solution 

for applications that do not need in detail estimation, which drew our attention on depth 

estimation at the very first beginning. 

 

Monocular computer vision as a challenging approach has started to be employed with various 

regions. For examples, embedded system cooperating with single visual perception for mobile 

appliance of tracking face [18], applying monocular with vision identity detection of robot [19], 

monocular vision based independent and self organized actions of robots on navigating and 

localizing [20], and application of autonomous obstruction avoidance found on sensing 

monocular depth clues [21]. 

 

As mentioned before, monocular perception unlike stereo vision does not generate 

straightforward depth information, which results in even more difficulty in obtaining spatial 

data. Roughly, there are three sort of areas introduced by Bhatti [10]: structure analysis, points 

movements and defocus measurement. The first two are the approaches only can produce 

relative determinations. 

 

The way of examining structure merely estimates relative distances between objects with 

presumed structure. For the second method, image patches are labelled with points and those 

points are tracked following time elapse to observe changes between different time domain. 

Defocus approach take the measure of the degree of defocus on each pixel of images which 

can create definite space mensuration. In contrast with structure and points strategies, this 

approach can provide more precise measurement. 

 

Among various technologies, one of common means is to follow the theory of imitating 

perception system of human on the basis of estimating the signal from a single view which is 

known as monocular cues[3]. Monocular cues that are the most widely used for such depth 

estimation are listed as following [3], [22], where Figure 2.3.1 gives the schematic examples 

of monocular cues of relative size, texture gradient and overlap [23]: 
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• Size and shape: size and shape between objects (relative aspect), the physical size of 

objects, the familiarity of objects size. Bigger size may indicate a closer object among 

objects which are the similar known size. Closer objects present detailed shape in 

contrast to the outline of shape fading from far away. 

 

• Texture: gradient of texture, variations of texture. The texture of closer objects is 

normally clearer and more detailed on the texture content, and more visible in a sight 

than farther objects. 

 

• Light and shade: colour or haze of objects caused by angels of lighting. Brighter and 

legible areas of a scene may be closer than areas with more shades and hardly visual 

observation. 

 

• Focus: regarding the use of the lens, nearer objects require more accommodation than 

objects in a further distance. 

 

• Overlap: due to the complexity characteristics of the real world, contents of a sight is 

interlaced a blocked object can be normally determined as in farther distance than the 

one blocking it. 

 

• Motion parallax: in relation to a reference subject, its surrounding objects pass through 

faster than distant objects, in other terms, the speed of movements is faster for closer 

objects in visual perception. 

 

• And so on. 

 

 

(a) Relative size 

 

(b) Texture gradient 

 

(c) Overlap 

Figure 2.3.1 Examples of monocular cues 
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Research [3], [24] and [25] uses Markov Random Field to analyze local and global monocular 

cues (such as texture gradients, haze, and relative occlusions) for retrieving depth values by 

presuming variables containing location and orientation information on patches of the plane. 

The paper [26] proposes an approach that estimates depth from a single image using cues like 

shape, colour, and texture features through the method of breaking down matter into 

segmentation analysis level, moreover with short processing time. 

 

During the recent period, the technique of machine learning has increased its roles in the field 

for depth estimation. The study of [27], [28] uses Hidden Markov Model (a probability model) 

for 3D depth estimation from one 2D image to reconstruct surface. The theory of research [27], 

[28] is to reconstruct the 3D model from a single 2D image with Subband Pseudo 2D Hidden 

Markov (SPHMM), which is trained in advance. The result of this study shows that applying 

machine learning with monocular depth reconstruction can produce effective performance [27], 

[28].  

 

In recent years, deep learning as an advanced and novel approach along with the development 

of computational learning techniques is extensively adopted for monocular depth perception 

[29]. By making the use of deep learning, the fusion of global and local information on images 

can reach to an effective class. An approach of combining two deep scaled networks is 

proposed to tackle this task that first to handle global data with one network producing depth 

values on this stage and second to refine the output depth from the first network with local data 

using another deep network [30]. 

 

The most adopted model of deep learning for depth retrieve from a single view is convolutional 

neural network, which has dominated in the field of computer vision recently. Most researches 

create their algorithms based upon the idea of deep learning especially CNN. Paper [31] 

introduces a strategy which expanded the idea from [30] that connecting three CNN networks 

to form a learning model: depth prediction and refinement are processed by first and second 

networks, and the third network increases the resolution for output map.  

 

It is a hard work to recover 3D depth from one 2D image, since the cues from a single image 

only show local features, moreover, the 3D information loss during the projection from the real 

world. Most studies of 3D depth estimation have centred on stereopsis field. Next section will 

interpret stereo vision. 
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2.4 Stereo vision with depth perception 

 

Although monocular vision has the benefit that with low-cost implementation consuming, the 

accuracy level still cannot reach to a very high performance due to its perception characteristics 

leading to ambiguities and uncertainty. Multiple views based depth perception can, in contrast, 

provide higher performance which is mainly divided into two categories: two vision based and 

more than two vision based.  

 

The first one is known as stereo vision which is also the most widely exploited one. The second 

category is three or more visions based visual reconstruction, which utilizes over two cameras 

in terms of this scheme can re-establish different perspective angles of an object simultaneously. 

Comparing this two methodologies, a system with over two visions requires more resources 

supplies like the setup of cameras in surrounding and only suitable for specific circumstances, 

while stereo vision can adapt to practically every application with simple setup requirements. 

On account of these matters, stereo vision so then is the focus of our research. 

 

2.4.1 General introduction of applications 

 

Vision reconstruction has been always a challenge mission to achieve by reason that computer 

perceives this real world in the form of numerous quantity of numerical data. To seek an 

approach that can accomplish this task efficiently is in a qualitative manner significant. The 

most extensively investigated and employed algorithms in computer vision is stereo vision as 

the principle of stereo perception is good at the ability to predict depth information. 

 

There are a number of applications have started to integrate with stereo vision system such as 

autonomous driving vehicle that is capable of recognizing obstruction [32], navigation and 

localization while mobile robotic shifting around in the real world with complicated 

circumstances [33], [34], and also medical field like [35] that using stereo systems to 

reconstruct the surface of retina for surgery preplan purpose. Stereo perception contributes 

essentially on promoting the advancement of robotics on account of making robots possess 

vision ability like a human. Lots of projects have been attempting to explore more and more 

progressive algorithms on this infusive area. 
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Figure 2.4.1.1 Robot hand tracking with stereo disparity 

 

Paper [36] describes a project investigating on that sophisticated humanoid robot studies and 

trains the ability on its own that uses stereo depth based perception to cooperate with hand 

function in the interests of performing actions like picking and grabbing objects as presented 

in Figure 2.4.1.1. Research [37] introduces a similar project but with rather a simple setup of 

the experimental environment. An approach [38] talks about one interesting research area for 

the intelligent autonomous robot, which is to recognize stairs based on stereo vision for the 

purpose that a robot can move without restrictions caused by stairway. 

 

2.4.2 Principle of binocular vision and computer stereo vision 

 

The inspiration of computer stereo vision is derived from the human perception system so as 

to achieve an intelligent level of human imitation as higher as possible. A human can view the 

real world in a three-dimensional structure effortless owing to the functions of brain processing 

coordinates of two views on the left and right side that are captured by the two eyes, which is 

known as binocular vision [39]. 
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2.4.2.1 Theoretical presentation: computer simulating biological system 

 

The theory of binocular vision is to re-establish a scene at the visual cortex through neural 

systems by processing vision signals obtained by two eyes in the way of recombining two 

stereo signal streams [39], [40], [41]. Figure 2.4.2.1 shows the schematic description of how 

binocular perception works [41]. 

 

 

Figure 2.4.2.1 Binocular vision principle 

 

First, at the vision capture terminal, a sight projection passes through the left and right eye 

lenses and projects on the surface of the retina which is composed of millions of neurons 

transforming lighting projection into nerve signals. And then the two signal flows are 

transported by optic nerve and cross at optical chiasm, at this point, half of two flows head to 

invert left-right direction to converge with main left and right flows. At the last stage, the left 

and right optical flows arrive at the left and right brain hemisphere, and the sight is then 

reconstructed into one 3D presentation at visual cortex on the basis of the retinal disparity 

between left and right views.  
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In accordance with the idea of simulating human binocular vision, the architecture of stereo 

computer vision at the very beginning level, that is to say, to acquire the input information 

normally employs two cameras which is the representative of two eyes, where features form 

signal flow. The system then makes the use of various mathematical algorithms to cooperate 

with each other to imitate and accomplish the functions of the neural system and visual cortex 

of the brain, which is a quite challenging as the difficulty of being brought into effect.  

 

A typical systematic illustration for the formation of an image is presented by Figure 2.4.2.2. 

Just the same as two eyes align in a certain distance with each other, the basic arrangement of 

stereo cameras is normally set up with a spatial length between them, which refers to baseline.  

 

 

Figure 2.4.2.2 Theory of image formation in computer stereo vision 

 

The point in the real world is found as the intersect of projections from the perspectives of left 

and right cameras as the schematic displayed in Figure 2.4.2.2. The depth of the point that is 

from the intersection to the baseline between cameras is accordingly computed in relation to 

the differences (disparities) produced by the shifted distance among cameras on image plane 

within a focal length, which is known as triangulation equation [42]. 

 

2.4.2.2 The process of stereo vision reconstruction 

 

The entire process for reconstructing 3D values can be divided into four main stages from 

stereo images capture to 3D depth generation [43], [44], [45], [46] as the illustrated pipeline 
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given by Figure 2.4.2.2.1 [43]. Camera Calibration, Stereo Image Rectification, Stereo 

Correspondence and Triangulation Computation.  

 

 

Figure 2.4.2.2.1 Process for stereo 3D reconstruction 

 

On the stage of camera calibration, the parameters of cameras are calculated for epipolar 

transformation computation with the purpose of rectifying images. The stereo images are then 

rectified with transformation matrices to transform two stereo images into a same horizontal 

plane so as to simplify the signal processing procedure (details can be found in Section 3.1).  

 

Since the images are aligned into the same horizontal line, the stereo corresponding process 

can be implemented in one horizontal dimension. Corresponding of points between left and 

right images are estimated on stereo matching step so as to produce disparity values that are 

the representative of depth information, in addition, the performance of this matching conduct 

principally has an influence on the quality of produced depth value.  

 

The final stage of reconstructing visual perception is to determine the third-dimensional value 

– distance from epipolar geometry. By being aware of the depth value, the spatial position of a 

point combining with horizontal and vertical values can be identified in relation to the real 

world. The distance value of a point can be calculated with disparities after discovering its 

projections (a matching pair) in left and right images in accordance with the triangulation 

principle (see Chapter 6, Section 6.1).  
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Camera Calibration: 

 

The area of camera calibration is in respect of estimating the connection between the structures 

of camera and real-world spaces such as finding out the precise coordinates of pixels in relation 

to the real point location through the way of parameter matrix transformation, and as well as 

the correction of distortion, in addition that most calibration algorithms are found on the 

principle of homographies [7], [8], [47], [48], [49], [50]. 

 

 

(a) Model illustration 

 

(b) Spatial relationship 

Figure 2.4.2.2.2 Pinhole camera model 

 

The parameters of a camera that is in need of calibration for representing camera stat are 

intrinsic and extrinsic parameters [7], [8], [47], [48], [49], [50]. Intrinsic (K: projective 

conversion between the camera and pixel/image coordinates - 3D to 2D) contains three 

coefficients which are listed below:  

 

• Focal length: the distance from the focal pinhole to the image plane. 

• Principal point: the pixel position of the image centre. 

• Skew coefficient: angel between skew and perpendicular axes. 
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The correction of distortion is handled by the model of radial distortion which happens more 

around the border of the lens in the form of bent light rays and tangential distortions caused by 

not parallel between lens and image plane. And the components of the extrinsic parameter 

(rigid conversion between world and camera coordinates - 3D to 3D) are rotation (R) and 

translation (t). 

 

These parameters are computed with the algorithms of calibrations that are based upon the 

geometry of the camera model, which the most basic and broadly adopted model is the pinhole 

model [51] as given in Figure 2.4.2.2.2 [47]. The first image of Figure 2.4.2.2.2 presents the 

principle of pinhole model and the second image shows the relation between world, camera 

and image plane in respect to intrinsic and extrinsic parameters. 

 

In the pinhole camera model, the projections of objects are mapped on to an image plane 

through a focal point in the form of pinhole. This process transforms the real scene from 3D to 

a reversed 2D image in a certain length between the plane of pinhole and image mapping. The 

transformation is accomplished by a matrix (camera matrix - M) with a 3×4 structure that 

consists of intrinsic - K and extrinsic - (R|t) coefficients as denoted by Equation 2.1 [7], [8], 

[47], [48], [49], [50]. 

 

 M = (R|t)K (2.1) 

 

There are two major toolboxes provides very useful tools to implement calibration. One is from 

leaning OpenCV library [7] and the other one is created based on Matlab functions [48]. These 

toolboxes have plenty of functions for carrying out calibration algorithms and detailed 

descriptions to explain how to operate with these built-in functions, which is very helpful for 

performing camera calibration. Our research focuses on exploring the field of stereo 

correspondences for disparities estimation which is a core aspect for depth estimation.  

 

2.5 Stereo correspondence 

 

Scene reconstruction based on stereo images has been a popular topic in the field of computer 

perspective as the most adapted technologies for perceiving 3D information from the real 

spatial environment. The society is the of opinion that one of the cores in re-establishment 
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engineering of stereo visual perception is meant to be stereo disparity estimation that is 

accomplished by a known methodology which is called stereo correspondence for the purpose 

of binocular depth recovery. Such corresponding methodologies consists of stereo matching 

and disparity computation algorithms, which found on the theory of epipolar geometry [52]. 

The principle is to search matching point between left and right images captured by a pair of 

stereo cameras. These points that are determined as corresponding to each other are the 

projections of a point in the real world.  

 

Correspondence issue can mainly refer to a term of matching points. Stereo matching procedure 

as the primary step plays a significant role in depth estimation. The task devotes to discover 

the projections of real points in stereo images which normally appears as two points have 

correspondence on their attributes.  

 

2.5.1 Stereo matching theory 

 

A great range of interests has focused on exploring the field of matching stereo 

correspondences. As the process of recognizing correspondences happens between two images, 

in most cases, one of them has to be chosen as a reference image. The correspondences are 

accordingly estimated by scanning points (in a paired image) that appear to have the same 

identity in regard to a reference point (in reference image) [52]. 

 

There are two types of stereo matching schemes in respect to pixel or feature based, that is to 

say, dense and sparse, and the illustration giving a schematic explanation is shown in Figure 

2.5.1.1 [53].  

 

Figure 2.5.1.1. (a) demonstrates an instance of dense matching theory that making use of pixel 

identification in regard to its paired possible pixels. Stereo dense correspondence normally 

performs matching methods on pixel level which can retrieve details of a view as much as 

possible. Figure 2.5.1.1. (b) illustrates the points of interests that sparse approaches concentrate 

on which term of correspondence attempted to tackle. Sparse correspondence matches feature 

in the form of various zones that have extrusive appearances e.g. segments, SIFT (scale-

invariant feature transform) [54] and speeded up robust features (SURF) [55], which can play 

a discriminative role between different relationships in a scene [5], [53]. 
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(a) Dense matching 

 

(b) Sparse matching 

Figure 2.5.1.1 Correspondence scheme 

 

The scheme of dense matching can produce disparities for the entire image by searching 

correlations between left and right images in the way of pixel-by-pixel examining, as this trait, 

dense matching is more required by task regarding entire plane analysis. Sparse methods deal 

with a certain number of segments with given specific definitions in advance, such as edges, 

corners and so on, which adapt to partial area enhancement. The dense approach is good at the 

whole surface estimation in contrast to the sparse approach perform more on local features [56], 

[57].  

 

On account of the distinct outputs, dense based approaches demand heavy processing resources 

to support analysis of a huge quantity of data stream. In order to achieve speedy performance, 

the progress of dense matching issues in serious computational cost, while in contrast, sparse 

correspondence is less affected by this restriction due to only cope with a small amount of 

feature points, however, the most range of interests currently requests as much detail as 

possible on the global surface level like applications of robotics [5], [58]. For this reason, dense 

correspondence is concentrated on by most reaches at the present time.  

 

According to these comparisons, stereo correspondence based on the dense strategy attracts 

our interests and therefore is one centre study of our research by considering the advantages of 

dense output that producing global disparities for every pixel in a scene. 
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As indicated by [57], a classic stereo matching method implements in four stages as listed 

below: (1) Computation of matching cost, (2) Aggregation of cost, (3) Optimization/ 

computation of disparities (4) Refinement of disparity. The practical stages may vary in relation 

to the diversity of concrete applications. On the basis of these fundamental steps, many 

researchers have carried out studies on investigating algorithms for stereo matching. Mainly, 

there are two groups of stereo algorithms: Local algorithms and global algorithms [57].  

 

Generally speaking, in respect of the four stages, local algorithms normally complete with first 

three stages step-by-step, however, global algorithms sometimes unite stage (1) and (2) 

following by stage (3). Moreover, the methodologies of disparity optimization regarding local 

and global methods distinguish from each other. Local methods normally adopt a scheme called 

Winner-Take-All (WTA) [57], [45], [59] to estimate disparities. The principle of WTA is to 

take pixel with the minimum value of aggregated matching cost as correspondence in relation 

to its reference pixel. Global algorithms determine the correspondence in the way of estimating 

a disparity value that can minimize a function of global energy which is known as energy 

function minimization approach [57], [45].  

 

Both local and global methods have their own special advantages and disadvantages [60]. Local 

algorithms generally utilise the block matching method that cost is calculated on the basis of 

the windowed pixel block, which makes efficient process on high textured areas with low 

computational cost but lack accuracy on the occluded and less textured areas. The theory of 

global algorithms is to compute the minimum cost of energy functions following with the result 

of higher accuracy subject to ambiguities, however in exchange for processing speed 

consuming.  

 

Considering global algorithms mostly require specific environment such as high-performance 

hardware to make effective, our research explores algorithms on the basis of the principle of a 

local strategy for the system design as our goal is to create low-cost stereo architecture. 

 

2.5.2 Common stereo correspondence algorithms 

 

Along with the development of stereo vision, the diversity of stereo correspondence algorithms 

have been created, among a variety of approaches four groups can be used for presenting 
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current study categorizes which are local, global, semi-global algorithms and cooperation of 

local and global [61]. 

 

The first stage of the stereo correspondence approaches involves matching cost computation. 

The most common ways of local algorithms formulate matching cost with squared differences 

and absolute difference (simple algorithms - sum of squared differences (SSD) and sum of 

absolute differences (SAD) [45]), and normalized cross correlation (NCC) [62].  

 

NCC that finding the disparity with the best correlations can increase accuracy in contrast to 

SSD and SAD which are sensitive to intensity changes, nevertheless, it is inclined to mismatch 

depth discontinues that lead to fuzziness on such regions in consequence [63], [64]. Paper [65] 

proposes a method for the purpose of improving the performance produced by NCC called 

summed NCC in two steps: (1) to calculate normalized cross-correlation, (2) to sum values of 

normalized cross-correlation in order to deal with issue that SSD and SAD as the most 

traditional but are lack ability of handling changes of intensity computation function of 

matching cost.  

 

A non parametric transforms called Census Transformation that estimate the order relationship 

between pixel intensities is proposed as an possible matching cost function to tackle disparity 

estimation of outliers with the advantage of being independent from intensity data [64], [66], 

which is then modified with different scan patterns such as an improved census transformation 

integrates with pattern of star scan introduced by [67] for the purpose of dealing noise sensitive 

issue. 

 

Cost aggregation approaches aggregate computed matching cost in the way of computing sum 

or average of chosen areas for the final decision with WTA approach [57]. Widely used 

approaches involve shape based adaptive support window, segmentation support and adaptive 

support weight that are the widely adopted aggregation methods [68], [69].  

 

Normally there are two forms for shape support window: rectangular and constrained which 

are sensitive to depth discontinues. Paper [69] introduces a systematic stereo matching 

algorithms for dense disparity estimation adopting Census Transformation aggregated with the 

method on the basis of cross-based window that is proposed by [59] for computing shape 

adaptive full support region with varying scale polygon. Segment based support approach is 
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suggested as an optional method to overcome the issue caused by depth discontinues between 

arbitrary shapes [70], [71], which forms adaptive support windows with segmentations with 

random shapes and size. These methods follow the idea of finding an optimal window in 

contrast to adaptive support weight method utilises the way of regulating pixel weights within 

a predefined specific support window, moreover, performs more computational cheap and 

higher accuracy than the approach of adaptive support window [72].  

 

Research [73] proposed an adoptive support weighted window method implements aggregation 

procedure with support weights formulated by the proximity of geometry and the similarity of 

colour. An improved approach introduced by paper [61] that two initial disparity maps for left 

and right images are generated respectively steps: cost calculation using Census Transform 

function, cost aggregation exploiting successive weighted summation function based on the 

similarity ratio of intensity to obtain horizontal and vertical support and the pixels that have 

the minimum aggregation costs selected as the matching pixels. Bilateral filter [74], guided 

filter [75] and furthermore recursive edge-aware filter are as well as commonly used to 

compute adaptive weights with the benefits of edge aware capability [76]. 

 

Local algorithms can produce a high performance on high textured areas but occurring 

disparity noises on depth discontinues, low and repetitive textured areas, and occlusions as 

local methods determine optimal disparities depending on support windows which cannot 

conclude enough global information. Global algorithms can overcome these issues in the way 

of global energy estimation.  

 

In the field of global algorithms, a global energy function consists of data and smoothness 

energies. Data energy estimates the compatibility between disparity function and image pair, 

and smoothness energy encodes the smoothness of disparity solutions in respect to piecewise 

smooth [57]. The term of data energy involves the integration of cost e.g.: square and absolute 

difference, difference, mutual information [77] and census transformation. For smoothness 

estimation, Markov Random Field (MRF) method with the advantage of discontinue 

preserving has been commonly used for smoothness energy encoding [57], [78], [79]. 

 

After formulating global energy function, energy minimization is estimated by various 

optimization approaches. One of the conventional ways is to utilize MRF [57], moreover, belief 
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propagation (BP) can be used to solve the Markov network [80], for example [81]. Dynamic 

programming [57] and graph cuts [82] play as well as popular roles in optimization algorithms.  

 

Dynamic programming computes the global minimization in the way of finding a path of 

minimum matching cost in a cost volume integrated with two scan lines that are corresponding 

to each other [57], [83]. Graph cuts approach performs minimization by mapping energy 

function to a specific graph and minimises the energy from the minimum cut [84]. Graph cuts 

produce precise disparity map in contrast to dynamic programming that causing streaking 

issues. 

 

Apart from local and global approaches, there are also approaches perform in the form of semi-

global which adopts a way of the cooperation of local and global algorithms. A semi-global 

approach is proposed by the study [85] that using mutual information as matching cost and 

aggregating cost with a global energy function to compute pixel level correspondence with 

WTA. Generally speaking, a typical algorithm of local and global cooperation performs 

matching with blocks of the 2D window first and then global computation with a volume in 

the form of the 3D box [86]. 

 

Besides traditional approaches, machine learning in the form of an effective approach 

presenting the ability of learning complex as well as attracts attention and has been fused with 

local and global theories to make effective in improving the performance of methodologies for 

stereo depth estimation at the recent period [87]. For examples, [88] presents a work that using 

learning conditional field to formulate the relationship between smoothness and the changes of 

color for energy function, and [89] learns non parametric cost function with structured support 

vector machine, and a method of cost aggregation that exploiting hidden markov tree is 

proposed by [87].  

 

Among a variety of matching learning technologies, neural networks  and deep learning such 

like convolutional neural network  as advanced learning techniques on the basis of imitating 

human nervous system attracts researchers interest and is also exploited to solve stereo 

correspondence problem such like proposed by [90], [91]so as to improve the performance by 

offering artificial intelligent capability. The details referring to this field will be explicated in 

Chapter 4 and Chapter 5.  
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2.6 Chapter summary 

 

Computer vision as a technique that can endue machine with intelligent visual perception 

capability has participated in a wide range of artificial intelligent applications along with the 

historical line up to the present time.  

 

The theory of computer vision has been presented by this Chapter and technologies in respect 

to an important field of visual system which is depth estimation for 3D reconstruction were 

depicted. Generally speaking, the types of vision systems include single vision and multiple 

vision. This Chapter has included literature reviews of monocular vision, and in particular, the 

stereo vision for depth estimation. The principle of stereo visual perception and widely used 

algorithms referring to stereo correspondence for stereo views reconstruction were 

systematically explicated in this Chapter.  
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Chapter 3: Feature construction and datasets 

 

Feature extraction is the first step of stereo correspondence which normally refers to obtain 

information from rectified pairs of stereo images as mentioned in Section 2.4.2. This Chapter 

will introduce a basic pipeline of feature extraction from stereo pairs on the basis of the theory 

of image rectification without camera calibration. And then following this pipeline, the 

estimation of the effectiveness of feature selection schemes will be presented. Moreover, 

different types of input features will be evaluated for model determination. In respect to the 

experiments carried out, this Chapter will also explicate the adopted datasets that participating 

in our study. 

 

3.1 Image rectification with epipolar geometry 

 

For the purpose of reducing the complexity of correspondence searching, stereo images are 

normally preprocessed with rectification algorithms to convert the 3D computational problem 

into the 2D matter [92]. This rectification procedure transforms images on the basic principle 

of epioplar geometry as the schematic in Figure 3.1.1 [93].  

 

Hartley and Zisserman indicated that: "The epipolar geometry is the intrinsic projective 

geometry between two views" [8]. There are three main concepts in epipolar geometry: 

epipolar plane, epiploar line and epipoles. 

 

 

Figure 3.1.1 Epipolar geometry 
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The epipolar plane is a geometry presentation formed by lines concatenating three points 

occurring while intersecting at image planes [7], [8], [50], [93], [94]. As shown in Figure 3.1.1, 

Ol and Or are the origins of two cameras, and between them is a line known as the baseline. 

The projection rays from Ol and Or to intersection point P interest and create two points (Pl and 

Pr) on two image planes which are the projection points of P on images. Three lines (OlP, OrP 

and OlOr) together construct the plane of epipolar geometry. The crossing points that are 

produced by a line of OlOr passing through two image planes, in another term, the intersections 

of epliploar plane and image planes are epipoles (el and er). The lines from Pl and Pr to el and er 

are so denoted as epipolar lines. Pl and Pr are corresponding points with each other in stereo 

image pair.  

 

 

(a) Before rectification 

 

(b) After rectification 

Figure 3.1.2 Image rectification 

 

Stereo image rectification aims to transform two epipolar lines of two corresponding points 

into one epipolar line which is parallel to the axis of horizontal so that these two matching 

points position on the identical coordinate of row. In consequence, all the epipolar lines on 

rectified images should be parallel to each other as shown in Figure 3.1.2 [94]. Figure 3.1.2 (b) 

shows that the epipolar lines on rectified images identically locate on a parallel axis to 

horizontal in contrast to Figure 3.1.2 (a) that before rectification. Rectification process is 

achieved by a transformation rule of Formula 3.1 [94], that is to say, an epipolar constraint.  
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As the Equation 3.1 indicates, the corresponding point pair can be retrieved by transformation 

F which is commonly called fundamental matrix, accordingly, the epiplolar lines between 

corresponding points in left and right images are linked by the Fundamental matrix. Common 

algorithms estimate coefficients of the fundamental matrix by given a certain number of 

matching pairs, in which the typical algorithm is known as eight-point algorithm. Furthermore, 

another term of fundamental matrix is an essential matrix in the case of when the transformation 

is formulated with calibrated parameters [7], [8], [50], [93], [94]. 

 

 

The transformation matrix can be defined with or without parameters from camera calibration. 

In this case, rectification procedure can be applied on calibrated or un-calibrated images. 

 

3.2 Feature extraction from un-calibrated images 

 

A standard process of feature extraction from un-calibrated images presented by the paper [90] 

has made a guide on how to extract features from un-calibrated images for our study. Moreover, 

a toolbox provided by Mathworks that can implement rectification with un-calibrated image, 

which includes the most popular estimation algorithms and very handful functions for 

experiments on such topic [47].  

 

 

Figure 3.2.1 A pipeline of feature extraction form un-calibrated images 

 P
rT

FP
l
 	= 0 (3.1) 
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A pipeline proposed by such scheme and toolbox of feature extraction in our research is 

illustrated in Figure 3.2.1. The whole process can be mainly grouped into six steps: stereo 

images reading, interest points obtaining, putative correspondence determination, epiploar 

constraint implementation, stereo images rectification, and feature vector construction. In our 

experiments, the implementations from step one to step five were accomplished by the toolbox 

[47]. The detailed procedures are explained below:  

 

1) Read stereo images: 

When the system is given a pair of stereo images, the first step is to load the stereo images in 

the way of converting the colour images into grey scale images (from RGB images to one 

channelled intensity images) so as to prepare for obtaining interesting points that possess 

characteristic attributes.  

 

2) Interest points collection: 

On account of the transformation matrix for rectifying two stereo images needs to be 

determined on the basis of correspondences between points, the interest points have to be 

gained. On the second step, interest points between stereo images are extracted with SURF 

features in both left and right images. Those points can then be used to find possible points 

correspondences in a pair of stereo images. 

 

3) Determine putative points correspondences: 

Once the interest points are found, SURF features are formed into a vector for putative 

matching computation. Accordingly, the putative correspondences of these points are 

determined with SAD. At this point, each point has its corresponding point locating in the other 

image. All the locations of matched pairs of points in left and right images are then recovered 

for further estimation. 

 

4) Apply epipolar constraint: 

According to the theory of epipolar geometry, matched points must fit with epipolar constraint. 

Although the most results of matching satisfy the condition, there are some that do not meet 

the constraint. This step implements epipolar constraint with matched pairs to refine the output 

from step three in the way of estimating whether two matched points can lie on the same 

epipolar line by adopting fundamental matrix computation. These output pairs of matched 

points then can be stored for training dataset preparation. 
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5) Rectify images: 

 

The stereo images can now be rectified with the fundamental matrix generated from the 

previous step. The toolbox computes two projective transformations from the fundamental 

matrix, and then rectifies the stereo images into a common image plane, moreover, normally 

the stereo images are cropped with the common after images are rectified. The results are 

shown in Figure 3.2.2, which the data images are from the toolbox [47]. Furthermore, the 

transformed location of matched points can be retrieved through projective transformations.  

 

  

(a) Stereo pair 

 

(b) Rectification results 

Figure 3.2.2 Example of un-calibrated rectification 

 

6) Feature vector creation: 

 

At this moment, all corresponding points locate in the same horizontal line in left and right 

images. The feature vectors can be constructed in the formation of 2D feature extraction from 
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rectified image pairs. First is to select reference points in one of the stereo images. Secondly, 

in respect to the reference point, a set of points that locate at the same horizontal line (the same 

number of row) in the other image are obtained for matching estimation. All location of points 

is converted into indices of pixels by using the projective transformations and then each pixel 

is formed with a specific designed type of features. The formative features from a pixel 

constitute an input feature vector for this pixel in the form of combination. This general pipeline 

contributes handful procedures for creating feature vector and has especially helped our 

research with estimating the selection of training feature. Next section will present selection 

analysis on the set of training feature. 

 

3.3 Schemes of data selection for training 

 

The purpose of our research is to estimate the effectiveness of stereo correspondences 

estimation with neural networks and deep learning. On account of this objective, the designs 

of our systems have found on the principle of machine learning. The primary stage of such a 

learning system involves the training data preparation. The more effective and efficient training 

data, the better performance occurs.  

 

In consideration of such aspect, how to sufficient select training data plays an import role. This 

section will evaluate the approaches of feature set selection on construction training dataset. 

Regarding the characteristics of stereo matching, both matched and unmatched pairs are used 

for training to improve knowledge level of learning ability. The two schemes estimated in our 

project are hereby denoted as below: 

 

• Random based selection scheme (RS) based on [90]. 

• Stereo and rectification constraints based selection scheme (SRC) proposed in our study. 

 

The paper [90] proposed a selection scheme that training data of matched and unmatched pairs 

are randomly selected after initial matching points. Nevertheless, this scheme does not include 

the consideration of stereo and rectification traits that correspondence between two pixels in 

stereo images generally appears within a certain range of disparities on the same number of 

row, therefore, we have designed another scheme to achieve data selection on the basis of such 
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stereo and rectification constraints. With our scheme, the pairs must meet these constraints so 

that they can be eligible to be used for training. 

 

3.3.1 Two selection schemes for matched training data 

 

In respect to the learning capability of correspondence, matching relation is considered at the 

first place, therefore, matched pairs are involved in training. The selections are performed on 

sets of initial corresponding points generated from the pipeline of feature vector extraction 

introduced previously. The qualifications for training are then determined with the following 

strategies.  

 

The basic strategy for both RS and SRC: 

The two matched pixels of a matched pair in left image and right image must not be on the 

boundary of their images in order to assure the matched pixels can have required feature 

window, as features are extracted within a certain size of window in our designed systems. 

 

Strategies for RS: 

The set of initial matched pixels used by RS scheme is retrieved from Step Two in the pipeline 

presented in Section 3.2. According to [90], RS adopts the way of random collection without 

any extra constraints. Consequently, matched pairs for training are arbitrarily selected from 

this initial set. 

 

Strategies for SRC: 

1) The row indices of the two matched pixels of a matched pair in left image and right image 

must be equal. For this reason, the training pairs regarding matching traits are selected from 

the initial set of matched pairs obtained from Step Three in Section 3.2. 

 

2) The two matched pixels of a matched pair in left image and right image are not black pixel 

generated by rectification filling the extra empty boundary and their corresponding 

unmatched pixels are also not black pixel generated by rectification, which is also the 

reason of directly selecting matched pairs from rectified images applied with procedure of 

common area cropping. 
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3) For every pixel in matched pairs, at least there is one unmatched pixel in the maximum 

disparity range except for its corresponding matched pixel in the other image and is not 

beyond and not on the boundary of the other image to make sure each pixel of this matched 

pair is able to have an unmatched pixel with demand feature window in the other image.  

 

3.3.2 Two selection schemes for unmatched training data 

 

With provision for the diversified and flexible capability of system recognising the relationship 

between pixels, training should not only involve matched relation but also an unmatched 

relation. In order to increase the flexible ability, unmatched pairs are as well as picked up for 

training the system to acquire the ability to distinguish the traits of dis-correspondence. 

 

The basic strategy for both RS and SRC: 

This is the same as matched pairs selection. Unmatched pixels in stereo images must not be on 

the boundary of respective images so as to guarantee unmatched pixels can produce a 

demanded feature window.  

 

Strategies for RS: 

As described in [90], unmatched pairs for training are as well as picked up randomly. 

Accordingly, RS employs the way of arbitrarily selecting an unmatched pixel for each pixel in 

a matched pair respectively, which the matched pair is generated from the selection of matched 

data set for training. Thereupon, every pixel from a matched pair has its unmatched pixel to for 

an unmatched pair. 

 

Strategies for SRC: 

This strategy selects unmatched pixels in the maximum disparity range based on corresponding 

pixels in selected matched pairs (produced by SRC scheme) to constitute unmatched pairs. 

Supposing a matched pair contains (Pixel1, Pixel2), which Pixel1 is from in Image Left and 

Pixel2 is from in Image Right. The index of Pixel1 is (r1, c1), and the index of Pixel2 is (r2, 

c2), where {r1, r2} indicates the number of row and {c1, c2} indicates the number of column. 

According to the rectification theory, r2 is equal to r1. The maximum disparity (MaxDisp) 

points out the maximum distance of a potential matched pixel in the other image regarding its 

reference pixel. The unmatched pixel index in the maximum range is (r_m, c_mith), which 
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c_mith∈c_m. The method of selecting unmatched pixels to form unmatched pairs are showing 

below: 

 

a. Using Pixel1 as reference pixel: 

The indices of unmatched pixels in the maximum range are:  

 

In Right Image	
r_m = r1

c_m = {c1, c1-MaxDisp}
 

 

If (r_m, c_mith) in Image Right is not beyond and not on the boundary of Image Right, 

which c_mith	≠ c2, then a matched pair consists of:  

 

((r1, c1) in Image Left, (r_m, c_mith) in Image Right) 

 

b. Using Pixel2 as reference pixel: 

The indices of unmatched pixels in the maximum range are:  

 

In Left Image	
r_m = r2

c_m = {c2, c2+MaxDisp}
 

 

If (r_m, c_mith) in Image Left is not beyond and not on the boundary of Image Left, which 

c_mith ~= c1, then a matched pair consists of: 

 

((r2, c2)	in Image Right, (r_m, c_mith) in Image Left) 

 

According to the methodologies of RS and SRC, RS has fewer constraints comparing to SRC, 

however, however, SRC focuses on revealing the specific character of stereo vision itself. The 

evaluation between RS and SRC performances will be presented in the next section. 

 

3.3.3 Experimental evaluation of two selection schemes 

 

The RS and SRC schemes have their own characteristics. The dataset built with RS have the 

traits of randomness, in contrast to the dataset constructed on the basis of SRC. The SRC 

dataset involves the special characteristics of stereo vision in relation to epipolar geometry. In 
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order to have a sense of the effectiveness of these two schemes, this section investigates the 

performance of RS and SRC schemes.  

 

Experimental process: 

 

We adopted a way of evaluating the training and test performances using two schemes 

respectively to find out the effectiveness. The output performances can show the distinguish 

outcome. With the help of these results, the evaluations of the two schemes can be carried out. 

The experimental process was mainly divided into three stages: construction of feature vector 

set, training and test sets division, and neural network training, which are introduced as below: 

 

• The first stage built two feature vector sets for training following the pipeline with RS 

and SRC schemes as described in previous sections. The final output of feature dataset 

creation produced two sets that have the same size of training samples on the selection 

of both matched and unmatched pairs.  

 

• Normally the learning procedure of machine learning requires training and test sets to 

estimate the performance. The produced feature datasets from stage one were then 

divided into training and test sets. The procedure of splitting datasets to form training 

and test sets were implemented according to the principle of cross-validation which 

denoted percentages for training and test sets. 

 

• The structure of neural network adopted for training was the one proposed by [90]. The 

network consisted of one input layer, one hidden layer and one output layer as shown 

in Chapter 4 Section 4.3 The split datasets were trained and test for k times regarding 

cross-validation with this simple network to produce average performances for both RS 

and SRC based learning. 

 

Performance evaluation with cross-validation:  

 

Cross-validation provides statistical evaluation for learning techniques in the way of splitting 

the dataset into two parts, that is to say, one is created for training and the other one is for 

model validation [95]. 
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Table 3.3.3.1 Pros and cons comparisons between cross-validation algorithms 

 

As the taxonomy given by [95], there are six sorts of methodologies in the family of cross-

validation: resubstitution validation, hold-out validation, k-fold cross-validation, leave-one-out 

cross-validation and repeated k-fold cross-validation, and the comparisons between their pros 

and cons are given in Table 3.3.3.1. Resubstitution validation uses all the data for systems to 

learn and test with the same data. Hold-out validation holds out one part of the dataset as a test 

set which does not participate in training. 

 

K-fold cross-validation splits dataset into k sets that have the same size and performs k times 

of training, which uses k-1 sets for training and one set for the test each time, furthermore, if k 

equals to the total number of samples in the dataset, k-fold cross-validation becomes Leave-

one-out cross-validation. Repeated k-fold cross-validation repeats k-fold cross-validation more 

than one time and shuffles the dataset at the beginning of each turn of k-fold cross-validation. 

 

In consideration of the efficiency and comparisons in Table 3.3.3.1, we adopted k-fold cross-

validation to perform generalised performance estimation. Our experiments set the number of 

k equal to ten for k-fold cross-validation as ten is the most common value for k in machine 

learning estimation [95]. In this case, each dataset based on RS and SRC was split into ten 

equal set and trained with the neural network ten times where each iteration used nine sets for 

training and one set for the test. The final evaluation was computed as the average of 

performances of ten turns as shown in Equation 3.2. 

 K-FCV		= 
1

k
Pi

k

i=1

 (3.2) 
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Where k = 10, and P is the performance of every iteration, and i is the number of iterations. 

The illustration of 10-fold cross-validation is given in Figure 3.3.3.1. 

 

 

Figure 3.3.3.1 10-fold cross-validation 

 

Each performance was computed with the most common algorithm of error estimation that is 

known as Mean Squared Error (MSE). Equation 3.3 denotes the computational theory of MSE. 

 

 

Where n is the number of instances, i indicates which instance, t is the target and o is the output 

from the network. By combining with the 10-fold cross-validation, the computation can be 

defined as Equation 3.4. 

 

 

The evaluation results of 10-fold cross-validation for RS and SRC based training are shown in 

Figure 3.3.3.2. From the results, we can have a view of the impact of RS and SRC on system 

learning. The stereo images pair used for this experiments was from [47]. 

 

In Figure 3.3.3.2, the shorter the bar is, the smaller the error is. As the results shown in Figure 

3.3.3.2, performance of SRC produced shorter bar than RS, which means when choosing SRC 

 MSE = 
1

n
(ti-oi)

2

n

i=1

 (3.3) 

 MSE-10-FCV = 
1

10
MSEi

10

i=1

 (3.4) 
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scheme that involving specific selection regarding to the traits of stereo geometry to pick up 

training instances for dataset construction the system can be able to acquire higher possibility 

to generate better performance in contrast to exploit RS scheme that performing generalised 

selection. 

 

 

Figure 3.3.3.2 Selection scheme evaluation 

 

Furthermore, this also can imply that stereo correspondence learning for neural network 

requires training data that can represent the characteristics of stereo vision rather than arbitrary 

representation. In other words, according to the results, SRC has appeared to be more suitable 

for the task of stereo matching. For this reason, all other experiments of this project adopted 

SRC strategy to carry out implementations. 

 

3.4  Feature modality analysis 

 

Features represent the traits of pixels so as to help system to study in the way of target analysis. 

Different applications may demand diversified feature engineering. The inspiration of features 

design for our research was derived from the paper [90]. 

 

3.4.1 Basic Feature design 

 

While it comes to the stage of extracting features from captured images, the primary matter 

that is normally considered at the first point involves the decision referring to which type of 

images to be utilised in terms of shades: colour and grey scale [10]. A colour image is made 

up of three channels (red, green and blue), that pursuantly including more abundant data in 

comparison of a grey scale image represented by one channel. Both colour and grey scale 

images are possessed of their own advantages and disadvantages. 
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With a plenty of information provided by three channels of colour images, performance can 

easily reach to a higher point than single channelled grey scale image. Nevertheless, the 

operation time is raised due to a bigger amount of data generated from RGB images, on the 

opposite side, grey scale images show its preponderance on this aspect that less information 

conduces elapsed duration.  

 

A grey scale image can be converted from RGB channels. Different applications require 

different input, in other words, the chosen of RGB and grey scale depends on practical matter. 

Our research utilises grey scale images by considering the processing time and the 

computational engineering cost of RGB images. Once images are converted into grey scale, 

the attributes representing characteristics information can be extracted in a way of simplified 

implementation.  

 

In machine learning, the input feature vectors are made up of series of attributes for the 

computer to learn the properties through specific cues. There are three differential features 

suggested by [90], which are the most commonly used attributes for grey scale image: Intensity 

Differences, Magnitude Differences and Orientation Differences, where the terms of intensity, 

magnitude and orientation are defined as follows. Supposing the intensity (Int) of a pixel is 

f (x, y), then its gradient can be denoted as Equation 3.5, accordingly, the magnitude (Mag) of 

the pixel is formulated as Equation 3.6, and the orientation (Ori) is defined as Equation 3.7 

[90]: 

 

 

 

 

The differences of intensity, magnitude and orientation are computed as the subtraction 

between left and right features of pixels, supposing a pair of pixels from left and right images 

 Int = Gx, Gy  = 
∂f

∂x
, 
∂f

∂y
 (3.5) 

 Mag = Gx
2	+	Gy

2
1
2 (3.6) 

 Ori = tan-1(
Gx 

Gy

) (3.7) 
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for correspondence estimation is (Pl, Pr ), then the three features of this stereo pair are defined 

as below: 

 

 

 

 

Pixels in each pair are extracted with these three features in a certain window. However, only 

the attributes from single pixel cannot provide enough clues in respect to the relations with 

surrounding context for the system to learn, for this reason, feature extraction of a pixel is 

obtained in a certain window, where the pixel is in the centre of this window [90]. The centre 

pixel and all other pixels belonging to the same window are all computed with three features 

so as to include more information. The differential features are then calculated with two feature 

windows of stereo pixels.  

 

A schematic example of feature formation on the basis of the window approach is illustrated 

in Figure 3.4.1.1. In Figure 3.4.1.1, the orange squares combining with one green square 

represents a selected feature window of a pixel in an image, where the green square in the 

centre of the window is the representative of this pixel, all the orange squares are the neighbour 

pixels. 

 

 

Figure 3.4.1.1 Window based feature 

 

[90] suggests the size of feature window to be 7×7. Each 7×7 differential feature window is 

generated by left 7×7 window minus right 7×7 window, where two windows are centred with 

 Intensity Differences	=	Int Pl 	-	Int Pr (3.8) 

 Magnitude Differences	=	Mag Pl 	-	Mag Pr (3.9) 

 Orientation Differences	=	Ori 
Pl 	-	Ori 

Pr (3.10) 
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Pl and Pr. The three differential Feature windows of a stereo pair are then formatted into a vector 

as the input of network, in the case here, the size of each differential vector is 49, moreover, 

the three differential feature vectors are combined into one final vector that has 147 attributes.  

 

In our research these three features were computed as 7×7 for SNN and Multiple NNs and final 

vector utilized the approach introduced in [90], however considering the different input 

structure from SNN and Multiple NNs, CNN adopted different multiple window sizes and 

different input structure in the form of channels (details will be presented in Chapter 5). 

 

3.4.2 Numerical data types of differential features and experimental evaluation 

 

The computer sees the image in the form of numerical values. Figure 3.4.2.1 shows an example 

that how computer understanding a digital image given by Bradski and Kaehle [7], as this 

illustration, what human sense in this figure, a car is classified, whereas computer only can 

recognize a series of digital numbers.  

 

 

Figure 3.4.2.1 Computer understanding a scene 

 

In other words, the way of computer to comprehend images is to analyze binary data which 

images are turned into. Every patch of those numbers containing not only the actual 

information but also a lot of clattered data that disturbing the correct decision to be made by a 

computer. Even more, the state of affairs is to convert 2D input images back to the 3D concept 

as output, which makes the mission of computer vision rather difficult to be accomplished.  
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On account of this reason, the type of numerical values for the learning of intelligent system 

plays special roles in learning procedures, furthermore, the term of numerical types can be 

referred to the range of values such like from negative number to positive number in the form 

of integer that is more widely employed rather than double type. Double-number requires more 

computational resource than integer variables. Our research has utilised integer type for feature 

extraction.  

 

Regarding the design of features for our research as presented in the previous section, the 

differential features were in the form of the results produced by substitution, in consideration 

of this property, there would be three types of numerical data that could be involved into 

consideration, which are 8-bit unsigned integer, 16-bit signed integer, and absolute integer as 

specifications below: 

 

• The type of 8-bit unsigned integer (uint8) excludes negative numbers in the way of 

converting negative values to zeroes, and the rage is from 0 to 255. If the subtraction 

values were negative, then the numerical values of these features would be equal to 

zeroes. 

 

• The rage of 16-bit signed integer (int16) begins with -32768 and ends with 32767, 

which keeps the negative values. Therefore, the negative values of the subtraction 

output can remain in the feature vectors. 

 

• The approach using absolute integer extracts absolute values from subtraction results. 

By adopting this method, the negative values were kept in the form of positive values. 

The absolute difference is also one of the most common matching cost for solving the 

task of stereo correspondence.  

 

Evaluations were carried out in order to observe the impact of these three numeric types on 

learning capability. Figure 3.4.2.2 shows the 10-fold cross-validation for this evaluation. The 

network structure utilised in training was the same as the one adopted by the evaluation in the 

previous section, which was introduced by [90]. Moreover, the evaluation was implemented 

with 10-fold cross-validation computed with MSE. 
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In Figure 3.4.2.2, lower bar means lower error generated, in other words, the higher bar 

represents lower performance. From the results we can see, int16 type produced the worst 

performance in three types, and the results of training using uint8 type closed to int16 method 

but appeared slightly better performance, among these results, absolute approach generated the 

best performance. 

 

 

Figure 3.4.2.2 Feature numeric types evaluation 

 

These three features contain different specific numerical information which could result in 

different performances. Numeric type with 8-bit unsigned integer contains the least amount of 

numerical values in these three types. The type of 16-bit signed integer has a more amount of 

data with a negative sign. The absolute type retains negative numbers by removing negative 

sign so as to maintain the same quantity of values as the method of 16-bit. 

 

The results imply that system learning requires a certain amount of values that contain more 

numerical data rather than many zeroes, moreover, the negative values do not make an 

improvement on the performance, however, decrease the level of accuracy. In accordance with 

this outcome, our research has considered the scheme based on absolute principle to be 

preferred data type which are shown as follows: 
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 Absolute	Intensity Differences	=	|Int 
Pl 	-	Int Pr| (3.11) 

 Absolute	Magnitude Differences	=	|Mag 
Pl 	-	Mag Pr| (3.12) 

 Absolute	Orientation Differences	=	|Ori 
Pl 	-	Ori 

Pr| (3.13) 
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3.5 Datasets 

 

Apart from the stereo images Mountain used in Section 3.2, the Middlebury benchmark [96] 

provides a database contains several datasets for implementation of stereo matching 

experiments, which are extensively popular datasets used in the community of stereo matching 

research, moreover is the main dataset used in our research. Most researches have been carried 

out with these datasets. The datasets have been used for our research are 2003 Datasets [11], 

2005 Datasets and 2006 Datasets [63], [88].  

 

The 2003 Datasets include two pairs of stereo images which also have been used in our study: 

Cones and Teddy. There are three sizes for each pair as listed below. In consideration of time 

consuming, our research used quarter size of this datasets as large sizes demand high 

computational resources to support. The two sets of stereo images and their left disparity maps 

are shown in Figure 3.5.1. 

 

• Full size: 1800	×	1500 

• Half size: 900	×	750 

• Quarter size: 450	×	375 

 

 

Figure 3.5.1 Stereo pairs from 2003 Datasets 
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2005 datasets and 2006 datasets were created for increasing the stereo pairs for algorithms test 

by Middlebury benchmark. Six pairs of stereo images in 2005 Datasets were utilised in our 

research: Books, Moebius, Dolls and Reindeer. Our research used five pairs from 2006 

Datasets: Aloe, Baby3, Bowling2.  

 

Figure 3.5.2 and Figure 3.5.3 illustrates pairs and their corresponding left disparity maps that 

have participated in our study, which are from 2005 Datasets and 2006 Datasets. 

 

 

Figure 3.5.2 Stereo pairs from 2005 Datasets 



	 56 

 

Figure 3.5.3 Stereo pairs from 2006 Datasets 

 

The image sizes for 2005 Datasets and 2006 Datasets are as follows, moreover the third size 

of these two datasets was chosen by our experiments for the purpose of low computational cost: 

 

• Full size: 2005D	(1330…1390)	×	1110, and 2006D	(1240…1396)	×	1110 

• Half size: 2005D	(665…695) ×	555, and 2006D	(620…698) ×	555 

• Third size: 2005D	(443…463) ×	370, and 2006D	(413…465) ×	370 

 

The maximum disparity defines the possible distance for the corresponding pixel referring to 

its reference pixel. The Middlebury datasets have different maximum disparity ranges, the 

specifications given for each dataset are: 2003 Datasets are 64 pixels, 2005 Datasets and 2006 

Datasets are 80 pixels. These disparity ranges have been used for feature extraction and 

disparity computation in our research. Due to the sizes of datasets utilised were not full size, 
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the actual disparity values should be encoded with a scale factor, where 4 for 2003, 3 for 2005 

Datasets and 2006 Datasets in accordance with the selected image sizes. 

 

The Middlebury datasets were used throughout our experiments. Firstly, provided datasets 

were implemented with feature analysis for investigating better suitable feature engineering. 

Secondly, training and test datasets were extracted from those datasets for the experiments of 

improvement on the level of accuracies regarding learning capability that can be affected by 

system parameters. Furthermore, a series of methodologies for network architectures and 

disparity computations with different system designs were evaluated with Middlebury datasets 

so as to observe the effectiveness of our proposed systems. 

 

3.6 Chapter summary 

 

A systematic pipeline of feature extraction has been explained. This pipeline can extract feature 

vectors as the input of intelligent systems in the way of implementing rectification for un-

calibrated stereo images. Moreover, in consideration of the effectiveness of input datasets, two 

feature selection schemes (RS and SRC) have been evaluated based upon the pipeline in order 

to improve the performance of learning ability. Estimation of numeric types (uint8, int16 and 

absolute types) derived from basic feature design have as well as been carried out to find out 

which numerical data is more fit to stereo correspondence problem. After the observations from 

experiments, SRC and absolute type have been decided as the main methods for feature 

engineering with the datasets from Middlebury benchmark that have been the main 

experimental datasets in our study.  
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Chapter 4: Neural networks for stereo correspondence 

 

As mentioned in Section 2.5, main types of stereo matching algorithms are on the basis of local 

and global schemes. Along with the improvement, various approaches of stereo corresponding 

estimation have been investigated and carried out for tackling a variety of issues. Up to the 

present time, many novel algorithms have been investigated, techniques of neural networks as 

well as have started to perform an effective character in the realm of stereo correspondence. 

 

This Chapter introduces the novel approach in relation to adopt neural networks to perform the 

procedure of stereo matching. Especially, the innovative one created and designed by the 

project is formed with multiple neural networks that has been created based on the simple 

neural network, which the detailed design from network structure, training function, parameter 

optimization to performance optimization of network model and evaluation of produced 

performance are particularly presented step by step. 

 

4.1 Neural network overview 

 

Artificial neural network (ANN) has proved that its learning skills can make huge benefits on 

pattern recognition and classification tasks in a way of self-organization, moreover, trained 

ANN becomes an expert in the area of given examples and can predict meanings for unseen 

data [97]. Such strategies are in the light of the interest in the path of simulating human nervous 

system specifically on learning principles. The functional activations provided by the brain are 

generated from the power of enormous nervous networks. The brain processes information that 

is represented by electric signals through billions of neurons in the way of emitting signals 

between neurons as the schematic shown in Figure 4.1.1 [98]. 

 

 

Figure 4.1.1 Biological neurons 
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The dendrites, cell body and axon as elementary functions constitute a biological neuron. 

Impulses in the form of signals reaches dendrites of a neuron through synapse that is in between 

dendrites of the neuron and terminals of another neuron strands, if there are strong signals 

received the cell body is activated to process these signals then following by transmission along 

the axon further to strands and their sub-strands to the next neuron that again performs the same 

procedure [98], [99]. 

 

    

Figure 4.1.2 Computational model of a neuron (left) and ANN example (right)  

 

The technique of ANN simulates a biological neuron as a node formed with a computational 

model in a network [99]. Figure 4.1.2 presents the schematics of the artificial neuron and an 

ANN network models [100]. An artificial neuron computes the output in two steps: first step 

is to implement the summation of weighted input data and second step computes output with 

an activation function, moreover, an ANN consists of these artificial neurons that are divided 

into different layers connected by weighted directions, which consists of input and output 

layers and hidden layers in between them that do not directly communicate with external 

circumstances [98], [99], [100], [101]. The term of weight represents the strength of the 

connection between neurons [102]. Basically, there are four common activation functions: 

threshold, piecewise linear, sigmoid and Gaussian as shown in Figure 4.1.3 [99]. 

 

 

Figure 4.1.3 Common activation functions: (a) threshold, (b) piecewise linear, (c) sigmoid 

and (d) Gaussian 

 

According to the pattern of connections, there are two main classes of ANN: feed-forward 
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network that connects layers in one direction without loops and feedback/recurrent that occurs 

loops in connections as a result of data feedback [99], [100], a taxonomy of architectures based 

on these two categories is given in Figure 4.1.4 [99]. Static feed-forward network with low 

computational requirement produces one set of output instead of a sequence of output 

generated by dynamic feedback network, which accordingly performs with low computational 

cost in contrast to feedback structure [99]. 

 

 

Figure 4.1.4 Feed-forward and recurrent/feedback architectures taxonomy 

 

Learning schemes of ANN referring to the adjustment of weights group into three fundamental 

categories: supervised, unsupervised and hybrid [99], [101]. According to the literature, 

supervised learning gives each sample with correct answers, and modifies weights on the basis 

of errors in respect to the answers so as to generate outputs approaching to correct answers. 

Unsupervised learning categorises samples without correct answers but based on the 

correlations of samples such as underlying data structure and comparability between. Hybrid 

learning associates supervised learning with unsupervised learning in the way of dividing 

weights for two learning schemes estimating respectively.  

 

The update of weights for input samples can be carried out in two forms: incremental training 

updates weights sample by sample and batch training updates weights with the entire set of 

samples [101], [103]. Incremental training has the advantage of estimation with less storage 

demand and less possibility of falling into a local minimum, however, may start with a bad 

sample resulting in a wrong searching path in contrast to batch training that having better 
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estimation measurement owing to plenteous representatives [101]. Both incremental and batch 

strategies can be implemented in static and dynamic networks, while incremental training 

commonly participates in dynamic networks [103]. 

 

4.2 State-of-the-art of stereo corresponding algorithms using neural networks 

 

As presented in the previous section, neural networks can provide many functions in the realm 

of intelligent learning. On one hand, the imitation of nervous system is able to provide vastly 

parallel distribution architecture that can significantly improve computational speed which 

makes favor for tasks with huge amount of dataset, on the other hand, the learning power of 

neural network can provide generalization analysis to the input information that has not been 

seen in advance, moreover, the ability of processing inherent contextual knowledge can 

sufficiently take advantage of local information, in addition, neural network system can be 

stable at a certain degree owing to fault tolerance capability [99]. On account of dominate 

aspects of ANN, disparity estimation with neural networks as a popular approach has a growing 

domain of interest and been studied by many types of research. 

 

At the 1970s, neural networks had started its role in stereopsis. Dev [104] introduced an 

examination that detected depth with a neural model formulating surface segmentations 

integrated with random-dot stereograms, which represented an early application of stereo depth 

detection with neural network, after a decade, along with the development more and more 

stereo corresponding researches showed interests and attempted to exploit neural networks 

which can be found in [105]. 

 

Up to the recent period, different types of neural networks have been implemented with stereo 

matching task on different aspects to generate disparity map. These algorithms can be roughly 

grouped in unsupervised and supervised strategies. Paper [106] introduces an unsupervised 

strategy that implements disparity computation by using self-organizing mapped neural 

network. An approach that adopts the combination of Hopfield neural network for finding the 

most interest area and the maximum neural network for detecting its best location stereo 

matching is proposed by [107], in addition, this approach is extended to compare with 

implementation with self-correcting networks in [108].  
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Comparing with unsupervised algorithms, supervised algorithms can perform a matching 

process in accordance with the given targeting values. Article [109] proposes a methodology 

that can perform disparity map generation with FPGA in real by formulating differential 

features between paired pixels in the form of disparity space image, and computing the final 

disparity with a feed-forward neural network including two hidden layered. Backpropagation 

(BP) network as a common supervised learning approach has participated in disparity map 

estimation [110]. The algorithms of [110] involve the estimation of the matching level between 

stereo pixels as a classification task by taking advantage of BP algorithm, furthermore, this 

idea has made contributes to such research direction.  

 

An algorithm presented by work [90] that extends the idea of [110] finds out the matched pixel 

on right image of a reference pixel on left image in a maximum disparity range by determining 

the matching degree of reference pixel and its potential corresponding pixels with a BP Neural 

Network that is the same as the part of computing matching level in [110], which involves 

image rectification at the beginning and refinement approach based on segmentations 

estimation with the BP network at the final stage. This approach is then modified by paper [111] 

with the same differential features and the same structure of BP network, however with 

different refinement algorithm implemented by a simple network consisting of input and output 

layers only. The start point of our study has been found on symmetrical methodologies 

proposed by [90]. 

 

4.3 Initial simple neural network 

 

The first model of the neural network in our research was created based upon [90]. We adopted 

the network structure proposed by the study of [90], which is illustrated in Figure 4.3.1. The 

primary role of the proposed simple neural network plays a role in estimating the level of 

similarities between paired pixels so as to obtain corresponding left and right pixels as much 

accurate as possible. The function of this neural network involves estimating the level of 

correspondence between stereo pixels which is also denoted as matching degree. The higher 

the values of matching degree, the more corresponding two pixels are. 

 

As shown in Figure 4.3.1, the neural network is a multilayer perceptron network constructed 

with three layers. There are 147 neurons on the input layer that input the feature vectors 
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consisting of three differential features for every pixel pair contacting 147 attributes, and one 

hidden layer has 49 neurons. The output layer with one node outputs a vector containing 

computed matching degrees for all pairs in respect to each reference pixel. The final disparity 

is assigned with the one has the best matching degree among all the candidate pixels.  

 

 

Figure 4.3.1 Structure of simple neural network (SNN) 

 

This simple neural network employs backpropagation method to perform batch training 

procedure. Backpropagation algorithm is one of the widely implemented learning algorithms 

in ANN [112].  

 

BP learning that is based on the principle of error correction minimizes the error function (the 

most common one – cost function found on squared error) in a way of performing backward 

error estimation and parameters update between output layer and input layer [99], [101] as 

shown in Figure 4.3.2 [113]. The process of a BP network learning can be divided into four 

stages [112]: computation of feed-forward, backpropagation between output and hidden layers, 

backpropagation between hidden layers and input Layers and update of all weights. 

 

The first stage of a BP network completes a turn of feed forward computation with a set of 

randomly chosen weights. Once the output is generated from the feed-forward process, errors 
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of nodes retrieved by loss function at the output layer are computed and the weights leading to 

them can be updated according to the estimated errors. Next, when the BP process reaches to 

the hidden layer, the procedure performed at the previous layer are implemented again so as to 

obtain corrected weights between input and hidden layers. One full backpropagation process 

stops until accomplishing the computation between the input layer and the first hidden layer. 

At this point, all the weights can be updated to a certain level of correction. The entire stages 

then perform again and again until deriving the desired minimum error which can have output 

close to the given true target as much as possible, where Equation 4.2 formulates this process 

to achieve parameters updating. 

 

 

Figure 4.3.2 Backpropagation network 

 

As explicated in Chapter 3, there are three differential features extracted for pixels: absolute 

intensity differences, absolute magnitude differences and absolute orientation differences. 

These three features are computed as combinations of pixels in selected windows. Each 

differential feature window is the subtraction of two windows that are centred with stereo pixels. 

The three differential feature windows of a pixel pair are then formatted into a vector as the 

input of BP neural network. 

 

This simple neural network (hereby denoted as SNN) as the first network in our study was built 

with the same network architecture introduced by [90], however, with different methodologies 

regarding feature engineering as presented in Chapter 3. Moreover, experiments of parameter 

settings for SNN have been carried out to make the improvement on the level of performance 

contrast to the original network design. 
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4.4 Model selection experiments and evaluations for SNN 

 

Artificial neural networks normally involve a diversity of parameters settings to optimize 

models. These settings affect the performance of designed networks. Among these parameters, 

learning rate and training algorithms are the two fundamental factors making effects on the 

degree of learning accuracy. The network specification used in experiments is given in Figure 

4.4.1. Each input instance belonging to a pair of stereo pixels consisted of 147 inputs. These 

input values were summed with weight and bias operations at hidden layer. The term of bias 

measures how simply to make a neuron activate [102]. After the summation computation, the 

activation function transferred the values as the output of the hidden layer to the output layer. 

The output layer performed the same procedure as the hidden layer to produce one output 

denoting the matching degree of a pixel pair. 

 

 

Figure 4.4.1 Experimental network structure for SNN 

 

As shown in Figure 4.4.1, the activation function participated in the network for the 

experiments was sigmoid function. The sigmoid function is the most extensively used one, 

where the definition can be defined as Equation 4.1 [102]. The curve of the sigmoid function 

presents a shape of "s" as shown in Figure 4.1.3. In the mathematical sense, the sigmoid 

function can receive any value of real numbers in the range including both positive and negative, 

and converts output values into the scope zero to one [103]. 

 

 

4.4.1 Model selection with learning rate 

 

Learning rate is a parameter required by the most training algorithms in neural network as it 

directly affects the computation of weights. Diversified models demand specific learning rate 

 f(x) = 
1

1 + exp-x (4.1) 
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to cooperate with themselves so as to reach to optimal performance as much as possible. 

Therefore, it is important to estimate which learning rate could be a suitable one for an intended 

network model. The possible situations caused by learning rates are given as Figure 4.4.1.1 by 

[114]. 

 

Small learning rate may cost a long time to reach to a significant improvement on performance 

where error rates drop with a large value as the representation by the blue curve in Figure 

4.4.1.1, where the changes of errors appear very small between each step. The larger the value 

of learning rate, the faster the jump from high to low error rate would be at the beginning, 

however, this may cause the missing of actual minimum error point and lost in finding 

subsequently such as the green curve. With very large learning rate such as the yellow curve, 

the procedure may appear difficulties in minimizing the errors and generate extremely high 

errors. The red curve shows that an optimal learning rate can produce a performance with a 

smooth curve within an ideal range of processing epochs, moreover, the improvements of 

reducing errors between each epoch perform with reasonable reduction rate.  

 

 

Figure 4.4.1.1 learning rate performance 

 

On account of this reason, the learning rate in regard to the most common training function 

which is known as gradient descent algorithm (details are given in next section) was estimated 

in our research. The observation of the effect with different learning rate involves evaluates 

performance produced by networks with different learning rates. For this experimental 

evaluation, the error rates were computed with mean squared error as presented in Section 3.3.3 

to reveal the training and test performances. The most common selected learning rate is 0.01. 

We adopted this values as one of the choices of learning rate as the basic rate, moreover, in 

order to observe impact generated on the basis of larger and smaller learning rate, other values 
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were included for estimation: 0.05 and 0.005. Furthermore, we used neural network toolbox 

provided by MathWorks [103], [115] to implemented experiments. This toolbox is very 

handful for achieving neural network task. 

 

LR 0.01 0.05 0.005 

MSE with 10-FCV 0.0941 0.0941 0.0942 

Table 4.4.1.1 Performance comparisons for learning rates for SNN 

 

Table 4.4.1.1 lists the output performances relating to the network training with three learning 

rates. From the table we can see, these three learning rates produced close performance, where 

the average performance of LR 0.01 and LR 0.005 appeared the same results and only slightly 

higher than the output values generated by LR 0.005. The very similar performances generated 

by three learning rates imply that, without in the consideration of processing speed, the SNN 

integrated with gradient descent algorithm to perform matching estimation between stereo 

pixels can maintain stable performances regarding the changes of different learning rate. 

 

The characteristic learning curves presenting the training effectiveness of SNN in respect to 

each learning rate are given in Figure 4.4.1.2, where Figure 4.4.1.2 (a) is the learning curve 

with learning rate 0.01, and Figure 4.4.1.2 (b) and (c) are the learning curves showing the 

characteristics of training with LR 0.05 and 0.005. Three learning curves all demonstrated 

similar smooth shape in respect to the test process. LR 0.01 and 0.005 had the similar slope for 

training performance while LR 0.05 made significantly decreasing training slope, which means 

LR 0.01 and 0.005 can balance the learning ability among training (with the seen set) and test 

(with the unseen set). Determining from this aspect, LR 0.01 or 0.005 could be a better selection 

in three learning rates. 

 

Although these three rates can produce the very close outcomes, the actual elapsed time varies 

from each other. The high rate LR 0.05 reached to the low error rate in a short time, and the 

low rate LR 0.005 took long processing time with many epochs to minimise values of errors. 

The computational speed of LR 0.01 appeared to be approximately in the middle between LR 

0.05 and 0.005. If making the choice of learning rate form this condition, LR 0.01 or 0.05 may 

come to the first place. 
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In the view of these outcomes, we chose LR 0.01 as the learning rate for SNN trained with 

gradient decent function on account of LR 0.01showed average benefits in both situations 

described above rather than the other two rates.  

 

 

(a) LR = 0.01 

  

(b) LR = 0.05 (c) LR = 0.005 

Figure 4.4.1.2 Learning curves produced with three learning rate for SNN 

 

4.4.2 Model optimization with training functions 

 

In the learning procedure of neural network, the training algorithms minimize the loss function 

(e.g. MSE) in the way of adjusting the learnable parameters such like weight and bias so as to 

make a network produce errors as low as possible [102]. There were two training algorithms 

adopted in experiments to find out an optimal training function for SNN: gradient descent and 

scaled conjugate gradient. 

 

The gradient descent backpropagation is deemed to be the basic and simplest approach among 

optimization algorithms. Training function integrating this algorithm modifies learnable 
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parameters in accordance with gradient descent as defined in Equation 4.2 by computing 

derivatives of performance - p regarding current variable vector - xk  containing values for 

weight and bias [102], [103], [116], where µ is the learning rate as mentioned in the previous 

section and xk+1  represents the update of two learnable parameters. 

 

 

The gradient descent (GD) algorithm exploits a constant value for the learning rate and negative 

gradient as search direction performs approximation. Moreover, in this case, all directions 

integrating with one learning rate, however, one learning rate cannot be the optimal solution 

for all conditions. 

 

 One algorithm that is known as Scaled Conjugate Gradient (SCG) proposed by [117] to solve 

the issue caused by GD adopts second order information to implement cost function 

minimization. As a result of these properties, a network utilising SCG can produce better 

performance within faster computational speed in contrast with using GD [103], [117], [118]. 

The SCG algorithm computes the learning rate (Equation 4.3) and direction (Equation 4.4) as 

given below (see details in [117], [118]): 

 

 

Where dk is the current direction, and the denominator is scaled to positive by fudge factor λ, 

s represents a difference approximation of Hessian metric with a direction. The conjugate 

direction is formulated as Equation 4.4 by setting the initial direction as dk = 	- Ek: 

 

 

Where β
k
 is defined as Equation 4.5: 

 

 

 xk+1 = xk -  µ
∂p

k

∂xk

	= xk - µ Ek  (4.2) 

 µ
k
	= 

-dk Ek

dk (sk+λkdk)
 (4.3) 

 dk+1	= - Ek+1+	β
k
dk (4.4) 

 β? =	
|- Ek+1|

@	–	(- Ek+1)dk

µ
k

 (4.5) 
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The experiments using GD and SCG for SNN were carried out so as to compare and evaluate 

the effect for model selection. The results of performance regarding each training function are 

given in Table 4.4.2.1. 

 

The training and tests sets were the same datasets as the previous section, which contained 

matched pairs and unmated pairs. The practical experiments in respect to GD and SCG 

functions were also implemented with the toolbox provided by MathWorks [103], [115]. As 

listed in Table 4.4.2.1, SNN using SCG produced better performance than using GD according 

to the 10-fold cross-validation computed based on MSE, which means the optimal solution 

among these two raining functions for SNN should be SCG.  

 

 

Training function GD SCG 

MSE with 10-FCV 0.0941 0.0858 

Table 4.4.2.1 Performance comparisons for training functions 

 

 

  

(a) Learning curve of GD (b) Learning of SCG 

Figure 4.4.2.1 Learning curves in respect to GD and SCG 

 

The representative learning curves produced by GD function and SCG function are illustrated 

in Figure 4.4.2.1 (a) and (b). The point with the best performance on the curve represents a 

convergence point of network learning. After the best point resenting a convergence point, the 

network was outfitted which led to the network learnt seen set (training set) better than the 
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unseen set (test set). The learning curve of SCG algorithm shows in Figure 4.4.2.1 that the best 

performance, in other words, the convergence of the learning can be determined in a very small 

iteration, comparatively, training function with GD algorithm took long time to reach to an 

ideal performance, moreover, the best performance generated by SCG function was 

outperformed GD function.  

 

In this evaluation, SCG function proved the capability of producing standout outcome relating 

to obtain high accuracy in a short computational time. Therefore, SCG was deemed as the 

optimal training function for neural networks in our research. The structure of SNN was found 

on a single and simple neural network. In consideration of this structure, a more complex design 

of networks was thereupon considered to investigate the influence of stereo matching with 

different network structure.  

 

4.4.3 Impact with dataset size 

 

In the previous sections, experiments that used datasets with small dataset produced a low 

performance. Normally, the overall performance can be improved by increased the number of 

training samples on account of the level of learning generalization, in other words, the network 

can learn more conditions instead of giving narrow information. For this purpose, we employed 

increasing sizes of dataset to observe if a larger training dataset can increase the level of 

performance.  

 

This dataset was extracted with the algorithms presented in Chapter 3 Section 3.2 which relies 

on finding interest points. However, the number of interest point is normally limited, in order 

to build more datasets with sample numbers from small to large, we extracted datasets from 

stereo images using SRC proposed in Chapter 3 Section 3.3 according to the ground truth 

provided as ground truth provides the disparities that imply the position of corresponding pixels. 

which is good for generalization learning. 

 

There were three datasets extracted, and their sizes were: 23400 (23400D), 46800 (46800D) 

and 93600 (93600D). The size of the extracted dataset in the previous section was 423, in order 

to implement 10-fold cross-validation, 423 instances were divided into a training set containing 

378 samples and a test set containing 42 samples for each fold. The sizes of training and test 
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sets of thee datasets obtained from the ground truth for each fold of 10-fold cross-validation 

are listed in Table 4.4.3.1. 

 

Dataset size 23400 46800 93600 

1-fold training set size 21060 42120 84240 

1-fold test set size 2340 4680 9360 

Table 4.4.3.1 Sizes of three datasets extracted according to ground truth 

 

As the list in Table 4.4.3.1, the number of instances in these three datasets were increased the 

double amount of the one had a smaller number in respect to its one previous step. The 

experiments were implemented with the SNN using SCG function. Figure 4.4.3.1 presents the 

comparisons between performances regarding three datasets. 

 

 

Figure 4.4.3.1 Performance of different size of datasets 

 

In Figure 4.4.3.1, the shorter the bar, the lower the error rates generated. From this results we 

can see, along with the increasing number of samples, the performance increased as the 

decreasing bar shown, in other words, accuracy can be advanced with a large training dataset. 

Furthermore, as the typical learning curves presented in Figure 4.4.3.2, overfitting issue 

appeared to gradually reduce when the size of dataset increased, moreover, the largest dataset 

required the longest processing time of finding the convergence point, which is reasonable and 

acceptable as the computational time depends on the number of samples. 
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(a) 23400D 

 

(b) 46800D 

 

(c) 93600D 

Figure 4.4.3.2 Learning curves generated by three datasets 

 

4.5 Multiple neural networks for stereo matching 

 

Since neural networks have been in the spotlight of the stereo matching realm, various types 

of neural networks have been applied to disparity map estimation. However, most of the 

methodologies are found on single network structure, thereupon, one question came to us, 

which referred to what the performance would be if estimating stereo corresponding with 

architectures consisting of multi-networks as the human brain not only processes with one 

network but also with a diversity of packs of networks. In neural network technologies, models 

have such characteristic involves multiple and modular neural networks. 

 

4.5.1 Multiple and modular neural networks 

 

Multiple neural networks (Multiple NNs) offers architecture consisting of individual networks 

as depicted in Figure 4.5.1.1 [119]. Each network in the system is designed and trained for their 

particular duties separately, and a final network produces a final decision on the basis of outputs 
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from each individual network.  

 

Moreover, on one hand, such architecture often plays a role in applications that adopts input 

data captured from different sources like shown in Figure 4.5.1.1, on the other hand, tasks 

require to process input information in different means as well as exploit Multiple NNs [119]. 

In Multiple NNs system, each output of the individual network is the input for final network 

comparing with a single network system that the input is the original data. 

 

Modular neural network (MNN) aims to modularize task into different subtask, which each 

module of the network connects to other modules instead of neurons in the network [119] as 

illustrated in Figure 4.5.1.2 [120]. MNN can be mainly grouped into two categories depending 

on the scheme of joining modules: tightly and loosely. A tight MNN trains modules parallel by 

utilising a way of interacting and updating parameters of all modules at each single learning 

step, while error correction in loose model happens at hierarchical or sequential learning stages 

regarding correlations between networks [121]. 

 

 

Figure 4.5.1.1 Multiple Neural Networks example 

 

Training of MNN performs on a certain but not completely independent level on account of 

interactions occurring by some gating network to enable joint work between modules [119], 

[120] as shown in Figure 4.5.1.2. In contrast, according to the principle of Multiple NNs system, 

each sub neural network is independent of each other and resolves specific problem so called 

‘expert’, which means, in this case, each sub-network can be in any form is trained individually 
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and all outputs of these sub-nets are then combined for a main network to produce final output. 

This architecture has inspired us to apply its scheme with stereo matching task in respect of 

analyzing the independent correlation between two pixels from different aspects.  

 

 

Figure 4.5.1.2 Structure of Modular Neural Network 

 

Multiple NNs techniques are getting popular in the respect that the capability of resolving 

intricate jobs with results of enhanced performance in contrast to single network approaches 

[122]. This architecture breaks down the problem into different subproblems so as to be solved 

by several proper networks, therefore, Multiple NNs has been adopted as an optional strategy 

for creating reliable neural network system [123].  

 

In a broad sense, the design of Multiple NNs systems can be generally divided into two classes: 

ensemble methods train sub-networks with the same dataset and final decision is made on the 

basis of integrating decisions of each sub-network to the same mission, and modular methods 

gives each sub-network with different tasks such as different attributes of samples and produces 

final decision by synthetically estimating presentations of these attributes generated by sub-

networks [124]. Moreover, multiple structures could be a solution for huge datasets problems. 

Paper [125] proposes an approach for the purpose of improving the computational speed with 

a large dataset by using Multiple NNs architecture to share training responsibilities. Rather 

than MNN, the characteristics of Multiple NNs appear more suitable for our research purpose 

considering individual learning of different features. 
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4.5.2 The architecture of devised multiple neural networks 

 

As described in the previous section, multiple neural networks are good at performing expert 

learning by dividing tasks into separate missions that are processed by the diversity of 

individual networks. The architecture of Multiple NNs specifically in a way of modular 

approach is adopted by our research in consideration of different features for correspondence 

estimation between left and right pixels on stereo images.  

 

On account of three differential features (absolute intensity difference, absolute magnitude 

difference, and absolute orientation difference introduced in Chapter 3 Section 3.4.2) adopted 

for the network to learn, we designed architectures based on the principle of Multiple NNs so 

as to make the system learn each differential feature respectively with three sub-networks. The 

devised Multiple NNs were as well as used to compute matching scores for pixel pairs to 

measure the degree of corresponding. 

 

The design of this Multiple NNs exploited SNN as a basic concept and extended to the more 

composite structure. A Multiple NNs normally contains a main network for final decision 

computation and sub-networks to deal with specific tasks, moreover, these networks can be 

any type of architecture. In our design, the main network and sub-networks were all created 

with the structure of the multilayer perceptron network, and hereby the devised Multiple NNs 

is denoted as d-Multiple NNs. Figure 4.5.2.1 illustrates the main architecture of d-Multiple 

NNs and the structure of a sub-net is presented in Figure 4.5.2.1. 

 

 

Figure 4.5.2.1 The main network of d-Multiple NNs 
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In our research, the main network of d-Multiple NNs consists of three layers as shown in Figure 

4.5.2.1. The input layer contains three neurons that take over and transforms the input feature 

vector including three attributes that are the output of three sub-nets to the hidden layer. For 

the hidden and output layer, there is one neuron for each layer. The output of this main network 

represents the final matching degree for given stereo pixels. This matching degree is then used 

to determine if the two pixels are corresponding with each other. 

 

 

Figure 4.5.2.2 A sub-net of d-Multiple NNs 

 

The three sub-networks use the same structure as presented in Figure 4.5.2.2, where each sub-

network is created for training with one specific differential feature. The size of input feature 

window is also 7×7 as SNN system, therefore, the absolute difference vector of two pixels 

should contain 49 attributes, moreover instead of the input vector contains three differential 

features, the sub-network only receives one of the differential features respectively, 

accordingly, there are 49 neurons constitute the input layer of a sub-network.  

 

Different plans for hidden layer architecture were built in d-Multiple NNs for investigating the 

effectiveness regarding hidden layers, where one was integrated with one hidden layer and 

another one consisted of two hidden layers, moreover, with different numbers of neurons on 

each hidden layer. The three sub scores (IS – intensity, MS - magnitude and OS - orientation) 

generated by each sub-network are combined into one vector as the input vector for the main 

network as below: 

 

 Input Vector of Main Network	=	 IS, MS, OS  (4.6) 
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In addition, according to the evaluation carried out in Section 4.4.2, the training function for 

d-Multiple NNs has been considered to be SCG algorithm. Based on these methodologies, 

experiments for evaluating different patterns of d-Multiple were implemented in order to find 

out the best model design for d-Multiple NNs which will be presented in the next section. 

 

4.6 Experiments and evaluations for d-Multiple NNs optimization 

 

The basic pattern of d-Multiple NNs involves one simple main network and three sub-networks. 

The main network simply merges three scores of each differential feature to output one overall 

score where the practical structure as the graphical outline in Figure 4.6.1. The function of each 

sub-network refers to specifically learns one of the differential features. All experiments were 

implemented with neural network toolbox [103], [115] and the sigmoid function as activation 

function that is explicated in Section 4.4. 

 

In general speaking, there are two elements involved in the design of a network, which are the 

type and number of layers and number of neurons at each layer. In our study, we designed d-

Multiple NNs on the basis of SNN especially the layout for sub-nets. In respect that a sub-net 

only relates to one feature type, the number of input neurons was set to the number of attributes 

that one differential feature providing. Hidden layer plays a fundamental role in the architecture 

of neural network, which affects the learning capability of a network. Considering the 

importance of hidden layer, different designs of hidden layers for sub-net were experimented 

so as to optimize d-Multiple NNs. 

 

 

Figure 4.6.1 Layer specification of main network for d-Multiple NNs 

 

4.6.1 Model estimation for sub-network with one hidden layer 

 

In a type of multilayer perceptron network, when comes to the task regarding projecting layers, 

one primary issue is to determine the number of hidden layers. The sub-net model with one 
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hidden layer was estimated at the initial point according to the architecture of SNN in our 

investigations. Figure 4.6.1.1 provides a detailed schematic represents the layer outline of a 

sub-net integrated with one hidden layer, where the number of neurons denoted as k. 

 

 

Figure 4.6.1.1 Layer specification of a sub-network with one hidden layer for d-Multiple NNs 

 

Once the number of the hidden layers have bee confirmed, the next problem then relates to 

how many neurons should be at the layer. Training with too many neurons could result in each 

neuron is able to only understand one or a few properties, in this condition, a neuron loses the 

ability of generalization analysis. Inversely, with a small amount of neurons, information can 

be learnt by every neuron in n general phase, however, this could lead to unstable performance 

when given targets beyond the limitation of learnt generalization knowledge. For this reason, 

an appropriate number has to be found out to fit a network.  

 

We carried out experiments in order to determine an optimal value. The performance results 

generated by different numbers are given in Figure 4.6.1.2. The results of 10-fold cross-

validation in Figure 4.6.1.2 show that the performance improves along with the increasing 

number of neurons as presented by gradually shorter bars. 

 

 

Figure 4.6.1.2 Performance with four neuron number settings at hidden layer for d-Multiple 

NNs 
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(a) 28 neurons 

 

(b) 35 neurons 

 

(c) 42 neurons 

 

(d) 49 neurons 

Figure 4.6.1.3 Learning curves with four neuron number settings at hidden layer for d-

Multiple NNs 

 

The experiment adopted four values as potential number setting of neurons to figure out one 

optimal solution or the single hidden layer. These selected values for k was found on SNN that 

contains 49 neurons at the hidden layer. According to this number, a factor-seven was used as 

the step between candidate values (28, 35, 42, 49) by taking 7×7  feature window into 

consideration as shown in Figure 4.6.1.2. In the view of this observation, 49 produced the best 

performance with relative short epochs (in Figure 4.6.1.3) and was chosen to be an optimal 

value as the number of neurons at this single hidden layer.  

 

The learning procedures up to the main network using four neurons settings appeared the same 

characterises as illustrated in Figure 4.6.1.3, which means the learning process at the stage of 

the main network can be accomplished with stable competence. In four learning curves given 

in Figure 4.6.1.3, blue and red lines representing both training and test performances nearly 

overlaps each other. In other terms, the overfitting problem cannot easily arise with this design 

of the network. Accordingly, the main network kept this architecture for d-Multiple NNs. 
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4.6.2 Model estimation for sub-network with two hidden layers 

 

On the basis of the single hidden layered sub-network, we increased one hidden layer to 

observe the performance changes between models integrating with single and double hidden 

layers. The first hidden layer adopted 49 neurons as discussed in the previous section. There 

were three values exploited to find a better neuron number for the second hidden layer, which 

are 28, 35 and 42 neurons. The comparisons between three values referring are given in Figure 

4.6.2.1. 

 

 

Figure 4.6.2.1 Neuron numbers estimation with two hidden layers for d-Multiple NNs 

 

In three values, the largest number-42 neurons had the middle performance, and the worst 

performance was produced by training with 35 neurons at the second hidden layer, moreover, 

the smallest number-28 neurons output the best result, that is to say, the lowest error rate. This 

interesting revelation can imply that when the number of neurons at the second hidden layer is 

set to be approximately three steps smaller than the number at the previous hidden layer could 

provide better performance rather than other solutions, where the step factor is obtained 

according to the feature window size as explained in the previous section. 

 

Learning characterises in respect to each differential feature (absolute intensity difference, 

absolute magnitude difference and absolute orientation difference) and the comparisons 

between single and double layer are presented in Figure 4.6.2.2, where the second hidden layer 

consisted of 28 neurons for this contrast. 

 

From Figure 4.6.2.2 we can see, the training of intensity and magnitude based features require 

long processing time with large epochs to find the convergence, while orientation feature 

learning can be achieved with fast computation time. 

0.062

0.067

0.072

28 neurons 35 neurons 42 neurons

2nd HL Neuron Number Settings 
Eistimation

MSE with 10-FCV



	 82 

 

(a-1) h1= 49, h2 = 28 

 

(a-2) single h = 49 

(a) Intensity 

 

(b-1) h1= 49, h2 = 28 

 

(b-2) single h = 49 

(b) Magnitude 

 

(c-1) h1= 49, h2 = 28 

 

(c-2) single h = 49 

(c) Orientation 

Figure 4.6.2.2 Learning curves (three differential features) with two and single HL for d-

Multiple NNs 

 

The shapes of learning curves produced by both double and single hidden layer models appear 

to have the similar trend, which means the increased layer can maintain a stable training 

procedure, moreover, a double hidden layered model for three features all generated higher 

accuracy than the single-layered model. The final overall performance computed by the 

corresponding final decision network is shown in Figure 4.6.2.3. 
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Figure 4.6.2.3 Learning curve with two hidden layers (h1 = 49, h2 = 28) for d-Multiple NNs 

 

In Figure 4.6.2.3, the final learning curve as well as keeps the stable trend among training and 

test performances. The final output showed that d-Multiple NNs adopting double hidden layers 

(the first hidden layer-49 neurons, and the second hidden layer-28 neurons) improved the 

performance in contrast to single hidden layered d-Multiple NNs (single hidden layer-49 

neurons) as shown in Figure 4.6.1.3 (d). Generally speaking, the model with two hidden layers 

can be an optimal one rather than the model with one hidden layered.  

 

As d-Multiple NNs was created on the basis of SNN, the next section will compare the 

performances between SNN and d-Multiple NNs in respect to train networks to an optimal 

convergence point as close as possible. 

 

4.6.3 Comparison between SNN and d-Multiple NNs 

 

The d-Multiple NNs was created on the basis of SNN for the purpose of investigating the 

influence of complex network design on the stereo corresponding problem. We made the 

comparison in respect to the capability of learning based on the mean squared errors computed 

with the 10-fold cross-validation for both SNN and d-Multiple with two hidden layers (hereby 

is denoted as THL-Multiple NNs), and the results are given in Table 4.6.3.1.  

 

The specifications of layers are shown below, where IL and HL denote input and hidden layers: 

 

• SNN: IL - 147 neurons, HL - 49 neurons, OL - 1 neuron 

• THL-Multiple NNs: IL - 49 neurons, HL – 49, 28  neurons, OL - 1 neuron 
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 1500 Epochs 6500 Epochs 

SNN 0.0670 0.0670 

THL-Multiple NNs 0.0693 0.0668 

Table 4.6.3.1 Performances of SNN and THL-Multiple NNs 

 

The training procedures in Table 4.6.3.1 were implemented with 93600 dataset introduced in 

Section 4.4.3. There were two settings for maximum training epochs adopted for the 

comparative evaluation. The training stops when the process reaches to the max epochs. The 

first comparison involves training in maximum 1500 epochs, and this number was then 

increased to 6500 to see if the performance could be improved. 

 

SNN produced better performance than THL-Multiple NNs when training in 1500 epochs. 

However, when the number of max epochs increased, the error rate of THL-Multiple NNs 

dropped and was lower than performance of SNN, while SNN remained at the same accuracy 

level as 1500 epochs.  

 

One one hand, this reveals that SNN can find the convergence point faster than THL-Multiple 

NNs. On the other hand, in consideration of THL-Multiple NNs generated very close but 

slightly higher performance than SNN when training with more epochs, THL-Multiple NNs 

showed the possible flexibility of improving performance with further training. In view of these 

outcomes, the system designed with complex architecture can achieve better performance than 

the simple neural network with a longer training period, in other terms, with the capability of 

further learning to produce higher accuracy. 

 

4.7 Chapter summary 

 

Neural networks have been exploited for stereo corresponding estimation, which inspired us to 

discovered the practical possibility in this field. Two systems using two types of neural 

networks (SNN involving one standard network and d-Multiple NNs integrating multiple 

networks combination) for finding the matching pixels have been described in this Chapter.  
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Especially, the architecture design, model selection and optimization related experiments for 

system optimization for the novel and innovative approach using d-Multiple NNs that were 

created and carried out by the project were presented in this Chapter, and related methodologies 

and the results analysis were also explicated. Moreover, parameter settings such like learning 

rate, training algorithms for d-Multiple NNs on the basis of SNN and layer designs for d-

Multiple NNs were as well as in particular estimated by the project. The effectiveness of SNN 

and d-Multiple NNs were investigated on the basis of produced performance, and the results 

show that both systems are capable with the stereo corresponding task.  
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Chapter 5: Stereo correspondence with convolutional neural network 

 

During recent years, researchers have a growing range of interests in integrating deep learning 

with the various applications so as to reach an advanced degree of marching learning referring 

to artificial intelligence. Deep learning presents a mighty series of learning technologies in the 

form of artificial neural networks, and has supplied optimal solutions in the fields of image, 

speech and language processing [126], moreover is the crucial study field for achieving success 

at the realm of computer vision [127]. 

 

In this Chapter, a novel approach is introduced for stereo corresponding estimation, which this 

approach matches stereo pixels by a designed convolutional neural network. The innovative 

design of the convolutional neural network created by this project in relation to the architecture 

of this convolutional neural network, training and parameter combination optimization, 

performance optimization of this network model from different constructions of layers, and 

evaluation of produced performance are presented in detail by this Chapter. 

 

5.1 Deep learning with computer vision 

 

For many years, deep learning has been a progressive and popular technique to resolve issues 

in the community of artificial intelligence, as it unlocks the capability of data distribution so 

that computational models can combine the diversity of processing layers to learn data from 

representations obtained in each level [127], [126]. Moreover, along with the development of 

deep learning technologies, a relatively mature community has formed to provide supporting 

resources such as huge amount of dataset, and pre-trained deep networks, furthermore, deep 

learning with the advantage of advanced learning technique can become practical methodology 

in accelerated computational process when integrated with the power of GUPs [128], which 

makes it outstanding from artificial intelligence and easily to be adopted by a variety of tasks 

[129]. An architecture of deep learning normally is considered as an updated neural network 

with complex layered components. In deep learning, the concept of deep relates to how many 

hidden layers there are, which normally comes with big number and even can reach to hundreds, 

in contrast to a common neural network that has one to three hidden layers [129]. 

 

The [130] presents a comparison between the traditional neural network and a deep learning 
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architecture in Figure 5.1.1, which shows the distinguished part that deep learning has more 

hidden layers than the simple neural network. Such deep structure enables the ability of 

efficient and effective learning involving an intricate cognitive problem in the way of breaking 

down into hierarchical analysis [121], [126]. Deep learning also has the benefit of little 

engineering involving the establishment of data architecture so as to reduce the cost of 

handwork, in other terms, a deep learning network can create features and optimize required 

data automatically by itself [126], [130]. 

 

 
Figure 5.1.1 Construction comparison (neural network and deep learning) 

 

A deep learning network consists of more neurons with complex connections, based on this 

principle, many sorts of networks have been investigated, furthermore, there are four main 

architectures of deep learning networks: Unsupervised Pretrained Network (e.g. Autoencoders, 

Deep Belief Network and Generative Adversarial Network), Convolutional Neural Network, 

Recurrent Neural Network (e.g. Long Short-term Memory and Gated Recurrent Unit) and 

Recursive Neural Network [131]. These models can achieve tasks in the realm of popular 

studies that have been tackled by neural networks for long period, moreover, a rough taxonomy 

is listed in Figure 5.1.2 [128], [131]. 

 

 

Figure 5.1.2 A taxonomy of deep learning applications 
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CNN has been considered as the most outstanding model in ANN [132]. This study focuses on 

implementing a convolutional neural network with stereo vision. Convolutional neural 

networks (CNN) as one most famous deep learning technique with hierarchical presentation 

referring to the realm of image and video processing [129] is extensively exploited in the field 

of computer vision [133], [134]. The architecture of CNN is inspired by the biological system 

of visual cortex that sensing input signals by cells breaking down information into sub-regions, 

according to this theory, such structure allows CNN to be able to recognise and classify the 

diversity of visual data such as faces, street signs and individuals [131]. A standard architecture 

of CNN is given by Figure 5.1.3 [129]. 

 

 

Figure 5.1.3 An example of CNN 

 

A CNN usually consists of three main layers: convolutional layer, pooling layer and fully 

connected layer [114], [127], [129], [131], [132]. Convolutional layer locates at the beginning 

of the network and transforms input images to feature maps highlighting specific features by 

functional filters. A rectified linear unit (ReLU) layer is normally added after convolutional 

layer to perform an element-wise function that transforms negative values to zero so as to 

achieve accelerated training with more effective performance. Pooling layer decreases the size 

of spatial measurement for the representation of data so that the parameters for the network to 

learning can be reduced. Fully connected layer that commonly integrates with softmax function 

at the end of a CNN plays the similar role in the common neural network to calculate the 

probabilities of each class. 

 

Depending on the complexity of input target in regard to image contents, CNN can perform 

with input containing a single object, and even can detect every object in images involving 
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complex scenarios in the way of giving labels on the pixel level, which is normally denoted as 

fully convolutional networks [134]. The difference between common convolutional neural 

network and fully convolutional network referrers to the design of the last layer, that is to say, 

fully model converts the fully connected layer in the form of convolutional layer [135]. 

Currently, there are many models for CNN in which more famous ones are LeNet, AlexNet, 

ZF Net, GoogLeNet, VGGNet and ResNet, and they have proved the effectiveness of CNN 

[131]. 

 

5.2 State-of-the-art of CNN based stereo corresponding algorithms 

 

Since CNN was introduced for enhancing the artificial intelligent learning, there have been 

more and more practical applications that have started to joint the family of performance 

improvement with ideal outcomes by exploiting the benefits of this architecture simulating the 

human brain, e.g.: face recognition, action and activity recognition, object detection, and 

human pose estimation [136]. Furthermore, the power of CNN impulses the advancement of 

machine/computer vision in respect of autonomous intelligence like drones, autonomous robots 

and cars, and visual-based medical diagnosis [126], [131]. By the same token, stereo vision as 

the most popular visual perception technologies combined with CNN is getting popular for 

implementing tasks requiring more intelligent capability, like pedestrian detection [137] and 

robot following person [138]. Many researchers have proposed diverse methodologies 

exploiting CNN to deal with the corresponding problem between stereo visual pairs for the 

purpose of disparity enhancement from multifarious aspects.  

 

The paper [139] gives demonstrations of depth estimation with CNN that using the AlexNet 

and fully convolutional network to learn with given ground truth, and the results show the 

effectiveness of CNN producing disparity values for RGB images. Some approaches involve 

patches comparisons with respect to the level of similarity rather than entire images processing. 

The works of [140] (expanded in [141] to further evaluate) and [142] present a work performing 

efficient comparisons between patches from raw stereo images directly on the basis of learning 

the similarity through the structures of CNN according to the principle of Siamese network. 

 

The problem of ill-posed areas in the disparity map can also be improved by applying stereo 

matching algorithms with CNN. An approach introduced by [143] improves the accuracy of 



	 90 

disparity map in a way of estimating the output disparity maps form different traditional 

algorithms of stereo matching, which this estimation is implemented by a CNN, moreover, it 

can advance performance on occlusions. In order to tackle ill-posed issues, the research of [142] 

divides disparity generation into two steps, and each step is accomplished by a CNN that first 

one is designed for producing initial disparity map and the second one refines the initial map.  

 

 

Figure 5.2.1 CNN proposed by state-of-the-art 

 

In stereo matching algorithms, CNN can take the place of any stage among the entire classical 

pipeline. The first method that has been widely employed performs the replacement at the stage 

of matching cost computation with CNN [91]. The algorithm proposed by [91] leads the 

research direction of exploring the cooperation between CNN and matching cost optimization, 

subsequently, inspires many studies latterly, moreover, the design inspiration f CNN system 

for our study is also drawn from it. The pipeline of [91] starts from computing matching cost 

with a designed CNN as the schematic in Figure 5.2.1, and following with aggregation and cost 

refinement approaches for disparities calculation accomplished by WTA scheme, and at last 
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refines the disparity map with a series of post-processing techniques. As depicted in Figure 

5.2.1, eight layers constitute the network. The input of the CNN consists of two image patches 

from left and right images, which the centre pixel of right patch is the potential corresponding 

pixel regarding the reference pixel in the centre of left patch, moreover, the two patches are all 

grey scale.  

 

Layer L1 is the convolutional layer that convolutes patches with 32 filters in the form of 5x5x1 

dimensionality. Layers L2 to L8 are fully connected layers. At layers L2 and L3, 200 neurons 

connect to the output of each section from previous layers. The two groups of output from L3 

are conjoined into one vector following by four layers from L4 to L7 containing 300 neurons 

in each layer. At the end of the CNN, two neurons layer L8 combining with softmax function 

classify the output into two categories to indicate a good or bad match. While pooling layer is 

not adopted in this architecture. For further investigation, they also suggest that convolutional 

layers could substitute layers from L4 to L8 such like the expansion work of them in [144]. 

The pattern of pipeline presented in [91] and [144] have laid a foundation on such area, 

following in time, their ideas are expanded by researchers in different methodologies by 

modifying the structure of CNN [145], [146], [147], [148]. They extend the use of [91] and 

[144] in the way of creating diverse models of CNN in the form of parallel and hierarchical 

combinations which can gain an advanced level of performance. Most recently, methodologies 

containing more complex architecture introduced by [149] involves cost aggregation computed 

by CNN models.  

 

The principle of deep learning reveals its great vantage to cope intricate matter requiring a deep 

scale of analysis which makes such technique considerably suitable for topics such like 

computer vision, moreover, CNN outperforms among a variety of algorithms in the community 

of stereo depth estimation [148]. The scheme of our system will be presented in the next section. 

 

5.3 Creation of designed convolutional neural network 

 

The convolutional neural network has drawn a great attention to implement applications in the 

family of computer vision by providing profit such like hierarchical analysis mentioned in the 

previous section, moreover, has achieved great grades. Dense stereo corresponding approach 

as one of typical computer vision task requires correspondence matching at the pixel level, in 
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other terms, in a stereo images pair, each pixel in an image has to be matched with a pixel in 

the other image, which leads to a quantity of information analysis. Therefore, regarding to these 

properties, the convolutional neural network was utilised in our research to perform stereo 

correspondence estimation. 

 

5.3.1 Architecture design 

 

The inspiration for constructing a convolutional neural network for our study was derived from 

the paper [91]. [91] proposed a neural network to compute matching cost for a pipeline in 

relation to the process of local stereo corresponding algorithm, while, as mentioned in the 

previous section, a CNN can replace any stage of local algorithm based pipeline. 

 

 

Figure 5.3.1.1 Basic model of b-CNN 
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In our research, we adopted a CNN to estimate the level of matching rather than matching cost 

computation which performs the same function as SNN and d-Multiple NNs introduced in 

Chapter 4. In the light of CNN architecture in [91], a basic model of our CNN (hereby, we call 

it b-CNN) was created, where the detailed structure is presented by the schematic shown in 

Figure 5.3.1.1. With the view of the CNN introduced by [91] given in Figure 5.2.1, we designed 

b-CNN in order to produce matching scores, which includes four main layers in the architecture 

of b-CNN: convolutional layer, ReLU layer, a set of fully connected layers, and a final output 

layer. [91] employs two intensity patches from left and right images as the input of the CNN, 

while one image patch containing three differential features that have been used in SNN and 

d-Multiple NNs are adopted in the b-CNN based system. 

 

An input image patch is made up of three differential features that locate on three channels as 

illustrated in Figure 5.3.1.2, where the differences are obtained as absolute intensity difference, 

absolute magnitude difference, and absolute orientation difference. Each channel of image 

patch includes one differential feature window in relation to a pair of stereo pixels, accordingly, 

the size for an input patch is n×n×3. These difference features are computed on the basis of 

Equation 3.11 - 3.13 given in Chapter 3 Section 3.4.2.  

 

 

Figure 5.3.1.2 Input image patch of b-CNN 

 

5.3.2 Layer algorithms  

 

Convolutional layer produces feature maps representing the partial properties of an image patch 

in the way of convoluting the patch with filters with certain window size k×k as shown in 

Figure 5.3.1, and m in this figure denotes the number of filters. A filter represents a weight 
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regarding all sub-patches to the convolutional layer, in other terms, convolutional layer adopts 

shared weight for one input patch in the form of a filter containing different values in a window, 

moreover, each filter cooperates with one bias. 

 

The computation at the convolutional layer involves moving filters over image patches, the 

movement is carried out on the basis of pixel level, for this reason, the step of sliding filter 

refers to how many pixels should be in the gap between current and previous filter window, in 

convolutional neural network, one parameter called stride defines how man steps from the 

current pixel to the next one.  

 

Moreover, on account of during the convolutional process, a filter requires a selected size to 

extract a feature window, which affects the spatial structure of feature maps in order to control 

the size of output volume, in this case, an input image patch is generally padded with zeroes 

around the boundary.  

 

 

Figure 5.3.2.1 Computational process example of convolutional layer 
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Accordingly, the presentation and size of output volume at convolutional layer depend on 

values of filters and biases, and four parameters: size of input image size, number of filters, 

filter window size, stride and padding settings [103], [114], [131]. Figure 5.3.2.1 presents an 

example of computational theory at the convolutional layer. Multiplication of matrix between 

the filter and selected feature window from input patch plays the main role in the computational 

process. Summation of each output of matrix multiplication becomes one value of a feature 

map in relation to a filter. If the input image patch contains more than one channels, a filter 

will have the same number of channels accordingly, thereupon, one convolutional value (OCV) 

in a feature map is multiplication output summation of all channels, in addition, plus with a 

bias, which the process can be denoted as Equation 5.1 - 5.2.  

 

 

 

Where Mic and Mfc are the matrixes of feature and filter windows, n is the number of channels, 

and m is the number of values in a convolutional window Cw. b denotes the bias. The practical 

example given in Figure 5.3.3 illustrated the actual computation, where the specifications of 

this example are listed as follows.  

 

• Input patch size: 4×4×3 

• Number of filters: 2 

• Filter window size: 3×3 

• Stride number: 3 

• Padding number: 1 

• Bias: 0 

 

By selecting the first feature window as framed in the red circles on three channels of input 

patch, a convolutional value is computed in the way of multiplying matrixes, where the detailed 

examples are given as following: 

 Cw = MicMfc

n

c=1

 (5.1) 

 OCV = Cw

m

v=1

+	b (5.2) 
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C1	= 
0 0 0

0 1 0

0 1 0

×
0 1 -1

1 -1 0

-1 0 1

	=	
0 0 0

0 -1 0

0 0 0

 

 

C2	= 
0 0 0

0 2 0

0 1 1

×
1 0 0

1 -1 -1

0 0 -1

	=	
0 0 0

0 -2 0

0 0 -1

 

 

C3	= 
0 0 0

0 0 1

0 2 0

×
-1 1 0

0 -1 0

1 -1 1

	=	
0 0 0

0 0 0

0 -2 0

 

 

Coverall 	= 	C1+ C2+ C3 =	
0 0 0

0 -3 0

0 -2 -1

 

 

OCV1	= 0+0+0+0-3+0+0-2-1+0	=	-6 

 

Where C1, C2, and C3 are the matrix multiplication results for three channels and Coverall is the 

overall convolutional matrix of the input patch. The final convolutional value for this first 

window is represented by OCV1	. After applying the same procedure to the entire patch, feature 

maps are output by convolutional layer. The size of output volume (OPVSx, OPVSy, 

OPVSF) = (2, 2, 2) for this input patch is then computed as below: 

 

OPVSx	=  OPVSy = 
4-3+2×1

3
+1 =	2; OPVSF = 2 

 

By denoting the size of the input image patch as (Xin×Yin×Din ) and output volume as 

(Xout×Yout×Dout), the dimensional values of output volume can be generally formulated as 

Equation 5.3 - 5.5. 

 

 

 

 Xout = 
Xin-FC+2P

S
+1 (5.3) 

 Yout	=	
Yin-FC+2P

S
+1 (5.4) 
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Where FC is the number of channels of each filter. P is the number of padding. S is the number 

of stride size. M denotes the number of filters. 

 

In the architecture of b-CNN, a ReLU layer follows after convolutional layer to rectify the 

convoluted volume in the way of modifying values with a threshold. This layer performs max 

value determination between zero and each element and keeps the volume size unchanged. If 

the element is bigger or equal to zero, then it remains in the volume, otherwise, a zero replaces 

the element in the feature map, where the presentation is given below: 

 

f(v) 
v,        v	≥	0

0,        v	<	0
 

 

After the ReLU layer, a set of fully connected layers (illustrated in Figure 5.3.1, where h 

denotes layer numbers) performs feature combination analysis by flattening all the attributes 

from feature maps into one vector of neurons in every fully connected layer, and all the neurons 

connect to each other from one layer to the other layer to construct a fully connected network 

so as to classify the categorize for input image patch.  

 

A structure of fully connected layers forms one classic neural network typically a multilayer 

perceptron network introduced in Chapter 4. Normally the number of neurons of last fully 

connected layer has the same numbers as classes, in our case, there are two classes which are 

matched and unmatched classes, accordingly, the last fully connected layer in b-CNN contains 

two neurons which outputs scores for the two classes. 

 

At the output layer, the scores generated from the last fully connected layer are converted into 

class probabilities by Softmax function. This function computes the probability of each class 

over all classes, where the range of probability is between zero to one, moreover, the sum of 

all class probabilities equals one. The probabilities indicate which class the input patch belongs 

to, in other terms, the class with the highest probability is assigned as categorising result. The 

formula of Softmax function is defined by Equation 5.6, that calculates the exponential of an 

output value over the summation of all exponential of output values from the last fully 

 Dout	=	M (5.5) 
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connected layer, where x denotes a class score produced by fully connected layers and n is the 

number of scores in relation to all the classes, j	 	(1, 2,	…,	n).  

 

 

Softmax function normally cooperates with a loss function which is called as cross-entropy 

[103], [114], [131] to estimate the difference between target and output distributions, in other 

words, the error rate referring to the true class, moreover, the computation theory can be 

formulated by Equation 5.7.  

 

 

Where Oj = 	f xj 	 , Tj  and Oj  indicate the correct distribution and output distribution 

estimated by the convolutional neural network for the j
th

 class. The error or distance of 

distributions between real classes and estimated classes are then represented by E T, O . The 

purpose of training procedure involves minimising this loss function by the means of finding 

out the best weight and bias that minimise the distribution divergence between true and output 

class.  

 

The most commonly used training function in the community of CNN regards to Stochastic 

Gradient Descent (SGD) [131]. Gradient descent (GD) algorithm trains the neural network by 

updating the parameters with all samples in the input dataset. SGD adopts the same training 

theory as GD formulated by Equation 4.2 in Chapter 4, while calculates gradient and update 

weights and bias with every training instance, which can accelerate the speed of learning 

procedure. In the training of a CNN, SGD commonly performs training with mini batches that 

consists of a certain number of samples split from dataset instead of a single sample. With this 

method, the update operation occurs after analysing every mini batch. Moreover, SGD 

cooperating with mini batch can generate a smoother appearance of learning trend rather than 

individual instance based training, consequently, outperforms originally method that advancing 

learning ability with every case.  

 

 f xj 	= 
expxj

expxin
i=1

 (5.6) 

 E T, O 	= - Tj log Oj

n

j=1

 (5.7) 
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SGD algorithm sometimes may occur oscillate in finding the optimum following the route of 

steepest descent, thereupon, a term of momentum participates in to help reduce the oscillate so 

as to accelerate the computational speed, based on Equation 4.2, the computational theory can 

be formulated as Equation 5.8 [116]. SGD with momentum (SGDM) was considered as the 

main training function in all experiments for b-CNN in our research. 

 

 

Where γ represents the contribution from the previous to current step, and  xk-1 is the previous 

vector of current step k. Pooling layer is not included in the design of b-CNN, on account of 

adequacy information matter, as this layer downsampling feature maps which leads to the 

loosing of attributes, considering the input modality refers to an image patch containing a 

restricted amount of information within a certain window.  

 

In consideration of the diversified characteristics of every layer introduced in b-CNN, 

experiments were implemented for the purpose of advancing and optimizing this model in 

respect to different parameter settings so as to maximize the performance of b-CNN. Following 

sections will present relative experiments and estimations with the results to reveal an optimal 

model for b-CNN. 

 

5.4 Experimental optimizations and evaluations for designed CNN 

 

In this section, experiments and evaluations of optimizing the performance of b-CNN will be 

presented in order to improve the classification accuracy in respect to categories of matched 

and unmatched pairs. The performance was calculated based on classification accuracy as 

given in Equation 5.9, which considers the rate of correctly assigned samples over the whole 

dataset. All the experiments were estimated with 10-Fold cross-validation. Where TC and OC 

are the target class and output class, and n is the total number of instances. δ = 0 denotes the 

threshold to determine if a sample is correctly assigned, when the absolute difference value 

equal to zero, the output class is correct otherwise wrong category. 

 

 xk+1 =  xk - µ Ek + γ( xk	- xk-1) (5.8) 

 AccuracyRate = 1 - 
1

n
 (|TCi-OCi|

n

i=1

=	δ) (5.9) 
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A deep learning toolbox provided by [103] was adopted to accomplish the experiment, where 

the training function was SGDM (defined in Equation 5.8) setting. 

 

5.4.1 Fundamental relationship estimation for convolutional layer parameter 

 

In the design of b-CNN, the input is a patch containing difference features of a pixel pair rather 

than the entire image for the purpose of pixel level based corresponding estimation, under this 

circumstances, the size of patch window plays a significant role in the aspect of information 

efficiency.  

 

Convolutional layer obtains values of feature maps with filters in a certain box, if filter box is 

big and patch window is small, the useful attributes that can be retrieved for a feature map then 

could be insufficient. Furthermore, the number of filters determines how many feature maps 

produced at the output stage of the convolutional layer, adequate maps could make the CNN 

perform the ability of hierarchical analysis efficiently. On account of these conditions, we 

implemented experiments to optimize the relationship between patch and filter window sizes, 

numbers of filters so as to maximize the performance of b-CNN.  

 

In order to evaluate an optimal model for the relationship of patch and filter window sizes, 

numbers of filters, we designed several sets of value combinations with these four parameters 

on the basis of observing settings used in research [91].  

 

Experimental values for each parameter increased with a certain step. The number of patch size 

was determined as four, and the incremental step for filter size was two, and the step for filter 

number was set to eight. This experiment utilised two fully connected layers for the purpose of 

observing convolutional parameters combination effect: the first one was experimented with 

different numbers of neurons in an incremental step - five, and the second one is the class score 

layer that had two neurons. The detailed setting specifications are listed as following: 

 

• Input image window size set: (5×5, 9×9, 13×13,	17×17) 

• Filter size set: (3×3, 5×5, 7×7, 9×9) 

• Filter number set: (8, 16, 24, 32, 40, 48) 

• Fully connected size set: (5:5:50) 
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Each filter size had one corresponding input image window size, where the value of filter size 

was the value of cantered pixel index of the input window. All the filter numbers were 

estimated with every set of patch window and filter, moreover, each such experiment was tested 

with every setting of neuron number at the first fully connected layer. Experimental results are 

given in Figure 5.4.1.1 – Figure 5.4.1.4.  

 

 

Figure 5.4.1.1 Parameter relationship estimation with Image Size 5 and Filter Size 3 

 

Experimental performances were plotted based on each combination of input image size and 

filter size. Each combination has 6 subplots, which shows performances of experiments carried 

out with all values of filter numbers and fully connected sizes. Each subplot in these figure 

presents the performance of one set of patch and filter selection trained with one filter number 

in respect to all neuron numbers settings at the first fully connected layer. As shown in Figure 

5.4.1.1 with input patch size equals to five and filter size three, the performance with every 
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filter number can produce a good performance for the setting of every neuron value at the first 

fully connected layer. During these results, filter number 8 produced the most unstable 

performance as the lines for both training and test performance go up and down as shown in 

the first subplot.  

 

Performances with other filter numbers in Figure 5.4.1.1 have generated approximately similar 

and relative accuracies. This closer observation reveals that the small number of filter for this 

combination of patch and filter size cannot perform an efficient analysis. Moreover, these 

subplots present that these combinations with different neuron values made barely changes to 

the level of accuracy in relation to each filter number setting respectively. 

 

 

Figure 5.4.1.2 Parameter relationship estimation with Image Patch Size 9 and Filter Size 5 
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Performances with Image Patch Size 9 and Filter Size 5 presented by Figure 5.4.1.2 shows that 

the accuracies produced with all numbers of filters had similar levels, in addition, the subplots 

illustrate that both training and test performances keep approximately stable trend with all fully 

connected neuron values. These appearances imply that using this combination of input patch 

and filter size settings, the filter number and neuron value settings cannot make a large 

influence on training process, in other terms, this set of input patch and filter size can make b-

CNN implement stable learning capability. 

 

 

Figure 5.4.1.3 Parameter relationship estimation with Image Patch Size 13 and Filter Size 7 

 

Experimental results generated by the combination of Image Patch Size 13 and Filter Size 7 

indicates that from small to large values of filter number all have produced similar performance 

with different neuron numbers without specific changes on the lines shown in all subplots of 



	 104 

Figure 5.4.1.3, that is to say, this relationship between parameters can reach to a relatively 

balanced stage. 

 

The parameters combination referring to Figure 5.4.1.4 produced stable results in respect to the 

number of filters did not make significant variations on the first five values. The last filter 

number setting with 48 appeared extrusive indeterminateness with neuron number 30 in 

contrast to other subplots that presents all neuron values had the similar accuracy, which means, 

filter number 48 can not efficiently cooperate with other parameters in this combination model. 

 

 

Figure 5.4.1.4 Parameter relationship estimation with Image Patch Size 17 and Filter Size 9 

 

On one hand, b-CNN with all four combinations of parameters generated relative stable and 

high level of accuracies as the results shown in these four figures. This implies that the inside 

relationship of each combination could all achieve a relative balance between each other, which 
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means the way of selecting values in respect to compatibility among these parameters were 

suitable for each combination respectively. However, from the observations of these results, 8 

and 48 were excluded from the optimal model on account of the unstable performance 

produced in the first and fourth combinations shown in Figure 5.4.1.1 and Figure 5.4.1.4. 

Therefore, we considered such method for setting parameter values as the selectable solution 

for the convolutional process that involving selection of filter size in accordance with input 

patch size with filter number between 16 and 40. 

 

Combination Set 

Patch Size 17 and Filter Size 9 

32 Filters 40 Filters 

Average Accuracies 0.9426 0.9396 

Table 5.4.1.1 Average accuracies with 32 and 40 filters for the combination of Patch Size 17 

and Filter Size 9 

 

On the other hand, comparing performances of four combinations, with the increased size of 

input image patch, the level of accuracy improved for test set, from the four figures we can see, 

the red line representing the test performance gradually moves up (in other words, accuracy 

increased) along with incremental number settings for patch window size accompanying with 

corresponding filter size. In the view of this phenomenon, b-CNN requires more information 

to reach to the higher level of learning ability so as to produce an advanced performance. For 

this reason, Image Patch 17 and Filter Size 9 were chosen as parameter settings for the 

convolutional layer of b-CNN. 

 

Furthermore, the accuracies that produced with filter number 16 and 24 appear to drop down 

when increasing the number of neurons for the combination presented in Figure 5.4.1.4, so that 

these two choices were removed from the optimal selection of filter number setting. Moreover, 

according to the average accuracies (mean accuracy overall estimations in respect to x-axis 

direction in Figure 5.4.1.4) for implementations with filter number 32 and 40 listed in Table 

5.4.1.1, filter number set with 32 outperformed the comparisons. For this reason, we considered 

32 as the final optimal choice for the filter number at the convolutional layer. 
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5.4.2 Model selection for fully connected layers of b-CNN 

 

As shown in Figure 5.3.1.1, we adopted a series of fully connected layers to combine attributes 

from feature maps between ReLU and two neurons layers. The number of these fully connected 

layers and their neurons size affect the efficiency of a network functioning as hidden layers as 

described in Chapter 4. The ideal combination of parameters can advance the learning ability 

of a CNN. A diverse number of hidden layers with different neuron sizes were estimated 

referring to the classification accuracy for the purpose of finding a better model for constructing 

fully connected layers.  

 

In order to observe the impact of the number of fully connected layers, our experiments 

estimated the accuracy along with the increasing number of hidden layers. There were four sets 

of fully connected layer sizes used in the specific experiment. The parameter selections for 

convolutional layer employed the set that was investigated from the previous section as an 

optimal combination. The detailed descriptions of b-CNN settings are listed as follow: 

 

• Input image window size: 17×17 

• Filter size: 9×9 

• Filter number: 32 

• Fully connected size set: (2, 3, 4, 5) 

• Total neurons for each fully connected layer set: (20, 30, 40, 50) 

 

The number of layers in each set increased one layer from the previous set by starting with two 

fully connected layers. Table 5.4.2.1 presents the classification accuracies produced by trained 

b-CNN integrating parameters as given above in this experiment, where Set 1 with two layers, 

Set 2 with three layers, Set 3with four layers, and Set 4 with five layers. For each fully 

connected layer of each set, neuron values were set to 10 equally on every hidden layer. 

 

Fully 

Connected Set 

Set 1 

(2 layers) 

Set 2 

(3 layers) 

Set 3 

(4 layers) 

Set 4 

(5 layers) 

Accuracies 0.9232 0.9321 0.9345 0.6667 

Table 5.4.2.1 Accuracies with different fully connected layer sizes 
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Along with the increasing number of fully connected layers, the classification accuracies 

increased step-by-step until reach to five layers. This implies that the growing number of layers 

can improve the performance of learning, whereas this does not mean the optimal resolution 

should refer to construct this layers as unlimited large as possible, as shown in Table 5.4.2.1, 

there is a limitation occurred during the experiments that the accuracy significantly decreased 

with five hidden layers.  

 

According to this matter, every model should cooperate with one suitable designed fully 

connected layers specifically rather than selecting a big value for layer number casually. 

Among the accuracies provided by Table 5.4.2.1, the best performance was produced by 

network integrating with Set 3 utilising four hidden layers, which indicates that this setting can 

be fit for the devised b-CNN. The characteristic training processes for training with different 

numbers of layers are illustrated in the following figures. 

 

 

Figure 5.4.2.1 Training process with Set 1 (10×2) fully connected layers 
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There are two subplots in training process figures in accordance with two performance 

estimation method. The first subplots present the training process in relation to the 

classification accuracies on the basis of Equation 5.9, and the second subplots show the error 

rate computed with the loss function formulated by Equation 5.7. The trends of accuracy and 

loss go inverse direction, where the higher accuracy denotes lower loss in respect of the 

difference between correct class and output class.  

 

The blue and red lines represent the training accuracy and loss rate, and the black dash line 

with dots signifies test performance for both measurements respectively in these figures. The 

x-axis indicates the iterations based on the size of mini batch, and the grey column with number 

states the number of epochs in training. All the training processes were stopped before the 

significant drop of accuracies for training and test which indicates the point of excessive 

training that causes network losing the ability of correct analysis with given data.  

 

 

Figure 5.4.2.2 Training process with Set 1 (10×3) fully connected layers 
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Figure 5.4.2.3 Training process with Set 1 (10×4) fully connected layers 

 

Figure 5.4.2.1 to Figure 5.4.2.4 show the training processes of b-CNN using four sets of fully 

connected layers, where Figure 5.4.2.1 for two layers, Figure 5.4.2.2 for three layers, Figure 

5.4.2.3 for four layers and the last Figure 5.4.2.4 for five layers. By employing two and three 

layers, the first improvement of accuracies from initial learning happened at the first epoch, 

which very early iteration for two layers and one third for three layers. When the number of 

layers increased to four, accuracies rose in the fifth epoch. The training with four layers took a 

longer period than with two and three layers to reach to the first level of adaptive learning. In 

consideration of this phenomenon, one state can be found that large size of layers could lead 

to learning procedure requiring more epochs to achieve better performance. 

 

As subplots for loss estimation shown in Figure 5.4.2.1 to Figure 5.4.2.3, while layer size 

increased from two to four, the overfitting issue of training appears to raise before training 

procedure stops, moreover, the more training, the more unstable performance produces. With 
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two layers, overfitting barely happened before the stop stage, whereas processes with three and 

four layers gradually overtrained the network and the trends of training and test went towards 

opposite tendency after reach to the best test point, moreover, this matter occurred more in the 

process with four layers. These clues can prove that a network with a small number of layers 

cannot learn properly to find out a convergence point.  

 

 

Figure 5.4.2.4 Training process with Set 1 (10×5) fully connected layers 

 

Figure 5.4.2.4 presents the situation when the network composed with the structure of fully 

connected layers that beyond the capability of the entire model, which caused corrupt training 

process. The whole training process with five layers shown in Figure 5.4.2.4 keeps low 

performance both for accuracy and loos measurement all the time, which means five hidden 

layers can not suitable for b-CNN with current parameter settings at the present stage of 

network construction and training. So far, training with four hidden layers have proved to be 

the ideal solution for constituting fully connected layers as the part of b-CNN. 
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Accuracies with 20×4 

Fully Connected Layers 

Accuracies with 30×4 

Fully Connected Layers 

0.9351 0.9328 

Table 5.4.2.2 Performance of different incremental neurons with four fully connected layers 

 

In consideration of maximizing the performance of b-CNN, we increased the number of 

neurons at each hidden layer to explore the possible influence. On the basis of previous layer 

number estimation, the implementation of experiment adopted methodologies that the neuron 

values added a step value at each hidden layer for structure integrating with four layers, where 

the step value was set to ten. Table 5.4.2.2 present the experimental outputs for this 

investigation. 

 

 

Figure 5.4.2.5 Training process with Set 1 (20×4) fully connected layers 
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Table 5.4.2.2 lists the classification accuracies for the network utilising twenty neurons and 

thirty neurons for four hidden layers. Comparing with the accuracy produced by four layers 

with ten neurons in Table 5.4.2.1, the accuracy improved with twenty neurons and reduced 

when with thirty neurons. It can be seen that increasing the number of neurons can advance the 

performance of b-CNN, however, the advancement as well as comes with a limitation, since 

when using thirty neurons, the accuracy decreases as the results given in Table 5.4.2.2.  

 

A representative training process with twenty neurons at every layer for the four-layer structure 

is illustrated by Figure 5.4.2.5. From the figure we can see, the first stage of accuracy jumping 

from low to high level happens at the end of the first epoch, whereas this situation occurs at 

the fifth epoch for training with ten neurons. Moreover, the stopping point (where the 

performance becomes significant low) of adopting twenty neurons appeared at an earlier stage, 

which was six epochs smaller than ten neurons structure. Furthermore, the overfitting 

appearance reduced in the training process of twenty neurons framework in contrast to network 

with every hidden layer integrating with ten neurons.  

 

In the view of these circumstances, the way of adding neuron numbers can not only improve 

the speed of training procedure, but also advance the learning capability of b-CNN in 

consequence with better performance. From all these observations, the structure consists of 

four hidden layers with twenty neurons at every layer was considered as an optimal model for 

building up fully connected layers in b-CNN. 

 

5.4.3 Mini batch size selection 

 

Stochastic Gradient Descent algorithm trains by updating learnable parameters for the network 

with every instance as introduced in Section 5.3.2, however, in practical situation, training data 

for a CNN sometimes may involve large dataset, in this case, the dataset normally is divide 

into many mini sets which is so called mini batches so as to update parameters on the basis of 

each mini batch. Since mini batch refers to the subset of the whole dataset, one parameter is in 

need of consideration, which comes to the size of mini batch. This parameter decides the speed 

of the whole training process, in other terms, the processing speed depends on how many 

iterations in every epoch. The term of iteration represents the number of mini bathes used in 

training, where one epoch contains iterations for updates with all mini batches. Furthermore, 
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by updating with different numbers of samples at every iteration, the performance can also be 

varied accordingly, in addition, the convergence characteristics of learning capability also get 

influenced by this factor. 

 

 

Figure 5.4.3.1 Performance produced with different Mini batch sizes 

 

 

 

Figure 5.4.3.2 Training process with 64 mini batches 
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Figure 5.4.3.3 Training process with 256 mini batches 

 

In accordance with the impact of mini batch size, experiments were carried out to research the 

contribution of mini batch in optimizing b-CNN. Model of b-CNN was trained with different 

numbers of mini batch, and the generated accuracies are presented in Figure 5.4.3.1. This 

investigation adopted parameters that were derived from experiments in previous sections and 

were deemed to be optimal choices for convolutional and fully connected layers at the current 

point, where the details are given below: 

 

• Input image window size: 17×17 

• Filter size: 9×9 

• Filter number: 32 

• Fully connected layers setting before two neurons layer: 

4 layers, 20 neurons at each hidden layer 

• Mini batch sizes: (32, 64, 128, 256, 512, 1024) 
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There were six values used in experimental work based on computer memory constraints which 

range from not too small to not too large scope in consideration of the memory capability. In 

Figure 5.4.3.1, the performance is represented by classification accuracies, the higher bar 

indicates higher accuracy, and the x-axis denotes the experiment with mini batch sizes. The 

results show that performances improved from 32 to 64 mini batch size, and dropped with size 

128, and then increased back a bit with size 256, after this point, accuracies kept decreasing 

with size 512 and 1024 slightly. As the changes between accuracies illustrated by Figure 5.4.3.1, 

the performance can be affected by a different number of division rule for mini batch from the 

entire dataset, thus, for the purpose of maximizing the performance of the network, a CNN 

model should integrate with an adaptive size.  

 

Furthermore, training with size 64 and 256 produced top two performance, and their 

characteristic training process are shown in Figure 5.4.3.2 and Figure 5.4.3.3. As the training 

process presented, larger mini batch size can shorten the number of iterations in every epoch, 

however, take more epochs to reach to the first adaptive learning level and stop point as 

mentioned in the previous section. Moreover, the trend of training process can be smoothed 

with the larger size of mini batch on account of parameter update with less number of iterations. 

Nevertheless, although size 256 can perform training with a smoothed tendency in short 

iterations in total, the generated performance cannot prevail over the training with size 64. The 

purpose of parameter selection for model optimization focused on performance advancement 

in our research, in addition, training procedure can be implemented offline which would not 

affect the speed of disparity map computation in real time application, therefore, division size 

64 for creating mini batches were deemed to be a better resolution for b-CNN optimization. 

 

5.4.4 Learning rate optimization 

 

Experimental model optimization of our study as well as investigated optimal parameters in 

relation to learning rate to improve performance for b-CNN as one factor plays a role in 

affecting the efficiency of updating learnable parameters for the network as explicated in 

Chapter 4 Section 4.4.4.1. An adaptive learning rate can advance the performance of the 

learning procedure for a model. Generally speaking, a CNN with SGD algorithm can perform 

the training process with constant learning rate from the beginning to the end. While sometimes 

with a constant value, the training may not be able to find the optimal convergence point, in 
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this case, learning rate normally is reduced with a factor at a certain point so as to achieve 

performance as higher as possible. 

 

For the purpose of finding out a learning rate and its corresponding drop factor that can advance 

the accuracy of network, relative experiments were carried out. This exploration found on the 

basis of the model with parameter settings obtained from previous sections for every layer in 

b-CNN. An initial learning rate was firstly estimated, and then an optimal drop factor for the 

selected learning rate was discovered for the purpose of further performance improvement. In 

consideration of the value of learning rate should not be too small or too big in respect that one 

may take a long time to train and the other one could cause poor performance as presented in 

Section 4.4.4.1, the first initial learning rate was set to 0.01 which is the most commonly used 

initial learning rate, and then increased to 0.02. Table 5.4.4.1 gives comparisons of output 

classification accuracies between training with learning rate 0.01 and 0.02. 

 

Accuracies with 

Learning Rate 0.01 

Accuracies with 

Learning Rate 0.02 

0.9375 0.9315 

Table 5.4.4.1 Accuracy comparisons for learning rate 0.01 and 0.02 for b-CNN 

 

The comparisons listed in Table 5.4.4.1 indicates that when learning rate increases to 0.02, the 

accuracy reduces in contrast to training with learning rate 0.01. This implies that 0.01 as widely 

adopted learning rate value was suitable for b-CNN combining with other selected parameter 

settings referring to convolutional and fully connected layers, moreover the mini batch size. 

According to this observation, learning rate with 0.01 was then experimented with different 

drop factor in order to further develop the ability of network classifying matched and 

unmatched classes for pixel pairs. A drop factor reduces a learning rate in the way of 

multiplying the previous rate so that the rate decreases step-by-step. If drop factor is too big, 

the learning rate would drop too fast which can lead to the learning process may miss and can 

not find the optimal convergence point, conversely, small drop factor can have a higher 

possibility of minimizing the error rate whereas with more processing epochs to reach to the 

optimal rate. Taking this matter into consideration, drop factors employed in the experiment 

were 0.1, 0.2 and 0.3 as shown in Figure 5.4.4.1. 



	 117 

 

Figure 5.4.4.1 Performance of different learning rate drop factor from 0.01 for b-CNN 

 

As accuracies with different drop factors provided by Figure 5.4.4.1, factor 0.1 outperforms 

three values, which means 0.1 can be fit with b-CNN rather than larger values, in other words, 

the model of b-CNN did not require a larger step of learning rate drop in respect to the relative 

stage of optimization. Therefore, learning rate 0.01 and drop factor 0.1 were considered as the 

optimum selections for b-CNN training. So far, form all the observations and evaluations of 

experiments for b-CNN optimization, b-CNN have proved the capability of performing 

projects referring to stereo pixel matching. 

 

5.5 Chapter summary 

 

This Chapter has firstly introduced deep learning in computer vision, and then state-of-the-art 

referring to stereo correspondence algorithm based on convolutional neural network was 

explicated to present the circumstance of such research field.  

 

Mainly, this Chapter presented the novel stereo corresponding approach found on 

convolutional neural network, which the innovative creation of designed convolutional neural 

network (b-CNN) that was built by this project was interpreted which involving the architecture 

design and the methodologies for every layer. Moreover, experimental model optimizations 

and evaluations that were carried out by the project were as well as included in this Chapter, 

specifically from aspects relate to parameter combinations at the convolutional layer, 

construction of fully connected layers, mini batch size and learning rate with drop factor in 

detail. The generated performances have shown the effectiveness of implementing b-CNN with 

stereo corresponding estimation. 
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Chapter 6: Disparity map computation and evaluation 

 

In computer vision, the 3D reconstruction mainly refers to retrieve spatial dimensional value 

which is known as vertical (x-axis), horizontal (y-axis) and depth (z-axis) measurement. For a 

captured stereo views by cameras, vertical and horizontal information can be easily obtained 

in accordance with the height and width of the image, however, the depth information requires 

specific algorithms to extract, which normally comes down to disparity map computation that 

can be obtained with stereo correspondence technique. The quality of disparity map relies on 

whether corresponding points can be correctly matched, for this reason, a disparity map plays 

a role in straightforward evaluation for the performance of stereo correspondence algorithm. 

 

This Chapter introduces a series of approaches from the novel optimization method created 

and designed by this project for the computational speed of disparity map generation to design 

a certain procedure of post processing to refine the raw disparity map in the proposed pipeline, 

which the innovative methodologies of this optimization approach and refinement algorithms 

in these aspects are presented in detail. Moreover, the performances of created networks are 

compared and evaluated with the state-of-the-art based on a benchmark, and further 

comparison and evaluation between created networks are as well as presented. 

 

6.1 Fundamental computation of disparity map 

 

Disparity computation refers to find the correspondence between pixels. A disparity at a pixel 

coordinate is derived from the difference between x coordinates of a paired stereo pixels based 

on triangulation principle in the epipolar space. Assigning disparity for every pixel forms a 

dense disparity map. 

 

6.1.1 Disparity with triangulation theory 

 

The term of stereo disparity involved in epipolar geometry that is one of coefficients 

constituting the computational theory of triangulation. Figure 6.1.1.1 shows the geometry of 

triangulation theory for depth estimation [150]. Equation 6.1 presents this geometry in the form 

of the mathematical principle. Suppose a stereo image pair is in a condition that has been 

rectified to a common image plane containing parallel epipolar lines for every pair of 
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corresponding points. The depth (Z) then can be computed according to the triangulation 

principle formulated as Equation 6.1. As denoted by the Equation 6.1, the computation of 3D 

depth involves three parameters: baseline (b), focal length (f) and disparity (d) of matching 

points [7], [8], [45], [53], [150]: 

 

 

Where d is the disparity between x coordinates of left (xL) and right (xR) point, that are 

determined with one matched corresponding pixel pair: 

 

 

And the values for X and Y coordinates are formulated as follows: 

 

 

 

Where y
L
 and y

R
 are the vertical coordinates of matching points, and b denotes the baseline. 

At this point, the (X, Y, Z) coordinate of a point can be obtained.  

 

 

Figure 6.1.1.1 Geometry of Triangulation theory 

 

 Z = 
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There is one specific rule between distance and disparity, as the inner connection decides the 

representation from disparity to z coordinate. The relationship between depth and disparity is 

nonlinear as given in Figure 6.1.1.2 [7]. The statistical diagram shows that distance trend goes 

the opposite direction with disparity. The lower values of disparity, the farther the distances 

are. In other words, small disparity indicates a long distance, on the other hand, large disparity 

means distance is in a short range. In the consequence of this principle, the resolutions of closer 

objects are higher than long-distance ones. A disparity map representing the depth information 

contains disparities for matched points. In a grey scale disparity map, pixels with lighter colour 

present the object locates in a closer position in respect to the camera, conversely, the further 

object has darker pixel colour in the disparity map. 

 

 

Figure 6.1.1.2 Distance relationship with disparity 

 

6.1.2 The principle of disparity computation 

 

Dense stereo corresponding algorithms estimate correspondence and produce disparity for 

every pixel in the reference image. On the basis of epipolar principle, one pair of corresponding 

pixels will lie on the same epiploar line in the common image plane. Moreover, on account of 

stereo vision produces a difference between the same point in left and right images caused by 

view shift, corresponding searching is carried out in a disparity range. That is to say, a term of 

disparity range indicates a scope where the matching pixel for a selected reference pixel can 

possibly locate at. In our research, the reference image refers to left image in a stereo image 

pair. A schematic example given by Figure 6.1.2.1 illustrates the process of dense disparity 

map computation. The example shows that a correspondence is found by matching candidate 

pixel in disparity range with its reference pixel along with their epipolar line. 
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In Figure 6.1.2.1, left image is selected as the reference image, where PL
W represents one of the 

reference pixel with a feature window W. The feature window is extracted with pixels PL 

locating in the centre and its neighbouring pixels within a given row and column sizes as 

expounded in Chapter 3 Section 3.4.1. PRj
W  indicates potential corresponding pixel PRj with 

feature window in respect to PL lies in a disparity range DR at the j
th

 column in right image. 

 

 

Figure 6.1.2.1 Dense disparity map computation example 

 

All candidate pixels locate on a common epipolar line of PL  and PRj  that represents the 

corresponding characteristics in stereo vision. The searching procedure starts from PRj that has 

the same coordinate as PL in right image and then follows the direction from right to left till 

the pixel at the maximum disparity step dmax. In our methodologies, a reference pixel grouping 

with every candidate pixel in DR to compute matching degree which implies a pair of pixels 

whether corresponding with each other or not. The higher matching degree represents the 

higher possibility of corresponding. Thereupon, by adopting winner-take-all method (WTA, 

introduced in Chapter 2), the disparity is determined with candidate pixel that produces the 

maximum matching degree (in other terms, the minimum aggregated cost) which as given by 

Equation 6.5, and then this pixel becomes the corresponding pixel. Where d	 	(0	… dmax-1). 

Accordingly, the disparity at PL  equals to the difference value of column numbers (c	-	j , 

vertical coordinates difference) between PL and matched PRj according to Equation 6.2, where 

j	 	(c, c-1,	……,	c-dmax-1), c is the column number of PL. 

 

 D(PL) = argmax
d

M(PL,PR|d) (6.5) 
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The computational procedure of dense disparity map normally occurs time-consuming issue 

owing to stereo correspondence analysis at the pixel level within a DR that leading to a quantity 

of data processing matter, therefore, there is need of an approach to accelerate the speed of 

computation. Next section will present the optimization of dense disparity map generation. 

 

6.2 Computational speed optimization for disparities based on stereo correspondence 

 

Computational speed has been an issue in computer vision as there are always a huge amount 

of data for analyzing during the entire process. In particular, dense stereo correspondence 

scheme estimates matching level pixel-by-pixel so as to compute pixel position disparities 

often has to deal with a vast of input units, in this case, an optimization procedure comes in 

handy to help an implementation velocity. 

 

6.2.1 Overview of the time-consuming issue in computer vision 

 

Algorithms and hardware work in cooperation with each other effect the processing time of a 

system, on account of this matter, the processing actions of computer vision requires an 

advanced capability of hardware resources to support for achieving a smooth performance. 

However, currently, it appears a hard-pressed situation that the development of hardware has 

been difficult to keep up the same level along with the growth of visual technologies. The 

cooperation between algorithms and hardware resources is an essential issue for exploring 

algorithms of stereo matching especially when comes to estimate disparity map on the basis of 

dense approaches which implementing on pixel level. Methods relate to pixel-by-pixel analysis 

that increasing computational quantity are significantly in need of aid on such solutions. For 

this reason, real-time stereo algorithms have been studied for a long period from different 

aspects in such a state of affairs.   

 

There are various approaches have been discovered, some can produce results in semi-real-

time processing, and some can achieve real-time performance. In order to reach to real-time 

level, some investigations of algorithms adopt the way of cooperation with specific hardware, 

in other words, that is to seek a compatible way between the mathematical system and a 

shortage of hardware resources. The common hardware resources for implementing algorithms 

improvement are GPU (graphics processing unit), FPGA (a field programming gate array), 
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DSP (a digital signal processor) and ASIC (an application specific integrated circuit) [151]. 

However, no matter which hardware is in use, the efficiency of algorithms still plays a 

qualitative role in cooperating with hardware resources. Apart from the design of algorithms, 

by considering from the root level that communicating with hardware, how to utilise and devise 

the pattern of programming effectively becomes an important factor, as programming is the 

straightforward representation for algorithms to interact with hardware.   

 

Normally, one way is to efficiently code in respect to free processor memory as suggested by 

[152] that as well as provides a very handful explanation for such area with Matlab 

programming. [153] and [154] introduce a technique called Look-up Table for improving the 

speed of hardware processing in the form of creating connections between programming 

patterns by compiling reference tables. These approaches as fundamental solutions make a 

great effort in aid of accelerating the duration of algorithms progressing at the root phase. We 

adopted such strategy to design approach so as to achieve speed optimization. 

 

6.2.2 Designed speed optimization approach 

 

In the research of [90], the procedure of disparity map computation performs matching degree 

estimation with a neural network in the way of calling the neural network repeatedly for every 

pair of stereo pixels, in other words, the neural network is only given one pair to produce one 

matching degree at every time. The method of [90] requires extremely long processing time to 

complete generation of one disparity map from two stereo images, since pairs for 

correspondence matching normally involves a quantity of number on the total amount between 

an image pair. Each reference pixel is paired with a range of candidate pixels based on the 

maximum disparity range from the other image which leads to a large number of pixel pairs, 

in this case, applying neural network for every pair every time appears inefficiently. In this 

case, we designed an optimization approach to efficiently utilize neural networks to generate 

matching degrees for the purpose of accelerating the computational speed. 

 

Methodologies of designed optimization method: 

 

According to the characteristics of ANN, the core concept refers to input the whole sets of pairs 

extracted from left and right images to networks at one time rather than single estimation for 
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one pair. In order to achieve this task, we adopted an index operation method to optimize the 

speed. There are two main steps in relation to stages of disparity map computation: feature 

extraction from all pairs of reference pixels and its potential corresponding pixels, retrieving 

disparities for each reference pixel from computed matching degree vector. 

 

 

Figure 6.2.2.1 Speed optimization method for entire feature extraction 
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Designed optimization methodology performing feature extraction aims to solve difference 

feature vector construction for every pair once and for all, where are then used to produce 

matching degree with networks built in our research. In this optimization step, two tables are 

created for the purpose of storing feature values and indices of all stereo pairs. Theory of 

obtaining features for all pairs principally is presented in Figure 6.2.2.1. In Figure 6.2.2.1, the 

first table stores feature windows for every pixel from the left image and the second table 

contains right pixels with corresponding feature windows form the right image, where each 

window in both tables locates at the same coordinates as the row and column indices of centre 

pixels of these windows in left and right images. 

 

PL
w  and PR

w  represents feature windows for pixel PL  and PR  in left and right images. The 

indicators of i and j denote the number of row and column, moreover, r and c are the total 

number of rows and columns which also refers to the size of stereo images - (r × c). The 

distance from boundary to the initial pixels that can have required window with a certain size 

is indicated by k which can be computed as Equation 6.6. The range of i and j are defined as 

given: i  (1+k, 2+k, 3+k,	……, r-k-1, r-k)  	and			j	 	(1+k, 2+k, 3+k,……, c-k-1, c-k). 

 

 

Where N is the size of the required feature window. 

 

Each reference pixel has a set of candidate pixels within maximum disparity range in the right 

image, which constitutes a set of pixel pairs in relation to a reference pixel, where such set is 

denoted as S
PL
t

PR
(1..u)

. All the indices of paired pixels are kept in the third table in sequence in terms 

of reference pixels with potential matching pixels from the first to the last one. In this case, the 

order is determined by two directions: reference pixel direction and direction of candidate 

pixels for every reference pixel.  

 

The direction for reference pixels follows the path of rows, and a candidate pixel route directs 

from right to left over the maximum disparity range starting from the same column coordinate 

as the reference pixel. As the example shown in Figure 6.2.2.1, the fist stored indices set in 

respect of the first reference pixel and its potential corresponding pixels are PL(k,k) and PR(k,k), 

 k = 
N-1

2
 (6.6) 
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and the following set consist of PL(k,k+1) and (PR(k,k+1),PR(k,k)). IPL
t

PR
u

 indicates the index of one 

candidate pixel PR
u  regarding its reference pixel PL

t  that lies on the location IPL

t , where u is the 

number of potential pixels and t is the number of reference pixels with the scope: u 	

1, 2,……,	dmax 			and			t 	(1, 2, ……, T), and T is the total amount of pixels that can have 

demanded feature windows as defined by Equation 6.7. According to the structure of feature 

tables given in Figure 6.2.2.1, tables storing feature windows for intensity, magnitude and 

orientation attributes are generated for the difference attribute computation respectively. 

 

 

Once the method establishes feature window tables, the differential feature windows can be 

retrieved by calling the indices of all pixel pairs stored in the indices table to locate 

corresponding features windows back into the features tables as the red direction lines shown 

in Figure 6.2.2.1, and then computing the subtractions between left and right pixels of all pairs 

at o. At this point, after formatting the difference feature windows into vectors, the feature 

dataset for the stereo images can be obtained. 

 

Following the construction of the feature dataset for left and right images, the next step involves 

matching degree estimation. With the optimization approach, at this stage, a network inputs a 

dataset containing all feature vectors for every pair, and then calculates matching degree for 

every pair of stereo pixels. The output of the network becomes one vector stores all matching 

degrees in a certain order according to the same sequence as presented by the indices table in 

Figure 6.2.2.1. The disparity at each reference pixel location is derived from every set of 

matching degrees in relation to the reference pixel and its candidate pixels with the WTA 

method.  

 

The detailed process of disparity extraction from the whole matching degree vector for all pairs 

falls into steps as follows: 

 

1) Finding the index of the maximum matching degree from each interval in respect to 

every set of reference and candidate pixels stored in the whole matching degree vector. 

supposing the start index of an interval is Sv and the end index is Ev, where v denotes 

the number of intervals in the entire vector, thus the maximum value of v equals to the 

 T =	r c –	(2 k r – 4 k
2
 +	2 k c ) (6.7) 



	 127 

total amount of reference pixels used for a stereo image pair, that is to say, 

v 	(1, 2,	……, T), the calculation of Sv and Ev refers to the process below: 

 

• If a reference pixel can not have the same number of candidate pixels as the maximum 

disparity range (MDR), then the values for Sv can be found as below, where v starts 

from two to MDR-1 with S1 = 1 and E1	=	1: 

 

 

 

Where o 	(1,	2,	3,	……, MDR-2). 

 

• If a reference pixel can have the number of pairs regarding potential pixels which is the 

same as MDR, then v should start from MDR to T, then: 

 

 

Once Sv=MDR is obtained, its corresponding end index and the start and end indices of 

rest sets can be calculated as following equations: 

 

 

 

According to the Sv  and Ev , the coordinates of paired pixels in an interval can be 

retrieved with the indices table (given in Figure 6.2.2.1) based on the number of interval 

and the order of candidate pixels in this interval. 

 

2) The second step computes the disparity for each reference pixel. Firstly, maximum 

matching degrees in all intervals that can be obtained as explicated in the previous step 

are found, then candidate pixels of a reference pixel in right image which can produce 

 Sv  =  Sv-1 + step
o
 (6.8) 

 Ev =  Sv  + step
o
 (6.9) 

 Sv=MDR  =  
MDR2	-	MDR

2
	+	1 (6.10) 

 Sv  =  Sv-1 + MDR (6.11) 

 Ev =  Sv + MDR - 1 (6.12) 
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the largest matching degrees are considered as the corresponding pixels for the 

reference pixel. Secondly, disparities are calculated by subtracting the column indices 

of reference pixels and matched candidate pixels. 

 

3) At last, generated disparities are located in a map row by row so as to form an initial/raw 

disparity map. The procedure performs disparity assignment in accordance with the 

coordinates of their reference pixels that can be found with the method in step one in 

order to represent the depth clue for every reference pixel in the left image. A raw 

disparity map is then refined with post-processing approach in order to improve the 

map quality. 

 

Experimental results evaluation:  

 

The designed optimization approach can significantly improve the computational speed of 

disparity map generation in contrast to the method introduced by [90]. Table 6.2.2.1 presents 

the experimental comparisons between single matching degree computation method (SMD) 

and our approach that using network computes all matching degrees for the whole amount of 

pairs at one time (WMD). 

 

 Elapsed Time of Disparity Map Computation 

SMD 13.9480 days 

WMD 54.9668 seconds 

Table 6.2.2.1 Comparison of computational speed between SMD and WMD 

 

In the experiment for Table 6.2.2.1, the adopted stereo image was Mountain set introduced in 

Chapter 3 Section 3.2. The number of pairs was computed with the multiplication of the value 

of maximum disparity range and number of pixels that can produce feature windows with a 

certain size and can be calculated by Equation 6.5. The specifications of this experiment are 

listed below in detail: 

 

• Image size: 408×589 

• Network: SNN with Scaled Conjugate Gradient algorithm 

• Feature window size: 7×7 
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• Max disparity range: 20 

• Numbers of Pairs: 4687320 

• Hardware: 

Processor - 2.8 GHz Intel Core i7; Memory - 16 GB 1600 MHz DDR2  

 

As the results are shown by Table 6.2.2.1, WMD approach produced disparity map within a 

short processing time, moreover, WMD outperformed SMD, while SMD took a very long 

period to accomplish the gain of the disparity map. This implies that the idea of network 

analyzing the entire pair dataset treads on the right path, furthermore, our approach can make 

a conducive impact on accelerating the elapsed time of the entire process for disparity map 

generation, in particular, the formation of pixel level based dense disparity map can obtain 

advantage from WMD method in respect to relative speedy calculation. 

 

6.3 Post-processing for disparity map 

 

One procedure commonly follows after generation of a disparity map, which refers to refine 

the disparity map so as to further improve the representation provided by the map. In other 

terms, such extension plays a favourable role in clarifying the produced disparity map at the 

last stage of the entire estimation flow. 

 

6.3.1 Overview for disparity map refinement 

 

As explicated in previous sections, a map containing differences between corresponding points 

generated by stereo correspondence algorithms is designated by the name of disparity map. 

Depth value can then be computed based on this formation according to triangulation formula. 

Generally, a standard disparity map is a grayscale plot. Such map implies the distance of each 

pixel in respect to the real world. The smaller the disparity is, the farther the depth/distance is.  

 

A map that is directly output from stereo matching algorithms generally comes in the raw state. 

In this case, the produced initial map requires refinement techniques to enhance the definition 

on its plot so as to improve the accuracy of computed disparities. This step is known as post-

processing for the purpose of quality enhancement. Common approaches involve sub-pixel 

improvement, noises removal, occlusion filling and discontinue enhancement [57].  
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(a) Disparity map with noises (b) Occlusion and discontinues 

Figure 6.3.1.1 Noises, Occlusion and discontinues regions 

 

Sub-pixel refinement that is widely applied normally refers to curve fitting with neighbour cost 

[57], [155]. Noises on the map as the schematic of Figure 6.3.1.1.(a) [156] can be reduced by 

filter-based method such like median filter[57], [157] that clear messy elements on images. An 

occlusion indicates a missing region between stereo images as the black area (excluding the 

black boundary) shown in Figure 6.3.1.1.(b) [57] caused by the variance of perspective angle. 

For predicting occlusion region, the most applied straightforward approach is cross-check/left-

right check, which checks the uniformity of pixels between left and right disparity maps [158]. 

After occlusion detected, the following step performs a filling method like area disparity 

estimation [159]. Discontinue regions appear where disparities disjoint involves the term of 

edge enhancement [160], which as the white area revealed in Figure 6.3.1.1. (b), such areas 

normally relate to the boundary of objects. 

 

6.3.2 Adopted post processing approach 

 

Our research aims to perform a compact post-processing approach for the purpose of 

implementation efficiency of systems, in the consideration of more algorithms require more 

elapsed time to complete one update of an initial disparity map. According to objective of 

research is to implement estimation in general level, moreover, on account of a raw disparity 

maps sometimes occur low resolution condition with noises on the appearing plot, in this case, 

the produced initial map requires refinement techniques to enhance the definition on its plot so 

as to improve the accuracy of computed disparities. The starting point of the refinement scheme 

determined by our research involves cleaning up jumbled factors that occur in maps presenting 
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differences of the vertical axis between corresponding pixels generated from stereo matching 

algorithms so as to clarify the overall appearance of disparity maps.  

 

On the basis of such motivation, the adopted post-processing scheme was found on the purpose 

of noise removal from raw disparity map in our study. The entire refinement procedure can be 

divided into three steps as follows:  

 

1) Map size recovery: 

The stereo correspondence algorithm performs the corresponding estimation by measuring 

the level of matching between a pair of pixels with differential feature window obtained 

from two feature windows using these two pixels as the centre. For this reason, pixels 

around the boundary of images can not have feature window so that are excluded from 

computation, consequently, the output disparity map thus presents black colour on the 

border for those missing pixels as shown in Figure 6.3.2.1. (a).  

 

This step recovers the black boundary in the way of replicating border values next to the 

black border, and locates these values in the black region, which an example outcome is 

presented by Figure 6.3.2.1. (b). 

 

  

(a) Output disparity map (b) Border recovered disparity map 

Figure 6.3.2.1 Border recovery for disparity map 

 

2) General noise clean: 

In the field of noise removal, the most widely used algorithm in image processing refers to 

Median Filter that possesses the advantage of traits on keeping edge and cleaning up 

impulse noise [161]. The theory of Median Filter algorithm involves discovering a median 
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value within a given mask that normally consists of odd numbers. Firstly, a mask extracts 

a set of values and sort these values from the smallest one to the largest one. Secondly, the 

median value from the sorted set with values in descending order is selected to replace the 

value of the center pixel in the mask. The mask can be formed with a variety of shapes such 

as square, cross, circular and one dimension. Applying with a median filter, the 

representation of the disparity map can be improved from the black-border retrieved map 

as presented by Figure 6.3.2.2. (a). 

 

3) Further regions padding: 

As we can see, after applying with a median filter, there still are some areas mismatching 

in the disparity map, which are represented by very dark noisy areas. Therefore, this stage 

further improves the quality of map by filling these regions according to the values of pixels 

locating on the outer boundary of these areas, where a given mask points out these regions 

in the map that should be refined [162]. Figure 6.3.2.2(b) gives the result of a disparity map 

with region filling in accordance with Figure 6.3.2.2.(a). 

 

  

(a) Disparity map with median filter (b) Region filled disparity map 

Figure 6.3.2.2 Disparity map applied with median filter and region padding 

 

After the implementation of three steps, the final disparity map with an improved level of 

clarity can be obtained. Experiments were carried out to evaluate the effectiveness of implied 

post-processing approach, and results are illustrated in Figure 6.3.2.3. The computed disparity 

maps in respect to performances of Figure 6.3.2.3 was derived from Moebius image set. The 

evaluation was based on bad pixel percentage (details explicated in Section 6.4).  
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Figure 6.3.2.3 Designed post-processing approach evaluation 

 

In Figure 6.3.2.3, BR, MF and RF denote the post-processing step with border recovery, overall 

noise reduction with a median filter, and final stage performing region interpolation. The 

shorter bar represents a lower percentage of incorrect disparities which were caused by 

incorrectly matched pixel pairs. As shown in Figure 6.3.2.3, the percentage of bad pixels 

decreased along with the enhancement procedure step-by-step, which implies the usability for 

disparity map refinement. The results show that this post-processing approach cannot only 

clarify the appearance and advance the definition of the raw disparity map, but also improve 

the accuracy of the disparity map. 

 

6.4 Evaluation with disparity map 

 

The final usage of output from stereo correspondence estimation involves a calculation stage 

for disparity recovery to form a map containing depth cues. On account of this matter, disparity 

map provides direct estimation for the performance of stereo matching algorithms. In dense 

disparity map, each pixel value representing the disparity of object observed in stereo images 

at this pixel location, whereas the value is derived from matched pixel pair in respect to the 

current location in disparity map, accordingly, the effectiveness of stereo matching procedure 

affects the qualitative properties straight away. This section will evaluate the systems 

integrating three networks as explicated in Chapter 4 and 5 with produced disparity maps. 

 

6.4.1 Comparison and evaluation with state-of-the-art approaches 

 

For the purpose of implementing quantitative evaluation with state-of-the-art, we adopted the 

Middlebury benchmark to perform the task. Three systems were used to estimate 
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corresponding pixel (in right image) for every reference pixel (in left image) to generate dense 

disparity maps, in accordance with this characteristics, evaluations then relate to measure the 

quantity of correct disparity values in disparity maps produced by matched pairs. The 

evaluation method in respect to such measurement normally refers to one quality metrics which 

is known as percentage of bad matching pixels. The computational process for this performance 

estimation can be formulated as Equation 6.13. 

 

 

Where k represents the number of pixels in total, d(xk,yk)
o

 and 	d(xk,yk)
t

 denotes the output and 

target disparity values, and (x, y) indicate locations of generated values in the disparity map. 

δd is the threshold for determining whether an accurate disparity occurring, where δd = 1 in our 

evaluations. According to the equation, the fundamental theory performs measurement on the 

difference between computed disparity and correct disparity of every pixel. If a difference 

value between d(xk,yk)
o

 and 	d(xk,yk)
t

 is bigger than δd, one error is count in the total number of 

pixels with wrong disparities, once the number of all bad pixels is obtained, PBM calculates 

the percentage of incorrect disparities over all pixels.  

 

The main pipeline of our methodologies stars from feature extraction, matching degree 

computation, and disparity map computation. In accordance with the standard process of stereo 

corresponding algorithms, the first step corresponds with the stage of matching cost 

computation, the second step refers to the aggregation of cost, the third step performs the 

function of disparity optimization, accordingly, such process builds up the pipeline of the local 

stereo corresponding algorithm. On the basis of this traits, we carried out comparisons with 

state-of-the-art methods that performing stereo approaches in relation to local algorithms.  

 

The algorithms that were adopted in our comparison were from the Middlebury Stereo 

Evaluation Version 2, moreover, stereo image sets for our evaluation involved in the 

benchmark contained Teddy and Cones. Table 6.4.1.1 lists the comparison of PBM (that was 

computed with the mask of the all-scheme according to the benchmark, which measured the 

PBM over the entire disparity map while excluding few unknown regions) between three 

networks built in our thesis (SNN, d-Multiple NNs, and b-CNN) and sate of the art approaches. 

 PBM  =  
1

K
( (d

(xk,yk)

o
-	d(xk,yk)

t

K

k=1

 > δd) (6.13) 
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 Teddy Cones Average 

CCRADAR [163] 10.6 7.37 8.99 

LM3C [164] 10.9 7.59 9.25 

LAMC-DSM [165] 10.4 8.31 9.36 

HistoAggr2 [166] 11.3 7.78 9.54 

DTAggr-P [167] 11.5 7.82 9.66 

HCFilter [168] 11.5 8.07 9.79 

MSWLinRegr [169] 11.0 8.76 9.88 

ConfSuppWin [170] 11.4 8.60 10.00 

CostFilter [171] 11.8 8.24 10.02 

TF_ASW [172] 11.8 8.32 10.06 

GradAdaptWgt [173] 13.1 7.67 10.39 

RealtimeHD [174] 10.7 10.1 10.40 

iFBS [175] 12.8 8.73 10.77 

VSW [176] 13.3 8.85 11.08 

RTAdaptWgt [177] 13.3 9.34 11.32 

d-Multiple NNs 13.25 10.80 12.03 

b-CNN 13.81 10.54 12.18 

SNN 13.84 10.87 12.36 

VariableCross [59] 15.1 12.7 13.90 

RINCensus [178] 17.3 16.2 16.75 

SSD+MF [57] 24.8 19.8 22.30 

Table 6.4.1.1 Comparisons between state-of-the-art and three networks based on percentage 

of bad matching pixels 

 

We used the optimised model for SNN, d-Multiple NNs, and b-CNN obtained from previous 

Chapters to produce disparity maps for evaluations. The specifications of the three networks 

are listed in detail below: 
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Ø SNN: 

• Input layer: 147 neurons 

• Hidden layer: one layer, 49 neurons 

• Output layer: 1 neuron 

• Training function: Scaled Conjugate Gradient 

 

Ø d-Multiple NNs: 

• Input layer: 49 neurons 

• Hidden layer: two layers, 49, 28  neurons 

• Output layer: 1 neuron 

• Training function: Scaled Conjugate Gradient 

 

Ø b-CNN: 

• Input image window size: 17×17 

• Filter size: 9×9 

• Filter number: 32 

• Fully connected layers:  

4 layers with 20 neurons at each hidden layer, one layer with two neuron 

• Mini batch sizes: 64 

• Learning rate: 0.01 

• Drop factor of learning rate: 0.1  

• Training function: Stochastic Gradient Descent 

 

In the Middlebury Stereo Evaluation Version 2, the best performing network in the Teddy 

dataset is ranked at place 100 out of the 166 algorithms submitting results to the repository 

over seventeen years (1999 to 2015). Correspondingly for the Cones dataset the best 

performing of our networks is ranked 108
th

 out of 166. Further evaluation with the common 

local related schemes is presented by Table 6.4.1.1. Table 6.4.1.1 gives the error rates of 

disparity maps for Teddy and Cones according to PBM in 100% unit with given ground truths 

from the benchmark, which represent the overall error rates of computed disparity maps. The 

column of average measurement indicates the mean PBM of output disparity maps for both 

Teddy and Cones together in respect to each approach in the table. The disparity maps produced 

by the three networks for Teddy and Cones images are shown in Table 6.4.2.1. 
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In general, all state-of-the-art approaches produced better performance for Cones than Teddy 

images owing to Teddy image has more areas with less textured scenarios which is the typical 

issue of the local method as mentioned in Chapter 2, moreover, methods with three networks 

appeared the same phenomenon as others. Such appearance indicates that thee-networks based 

systems possess the characteristics of stereo matching algorithms on the basis of the local 

scheme, that is to say, they can be capable of local stereo correspondence estimation. 

Furthermore, in accordance with this observation, the improvement of systems integrating with 

three architectures of neural networks presented by our study can be investigated from the 

aspect referring to advance local methods. 

 

As shown in Table 6.4.1.1, the percentage range of PBM for Teddy is from 10.4% to 24.8%, 

and 7.37% to 19.8% for Cones, which can be roughly rounded into 10% to 25% for Teddy 

estimation and 7% to 20% for Cones estimation. SNN, d-Multiple NNs and b-CNN generated 

PBM around the percentage of 13 to 14 for Teddy disparities, and 11% for Cones disparities, 

where representative rates of accuracies located in the similar range of PBM for both Teddy 

and Cones disparity maps, which means these three systems can achieve stable performance 

among a variety of methodologies.  

 

State-of-the-art methods listed in Table 6.4.1.1 were created on the basis of common local-

stereo techniques as algorithms introduced in Chapter 2 Section 2.5.2, in this case, their 

performances represent the characteristics of general algorithms for the corresponding 

estimation between stereo images. The PBM referring to average error rate over Teddy and 

Cones for each method that are shown by Table 6.4.1.1 can be rounded from 9% to 22%, 

moreover, most of state-of-the-art approaches had error rates between 9% and 11% in 

accordance with the PBM, and SNN, d-Multiple NNs and b-CNN produced about 12% bad 

matching pixels.  

 

The comparison based upon mean PBM measurement implies that, along with the development 

of stereo correspondence technologies, the general performance of well-investigated 

methodologies (which found on the common local strategy of stereo matching) for finding 

corresponding pixel pairs can be considered to converge at about 10% which represents the 

average percentage of 9% to 11%. SNN, d-Multiple NNs and b-CNN as novel approaches in 

contrast to traditional stereo matching techniques have achieved about two percentages far 

from general PBM. All these reveals indicate that although systems with three networks have 
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not reached to the average performance that common approaches attained, they are getting very 

close to the accuracy levels achieved by those conventional algorithms. Therefore, as 

burgeoning technologies, SNN, d-Multiple NNs and b-CNN have the ability and potential 

capability of effectually matching stereo pixels. In other terms, such stereo correspondence 

approaches that integrating with these three networks possesses great prospects on account of 

advantages in respect to the flexibility and intelligent functionality. 

 

6.4.2 Comparison and evaluation between three networks 

 

This thesis has presented three artificial neural networks (SNN, d-Multiple NNs and b-CNN) 

for stereo matching implementation by matching pixels with the computation of matching 

degrees for reference pixel with its candidate corresponding pixels to finally construct disparity 

map. They consist of diversified architecture designs which their own effect respectively, 

accordingly, different outcomes representing the specific capabilities of the three networks are 

then generated from these three systems.  

 

It is very helpful to explore the characteristics of performance in respect to each individual 

network based stereo matching system so as to understand each network is good at which field, 

even more, to discover clues for system advancement in the further step from different aspects 

in the future by starting from the current stage of designed systems.  

 

The quality of a disparity map involving the column differences between two corresponding 

pixels denotes the performance of stereo correspondence algorithms, in other words, by 

estimating the error rate of a computed disparity map, the efficiency of a stereo matching 

method can be revealed perspicuously. 

 

On one hand, quantitative accuracies can be obtained directly in the way of counting the 

number of inaccurate disparities caused by falsely matched pixels as defined by Equation 6.13. 

On the other hand, with the benefit of visible measurement provided by the disparity map, the 

qualitative analysis of performance with regard to three networks can be investigated in a 

straight way of visualised observation. By the combination of this two strategies, we carried 

out effectiveness analysis for SNN, d-Multiple NNs and b-CNN based on produced disparity 

maps of stereo images from datasets which were introduced in Chapter 3 Section 3.5. 
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 SNN 
d-Multiple 

NNs 
b-CNN Ground Truth 

Teddy 

    

Cones 

    

Book 

    

Moebius 

    

Dolls 

    

Reindeer 

    

Aloe 

    

Baby 3 

    

Bowling 2 

    

Table 6.4.2.1 Disparity maps generated with three networks 
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Table 6.4.2.1 illustrates disparity maps computed by systems with SNN, d-Multiple NNs and 

b-CNN and corresponding ground truth for each image set, where the nine stereo images 

utilised for producing maps in Table 6.4.2.1 were Teddy, Cones, Book, Moebius, Dolls, 

Reindeer, Aloe, Baby 3, and Bowling 2. For the networks settings, we used the same optimal 

models for the three networks as listed in the previous section to generate these maps. 

 

Occlusions over all images that appear at the left side of objects with brighter colour as shown 

in these plots occur less in SNN maps comparing with maps generated by d-Multiple NNs and 

b-CNN. Nevertheless, as the figures presented in the table, disparity maps produced with SNN 

appears to have more noise regions on the surface than the other two networks, especially, 

when objects with large flat surface such as Teddy and Book, where d-Multiple NNs lines in 

the second position that has less noises than SNN but more than b-CNN on such surface. This 

observation implies that b-CNN possesses the trait of less sensitive to large flat areas with low 

texture in contrast to SNN and d-Multiple NNs, conversely, the performance of SNN is very 

easy to be affected by such areas.  

 

Disparity maps generated by b-CNN have the smoothest and clearest appearance for objects, 

however, tend to blur the outliner of objects, if the gap between objects is small, objects are 

merged together such like the legs of the small toy in Baby 3. Moreover, the objects with 

narrow or small shapes cannot be detected by b-CNN, for instance, objects in a mug contained 

in Cones ground truth are disappeared in the b-CNN map, where SNN maintains the most shape 

of these small objects. That is to say, b-CNN can perform better estimation with large shape 

objects, and SNN is good at small shape analysis, where d-Multiple NNs has the middle 

capability between them, in other words, d-Multiple NNs can balance the ability of shape 

detection with different sizes. By observing over these disparity maps, d-Multiple NNs keep 

the sharpest boundaries for objects, which can distinguish the depth changes better than the 

other two networks. 

 

In the view of these observations, SNN, d-Multiple NNs and b-CNN all have their own abilities 

to deal with different tasks. Accordingly, with specific strengths, three networks can produce 

the different formation of appearance for disparity maps. Overall, in contrast to ground truths, 

three networks can produce disparity maps closer to the correct presentation in terms of basic 

scenarios in images can be presented by these maps. In order to further explore the performance 
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between three networks, PBM was calculated for computed disparity maps listed in Table 

6.4.2.1. 

 

 SNN d-Multiple NNs b-CNN 

Book 17.34 14.39 14.64 

Moebius 14.47 14.45 14.19 

Dolls 11.14 12.01 11.80 

Reindeer 16.94 15.97 16.95 

Aloe 13.81 14.88 14.15 

Baby3 14.75 15.58 15.19 

Bowling2 16.62 16.46 16.99 

Average 15.01 14.82 14.84 

Table 6.4.2.2 Percentage of bad pixels for disparity maps generated with three networks 

 

Corresponding PBMs for disparity maps that were produced with 2005 and 2006 Datasets in 

Table 6.4.2.1 is listed in Table 6.4.2.2. In the Table 6.4.2.2, the overall error rates for all 

disparity maps produced by each network are denoted by average PBM. As shown by Table 

6.4.2.2, moreover with the performance of Table 6.4.1.1, each network can produce 

outstanding performance with different images, moreover, for the same image set, the three 

networks generally have the difference of error rate around one to three percentages of bad 

matching pixels between them. For some image sets, SNN can obtain better performance, while 

some image sets can get good quality disparity map with d-Multiple NNs, and b-CNN can 

produce higher accuracy for some image sets. This phenomenon corresponds to properties that 

each network possesses diverse strengths as the previous analysis from the appearance of 

disparity maps given in Table 6.4.2.1.  

 

The best performance in Table 6.4.2.2 all referrers to Dolls image set, which has a relatively 

large number of objects among adopted stereo images for disparity map computation. This 

means, these three networks can be available for images containing multiple objects, which is 

a good sign as a scene form real word normally include many objects. 
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From the overall aspects, according to the results of average PBM, d-Multiple NNs had the 

lowest average error rate among three networks, and b-CNN attained the second performance 

after d-Multiple NNs, where the lowest accuracy was produced by SNN, in this case, system 

integrating with d-Multiple NNs outperformed SNN and b-CNN based systems. Nevertheless, 

error rates of b-CNN and d- Multiple NNs only differed with each other in a very small value 

especially as shown in Table 6.4.2.2 in accordance with the mean error rates, it can reveal that 

b-CNN can achieve a very similar level of accuracy as d-Multiple NNs. Furthermore, in 

consideration of the structure design for each network, b-CNN possesses the most flexible 

architecture in three networks, where d-Multiple NNs consists of adjustable network layout at 

the second order in accordance with the flexibility, and SNN has the most difficult design to 

be modified. Therefore, comparing with SNN, d-Multiple NNs and b-CNN can not only reach 

to the higher level of accuracy, but also have the more potential capability for further 

advancement of performance. 

 

6.5 Chapter summary 

 

Firstly, this Chapter explained the fundamental theory for disparity recovery from stereo 

images in accordance with the triangulation principle. Secondly, the computation process of 

dense disparity map on the basis of stereo corresponding pixels retrieved from stereo matching 

algorithms was presented in detail.  

 

Next, this Chapter expatiated a novel approach designed for optimising the computational 

speed of generating a disparity map which was created by this project from the innovative 

methodologies to experiments and results evaluation, which the result showed this approach 

was able to improve the computational speed effectively. A post-processing scheme designed 

in the pipeline which referring to noise reduction was described step-by-step following with 

experimental estimation, which can reduce a certain amount of noise in a raw disparity map. 

Moreover, evaluations and comparisons for three networks (SNN, d-Multiple NNs and b-CNN) 

based on computed disparity maps were presented from two aspects: with state-of-the-art 

approaches and among three networks, which revealed the effectiveness of SNN, d-Multiple 

NNs and b-CNN for stereo correspondence estimation. 
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Chapter 7: Conclusion and future work 

 

So far, this thesis has presented the approach of estimating dense stereo correspondence with 

three types of artificial neural networks: simple neural network, multiple neural networks and 

convolutional neural network. This Chapter contains concluding discussions for the work 

presented previously in detail, and it will introduce possible areas for further study in the future. 

 

7.1 Conclusion 

 

Achieving accurate and reliable visual perception is a complex but necessary functionality for 

a number of different application areas including robotics and autonomous cars. Among 

methodologies developed to achieve this, stereo vision is the one most often adopted due to its 

similarity to the operation of human vision. In contrast to other vision systems, such as those 

based on monocular vision, stereo perception can represent depth information in a more precise 

way and easily be integrated with most general applications. 

 

As discussed previously, stereo correspondence, an essential part of stereo perception 

algorithms, is accordingly a significant research field in computer vision domain. Furthermore, 

comparing to sparse approaches, dense stereo matching can produce disparity maps with higher 

resolution although sometimes the process is computationally intensive and time-consuming 

due to dependence on pixel-by-pixel search. To address this a range of methods are introduced 

with good performance in real-time processing, including local algorithms, which can be an 

optimal choice when efficiency is of essence. 

 

The pipeline for our stereo matching algorithms using artificial neural network systems 

presented in this thesis (SNN, d-Multiple NNs, b-CNN in terms of simple neural network, 

multiple neural networks, and deep learning techniques) is illustrated by the flowchart in Figure 

7.1.1. The process first starts with extracting features from rectified stereo images, where one 

part involves training data construction for networks learning stage, and another part 

implements feature preparation from stereo image pair for selecting matching pixels. After 

feature extraction, all different types of networks designed were first trained with training data 

to learn matched and unmatched classes to produce matching degrees for a pixel pair. This 

represents the level of correspondence between two pixels. Once the training stage is finished, 
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input feature vectors for reference pixels in the left image, along the corresponding features for 

their candidate pixel pair in the right image, are used to obtain matching degrees. In the next 

step a raw disparity map is formed in accordance with the selected matching degrees using a 

speed optimization approach. For each reference pixel, the candidate pixel with the largest 

matching degree is selected as the corresponding pixel for the forming the correspondence pair. 

Accordingly, the disparity computation procedure assigns disparity at the location of reference 

pixels with the x-axis difference between two matched pixels. At the last stage, post-processing 

refines initial maps to reduce noises the final disparity map. 

 

.  

Figure 7.1.1 Flowchart of proposed algorithm pipeline 

 

Regarding contributions made with respect to Feature Extraction and Feature Types Impact, 

this thesis has presented the analysis of feature engineering for systems using three different 

artificial neural network types to perform stereo correspondence estimation. Feature 

engineering is the starting point for such systems, which play a fundamental role in machine 

learning algorithms. From our initial results, the basic approach of feature engineering has been 

established. In consideration of the characteristics of stereo vision, in our methodology, 
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training data was selected based on a designed scheme that selects instances fitting epipolar 

constraints with respect to matched and unmatched categories. Our experimental estimation 

showed that this method can outperform approaches utilising random selection. Moreover, the 

investigation of effect on performance with different types of features based on basic feature 

design found out the optimal modality of attributes referring to balanced numerical data.  

 

As mentioned previously, there were three different types of neural network systems presented 

in the thesis for implementing stereo correspondence procedure. The complexity of three 

networks increased from neural network with simple design (SNN) to combination structure 

consisted of multiple networks (d-Multiple NNs), and the most complex one that adopted deep 

learning theory (b-CNN), where d-Multiple NNs was created on the basis of SNN. These 

investigations led to optimal architecture definitions for each of the three types of NNs and 

form the Network Structure Design contribution of this thesis. 

 

Following with the optimisation of network structure, further contributions of this work 

focused on Network Layers and Parameter and Model Optimizations (Section 1.3). The 

function of these three networks referred to compute matching level between given pixel pairs 

extracted from stereo images. For the purpose of maximising the performance of networks, 

model optimizations were carried out to explore the relationship between parameter settings 

which involved learning rate related aspect, training functions, association of input patch size 

and filter size, filter number, mini batch size, moreover the constructions for hidden/fully 

connected layers. The experiments and evaluations revealed capability of three networks 

learning stereo properties and possible strategies for discovering the optimal combinatory of 

network layers and various parameters for advancing the performance in respect to each 

network based system as high as possible.  

 

A contribution on Speed Improvement for Disparity Map Computation was made in relation to 

the design of an optimisation approach for accelerating the computation of disparity maps, 

which can shorten the computational period from days to minutes by improving feature 

extraction and disparity estimation processing. Refinement of raw disparity maps was also 

achieved by noise decrease resulting in that the final map can have better quality than the initial 

one (this was referred previously as the Refinement of Raw Disparity Map contribution of this 

thesis). 
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Evaluations with disparity maps were carried out from two aspects: comparison with state-of-

the-art methods, and between the three networks, to evaluate the performance quantitatively as 

well as qualitatively. Details can be found in the Comparisons contribution in Section 1.3. In 

summarising the outcomes of these investigations, it was shown that all three network systems 

are capable of effectively estimating dense stereo correspondence. Moreover, d-Multiple NNs 

and b-CNN have very similar accuracy with each other, and they both outperform SNN. Finally, 

it was illustrated that they have greater potential for advanced performance due to their more 

flexible architectures and scalability. 

 

7.2 Future work 

 

Dense stereo correspondence estimation with neural network systems presented in this thesis 

have shown long-term potential space of development with a great possible prospect in the 

future along with carrying out further investigations. There are some future works can be 

implemented to advance the level of performance, in particular for d-Multiple NNs and b-CNN 

based correspondence matching systems. 

 

In our research, the primary goal has focused on the implementation of matching corresponding 

pixels for producing disparity map in general phase. In consideration of this aspect, one 

exploration for both d-Multiple NNs and b-CNN systems can be referred to consider 

improvement of accuracy in respect to regions with occlusions and discontinues cooperating 

with complementary refinement, by reason that the real scenario contains intricate contents 

interacting with each other, which leads to such areas normally appear to occupy a certain 

percentage of a scene from the real world.  

 

The correspondence search was performed on the pixel level presented in our thesis, however, 

in a practical circumstance, objects in an image sometimes consist of partial pixels instead of 

full pixels, therefore, another future work can involve matching procedure with sub-pixel grade 

based estimation so as to improve the resolution of disparity map. 

 

Taking account of the characteristic that ANN possesses the dynamic and flexible ability that 

networks can be modified can constructed with different forms of architectures including 

diversified parameter settings, moreover, d-Multiple NNs and b-CNN particular were designed 
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with flexible models, so that further improvement on the model designs for d-Multiple NNs 

and b-CNN can be investigated so as to further improve the performance. On the basis of 

network properties, possible works can involve different combinations among the diversity of 

layers following with relationships optimization with a variety of parameters  

 

We have used datasets from Middlebury benchmark in our studies, where the images are 

mainly made up of different objects such as books, teddy bears, aloes, and so on. On account 

of the capability in relation to generalization analysis for real circumstance in the world, the 

designed systems integrated with d-Multiple NNs and b-CNN can be trained with more types 

of datasets, for example, one well-known dataset called the KITTI dataset [179] providing 

images captured with road environments. 

 

By applying with such possible explorations, the designed systems can be further improved to 

the next level in the future. 
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Appendix A: 

List of acronyms for algorithms taken from the Middlebury benchmark [96] 

 

CCRADAR Combined Cost Remaining Artifacts Detection and Refinement [163] 

LM3C Local Method Three Census [164] 

LAMC-DSM Local Adaptive Matching Cost - Dense Stereo Matching [165] 

HistoAggr2 Histogram Aggregation Two [166] 

DTAggr-P Domain Transformation Aggregation - Pixel [167] 

HCFilter Hierarchical Clustering Filtering [168] 

MSWLinRegr Multiscale Weber Linear Regression [169] 

ConfSuppWin Confidence Support Window [170] 

CostFilter Cost Filtering [171] 

TF_ASW Trilateral Filter _ Adaptive Support Window [172] 

GradAdaptWgt Gradient Adaptive Weight [173] 

RealtimeHD Real-time High Decision [174] 

iFBS Iterative Fast Block Support [175] 

VSW Virtual Support Window [176] 

RTAdaptWgt Real-Time Adaptive Weight [177] 

IterAdaptWgt Iterative Adaptive Weight [180] 

VariableCross Variable Cross [59] 

RINCensus Refined Intensity Neighborhood Census [178] 

SSD+MF Sum-of-Squared-Differences + Min-Filter [57] 
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