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ABSTRACT 
The formation of Faraday waves in a liquid inside a cylindrical vessel under 

the influence of vertical vibration is studied. The stability thresholds and its 

mode decomposition are obtained using a linear stability analysis. The 

stability model is validated with a vibration experiment in a vertical vibration 

table. The Faraday instability threshold is found for accelerations ranging 

from 0.1 to 1.0 times the gravitational acceleration. The confinement effect 

by the vessel introduces cut-off the low frequency modes and the allowed 

frequencies are discretized. The resulting acceleration stability threshold is 

high at low frequencies and it is the lowest at medium frequencies, 

10 –  70 𝐻𝐻𝐻𝐻, where the discretization of the mode 𝑘𝑘-momenta introduces low 

stability regions delimited by more stable frequency ranges. The relevance 

of these characteristics for the agitation of liquids will be discussed. 
 

 
1. INTRODUCTION  
Understanding the sloshing of liquids inside vessels and preventing its negative effects is a 
problem that has occupied engineers for a long time. Civil engineers and seismologists have 
been interested in the effect that earthquakes could have in dams, water reservoirs or oil tanks. 
The stabilization of the motion of fuel inside tanks has been a major design problem for jet 
planes and space rockets [1,2]. Another sort of problems arise from the agitation of biological 
or pharmaceutical liquid solutions inside vessels. Biomolecules have a high propensity to 
undergo physical instability reactions that are encountered by changes in the three-
dimensional structure of the active ingredient. In particular, mechanical stress conditions, such 
as agitation during shipping, can result in denaturation and aggregation, thereby affecting the 
stability of the products profoundly [3–5]. The transportation degradation is linked to the shear 
stress induced by the agitated fluid. One important aspect to understand the agitation of 
aqueous solutions is the stability threshold above which the free surface shows normal modes.  
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*Corresponding Author: asier.zubiaga@zhaw.ch 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ZHAW digitalcollection

https://core.ac.uk/display/195298001?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


62 

 
Faraday Instability in Small Vessels under Vertical Vibration  

 

 
 
These modes are stationary and can grow large in intensity. Therefore, they can induce a high 
shear stress on the dissolved product or induce disastrous failure in large dams or fuel tanks. 

Exposed to vertical vibrations liquids are prone to show Faraday instabilities when the 
acceleration grows above certain threshold value [6]. The vessel shape, it’s dimensions and 
the fluid characteristics (mass density, viscosity and surface tension) influence the formation 
of instabilities [7,8]. The parametric instability under vertical vibration has been extensively 
studied for inviscid and viscous fluids. Benjamin & Ursell [9] found that the free surface 
instability of low viscosity fluid is well approximated by the Mathieu equation for an ideal 
fluid. However, this model could not account for the viscosity effects. The extension of the 
model for viscous fluids was done by Kumar & Tuckerman [10] using a Floquet analysis [11]. 
By including the bulk viscosity effects in the boundary conditions at the fluids interface, a 
stability condition for a given surface wave type is obtained. The viscosity effects near the 
vessel walls and the interface will also have a noticeably effect in the stability threshold [9,12]. 
The main characteristics of the stability threshold, though, remain largely unchanged [7,13].  

In this work, the instability threshold for a liquid inside a vessel subjected to vertical 
vibrations will be studied both theoretically and experimentally. First, a Floquet analysis of 
the two fluids (water and air) will be performed. The Faraday instability threshold has then 
been measured experimentally in a vibration table and the experimental results are compared 
to the theoretical predictions. The viscosity effects caused by the walls, as well as the free 
surface will be considered during the experimental validation of the model. The main 
consequences for transportation of the confinement effect in the vessel will be discussed. 
 
2. EXPERIMENTAL METHODS 
A vial of 6 𝑚𝑚𝑚𝑚 (𝑟𝑟 = 10 𝑚𝑚𝑚𝑚, ℎ = 23 𝑚𝑚𝑚𝑚) has been filled with 10 𝑚𝑚𝑚𝑚 of water. The mass 
density and viscosity are shown in Table 1.  
 

Table 1: Mass density and dynamic viscosity of water and air. 

 Mass density (𝑲𝑲𝑲𝑲/𝒎𝒎³) Dynamic viscosity (𝒎𝒎𝒎𝒎𝒎𝒎 ⋅ 𝒔𝒔) 

Water 1000 1 

Air 1.146 0.0172 
 
The vibration experiments were conducted in a Lasmont Field-to-Lab® table sized 1000 

Vibration Testing System (vibration table from now on) which performs sinusoidal and 
random vibration tests in the 1 − 300 𝐻𝐻𝐻𝐻 frequency range and maximum peak-to-peak 
amplitude of 10.2 𝑐𝑐𝑚𝑚. A hydraulic actuator and a hydraulic power supply drive the vibration 
system. The parametric excitation has been performed at constant acceleration (0.1𝐺𝐺, 0.18𝐺𝐺, 
0.32𝐺𝐺, 0.56𝐺𝐺 and 1.0𝐺𝐺, where 𝐺𝐺 = 9.81 𝑚𝑚/𝑠𝑠²) and a frequency scan has been done from 
5 𝐻𝐻𝐻𝐻 to 120 𝐻𝐻𝐻𝐻 with 2 octaves. The vial was carefully mounted on top of a white 
polyoxymethylene (POM) base. The camera was at rest in the laboratory and it recorded the 
vial laterally. The framing was chosen so that the vial and the white base were framed along 
the whole experiment. The POM base was used as reference point for aligning the position of 
the vertically displaced vial in all the frames during post processing. 

The free surface of the vial has been recorded with a Mikrotron MotionBlitz EoSensR high 
speed camera equipped with a Complementary metal–oxide–semiconductor (CMOS) sensor 
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that can record up to a maximum of 506 frames per second (𝑓𝑓𝑓𝑓𝑠𝑠) at 1280𝑥𝑥1024 pixel and a 
8-bit monochrome resolution. The shutter aperture time of ~1 𝑚𝑚𝑠𝑠 is enough to take sharp 
images even at the highest frequency chosen. The vibration test has been recorded at 25 𝑓𝑓𝑓𝑓𝑠𝑠 
in a single movie. This recording rate is does not allow following the evolution of the waves 
at high frequencies, but the wave intensity could be still measured as long as the wave peak-
to-peak amplitude is larger than the width of the fluid meniscus (see Figure 1d). At high 
frequencies, the vibration amplitude 𝑎𝑎0 = 𝐴𝐴0/𝜔𝜔2 decreases strongly. Consequently, no waves 
larger than the meniscus could be measured (see Figure 1e).  

The movie has been imported and processed frame by frame in MATLAB. First, the 
vertical vibration movement has been subtracted by aligning the position of the POM base in 
all the frames. Then, a reference frame (𝐹𝐹𝑟𝑟0) has been defined where the fluid is at complete 
rest and it has been compared to the frames (𝐹𝐹𝑟𝑟𝑖𝑖) with a moving vial. The N pixel average 
difference between 𝐹𝐹𝑟𝑟𝑖𝑖  and 𝐹𝐹𝑟𝑟0 𝐷𝐷(𝑖𝑖) = [∑ (𝐹𝐹𝑟𝑟𝑖𝑖 − 𝐹𝐹𝑟𝑟0)2 𝑁𝑁⁄𝑁𝑁

𝑖𝑖=1 ]0.5 has been used as an 
indicator for surface movement (wave intensity from now on). To reduce noise, the processed 
region has been restricted to a rectangular region around the water-air interface (see Figure 1 
for more details). Finally, a running average with 25 𝑓𝑓𝑟𝑟𝑎𝑎𝑚𝑚𝑓𝑓𝑠𝑠 of width was applied to 
minimize the noise from imperfect alignment of the frames and other effects such as such as 
light reflections.  

 

 
Figure 1. – Frames used for the analysis of the wave intensity. Panel a) shows a 
frame with the vial at rest and a flat water-air interface. The wave intensity has been 
calculated from the framed region. Panels b) – e) show the framed region for an 
acceleration of 1.0𝐺𝐺 and different vibration frequency. Panel b) and c) show the 
water-air interface with waves. Panel d) shows the water-air interface at high 
frequencies, when the wave intensity becomes small. Finally, panel e) shows the 
flat water-air interface at very high frequencies.  

 
3. STABILITY ANALYSIS 
The stability of the free surface of a fluid in contact with air and inside a closed vessel are 
analyzed. The vessel has cylindrical shape and its dimensions are comparable to the vial used 
in the experiments (𝑟𝑟 =  10 𝑚𝑚𝑚𝑚, water height of 10 𝑚𝑚𝑚𝑚 and air column height of 6 𝑚𝑚𝑚𝑚). 
At rest, the fluids are distributed in their gravitationally stable configuration, with the air 
located on top of the water. The dynamics of both fluids are characterized by their mass density 
ρ and viscosity η. The dissipation due to viscosity effects at the vessel walls and the interface 
has a significant influence but it does not change the main characteristics of the instability 
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[14], therefore only bulk viscosity effects have been included. The dynamics of the free 
surface is governed by the surface tension 𝜎𝜎 = 0.072 𝑁𝑁/𝑚𝑚. 

The vertical vibration are studied in the reference frame of the vessel. The acceleration is 
set along the vertical direction with a constant gravitational term and an oscillating term 

 
𝐴𝐴(𝑡𝑡) = −𝐺𝐺 + 𝐴𝐴0𝑐𝑐𝑐𝑐𝑠𝑠(𝜔𝜔𝑡𝑡)                                               (1) 

 
𝐴𝐴0 is the acceleration amplitude and 𝜔𝜔 = 2𝜋𝜋𝑓𝑓. The fluids are described using the Navier-

Stokes equations for incompressible fluids 
 

�𝜕𝜕𝑡𝑡 + �𝑈𝑈��⃗ 𝑖𝑖 ⋅ 𝛻𝛻�⃗ ��𝑈𝑈��⃗ 𝑖𝑖 = −1
𝜌𝜌𝑖𝑖
𝛻𝛻�⃗ 𝑃𝑃𝑖𝑖 + 𝜂𝜂𝑖𝑖

𝜌𝜌𝑖𝑖
𝛻𝛻2𝑈𝑈��⃗ 𝑖𝑖 + 𝐴𝐴(𝑡𝑡)�̂�𝐻

𝛻𝛻�⃗ ⋅ 𝑈𝑈��⃗ 𝑖𝑖 = 0
                                  (2) 

 
P is the pressure, �̂�𝐻 is the unit vector along the vertical direction and the subscript 𝑖𝑖=1,2 

correspond to the upper (lighter) and lower (heavier) fluids, respectively. Non-slip boundary 
conditions are imposed for the velocity at the vessel walls 

 
𝑈𝑈��⃗ 𝑖𝑖 = 0

�𝑛𝑛�⃗ ⋅ 𝛻𝛻�⃗ ��𝑈𝑈��⃗ 𝑖𝑖 ⋅ 𝑛𝑛�⃗ � = 0
                                                       (3) 

 
Where 𝑛𝑛�⃗  is a vector normal to the vessel wall. In the interface the normal velocities 𝑈𝑈⊥ =

𝑈𝑈��⃗ ⋅ 𝑡𝑡 are continuous  
 

𝑈𝑈1⊥ = 𝑈𝑈2⊥
𝛻𝛻�⃗ 𝑈𝑈1⊥ ⋅ 𝑡𝑡 = 𝛻𝛻�⃗ 𝑈𝑈2⊥ ⋅ 𝑡𝑡

                                                       (4) 

 
The kinematic free surface condition is given by [15]  
 

�𝜕𝜕𝑡𝑡 + �𝑈𝑈��⃗ 𝑖𝑖 ⋅ 𝛻𝛻�⃗ ��𝜉𝜉 = 𝑈𝑈𝑖𝑖,𝑧𝑧                                                    (5) 
 

Where ξ is the position of the interface. Finally, when the surface curvature is small the 
jump in the normal component of the stress tensor across the interface 𝜋𝜋𝑖𝑖,𝑟𝑟𝑟𝑟 = −𝑃𝑃𝑖𝑖𝛿𝛿𝑟𝑟𝑟𝑟 +
𝜂𝜂𝑖𝑖�𝜕𝜕𝑟𝑟𝑈𝑈��⃗ 𝑖𝑖,𝑟𝑟 + 𝜕𝜕𝑟𝑟𝑈𝑈��⃗ 𝑖𝑖,𝑟𝑟� is  

 
�𝜋𝜋1,𝑧𝑧𝑧𝑧 − 𝜋𝜋2,𝑧𝑧𝑧𝑧� = −𝜎𝜎𝛻𝛻𝐻𝐻2𝜉𝜉                                                 (6) 

 
Where the subscript H refers to the horizontal projection along {x,y} directions. In the 

initial state, the free surface is perfectly horizontal. This will define the z=0 reference position 
for the vertical axis and the rest state 𝑈𝑈��⃗ 𝑖𝑖0 = 0, 𝑃𝑃𝑛𝑛0(𝑡𝑡) = 𝜌𝜌𝑛𝑛𝐴𝐴(𝑡𝑡)𝐻𝐻. For small velocities and 
deviations from the flat surface, the Navier-Stokes equations can be linearized 
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𝑈𝑈��⃗ 𝑖𝑖 = 𝑢𝑢�⃗ 𝑖𝑖
𝑃𝑃𝑖𝑖 = 𝑃𝑃𝑖𝑖0 + 𝑓𝑓𝑖𝑖

𝜕𝜕𝑡𝑡𝑢𝑢�⃗ 𝑖𝑖 = −1
𝜌𝜌𝑖𝑖
𝛻𝛻�⃗ 𝑓𝑓𝑖𝑖 + 𝜂𝜂𝑖𝑖

𝜌𝜌𝑖𝑖
𝛻𝛻2𝑢𝑢�⃗ 𝑖𝑖

𝛻𝛻�⃗ ⋅ 𝑈𝑈��⃗ 𝑖𝑖 = 𝛻𝛻�⃗𝐻𝐻 ⋅ 𝑢𝑢�⃗ 𝑖𝑖,𝐻𝐻 + 𝜕𝜕𝑧𝑧𝑢𝑢𝑖𝑖,𝑧𝑧 = 0

                                             (7) 

 
For the following analysis, the position of the free surface can be assumed to be located at 

𝐻𝐻 = 0. The vibrational acceleration does not appear now in the equations and using the 
properties of the differential operators and focusing in the vertical velocity, the Navier-Stokes 
can be written as 

 

�𝜕𝜕𝑡𝑡 −
𝜂𝜂𝑖𝑖
𝜌𝜌𝑖𝑖
𝛻𝛻2�𝛻𝛻2𝑢𝑢𝑖𝑖,𝑧𝑧 = 0                                                 (8) 

 
The boundary conditions at the upper (𝐻𝐻 = ℎ1) and lower (𝐻𝐻 = −ℎ2) walls and the free 

surface are 
𝑢𝑢1,𝑧𝑧(ℎ1) = 𝜕𝜕𝑧𝑧𝑢𝑢1,𝑧𝑧(ℎ1) = 0

𝑢𝑢2,𝑧𝑧(−ℎ2) = 𝜕𝜕𝑧𝑧𝑢𝑢2,𝑧𝑧(−ℎ2) = 0
𝑢𝑢1,𝑧𝑧(0) = 𝑢𝑢2,𝑧𝑧(0); 𝜕𝜕𝑧𝑧𝑢𝑢1,𝑧𝑧(0) = 𝜕𝜕𝑧𝑧𝑢𝑢2,𝑧𝑧(0)

𝜕𝜕𝑡𝑡𝜉𝜉 = 𝑢𝑢𝑧𝑧|𝑧𝑧=0
𝛿𝛿(𝜌𝜌𝜕𝜕𝑡𝑡 − 𝜂𝜂𝛻𝛻2)𝜕𝜕𝑧𝑧𝑢𝑢𝑧𝑧 − 2𝛿𝛿𝜂𝜂𝛻𝛻𝐻𝐻2𝜕𝜕𝑧𝑧𝑢𝑢𝑧𝑧 = (𝜎𝜎𝛻𝛻𝐻𝐻4 − 𝛿𝛿𝜌𝜌𝐴𝐴(𝑡𝑡)𝛻𝛻𝐻𝐻2)𝜉𝜉

                         (9) 

 
The jumps at the interface are represented by 𝛿𝛿𝜌𝜌 = (𝜌𝜌1 − 𝜌𝜌2) for the fluid density, and 

𝛿𝛿𝜂𝜂 = (𝜂𝜂1 − 𝜂𝜂2) for the fluid viscosity. Equation (9) together with the non-slip boundary 
conditions at the vertical wall defines the solution in axial coordinates (r, 𝜃𝜃, z) as 

 
𝑢𝑢𝑗𝑗,𝑧𝑧 = 𝐽𝐽𝑚𝑚(𝜆𝜆𝑚𝑚𝑛𝑛𝑟𝑟)𝑠𝑠𝑖𝑖𝑛𝑛(𝑚𝑚𝜃𝜃)𝑤𝑤𝑗𝑗,𝑚𝑚𝑛𝑛(𝐻𝐻, 𝑡𝑡)                                        (10) 

 
𝐽𝐽𝑚𝑚(𝜆𝜆𝑚𝑚𝑛𝑛𝑟𝑟) is the Bessel function of the first kind for mode (𝑚𝑚,𝑛𝑛) and 1/𝜆𝜆𝑚𝑚𝑛𝑛 is the position 

of its nth root. The Faraday waves are composed by (𝑚𝑚,𝑛𝑛) modes, each with a distinct 
parametric excitation profile. The allowed modes are discretized and bounded from below by 
𝜆𝜆11 = 2.40483/𝑟𝑟. For an (𝑚𝑚,𝑛𝑛) mode equation (8) is rewritten as 

 

�𝜕𝜕𝑡𝑡 −
𝜂𝜂𝑗𝑗
𝜌𝜌𝑗𝑗

(𝜕𝜕𝑧𝑧𝑧𝑧 − 𝜆𝜆𝑚𝑚𝑛𝑛2 )� (𝜕𝜕𝑧𝑧𝑧𝑧 − 𝜆𝜆𝑚𝑚𝑛𝑛2 )𝑤𝑤𝑗𝑗,𝑚𝑚𝑛𝑛 = 0                                  (11) 

 
The solutions are found expanding 𝑤𝑤𝑗𝑗,𝑚𝑚𝑛𝑛 in a Fourier series 
 

𝑤𝑤𝑗𝑗,𝑚𝑚𝑛𝑛(𝐻𝐻, 𝑡𝑡) = 𝑓𝑓(𝜇𝜇+𝑖𝑖𝑖𝑖)𝑡𝑡 ∑ 𝑤𝑤𝑗𝑗,𝑚𝑚𝑛𝑛
𝑘𝑘∞

𝑘𝑘=−∞ (𝐻𝐻)𝑓𝑓𝑖𝑖𝑘𝑘𝑖𝑖𝑡𝑡                         (12) 
 

The exponent 𝜇𝜇 + 𝑖𝑖𝑖𝑖 is the Floquet exponent and 𝑖𝑖 = √−1 the imaginary number. Only 
the harmonic (𝑖𝑖 = 0) and subharmonic (𝑖𝑖 = 1/2) cases lead to stationary solutions. The 
eigenfunctions 𝑤𝑤𝑗𝑗𝑛𝑛 of Equation (11) can be found now from 
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�𝜇𝜇 + 𝑖𝑖(𝑖𝑖 + 𝑘𝑘𝜔𝜔) − 𝜈𝜈𝑗𝑗(𝜕𝜕𝑧𝑧𝑧𝑧 − 𝜆𝜆𝑚𝑚𝑛𝑛2 )�(𝜕𝜕𝑧𝑧𝑧𝑧 − 𝜆𝜆𝑚𝑚𝑛𝑛2 )𝑤𝑤𝑗𝑗 ,𝑚𝑚𝑛𝑛
𝑘𝑘 = 0                         (13) 

 
where 𝜈𝜈𝑗𝑗 = 𝜂𝜂𝑗𝑗/𝜌𝜌𝑗𝑗 is the kinematic viscosity. The solutions are written as a function of 𝑞𝑞𝑗𝑗,𝑚𝑚𝑛𝑛

𝑘𝑘 =

�𝜆𝜆𝑚𝑚𝑛𝑛2 + 𝜇𝜇+𝑖𝑖(𝑖𝑖+𝑘𝑘𝑖𝑖)
𝜈𝜈𝑗𝑗

. Leaving the liquid and the mode indexes implicit the functions 𝑤𝑤𝑘𝑘(𝐻𝐻) is 

 

𝑤𝑤𝑘𝑘(𝐻𝐻) = �𝑎𝑎
𝑘𝑘𝑓𝑓𝜆𝜆𝑧𝑧 + 𝑏𝑏𝑘𝑘𝑓𝑓−𝜆𝜆𝑧𝑧 + 𝑐𝑐𝑘𝑘𝑓𝑓𝑞𝑞𝑘𝑘𝑧𝑧 + 𝑑𝑑𝑘𝑘𝑓𝑓−𝑞𝑞𝑘𝑘𝑧𝑧 𝑞𝑞𝑘𝑘 > 0

𝑎𝑎𝑘𝑘𝑓𝑓𝜆𝜆𝑧𝑧 + 𝑏𝑏𝑘𝑘𝑓𝑓−𝜆𝜆𝑧𝑧 + 𝑐𝑐𝑘𝑘𝜆𝜆𝑓𝑓𝜆𝜆𝑧𝑧 + 𝑑𝑑𝑘𝑘𝜆𝜆𝑓𝑓−𝜆𝜆𝑧𝑧 𝑞𝑞𝑘𝑘 = 0
                         (14) 

 
The kinematic condition implies that the interface position is 
 

𝜉𝜉(𝑟𝑟,𝜃𝜃, 𝑡𝑡) = 𝑓𝑓(𝜇𝜇+𝑖𝑖𝑖𝑖)𝑡𝑡 ∑ 𝜉𝜉𝑘𝑘∞
𝑘𝑘=−∞ 𝑓𝑓𝑖𝑖𝑘𝑘𝑖𝑖𝑡𝑡

𝜉𝜉𝑘𝑘[𝜇𝜇 + 𝑖𝑖(𝑖𝑖 + 𝑘𝑘𝜔𝜔)] = 𝑢𝑢𝑗𝑗,𝑧𝑧�𝑧𝑧=0
                                   (15) 

 
and can be used to write the velocity coefficients 𝑎𝑎𝑘𝑘, 𝑏𝑏𝑘𝑘, 𝑐𝑐𝑘𝑘 and 𝑑𝑑𝑘𝑘 as a function of 𝜉𝜉. The 
vibrational term of the pressure jump condition  

 
𝛿𝛿𝜌𝜌𝜆𝜆𝑚𝑚𝑛𝑛2 𝐴𝐴0

2
(𝑓𝑓𝑖𝑖𝑖𝑖𝑡𝑡 + 𝑓𝑓−𝑖𝑖𝑖𝑖𝑡𝑡)                                               (16) 

 
couples the terms of the Fourier series, yielding a generalized eigenvalue problem 
 

�̂�𝐴𝜉𝜉 = 𝐴𝐴0𝐵𝐵�𝜉𝜉                                                      (17) 
 

Where �̂�𝐴 is a diagonal complex matrix and 𝐵𝐵�  a banded matrix. The lowest real eigenvalue 
𝐴𝐴0 for 𝜇𝜇 = 0 gives the marginal stability boundary of the harmonic 𝑖𝑖 = 0 and subharmonic 
𝑖𝑖 = 1/2 branches.  
 
4. RESULTS & DISCUSSION 
4.1. Simulation results 
The generalized eigenvalue problem has been solved numerically for each cylindrical mode 
(𝑚𝑚,𝑛𝑛) and excitation frequency 𝜔𝜔. In a first step, the eigenfunction coefficients are obtained 
from the boundary and interface conditions by solving a non-homogeneous linear system. 
Then, the matrices �̂�𝐴 and 𝐵𝐵�  from equation (17) can be obtained from the jump in the shear 
stress at the free surface. The eigenvalue problem is solved numerically and the lowest real 
eigenvalue 𝐴𝐴0 is the excitation threshold for the mode at a given frequency [14].  

Figure 2 shows the stability threshold for the lowest modes of the cylindrical vial. Each 
mode has a distinct minimum acceleration, the critical acceleration, where it can be resonantly 
excited. In general, the subharmonic branch has a lower critical acceleration and occurs at 
larger vibration frequencies. The overall stability threshold for a given frequency is the lowest 
acceleration threshold among the subharmonic or harmonic branches of all the (𝑚𝑚,𝑛𝑛) modes. 
In general, a different mode is excited depending on the frequency and the acceleration 
threshold is rather complex due to the non-trivial dependence on the excitation frequency. 
Between 15.0 𝐻𝐻𝐻𝐻 and 16.2 𝐻𝐻𝐻𝐻, the subharmonic (1,2) mode is onset. At slightly lower  
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frequencies mainly the subharmonic (1,1) mode is onset. However, in narrow frequency 
ranges at 21.1 𝐻𝐻𝐻𝐻 and at 25.2 𝐻𝐻𝐻𝐻, the subharmonic (2,1) and the subharmonic (1,4) modes 
are excited.  

Due to the lower bound on the k-momentum of the modes, the acceleration threshold at 
low frequencies (𝑓𝑓 < 10 𝐻𝐻𝐻𝐻) is large. The absolute critical acceleration corresponds to the 
(1,1) subharmonic mode at ~17 𝐻𝐻𝐻𝐻 with 𝑎𝑎𝑐𝑐 = 0.15 𝑚𝑚/𝑠𝑠2. Higher modes have larger critical 
accelerations that grow sharply with the frequency as the creation of waves at high frequencies 
in water becomes increasingly difficult. 

 

 
Figure 2. – Calculated stability threshold and mode composition. The subharmonic 
modes are shown in broken lines and the harmonic modes in full lines. The lowest 
3 modes are highlighted in color. 

 
4.2. Experimental results 
The vertical vibration experiments of the vial in a vibration table represent a validation of the 
stability analysis. The five chosen accelerations, 0.1𝐺𝐺, 0.18𝐺𝐺, 0.32𝐺𝐺, 0.56𝐺𝐺 and 1.0𝐺𝐺, cover 
a wide range of the dynamics of the Faraday waves. At the lowest acceleration, shallow waves 
are created at narrow frequency ranges. As the acceleration is increased from 0.18𝐺𝐺 to 0.56𝐺𝐺, 
the frequency ranges where waves are created widen and also the intensity of the waves 
increases. At the higher acceleration, waves are created in the full frequency range.  

The wave intensity is plotted in Figure 3 versus the corresponding vibration frequency. At 
0.1𝐺𝐺, waves were observed only at a narrow frequency interval at ~13 𝐻𝐻𝐻𝐻. At an acceleration 
of 0.18𝐺𝐺, the intensity of the peak increases and a new one appears at ~26 𝐻𝐻𝐻𝐻. Two weak 
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bands appear at ~42 𝐻𝐻𝐻𝐻 and ~58 𝐻𝐻𝐻𝐻 at 0.32𝐺𝐺 and they become stronger at 0.56𝐺𝐺. Finally, 
at 1.0𝐺𝐺 waves are observed in the whole frequency range and the wave intensity has large 
variations that can be abrupt at certain frequency values.  
 

 
Figure 3. – Wave intensity change with excitation frequency for the five measured 
accelerations. The curves have been stacked vertically for clarity.  

 
In figure 4, the frequency dependence of the wave intensity is compared to the calculated 

stability threshold in an acceleration vs frequency plot. The absolute critical acceleration is at 
a frequency, 13 𝐻𝐻𝐻𝐻, lower than predicted by the linear stability model, 17 𝐻𝐻𝐻𝐻. This 
discrepancy is resulting from the viscosity effects near the walls and the free surface. Between 
10 and 70 𝐻𝐻𝐻𝐻, the acceleration threshold is low close to the resonance frequencies of the 
modes. The resonance frequencies form tongues separated by higher stability frequency 
ranges as a consequence of the discretization of the allowed mode 𝑘𝑘-momenta. Although the 
measurements do not thoroughly allow to measure the steep increase of the stability threshold 
at high frequencies, the strong decrease of the wave intensity at the highest frequencies and at 
all accelerations is clearly compatible with this feature.  
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Figure 4. – The acceleration behavior plotted versus frequency in the experiments 
(left panel) and in the stability analysis (right panel). In the left panel, the intensity of 
the color represents the wave intensity in arbitrary units.  

 
Finally, the fast changes of the wave intensity at the highest acceleration value come from 

transition thresholds where the mode composition of the Faraday instability changes abruptly. 
The creation (or the disappearance) of mode components originate from (non-linear) 
transitions above the instability onset threshold [16,17]. The stability analysis of Figure 2 
shows a linear approximation to the mode decomposition of the instability above the stability 
threshold.  

The liquid viscosity and surface tension, as well as the vessel size and filling level, have 
noticeably effects on the stability threshold and the transportation stress. Horizontal vibrations 
should also be present in real transport conditions and they will introduce waves already at 
low excitation accelerations. Therefore, agitation stress can already increase substantially 
below the stability threshold, when normal modes have not yet been excited. In more realistic 
situations, non-linear effects coming from multi-frequency simultaneous excitation [18] or 
mode interaction [17] can alter the value and frequency dependence of the stability threshold. 
These factors need to be considered in order to assess the agitation stress.  
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5. CONCLUSIONS 
A full study of the stability threshold of a liquid in a small vessel under vertical vibrations has 
been performed. The mode components of the Faraday instability have been calculated with 
a linear stability theory in a wide frequency range, ranging from 5 𝐻𝐻𝐻𝐻 to 150 𝐻𝐻𝐻𝐻. The theory 
has been validated by measuring water in small vials under vertical vibrations. A qualitative 
agreement with the theory is observed, and the disagreement in the position of the stability 
tongues can be well explained by the non-linear viscosity effects exerted by the container 
walls. The existence of a low stability region between 10 and 70 𝐻𝐻𝐻𝐻 has been confirmed by 
the experiments. The constrain in the allowed k-momenta, enforced by the vial dimensions, 
creates low stability tongues. On the one hand, the stability theory predicts a lower k-
momentum cut-off in the stability threshold, which has a protective effect on the liquid against 
low frequency instabilities. On the other hand, at frequencies larger than 20 𝐻𝐻𝐻𝐻, the instability 
threshold increases steeply due to the intrinsic response of the liquid to high excitation 
frequency. The existence at medium frequencies of low stability threshold tongues makes 
highly non-trivial the study of agitation effects.  
 
REFERENCES 
[1] Abramson HN. Dynamic behavior of liquids in moving containers. Appl Mech Rev. 

1963;16(7):501–6.  
[2] Cooper RM. Dynamics of liquids in moving containers. ARS J. 1960;30:725–9.  
[3] Torisu T, Maruno T, Hamaji Y, Ohkubo T, Uchiyama S. Synergistic Effect of 

Cavitation and Agitation on Protein Aggregation. J Pharm Sci. 2017 Feb 1;106(2):521–
9.  

[4] Bai G, Bee JS, Biddlecombe JG, Chen Q, Leach WT. Computational fluid dynamics 
(CFD) insights into agitation stress methods in biopharmaceutical development. Int J 
Pharm. 2012 Feb 28;423(2):264–80.  

[5] Fleischman ML, Chung J, Paul EP, Lewus RA. Shipping-Induced Aggregation in 
Therapeutic Antibodies: Utilization of a Scale-Down Model to Assess Degradation in 
Monoclonal Antibodies. J Pharm Sci. 2017 Apr 1;106(4):994–1000.  

[6] Faraday M. XVII. On a peculiar class of acoustical figures; and on certain forms 
assumed by groups of particles upon vibrating elastic surfaces. Philos Trans R Soc 
Lond. 1831 Jan 1;121:299–340.  

[7] Henderson DM, Miles JW. Single-mode Faraday waves in small cylinders. J Fluid 
Mech. 1990 Apr;213:95–109.  

[8] Bechhoefer J, Ego V, Manneville S, Johnson B. An experimental study of the onset of 
parametrically pumped surface waves in viscous fluids. J Fluid Mech. 1995 
Apr;288:325–50.  

[9] Benjamin TB, Ursell FJ. The stability of the plane free surface of a liquid in vertical 
periodic motion. Proc R Soc Lond A. 1954 Sep 22;225(1163):505–15.  

[10] Kumar K, Tuckerman LS. Parametric instability of the interface between two fluids. J 
Fluid Mech. 1994 Nov;279:49–68.  

[11] Floquet G. Sur les équations différentielles linéaires à coefficients périodiques. Ann Sci 
LÉcole Norm Supér. 1883;12:47–88.  

[12] Miles JW. Surface-wave damping in closed basins. Proc R Soc Lond A. 1967 Mar 
21;297(1451):459–75.  

  



71 Int. Jnl. of Multiphysics Volume 13 · Number 1 · 2019 

 

 
 

[13] Dodge FT, Kana D, Abramson HN. Liquid surface oscillations in longitudinally excited 
rigid cylindrical containers. AIAA J. 1965 Apr 1;3(4):685–95.  

[14] Batson W, Zoueshtiagh F, Narayanan R. The Faraday threshold in small cylinders and 
the sidewall non-ideality. J Fluid Mech. 2013 Aug;729:496–523.  

[15] Lamb H. Hydrodynamics. 6th edition. Cambridge University Press; 1932.  
[16] Ciliberto S, Gollub JP. Chaotic mode competition in parametrically forced surface 

waves. J Fluid Mech. 1985 Sep;158:381–98.  
[17] Tipton CR, Mullin T. An experimental study of Faraday waves formed on the interface 

between two immiscible liquids. Phys Fluids. 2004 May 25;16(7):2336–41.  
[18] Batson W, Zoueshtiagh F, Narayanan R. Two-frequency excitation of single-mode 

Faraday waves. J Fluid Mech. 2015 Feb;764:538–71.  
 

 



72 


