
c© 2013 Imranul Hoque

STORAGE AND PROCESSING SYSTEMS FOR POWER-LAW
GRAPHS

BY

IMRANUL HOQUE

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2013

Urbana, Illinois

Doctoral Committee:

Associate Professor Indranil Gupta, Chair
Associate Professor ChengXiang Zhai
Professor Marc Snir
Dr. Malgorzata Steinder, IBM T. J. Watson Research Center

ABSTRACT

Large graphs abound around us – online social networks, Web graphs, the In-

ternet, citation networks, protein interaction networks, telephone call graphs,

peer-to-peer overlay networks, electric power grid networks, etc. Many real-

life graphs are power-law graphs. A fundamental challenge in today’s Big

Data world is storage and processing of these large-scale power-law graphs.

In this thesis, we show that graph processing can be made faster and

graph storage can be made more efficient by using techniques that leverage

the structure of the underlying power-law graphs. To this end, we present

two systems. First, we present LFGraph, which is a fast, distributed, in-

memory graph analytics platform. LFGraph leverages the structure and

characteristics of power-law graphs in order to reduce communication over-

head, and to balance communication and computation load. This makes

analytics faster on power-law graphs. Next, we present Bondhu, which is a

disk layout manager for graph databases. Bondhu exploits the fact that most

real-life power-law graphs are also small-world and these exhibit strong com-

munity structure. Bondhu utilizes this community structure in order to make

layout decisions. This improves the query response time of graph databases.

Our systems are evaluated on real clusters using real-world graphs.

ii

To my family, for their love and support.

iii

TABLE OF CONTENTS

LIST OF TABLES . vi

LIST OF FIGURES . vii

1 INTRODUCTION . 1
1.1 Thesis Contributions . 3
1.2 Related Work . 5
1.3 Thesis Organization . 6

2 LFGRAPH: A DISTRIBUTED GRAPH ANALYTICS SYSTEM . 7
2.1 Motivation . 8
2.2 Computation Model . 12

2.2.1 Assumptions . 12
2.2.2 LFGraph Abstraction 12
2.2.3 Qualitative Comparison 13
2.2.4 LFGraph API . 17

2.3 System Design . 19
2.3.1 Graph Loader . 23
2.3.2 Storage Engine . 23
2.3.3 Computation Worker 25
2.3.4 Communication Worker 26

2.4 Communication Analysis . 26
2.4.1 Mathematical Analysis 27
2.4.2 Real-World Graphs . 30

2.5 Load Balance in Real Graphs 33
2.5.1 Computation Balance 33
2.5.2 Communication Balance 36

2.6 Fault Tolerance . 37
2.7 Related Work . 37

3 BONDHU: SOCIAL NETWORK-AWARE DISK MANAGER
FOR GRAPH DATABASES . 40
3.1 Motivation . 41
3.2 Problem Definition . 45
3.3 Disk Layout Algorithm . 48

3.3.1 Overview . 49
3.3.2 Community Detection 49

iv

3.3.3 Intra-Community Layout 52
3.3.4 Inter-Community Layout 53

3.4 Implementation . 58
3.5 Modeling the Social Network 59

3.5.1 Uniform Model . 59
3.5.2 Preferential Model . 61
3.5.3 Overlap Model . 61

3.6 Related Work . 62

4 EXPERIMENTAL EVALUATION OF LFGRAPH 64
4.1 Experimental Setup . 64
4.2 PageRank Benchmark . 66

4.2.1 Runtime . 66
4.2.2 Memory Footprint . 68
4.2.3 Communication Overhead 69
4.2.4 Computation and Communication Balance 70
4.2.5 Computation vs. Communication 71
4.2.6 Improvement Breakdown 71
4.2.7 PageRank on Undirected Graph 73

4.3 SSSP Benchmark . 75
4.4 Larger Graphs . 77
4.5 Undirected Triangle Count Benchmark 78
4.6 Summary . 79

5 EXPERIMENTAL EVALUATION OF BONDHU 80
5.1 Experimental Setup . 80
5.2 Visualization of Block Access Patterns 82
5.3 Effect of Data Size . 83
5.4 Effect of Caching . 86
5.5 Effect of Number of Communities in ParCom 89
5.6 Performance of ModCom . 91
5.7 Organ Pipe Layout . 92
5.8 Effect of Different Models . 93
5.9 Effect of OSN Evolution . 95
5.10 Summary . 97

6 CONCLUSION AND FUTURE WORK 98

REFERENCES . 100

v

LIST OF TABLES

2.1 LFGraph vs. existing systems: a qualitative comparison 10
2.2 LFGraph API: Vertex class methods 18
2.3 Real-world graphs . 29

3.1 Cost of the linear layout . 47
3.2 Cost of one of the optimal layouts 47

vi

LIST OF FIGURES

2.1 Communication overhead . 16
2.2 LFGraph system: the life of an iteration 21
2.3 Communication overhead for real-world graphs 31
2.4 Computation overhead for synthetic power-law graphs 33
2.5 Computation overhead for real-world graphs 35
2.6 In-degree distribution for real-world graphs 35
2.7 Communication overhead for real-world graphs 36

3.1 Blocks accessed in Neo4j for a ‘list friend’ query 43
3.2 Sequential vs. random read for 3 disk types 44
3.3 A sample social graph . 46
3.4 Overview of the Bondhu system’s approach 50
3.5 Working example . 58
3.6 Modeling the social network 60

4.1 PageRank runtime comparison for Twitter graph (10 iter-
ations), ignoring partition time. 67

4.2 PageRank runtime improvement for Twitter graph (10 it-
erations), including partition time. 68

4.3 Memory footprint of LFGraph and PowerGraph 68
4.4 Network communication for LFGraph and PowerGraph 69
4.5 Computation and communication balance in LFGraph 70
4.6 Communication and computation split of PageRank com-

putation . 71
4.7 Breakdown of performance gain in LFGraph compared to

PowerGraph . 72
4.8 PageRank runtime comparison for undirected Twitter graph

(10 iterations), ignoring partition time. 73
4.9 Network communication for LFGraph and PowerGraph on

undirected Twitter graph . 74
4.10 Memory footprint of LFGraph and PowerGraph for the

undirected Twitter graph . 75
4.11 SSSP runtime comparison for Twitter graph, ignoring par-

tition time . 76
4.12 SSSP runtime improvement for Twitter graph, including

partition time . 77

vii

4.13 SSSP runtime for a synthetic graph 78
4.14 Triangle Counting on the undirected Twitter Graph 79

5.1 Blocks accessed in Neo4j with the Bondhu system handling
data layout. Compare with Figure 3.1 (default approach). . . 82

5.2 Percentage of improvement in response time compared to
the default layout for various data sizes (without caching) . . 84

5.3 Correlation between cost improvement and response time
improvement (without caching) 86

5.4 Percentage of improvement in response time compared to
the default layout for various data sizes (with caching) 87

5.5 Correlation between cost improvement and response time
improvement (with caching) 88

5.6 Performance of ParCom . 90
5.7 Performance of ModCom . 92
5.8 Comparison with organ pipe layout 93
5.9 Effect of different models . 94
5.10 Effect of OSN evolution: older layout performance 96

viii

1 INTRODUCTION

Graphs are an efficient way of encoding relationships among people, entities,

and ideas. Some graphs occur in nature, e.g., protein interaction networks [1],

metabolic networks [2], neural networks [3], food webs [4], etc. Additionally,

some graphs evolve in man-made systems, e.g., online social networks [5,

6, 7], financial networks [8], function call graphs [9], Web graphs [10, 11],

communication networks [12], transportation networks [13], etc. The sizes of

these graphs range from a few thousand vertices and edges (e.g., a financial

network) to billions of vertices and hundreds of billions of edges (e.g., the

Facebook graph).

The degree distribution of many real-life graphs follows power-law, i.e.,

these graphs are scale-free. In these graphs, a vertex has degree d with

probability proportional to d−α, 2 < α < 3. Therefore, a power-law graph

consists of a few vertices of large degree, while a large number of vertices have

relatively small degree. All of the above mentioned graphs are power-law.

Due to their unique degree distribution, power-law graphs exhibit some

interesting characteristics. First, the high degree vertices (also known as

hubs) are responsible for most of the edges in the graph. For example, in

the Twitter graph the top 1% of the vertices are adjacent to 58% of the to-

tal edges [14]. Second, most real-life power-law graphs are also small-world.

Small-world graphs exhibit a high clustering coefficient and show commu-

nity structure. Therefore, in these graphs, the low degree vertices belong to

clusters of densely connected sub-graphs. These clusters are interconnected

1

through the high degree vertices. So, most vertices can be reached from other

vertices using only a few number of hops [15].

Today, we face two challenges associated with large-scale power-law graphs.

First, there is an increasing demand for systems that can efficiently analyze

these graphs. These analytics should be performed in an efficient manner,

i.e., we desire fast result while using a small amount of resources. We present

some examples of graph analytics here. Search engines such as Google [16],

Bing [17], and Yahoo! [18] measure importance (i.e., ranking) of webpages

by running PageRank computations on the Web graph. Online map ser-

vices such as Google Maps [19], Bing Maps [20], and MapQuest [21] run

shortest path computations on road networks in order to find fast routes.

Matchmaking websites such as Chemistry.com, Match.com, and eHarmony

run bi-partite matching computations on the social graph in order to find

matches among users [22, 23, 24].

A second challenge is efficient storage of these graphs. It is imperative

to make the graph storage systems more efficient, because efficiency in stor-

age translates to high throughput and low latency in accessing the graph.

Currently, graph databases are becoming popular as graph storage media.

This is mainly due to three reasons: (i) graph databases lead to easier and

intuitive representation and fast traversal of graphs, (ii) they make certain

operations more efficient, e.g., finding degrees of separation, finding x hop

neighbors, etc., and (iii) unlike relational databases they scale better to large

graphs, e.g., they do not require expensive operations like joins. For instance,

Twitter uses FlockDB to store social graphs with more than 13 billion edges

(April 2010) [25]. We believe that efficient graph storage will be more criticial

in coming years with the unprecedented growth of online social networking

(OSN) sites and with contents from other online applications (e.g., shop-

2

ping, travel, review, media streaming, etc.) increasingly being integrated

with OSNs,

1.1 Thesis Contributions

In this thesis, we show that techniques which leverage the structure of the

power-law graph make graph computation faster and graph storage more ef-

ficient. We present the design and implementation of two systems. First, we

present LFGraph1, which is a distributed graph analytics platform. LFGraph

makes graph computations faster while using a small amount of resources.

LFGraph reduces the communication overhead of graph computations by

leveraging the structure of power-law graphs into account. It also makes

computations load balanced by leveraging the degree distribution character-

istics of real power-law graphs. Second, we present Bondhu2, which is a disk

layout manager for graph databases. Bondhu’s techniques lower the latency

and increase the throughput for queries on graph databases. Bondhu makes

disk placement decisions by leveraging the community structure of the un-

derlying power-law OSN graph. This places frequently accessed data close

by on disk and improves disk access performance.

Concretely, we make the following contributions in this thesis:

• Our first system, LFGraph, is the first distributed graph analytics

framework to offer low and balanced communication and computa-

tion, low pre-processing overhead, low memory footprint, and scala-

bility. LFGraph is primarily intended for directed graphs, although

it can be adapted for undirected graphs. LFGraph uses a publish-

1Laissez-Faire Graph.
2Bangla word for friend.

3

subscribe based communication mechanism in order to reduce commu-

nication overhead and thus overall runtime for graph computations.

LFGraph also shows that a random hash-based placement is sufficient

to achieve communication and computation load balance for real power-

law graphs. This reduces memory footprint of servers, lowers the num-

ber of servers needed to process a graph, and reduces total cost.

• In our second system, Bondhu, we present a novel framework for disk

layout algorithms. Our techniques are based on community detection

in graphs. Even though Bondhu is targeted at OSN graphs, it can

be applied to any power-law small-world graph. First, we detect the

communities within a social graph. Then, we produce the layout by

running a greedy heuristic within and across the communities. To the

best of our knowledge, Bondhu is the first system that leverages the

social networking graph for efficient data layout in disks. We imple-

ment our solution into Neo4j, which is a widely-used open source graph

database. While taking the community structure into account yields

clear benefits, our results also indicate diminishing benefits from mod-

els that consider complexity beyond the graph structure itself.

• We evaluated our LFGraph system both with a Twitter graph (41 M

vertices, 1.6 B edges) and a synthetic graph (1 B vertices and 127 B

edges) in a 32 node Emulab cluster. Our results showed that LFGraph

is upto 560 times faster than PowerGraph [26], which is the best exist-

ing graph analytics framework today. We also showed that LFGraph

performs better that industrial system (e.g., Pregel [27]) using only a

fraction of resources.

• We evaluated our Bondhu system with a real Facebook graph. We

4

showed that the Bondhu system is able to improve response time by

as much as 48% compared to the default layout policy implemented by

the file system.

1.2 Related Work

Graphs are characterized by two key aspects: vertex degree distribution

and structural complexity. Vertex degree can follow uniform (e.g., regu-

lar graphs), exponential (e.g., random graphs), or power-law (e.g., scale-free

graphs) distribution. Structural complexity generally refers to two important

metrics: i) clustering co-efficient and ii) shortest-path length. For example,

extended ring graphs have high clustering coefficient and high shortest path

length. On the other hand, random graphs have low clustering coefficient

and small shortest-path length. Small-world graphs have the best of these

two types – a high clustering coefficient and a small shortest-path length.

Most of the biological, social, and man-made graphs are both power-law

and small-world [28, 29]. Therefore, two major trends of works are exis-

tent in this area. First, there are works which have focused on how these

graphs are dynamically generated, e.g., Watts-Strogatz model [30], preferen-

tial attachment model [31], etc. Second, there are systems which utilize the

power-law and small-world nature of the graphs for improved performance.

Examples include routing in small-world networks [32], searching in power-

law graphs [33], spreading of information or epidemics [34], etc. This thesis

falls in the second category.

Though most of the power-law graphs are small-world, there exist power-

law graphs which are not small world. Instead of the preferential attachment

model, these graphs follow the assortativity model, i.e., vertices tend to con-

5

nect with other vertices with similar degree [35]. The graph of global Avian

Influenza outbreaks belongs to this category. Likewise there are graphs which

are small-world, but not power-law. Examples include the acquaintance net-

work of Mormons, the neuronal network of the work C. elegans, etc. In these

graphs preferential attachment is limited by the age and the limited capacity

of vertices [36].

1.3 Thesis Organization

The rest of the thesis is organized as follows. Chapter 2 discusses the de-

sign of LFGraph, a fast, scalable, distributed, in-memory graph analytics

engine. The design of Bondhu, a social network-aware disk manager for the

Neo4j graph database, is presented in Chapter 3. We present experimental

evaluation of the LFGraph system in Chapter 4 and experimental evaluation

of the Bondhu system in Chapter 5. We conclude by presenting our future

directions in Chapter 6.

6

2 LFGRAPH: A DISTRIBUTED GRAPH
ANALYTICS SYSTEM

In this chapter, we discuss LFGraph, a fast, scalable, distributed, in-memory

graph analytics engine. LFGraph employs several power-law-aware optimiza-

tions in order to perform fast graph analytics. For example, LFGraph’s

publish-subscribe mechanism leverages the structure of the power-law graphs

to reduce communication overhead. In addition, LFGraph utilizes the char-

acteristics of real-world power-law graphs in order to offer load balanced

computation and communication. LFGraph’s techniques also lower resource

utilization. Thus, LFGraph offers improved scalability compared to existing

analytics frameworks.

This chapter presents the design of LFGraph and analytical results com-

paring it against existing systems. Later in Chapter 4 we discuss a cluster

deployment of our implementation comparing it to the best system, Power-

Graph. Our experiments used both synthetic graphs with a billion vertices,

as well as several real graphs: Twitter, a Web graph, and an Amazon rec-

ommendation graph.

The rest of the chapter is organized as follows. Section 2.1 motivates the

design decisions of the LFGraph system. Section 2.2 discusses the computa-

tion model and API adopted by LFGraph, compares the LFGraph abstrac-

tion with existing models, and presents three sample programs written using

LFGraph’s API. We present the design of the LFGraph system in Section 2.3.

We analytically compare the communication overhead of LFGraph with those

of existing systems in Section 2.4. Section 2.5 shows that LFGraph is able

7

to offer communication and computation load balance by utilizing the char-

acteristics of real-life power-law graphs. Finally, we present related work in

Section 2.7.

2.1 Motivation

Distributed graph processing frameworks are being increasingly used to per-

form analytics on the large graphs that surround us today. A large number of

these graphs are directed power-law graphs, such as follower graphs in online

social networks, the Web graph, recommendation graphs, financial networks,

and others. These graphs may contain millions to billions of vertices, and

hundreds of millions to billions of edges.

Systems like Pregel [27], GraphLab [37], GraphChi [38], and PowerGraph

[26] are used to compute metrics such as PageRank and shortest path, and

to perform operations such as clustering and matching. These frameworks

are vertex-centric and the processing is iterative. In each iteration (called

a superstep in some systems) each vertex executes the same code and then

communicates with its graph neighbors. Thus, an iteration consists of a mix

of computation and communication.

We believe that a distributed graph analytics engine running in a cluster

must pay heed to five essential aspects:

1. Computation: The computation overhead must be low and load-

balanced across servers. This determines per-iteration time and thus

overall job completion time. It is affected by the number and distribu-

tion of vertices and edges across servers.

2. Communication: Communication overhead must be low and load-bala-

nced across servers. This also determines per-iteration time and thus

8

overall job completion time. It is affected by the quantity and distri-

bution of data exchanged among vertices across servers.

3. Pre-Processing: Prior to the first iteration, the graph needs to be par-

titioned across servers. This partitioning time must be low since it

represents upfront cost and is included in job completion time.

4. Memory: The memory footprint per server must be low. This ensures

that fewer servers can be used for processing large graphs, e.g., when

resources are limited.

5. Scalability: Smaller clusters must be able to load and process large

graphs. As the cluster size is grown, communication and computation

must become cheaper, and the entire job must run faster.

Unfortunately, each of today’s graph processing frameworks falls short in

at least one of the above categories. We will elaborate later in Section 2.2.3,

and also experimentally compare against existing systems. For now, Table 2.1

summarizes a qualitative comparison, and we briefly discuss. GraphChi [38]

is a disk-based single-server framework – so, it is slower than distributed

frameworks. Pregel [27] was the first vertex-centric distributed graph pro-

cessing framework. It suffers from both high memory footprint and high

communication overhead. GraphLab [37] and PowerGraph [26] have lower

communication overhead compared to Pregel, and PowerGraph also balances

computation. They are both faster than Pregel. However, these latter sys-

tems store in-links and out-links for each vertex, thus increasing the memory

footprint. They are thus unable to process large graphs on small clusters.

The fastest of these systems, PowerGraph, uses intelligent partitioning

of vertices across servers. While this pre-processing reduces per iteration

9

Goal Pregel GraphLab PowerGraph LFGraph

Computation 2 passes,
combiners

2 passes 2 passes 1 pass

Communication ∝ #edge-
cuts

∝ #vertex
ghosts

∝ #vertex
mirrors

∝ #external
in-neighbors

Pre-processing Cheap
(Hash)

Cheap
(Hash)

Expensive
(Intelligent)

Cheap
(Hash)

Memory High (store
out-edges
+ buffered
messages)

High (store
in- and
out-edges)

High (store
in- and
out-edges)

Low (store
in-edges)

Scalability Good but
needs min
#servers

Good but
needs min
#servers

Good but
needs min
#servers

Good
and runs
with small
#servers

Table 2.1: LFGraph vs. existing systems: a qualitative comparison

runtime, it is an expensive step. For instance, we found that when running

PageRank on PowerGraph with 8 servers and 30 iterations (a value that

Pregel uses [27]), the intelligent partitioning step constituted 80% of the

total job runtime. This upfront cost might make sense if it is amortized over

multiple analytics jobs on the same graph. However, we show that cheaper

partitioning approaches do not preclude faster iterations.

This chapter presents LFGraph, the first system to satisfy the five require-

ments outlined earlier. LFGraph is a fast, scalable, distributed, in-memory

graph analytics framework. LFGraph’s key design choices are motivated by

the fact that most of the graphs processed by today’s graph analytics frame-

works are power-law in nature. Therefore, techniques which leverage the

structure and characteristics of the underlying power-law graphs make graph

analytics faster. The unique design choices in our system are:

• Cheap Partitioning: We rely merely on hash-based partitioning of

vertices across servers. Substantial variability in the degree distribu-

tion of the high degree vertices of the power-law graphs helps LFGraph

10

achieve balanced communication and computation. This approach low-

ers pre-processing overhead and system complexity.

• Publish-Subscribe Mechanism: Most graph computations involve

information flow along its directed edges. In power-law graphs a small

number of vertices are adjacent to a large number of vertices. Therefore,

a small number of vertices is responsible for majority of the communi-

cation overhead. So, in case of a vertex which has multiple friends at

a remote server, communication overhead can be significantly reduced

if only one copy of the message is sent to the remote server and the

friends share that message internally. Using this observation, we create

a publish-subscribe based communication mechanism which creates a

fetch-once communication pattern. This leads to significant savings,

e.g., compared to PowerGraph [26], LFGraph reduces network traffic

by 4x.

• Decoupling Computation from Communication: This leads

to modular code. It also allows us to optimize communication and

computation independent of each other.

• Single-pass Computation: The per-iteration computation at each

server is done in one pass, resulting in low computation overhead. Each

of Pregel, PowerGraph, and GraphLab uses multiple passes. Pregel in-

curs the additional overhead of message combiners. LFGraph is simpler

and yet its individual iterations are faster than in existing systems.

• No Locking: LFGraph eliminates locking by decoupling reads and

writes to a vertex’s value.

• In-neighbor Storage: LFGraph maintains for each vertex only its

11

in-neighbors. Compared to existing systems which maintain both in-

and out-neighbors, LFGraph lowers memory footprint and is thus able

to run large graphs even on small clusters. LFGraph is extendible to

undirected graphs by treating each edge as two directed edges.

2.2 Computation Model

This section presents the assumptions LFGraph makes, the LFGraph abstrac-

tion, and a qualitative comparison with existing systems. Then we present

LFGraph’s API and sample graph processing applications using this API.

2.2.1 Assumptions

• LFGraph performs computations on the graph itself rather than per-

forming data mining operations on graph properties such as user profile

information.

• LFGraph framework is intended for value propagation algorithms. Val-

ues propagate along the direction of the edges. Algorithms that fall in

this category include PageRank, Single Souce Shortest Path, Triangle

Counting, Matching, Clustering, Graph Coloring, etc.

• LFGraph assumes that the number of high degree vertices is much

larger than the number of servers. This is necessary to achieve load

balance (see Section 2.4.2) and to reduce communication overhead.

2.2.2 LFGraph Abstraction

An LFGraph server stores each graph vertex as a tuple 〈vertex ID, user-

defined value〉. The type of the user-defined value is programmer-specified,

12

e.g,. in PageRank it is a floating point, for single-source shortest path (SSSP)

it is an integer, and for triangle counting it is a list. For each vertex a list of

incoming edges is maintained. An edge is also associated with a user defined

value that is typically static, e.g., the edge weight.

Abstraction 2.1 LFGraph

1: function LFGraph(Vertex v)
2: val[v]← f(val[u]), u ∈ in neighbor(v)
3: end function

LFGraph uses the programming model shown in Abstraction 2.1. The

programmer writes a vertex program f(). This program runs in iterations,

akin to supersteps in existing systems [26, 37, 27]. Each vertex is assigned

to one server. The start of each iteration is synchronized across servers.

During an iteration, the vertex program for vertex v reads the values of its

incoming neighbors, performs the computation specified by f(), and updates

its own value. If v’s value changes during an iteration, it is marked as active,

otherwise it is marked as inactive. The framework transmits active values

to the servers containing neighboring vertices. The computation terminates

either at the first iteration when all vertices are inactive (e.g., in SSSP), or

after a pre-specified number of iterations (e.g., in PageRank).

2.2.3 Qualitative Comparison

The abstractions employed by Pregel, GraphLab, and PowerGraph are de-

picted respectively in Abstraction 2.2, 2.3, and 2.4. To contrast with LF-

Graph we first discuss each of these systems and then summarize LFGraph.

We use a running example below (Figure 2.1). Table 2.1 summarizes this

discussion.

Pregel: Pregel assigns each vertex to one server. Per iteration, v’s vertex

13

Abstraction 2.2 Pregel

1: function Pregel(Vertex v)
2: val[v]← f(msg), sender(msgi) ∈ in neighbor(v)
3: send message(val[v], u), u ∈ out neighbor(v)
4: end function

Abstraction 2.3 GraphLab

1: function GraphLab(Vertex v)
2: val[v]← f(val[u]), u ∈ in neighbor(v)
3: if updated(val[v]) then
4: activate(u), u ∈ out neighbor(v)
5: end if
6: end function

Abstraction 2.4 PowerGraph

1: function PowerGraph(Vertex vi)
2: val[vi]← f(val[u]), u ∈ in neighbor(vi)
3: val[v]← sync(vi), vi ∈ replica(v)
4: if updated(val[v]) then
5: activate(u), u ∈ out neighbor(vi)
6: end if
7: end function

14

program uses its received neighbor values to update the vertex value, and

then sends this new value back out to servers where v’s neighbors are located.

Consider the sliver of the graph depicted in Figure 2.1(a). We focus on the

vertex program for A only, and our example cluster contains two servers S1

and S2. Figure 2.1(b) shows that Pregel’s communication overhead (dashed

arrows) is proportional to the number of edges crossing server boundaries –

A’s value is sent twice from S1 to S2, once for each neighbor. Pregel does

allow programmers to write combiners to optimize communication, but this

increases computation complexity by requiring an additional pass over the

outgoing messages. Besides, some analytics programs do not lend themselves

easily to combiners.

GraphLab: GraphLab first assigns each vertex (say A) to one server (S1).

Then for each of A’s in- and out- neighbors not assigned to S1, it creates ghost

vertices, shown as dashed circles in Figure 2.1(c). A is assigned to S1 but is

ghosted at S2 since its out-neighbor D is there. This allows all edge commu-

nication to avoid the network, but at the end of the iteration all the ghosts

of A need to be sent its new value from A’s main server (S1). This means

that GraphLab’s communication overhead is proportional to the number of

ghosts. However, the number of ghosts can be very large – it is bounded by

min(cluster size, total number of in- and out-neighbors). Section 2.4 shows

that this leads to high communication overhead when processing real graphs

with high degree vertices.

If A’s value at a server is updated during an iteration, GraphLab activates

its outgoing neighbors (lines 3–5 in Abstraction 2.3). This requires GraphLab

to store both in- and out- neighbor lists, increasing memory footprint. Fur-

ther, per vertex, two passes are needed over its in- and out- neighbor lists.

The first pass updates its value, and the second activates the out-neighbors.

15

A	

D	

E	

B	

C	

(a) Sample Graph

S1	

A

B

C

S2	

D

E

(b) Pregel

S1	

A

B

C

D

E

S2	

A

D

E

(c) GraphLab

B	

C	

A1	
S1	

D	

E	

A2	
 S2	

(d) PowerGraph

S1	

A

B

C

S2	

D

E

(e) LFGraph

Figure 2.1: Communication overhead

PowerGraph: In order to target power-law graphs, PowerGraph places

each edge at one server. This means that vertex A may have its edges placed

at different servers. Thus PowerGraph creates mirrors for A at S1 and S2,

as shown in Figure 2.1(d). The mirrors avoid edge communication from

crossing the network. However, the mirrors need to aggregate their values

during the iteration. PowerGraph does this by designating one of the mirrors

as a master. In the middle of the iteration (line 3 of Abstraction 2.4), all

A’s mirrors send their values to its master (A1), which then aggregates them

and sends them back. Thus, communication overhead is proportional to

16

twice the number of vertex mirrors, which can be very large and is bounded

by min(cluster size, total number of in- and out-neighbors). We show in

Section 2.4 that PowerGraph incurs high communication overhead for real

graphs.

LFGraph: As depicted in Figure 2.1(e), LFGraph assigns each vertex

exactly to one server (A at S1). LFGraph makes a single pass over the

in-neighbor list of A – this reduces computation. S1 stores only a publish

list of servers where A’s out-neighbors are placed (only S2 here), and uses

this to forward A’s updated value. This leads to the fetch-once behavior

at S2, thus reducing communication significantly for vertices with a large

number of out-neighbors (hubs in power-law graphs). The publish list is

upper-bounded by min(cluster size, total number of out-neighbors), which is

smaller than the number of ghosts or mirrors in GraphLab and PowerGraph

respectively – thus LFGraph’s memory footprint is smaller, communication

overhead is lower, and it works even in small clusters. Section 2.3 elaborates

further on the design, and we analyze it in Section 2.4.

LFGraph trades off computation for reduced storage – in an iteration,

it needs to run through all the vertices to check if any of them is in fact

active. In contrast, PowerGraph and GraphLab have activate/deactivate

triggers which can enable/disable the execution of a neighboring vertex in

the succeeding iteration.

2.2.4 LFGraph API

The programmer writes an LFGraph program which uses LFGraph’s Vertex

class. The exported methods of the Vertex class (simplified) are depicted in

Table 2.2. We show how these methods can be used to write three graph

17

Function Description

getInLinks() returns a list of in-edges

getUpdatedInLinks() returns a list of in-edges whose source vertices
updated in the previous iteration

int getOutLinkCount() returns the count of out-edges

getValue(int vertexID) returns the value associated with vertexID

putValue(VertexValue value) writes updated value

int getStep() get iteration count

Table 2.2: LFGraph API: Vertex class methods

analytics program: PageRank [39], SSSP (single-source shortest path), and

triangle counting [40].

PageRank Vertex Program

1: if getStep() = 0 then
2: putV alue(1)
3: else if getStep() < 30 then
4: total← 0
5: for e ∈ getInLinks() do
6: v ← e.getSource()
7: total← total + getV alue(v)
8: end for
9: pagerank ← (0.15 + 0.85× total)

10: putV alue(pagerank/getOutLinkCount())

11: end if

PageRank Each vertex sets its initial PageRank to 1 (line 1–2). In subse-

quent iterations each vertex obtains its in-neighbors’ values via getV alue()

(line 5–8), calculates its new PageRank (line 9), and updates its value using

putV alue() (line 10). The LFGraph system is responsible for transferring

the values to the appropriate servers.

SSSP In the first iteration, only the source vertex sets its value (distance)

to 0 while all others set their value to ∞ (line 2–6). During subsequent

iterations a vertex reads the value of its updated in-neighbors, calculates the

minimum distance to the source through all of its in-neighbors (line 9–13),

18

SSSP Vertex Program

1: if getStep() = 0 then
2: if vertexID = srcID then
3: putV alue(0)
4: else
5: putV alue(∞)
6: end if
7: else
8: min dist←∞
9: for e ∈ getUpdatedInLinks() do

10: v ← e.getSource()
11: dist← getV alue(v) + e.getV alue()
12: min dist← min(min dist, dist)
13: end for
14: if getV alue(vertexID) > min dist then
15: putV alue(min dist)
16: end if

17: end if

and updates its value if the minimum distance is lower than its current value

(line 14–16). LFGraph only transfers a vertex’s value if it was updated during

the previous iteration.

Triangle Counting This works on an undirected graph, so getInLinks()

returns all neighbors of a vertex. In the first iteration, each vertex initializes

its value to the list of its neighbors (line 1–2) . In the second iteration,

a vertex calculates, for each of its neighbors, the number of their common

neighbors (line 6–10). The final answer is obtained by dividing the count by

2, since triangles are double-counted (line 11).

2.3 System Design

The LFGraph system consists of three components:

1. Front-end: The front-end stores the vertex program and configuration

information. The only coordination it performs is related to fault tol-

19

TriangleCount Vertex Program

1: if getStep() = 0 then
2: putV alue(getInLinks())
3: else
4: count← 0
5: s1 ← getV alue(vertexID)
6: for e ∈ getInLinks() do
7: v ← e.getSource()
8: s2 ← getvalue(v)
9: count← count + set intersect(s1, s2)

10: end for
11: count← count/2

12: end if

erance (Section 2.6).

2. JobServers: A single JobServer runs at each server machine. A Job-

Server is responsible for loading and storing the part of the graph as-

signed to that server, and launching the vertex-program. The Job-

Server is composed of four modules, which subsequent sections detail:

i) Graph Loader, ii) Storage Engine, iii) Computation Workers, and iv)

Communication Workers. Each iteration at a JobServer consists of a

computation phase run by several computation workers, followed by a

decoupled communication phase performed by several communication

workers.

3. BarrierServer: This performs distributed barrier synchronization among

JobServers at three points: i) after loading the graph, ii) during each

iteration in between the computation and communication phases, and

iii) at the end of each iteration.

Figure 2.2 shows an example execution of an LFGraph iteration. Steps 1 –

3 comprise the pre-processing iteration (graph loading), and steps 4 – 6 are

repeated for each iteration. We elaborate on each step:

20

Front-end

Vertex
Program

Config
File

JobServer1

ComputationWorker

CommunicationWorker

G
r
a
p
h

L
o
a
d
e
rStorage Engine

W1 W2 W3

W1 W2

JobServer2

ComputationWorker

CommunicationWorker

G
r
a
p
h

L
o
a
d
e
rStorage Engine

W1 W2 W3

W1 W2

D
istributed

File
System

Barrier Server

2

21

3

3

Ba

2

4

4

5

6

6

Figure 2.2: LFGraph system: the life of an iteration

1. The front-end stores the vertex program and a configuration file con-

taining the following pieces of information: graph data location (e.g.,

an NFS path), number of JobServers, IP addresses of JobServers, IP

address of BarrierServer, number of computation and communication

21

workers per JobServer, and (if applicable) maximum number of itera-

tions desired.

2. The front-end sends the vertex program and configuration file to all

JobServers.

3. The Graph Loaders collectively load the graph (Section 2.3.1) and split

them across the Storage Engines (Section 2.3.2). The JobServer then

signals next to the BarrierServer.

Each iteration repeats the following steps 4 – 6.

4. When the BarrierServer signals back that the barrier is completed, a

JobServer starts the next iteration. It does so by spawning multiple

local computation worker threads (Section 2.3.3) to start the compu-

tation phase, and sending each worker a sub-shard of its vertices.

5. When all computation workers finish, the JobServer signals the Bar-

rierServer. The signal is one of two types: next or halt. The latter

is signaled only if the termination conditions are met, e.g., maximum

number of iterations desired has been reached (e.g., in PageRank) or no

local vertices have updated their value in the computation phase (e.g.,

in SSSP). The BarrierServer terminates the job only if all JobServers

signal halt.

6. If any of the JobServers signaled next, the BarrierServer signals back

when the barrier is reached. Then the JobServer starts the communica-

tion phase by spawning communication worker threads (Section 2.3.4).

Communication workers are responsible for sending vertex values to

remote JobServers. Then it signals next to the BarrierServer to start

the next iteration.

22

We next detail the four modules inside the JobServer.

2.3.1 Graph Loader

Graph Loaders are collectively responsible for loading and partitioning ver-

tex data from the distributed file system (e.g., NFS) and sending them to

JobServers. LFGraph can accept a variety of input formats, e.g., edge list,

out-neighbor adjacency list, in-neighbor adjacency list, etc. The data is

sharded across Graph Loaders. A Graph Loader first uses the path provided

by the front-end to load its assigned set of vertices. For each line it reads,

it uses a consistent hash function on the vertex ID to calculate that ver-

tex’s JobServer, and transmits the line to that JobServer. For efficiency, the

Graph Loader batches several vertices together before sending them over to

a JobServer.

2.3.2 Storage Engine

This component of the JobServer stores the graph data, uses a publish-

subscribe mechanism to enable efficient communication, and stores the vertex

values. It maintains the following data structures.

Graph Storage: This stores the list of in-neighbors for each vertex assigned

to this JobServer. getInLinks() in Table 2.2 accesses this list.

Subscribe Lists: This maintains a short-lived list per remote JobServer.

Each such list contains the vertices to be fetched from that specific JobServer.

The list is built only once – at the pre-processing iteration while loading the

graph. Consider our running example from Figure 2.1(e). S2’s subscribe

list for S1 consists of {A}. The subscribe list is short-lived because it is

garbage-collected after the preprocessing iteration, thus reducing memory

23

usage.

Publish Lists: A JobServer maintains a publish list for each remote Job-

Server, containing the vertices to be sent to that JobServer. Publish lists

are intended to ensure that each external vertex data is fetched exactly once.

In the pre-processing iteration, JobServers exchange subscribe lists and use

them to create publish lists. In our example, JobServer S2 sends to S1 its

subscribe list for JobServer S1. Then the publish list at S1 for S2 contains

those vertices assigned to S1 which have out-neighbors assigned to S2, i.e.,

the set {A}.

Local Value Store: For each vertex assigned to this JobServer (call this a

local vertex), this component stores the value for that vertex. We use a two-

version system for each value – a real version from the previous iteration and

a shadow version for the next iteration. Writes are always done to the shadow

value and reads always occur from the real value. At the end of the iteration,

the real value is set to the shadow value, and the latter is un-initialized. The

shadow is needed because computation workers at a JobServer share the local

value store. Thus a vertex D at JobServer S2 may update its local value,

but later another local vertex E also at S2 needs to read D’s value. Further,

this two-version approach decouples reading and writing, thus eliminating

the need for locking.

Each value in the local value store is also tagged with an updatedA,S1 flag,

which is reset at the start of an iteration. Whenever the shadow value is

written, this flag is set. The communication worker component (which we

describe later) uses this flag.

Remote Value Store: This stores the values for each in-neighbor of a vertex

assigned to this JobServer, e.g., at JobServer S2, the remote value store

contains an entry for remote vertex A. There is only one version here since

24

it is only used for reading. This value is also tagged with a flag updatedA,S2

which is reset at the start of the communication phase – the flag is set only if

S2 receives an updated value for A during the current communication phase,

otherwise it is left unset. This information is used to skip vertices, whose

values did not update, in the upcoming iteration. The getUpdatedInLinks()

function (in Table 2.2) of the vertex uses the update flags to return the list

of neighbors whose values were updated.

We briefly discuss memory implications of the above five stores of the

Storage Engine. Any graph processing framework will need to store the

graph and the local value store. The subscribe list is garbage collected. Thus

LFGraph’s additional overheads are only the publish list and the remote value

store. The latter of these dominates, but it stays small in size even for large

graphs. For a log-normal graph with 1 billion vertices and 128 billion edges

in a cluster of 12 machines running the SSSP benchmark, the per-JobServer

remote value store was smaller than 3.5 GB.

2.3.3 Computation Worker

A computation worker is responsible for running the front-end-specified ver-

tex program sequentially for the sub-shard of vertices assigned to it. Our

implementation uses a thread pool for implementing the workers at a Job-

Server. The number of computation workers per JobServer is a user-specified

parameter. For homogeneous clusters, we recommend setting this value to

the number of cores at a server.

The computation worker accesses its JobServer’s local value store and re-

mote value store. Yet, no locking is required because of the sub-sharding and

the two-versioned values. For each vertex this worker reads its in-neighbors’

25

data from either the remote or local value store (real versions only), calcu-

lates the new value and writes its updated value into the local value store

(shadow version).

2.3.4 Communication Worker

A communication worker runs the decoupled communication phase. It does

not rely on locking. The worker runs in four phases. First, each worker is

assigned a sub-shard of remote value stores. It resets the update flags in this

sub-shard. Second, the worker is assigned a sub-shard of remote JobServers.

For each assigned remote JobServer, the worker looks up its publish list, and

then sends the requisite vertex values. It uses shadow values from the local

value store, skipping vertices whose update flags are false. Third, when a

JobServer receives a value from a remote JobServer, it forwards this to the

appropriate local worker, which in turn updates the remote value store and

sets the update flags. These second and third phases are overlapped. Fourth

and finally, the worker is assigned a sub-shard of the local vertices, for which

it moves the shadow value to the real value.

We use a thread pool for the communication workers. Communication

workers in differents machines use sockets for interprocess communication.

2.4 Communication Analysis

We first present mathematical analysis for the communication overhead of

LFGraph and existing graph processing frameworks (Section 2.4.1). Then

we use three real-world graphs (Twitter, a Web graph, and an Amazon rec-

ommendation graph) to measure the realistic impact of this analysis (Sec-

tion 2.4.2) and compare these systems. Although we will later present experi-

26

mental results from our deployment (Section 4), the analysis in this section is

the most appropriate way to compare the fundamental techniques employed

by different systems. This analysis is thus independent of implementation

choices (e.g., C++ vs. Java), optimizations, and myriad possible system

configurations.

2.4.1 Mathematical Analysis

Define the communication overhead of a given vertex v as the expected num-

ber of values of v sent over the network in a given iteration. We assume all

vertex values have changed, thus the metric is an upper bound on the actual

average per-vertex communication. Then, define the communication over-

head of an algorithm as the average of the communication overheads across

all vertices. We assume the directed graph has |V | vertices, and the cluster

contains N servers (V >> N). We denote the out-neighbor set of a vertex v

as Dout[v] and its in-neighbor set as Din[v]. We also assume that values are

propagated in one direction and values are of fixed sizes.

Pregel:

In a default (combiner-less) Pregel setting, each vertex is assigned to one

server. Thus values are sent along all edges. An edge contributes to the

communication overhead if its adjacent vertices are on different servers. An

out-neighbor of v is on a different server than v with probability
(
1− 1

N

)
.

The communication overhead of v is thus:

CP (v) = |Dout[v]| ×
(

1− 1

N

)
(2.1)

27

Therefore, Pregel’s communication overhead is:

CP =

∑
v∈V

(
|Dout[v]| ×

(
1− 1

N

))
|V | (2.2)

GraphLab:

In GraphLab, each vertex is assigned to a server. However, the vertex has

multiple ghosts, one at each remote server. A ghost is created at remote

server S if at least one of v’s in- or out-neighbors is assigned to S. The

main server where v is assigned then collects all the updated values from

its ghosts. v has no neighbors at a given remote server with probability(
1− 1

N

)|Dout[v]∪Din[v]|. Thus the probability that v has at least one of its

neighbors at that remote server is:
(
1− (1− 1

N
)|Dout[v]∪Din[v]|

)
. Hence the

communication overhead of v is:

CGL(v) = (N − 1)×
(

1−
(

1− 1

N

)|Dout[v]∪Din[v]|
)

(2.3)

The communication overhead of GraphLab is:

CGL =

∑
v∈V

(
(N − 1)×

(
1−

(
1− 1

N

)|Dout[v]∪Din[v]|
))

|V | (2.4)

PowerGraph:

In PowerGraph, each vertex is replicated (mirrored) at several servers – let rv

denote the number of replicas of vertex v. One of the replicas is designated

as the master. The master receives updated values from the other (rv − 1)

28

Graph Description |V | |E|
Twitter Twitter follower network [14] 41.65M 1.47B
UK-2007 UK Web graph [41] 105.9M 3.74B
Amazon Similarity among books in Amazon store [42,

43]
0.74M 5.16M

Table 2.3: Real-world graphs

replicas, calculates the combined value, and sends it back out to the replicas.

Thus, the communication overhead of v is 2× (rv−1). Plugging in the value

of rv from [26], the communication overhead of PowerGraph is:

CPG =

2 · ∑
v∈V

(rv − 1)

|V | (2.5)

=

2 · ∑
v∈V

(
N ×

(
1−

(
1− 1

N

)|Dout[v]∪Din[v]|
)
− 1
)

|V |

LFGraph:

In LFGraph, a vertex v is assigned to one server. Its value is fetched by a

remote server S if at least one of v’s out-neighbors is assigned to S. v has

at least one out-neighbor at S with probability
(
1− (1− 1

N
)|Dout[v]|

)
. The

communication overhead of v is:

CXG(v) = (N − 1)×
(

1−
(

1− 1

N

)|Dout[v]|
)

(2.6)

Therefore, LFGraph’s communication overhead is:

CXG =

∑
v∈V

(
(N − 1)×

(
1−

(
1− 1

N

)|Dout[v]|
))

|V | (2.7)

29

Discussion

Our analysis yields the following observations:

• The overheads of Pregel and LFGraph depend on |Dout[v]| only, while

those of GraphLab and PowerGraph depend on |Dout[v] ∪Din[v]|.

• For an undirected graph |Dout[v] ∪ Din[v]| = |Dout[v]| = |Din[v]|, so

communication overhead of LFGraph and GraphLab are similar for

such graphs.

• PowerGraph is a factor of 2 worse in communication overhead compared

to GraphLab.

• LFGraph has its lowest relative communication overhead when |Dout[v]∪

Din[v]| � |Dout[v]|, i.e., when out-neighbor and in-neighbor sets are

more disjoint from each other, and the in-degree is larger than the

out-degree.

2.4.2 Real-World Graphs

We now study the impact of the previous section’s analysis on several real-

world directed graphs: 1) Twitter, 2) a graph of websites in UK from 2007,

and 3) a recommendation graph from Amazon’s online book store. The

characteristics of these are summarized in Table 2.3. The traces contain a

list of vertices and out-neighbor adjacency lists per vertex.

We calculate the equations of Section 2.4.1 for each graph by considering

each of its vertices and the neighbors of those vertices. This denotes the

communication overhead, i.e., number of values sent over the network per

iteration per vertex. Figure 2.3 plots this quantity for different cluster sizes

ranging from 2 to 256.

30

0

10

20

30

40

50

60

50 100 150 200 250 300

C
om

m
un

ic
at
io
n
O
ve

rh
ea

d

Number of Servers

PowerGraph

Pregel

GraphLab

LFGraph

(a) Twitter

0

10

20

30

40

50

60

70

50 100 150 200 250 300

C
om

m
un
ic
at
io
n
O
ve
rh
ea
d

Number of Servers

PowerGraph

Pregel

GraphLab
LFGraph

(b) UK-2007 Web Graph

0
2
4
6
8
10
12
14
16
18

50 100 150 200 250 300

C
om

m
un
ic
at
io
n
O
ve
rh
ea
d

Number of Servers

PowerGraph

GraphLab

Pregel
LFGraph

(c) Amazon Recommendation Graph

Figure 2.3: Communication overhead for real-world graphs

31

First we observe that in all three plots, among all compared approaches,

LFGraph has the lowest communication overhead. This is largely due to its

fetch-once behavior.

Second, Pregel plateaus out quickly. In fact, the knee of its curve occurs

(for each of the graphs) around the region where the x-axis value is in the

ballpark of the graph’s average out-degree. Up to that inflection point, there

is a high probability that a randomly selected vertex will have neighbors on

almost all the servers in the system. Beyond the knee, this probability drops.

Third, LFGraph’s improvement over GraphLab is higher for the Twitter

workload than for the other two workloads. This is because the in-neighbor

and out-neighbor sets are more disjoint in the Twitter graph than they are

in the UK-2007 and Amazon graphs.

Fourth, in Figure 2.3(c) (Amazon workload), when cluster size goes beyond

10, GraphLab’s overhead is higher than Pregel’s. This is because on an

Amazon book webpage, there is a cap on the number of recommendations

(out-neighbors). Thus out-degree is capped, but in-degree is unrestricted.

Further, average value of |Dout[v] ∪Din[v]| is lower in the Amazon workload

(9.58) than in Twitter (57.74) and UK-2007 (62.56). Finally, as the cluster

size increases, GraphLab’s communication overhead plateaus, with the knee

at around the value of |Dout[v]∪Din[v]| – this is because when N � |Dout[v]∪

Din[v]| in eq. 3, CGL(v) ≈ |Dout[v] ∪ Din[v]|. For Twitter and UK-2007, N

is never large enough for GraphLab’s overhead to reach its cap. Hence,

GraphLab’s overhead stays lower than Pregel’s for those two workloads.

We conclude that in real-world directed graphs, LFGraph’s hash-based

partitioning and fetch-once communication suffices to achieve a lower com-

munication overhead than existing approaches.

32

2.5 Load Balance in Real Graphs

We use synthetic power-law graphs and the three real-world graphs from Ta-

ble 2.3 to analyze the computation balancing and communication balancing

in LFGraph.

2.5.1 Computation Balance

0	

50	

100	

150	

200	

250	

300	

8	
 16	
 32	
 64	
 128	
 256	

N
um

be
r

of
 e

dg
es

 (
m

ill
io

ns
)	

Number of workers	

α=1.7	

α=1.9	

α=2.1	

Figure 2.4: Computation overhead for synthetic power-law graphs

The completion time of an iteration is influenced by imbalance across com-

putation workers. This is because tail workers that take longer than others

will cause the entire iteration to finish later.

Prior works [26, 44, 40] have hypothesized that power-law graphs cause

substantial computation imbalance, and since real-world graphs are similar

to power-law graphs, they do too. In fact, the community has treated this

hypothesis as the motivation for intelligent placement schemes, e.g., edge

placement [26]. We now debunk this hypothesis by showing that when using

random partitioning, while synthetic power-law graphs do cause computation

imbalance, real-world power-law graphs in fact do not. The primary reason

33

is subtle differences between the in-degree distributions of these two types of

graphs.

First we examine synthetic power-law graphs to see why they do exhibit

computation imbalance. A power-law graph has degree d with probability

proportional to d−α. Lower α means a denser graph with more high degree

vertices. We created three synthetic graphs with 10 million vertices each

with α = {1.7, 1.9, 2.1}. We first selected the in-degree of each vertex using

the power-law distribution. We then assigned vertices to servers using hash-

based partitioning. For simplicity the rest of this section assumes only one

computation worker per server.

In LFGraph the runtime of a computation worker during an iteration is

proportional to the total number of in-edges processed by that worker. We

thus use the latter as a measure for the load at a computation worker. Fig-

ure 2.4 plots, for different cluster sizes, LFGraph’s average computation over-

head along with error bars that show the maximum and minimum loaded

workers. As expected, the average computation load falls inversely with in-

creasing cluster size. However, the error bars show that all synthetic graphs

suffer from computation imbalance. This is especially prominent in large

clusters – with 256 servers, the maximum loaded worker is 35x slower than

the average worker. In fact these slowest workers were the ones assigned the

highest degree vertices.

Next, we repeat the same experiment on the three real-world power-law

graphs from Table 2.3. Figure 2.5 depicts, for the three real-world graphs,

average computation load along with error bars for maximum and minimum

computation load. We see that unlike in Figure 2.4, the bars are much smaller

here. In fact the maximum loaded worker is only 7% slower than the average

worker.

34

0	

100	

200	

300	

400	

500	

8	
 16	
 32	
 64	
 128	
 256	

N
um

be
r

of
 e

dg
es

 (
m

ill
io

ns
)	

Number of workers	

Twitter	

UK-2007	

Amazon (100X scaled up)	

Figure 2.5: Computation overhead for real-world graphs

1

10

100

1000

10000

100000

1e+06

1e+07

1e+08

1 10 100 1000 10000 100000 1e+06

N
um

be
r
of

ve
rt
ic
es

Indegree

Twitter

UK-2007

Amazon

Figure 2.6: In-degree distribution for real-world graphs

The primary reason for this difference in behavior between synthetic and

real-world power-law graphs is shown in Figure 2.5, which plots the in-degree

distributions of the three real graphs. While synthetic power-law graphs have

a straight tail in their log-log plot, each of the real power-law graphs has a

funnel at its tail. Other real-world power-law graphs have also been shown to

exhibit this pattern [11]. This indicates that in real-world power-law graphs,

among the vertices with high degrees, there is substantial variability across

the actual degrees – this is not the case in the idealized power-law graphs.

35

Since the number of such high degree vertices is far more than the number

of servers, their resultant load balances out across servers. We conclude that

hash-based partitioning suffices for power-law graphs, and that intelligent

placement schemes will yield little benefit in practice.

2.5.2 Communication Balance

Communication imbalance is important because it can lead to increased pro-

cessing time. During the communication phase each server receives vertex

data from all other servers. Since the transfers are in parallel, if a server Si

receives more data from Sj than from Sk, the overall data transfer time will

increase even if the average communication overhead stays low.

0	

5	

10	

15	

20	

25	

30	

35	

40	

45	

50	

2	
 4	
 8	
 16	
 32	
 64	

A
ve

ra
ge

 #
 o

f v
er

tic
es

 fe
tc

he
d
	

fr
om

 e
ac

h
se

rv
er

 (
m

ill
io

ns
)	

Number of servers	

Twitter	

UK-2007	

Amazon (100X scaled up)	

Figure 2.7: Communication overhead for real-world graphs

For the three real-world graphs we measure the vertex data transferred

between every pair of servers. Figure 2.7 plots the average along with bars

for maximum and minimum. The small bars indicate that LFGraph balances

communication load well.

36

2.6 Fault Tolerance

We briefly discuss how LFGraph handles failures. The front-end receives

heartbeats from JobServers. On detecting a failure the front-end replaces

the failed JobServer with a new one and restarts the computation. Fault

tolerance can also be achieved more efficiently in LFGraph. Note that in the

communication phase vertices communicate their values to their neighbors.

Therefore, the vertex values are already replicated in other servers. So, in

case of a failure, computation can be restarted from the current iteration

using these replicated values at a different JobServer.

2.7 Related Work

Single-Server Systems: Single-server graph processing systems are lim-

ited by memory and cannot process large graphs [45]. GraphChi [38] lever-

ages the disk for large graph processing on a single server, making it slower

than distributed frameworks. Grace [46] relies on machines with many cores

and large RAM. It has two drawbacks – parallelizability is limited by the

number of cores, and real-world large graphs cannot be stored in a single

machine’s memory.

Distributed Graph Processing Frameworks: Pregel has been the inspi-

ration for several distributed graph processing systems, including Giraph [47],

GoldenOrb [48], Phoebus [49], etc. These systems suffer from unscalability

at small cluster sizes. For instance, we found that Giraph was unable to load

a graph with 10M vertices and 1B edges on a 64 node cluster (16 GB memory

each). Others reported similar experiences [26].

GraphLab [50, 37] and PowerGraph [26] also support asynchronous com-

putations. Asynchronous models do not have barriers – so, fast workers do

37

not have to wait for slow workers. We performed experiments with these

asynchronous variants but found that the runtime did not change much from

the synchronous variants. Further, asynchrony makes it difficult to reason

about and debug such programs.

Distributed-matrix models have been used for graph processing [51, 52].

These are harder to code in as they do not follow the more intuitive ‘think

like a vertex’ paradigm (i.e., vertex programs) that Pregel, GraphLab, and

PowerGraph do.

Finally, Piccolo [53] and Trinity [54] realize a distributed in-memory key-

value store for graph processing. Trinity also supports online query process-

ing on graphs and is known to outperform MPI-based implementations such

as PBGL [55]. However, both Piccolo and Trinity require locking for con-

currency control. We performed experiments with Trinity and observed that

LFGraph achieves a 1.6x improvement.

General-purpose Data Processing Frameworks: General-purpose

data processing frameworks such as MapReduce [56] and its variants [57],

Spark [58], etc. can be used for graph analytics [59, 60, 61, 62]. How-

ever, they are not targeted at graph computations, thus they are difficult

to program graph algorithms in due to the model mismatch. Further their

performance is not competitive with graph processing frameworks [26].

Graph Databases: Graph databases such as FlockDB [25], Infinite-

Graph [63], and Neo4j [64] are increasingly being used to store graph-structur-

ed data. Although these databases support efficient query and traversal on

graph-structured data, they are not designed for graph analytics operations.

Performance Optimization: Various techniques have been designed to

optimize performance of graph-based computations. These techniques in-

clude multilevel partitioning [65, 66, 67], greedy partitioning [68], join par-

38

titioning and replication strategies [69]. Based on our results, we believe

that such complex partitioning schemes can be avoided while still improv-

ing performance. GPS [70] uses dynamic repartitioning schemes for runtime

optimization. Mizan [44] uses dynamic load balancing for fast processing,

Surfer [71] uses bandwidth-aware placement techniques to minimize cross-

partition communication. These dynamic techniques can be applied orthog-

onally inside LFGraph.

39

3 BONDHU: SOCIAL NETWORK-AWARE
DISK MANAGER FOR GRAPH

DATABASES

Graph databases are increasingly being used to store networked data. Ex-

isting graph databases do not deploy disk layout techniques to improve data

placement on disk and thus suffer in performance. In this chapter, we first

present disk layout techniques that leverage small-world (i.e., community)

structure in the underlying power-law graphs to make better placement de-

cisions. Second, we build a layout manager called the Bondhu system that

incorporates our techniques. We integrate Bondhu into the popular Neo4j

graph database engine. The discussions in this chapter are based on one of

the most prevalent small-world power-law graphs – Online Social Networks

(OSNs). However, our techniques apply to any other graphs with similar

properties.

The rest of the chapter is organized as follows. Section 3.1 presents the

necessity of power-law aware techniques for the disk layout problem. Sec-

tion 3.2 presents a formal definition of the disk layout problem. Section 3.3

discusses the disk layout algorithms which are at the core of the Bondhu

system. Section 3.4 gives details of the prototype implementation of the

Bondhu system in Neo4j. Section 3.5 presents three models for capturing

user interactions in OSNs that we use in our experiments. Related works

are presented in Section 3.6. We analyze the experimental results of our

prototype implementation later in Chapter 5.

40

3.1 Motivation

The last few years have seen an unprecedented growth both in variety and

in scale of Online Social Networks (OSN). This has led to the creation of

graph databases for efficient OSN data storage. The OSNs stored by these

databases are power-law in nature. In addition these graphs tend to be small

world and exhibit unique structural properties such as strong community

structure. This makes disk access patterns of OSN applications different from

those of traditional applications. Our work is motivated by the observation

that in order to improve disk access performance of OSN applications, it

is critical to design techniques that take the structure of the graph into

consideration. Although the discussion in this chapter is presented in the

context of OSNs, the conclusions hold true for any other graphs with similar

characteristics.

There have been several efforts to improve disk performance by careful data

organization. The Fast File System improves disk performance by keeping re-

lated data blocks and their meta-data together [72]. Multimedia file systems

use the organ pipe layout algorithm by tracking the popularity of the ob-

jects and keep the hottest object in cylinder zero and place successive cooler

records to the left and right respectively [73, 74]. Others track block access

patterns and try to place correlated blocks together on the disk [75, 76]. The

Free Space File System makes use of the empty space of the disk to replicate

blocks according to the observed access patterns [77].

The above approaches are suitable for traditional workloads, such as mul-

timedia file systems, version control systems, and web servers. However, the

access patterns in OSN applications are quite different from the above access

patterns. This is due to many reasons, two of which we briefly discuss here.

41

In a multimedia system popular objects (movies, for example) are popular

across all users. On the other hand, in an OSN scenario it is not the case

that a few objects dominate globally. Rather, each user accesses her friends’

information with a certain probability. Further, existing systems that track

the access pattern of blocks and keep related blocks together are less likely

to perform well due to the large scale of OSNs. Most of the OSNs consist of

millions of users and thus tracking block level access patterns at that scale

is not feasible.

Finding a good disk layout can be helpful in many ways. We mention a

specific example here. A simple social network is stored in a graph database

as blocks of profile information (name, address, phone, etc.) for users. When

a user issues a query to obtain the name of all of her friends, the disk head has

to seek the appropriate locations in the disk to read her friends’ information.

In the absence of a layout manager of the graph database, related users’

data will be scattered all over the disk and hence the disk head movement

is increased. On the other hand, a good layout might reduce disk head

movement by keeping related users’ data close by on the disk. This would

translate to faster response time in answering the queries.

We motivate this further by presenting a visualization of disk block access

patterns of a sample OSN application in Figure 3.1. We use the Facebook

New Orleans network graph [78] to build a sample OSN application using

the Neo4j graph database [64] (more details are in Section 5). For each user

in the social graph, we create a node in Neo4j. Then we store a 400KB data

block (property in Neo4j) for each user. Next we write an automated script

that logs into the system as a random user and retrieves the data blocks

for all of her friends. This is identical to the ‘list all friends’ action in an

OSN. We trace the disk blocks accessed by each request using the blktrace

42

0 23 46 69 93 116 139 162 186
Request Time (seconds)

0

2

5

7

10

M
B

/s

0 23 46 69 93 116 139 162 186
Request Time (seconds)

0

45

90

135

180

S
e
e
ks

 /
 s

e
c

0 23 46 69 93 116 139 162 186
Request Time (seconds)

1161333

1169416

1177499

1185582

1193666
D

is
k

o
ff

se
t

(M
B

)

Disk IO

Figure 3.1: Blocks accessed in Neo4j for a ‘list friend’ query

tool [79] and use the seekwatcher tool [80] to visualize the disk block access

over time. A dot in Figure 3.1 depicts a block access at a particular location

on the disk at a particular time. We observe from the figure that block

accesses are scattered all over the database. This effect is prominent when

the queries are issued by users with many friends (around 23 and 46 seconds,

for example). Therefore, the disk head has to move a lot to answer this query,

which leads to a high response time. Later in Figure 5.1, we show how social

network-aware disk placement performs better for the above workload.

We believe that graph-aware data organization scheme can improve disk

access performance because it changes the random and scattered movement

pattern of the disk head to one which is semi-sequential and confined within

smaller regions. To examine how bad the random access performance of

a disk is compared to the sequential access performance, we measure disk

throughput under both access patterns using the fio benchmarking tool on

3 different hard disks: a 4 year old desktop hard disk (SEGATE), a 2 year old

datacenter hard disk (HP), and a new desktop hard disk (SAMSUNG). The

results are presented in Figure 3.2. In all the three disks the random access

performance is more than two orders of magnitude worse than the sequential

access performance. Therefore, a layout that takes the disk access pattern

into account and organizes the data accordingly can improve performance

43

 0
 20
 40
 60
 80

 100
 120
 140
 160

SEGATE HP SAMSUNG

M
B/

s

Disk Performance

Sequential read
Random read

Figure 3.2: Sequential vs. random read for 3 disk types

significantly.

While solid state disks (SSDs) are becoming increasingly viable alternatives

to disks, we believe that disks will not go away. For instance, due to write

lifetime issues with SSDs, hard disks are often used as a cache for SSDs [81].

In addition, disks are likely to be cheaper than SSDs per byte for several

years.

Motivated by the above discussion, in this chapter, we present the design

and implementation of the Bondhu System which leverages the power-law

small world social network graph to intelligently layout data on disk. The

layout schemes of the Bondhu system improves the disk performance because

of three reasons: i) when the user block sizes are small, the data fetched in a

single seek contains multiple friends’ data, lowering the number of seeks; ii)

the disk arm movement is reduced as related data are clustered together –

this leads to a lower seek distance (time); iii) rotational latency is improved

since the disk has to rotate less to reach the appropriate location for fetching

data.

Concretely, we make the following contributions in this chapter:

44

• We present a novel framework for disk layout algorithms based on com-

munity detection in a social (power-law small world) graph. First, we

detect the communities within a graph. Then, we produce the layout

by running a greedy heuristic within and across the communities. To

the best of our knowledge, Bondhu is the first system that leverages

the underlying power-law graph for efficient data layout in disks.

• We implement our solution into Neo4j, which is a widely used open

source graph database. We show through experimentation that the

Bondhu system is able to improve response time by as much as 48%

when compared to the default layout policy implemented by the file

system.

• Our experiments, using Facebook traces, show that while taking the

graph structure into account helps make better placement decisions,

taking the user access patterns into account yields low additional ben-

efit.

3.2 Problem Definition

Consider N users: V = {V1, V2, . . . , VN}, and N consecutive locations on

disk denoted by: L = {L1, L2, . . . , LN}. Now, consider a function δ(Vi, Vj)

representing the social network.

δ(Vi, Vj) =

 0 if Vi, Vj are not friends

1 if Vi, Vj are friends

We assume that relationships are symmetric, i.e., δ(Vi, Vj) = δ(Vj, Vi) for

all (i, j). Define loc(.) to be a one-to-one function which denotes a particular

45

V1

V5

V3

V2

V4

V6

V7

Figure 3.3: A sample social graph

‘layout’, i.e., location arrangement, loc : V → L. There are N ! possible loc(.)

functions. Further, the cost of a layout from the perspective of a particular

user Vi is given by the sum of the difference of the disk locations between the

user and all of her friends. The lower the cost, the lower the seek distance,

and the better the response time. Therefore,

costi =
N∑
j=1

[|loc(Vi)− loc(Vj)| ∗ δ(Vi, Vj)] (3.1)

Therefore, the total cost of a layout is:

cost =

∑N
i=1 costi

2

=

∑N
i=1

∑N
j=1{|loc(Vi)− loc(Vj)| ∗ δ(Vi, Vj)}

2

(3.2)

The lower the cost of a layout, the closer the friends of a user are located

on the disk. This speeds up common operations like friend listing, publish-

subscribe of wall-posts, etc. Therefore, our goal is to find the layout with the

minimum cost.

46

Table 3.1: Cost of the linear layout

Location L1 L2 L3 L4 L5 L6 L7

User V1 V2 V3 V4 V5 V6 V7

V1 - 1 2 0 4 0 0
V2 - - 1 2 0 0 0
V3 - - - 1 2 0 0
V4 - - - - 0 2 3
V5 - - - - - 0 0
V6 - - - - - - 0
V7 - - - - - - -

Table 3.2: Cost of one of the optimal layouts

Location L1 L2 L3 L4 L5 L6 L7

User V5 V1 V3 V2 V4 V6 V7

V5 - 1 2 0 0 0 0
V1 - - 1 2 0 0 0
V3 - - - 1 2 0 0
V2 - - - - 1 0 0
V4 - - - - - 1 2
V6 - - - - - - 1
V7 - - - - - - -

We illustrate the problem with the help of the sample social graph in Figure

3.3 with 7 users. Consider the linear layout in Table 3.1: V1 at L1, V2 at L2,

and so on. The users are arranged in the rows and columns according to their

layout. An entry (Vi, Vj) in the table is non-zero if there is a link between Vi

and Vj in the graph (in other words if Vi and Vj are friends), otherwise it is

0. The non-zero value is the absolute value of the difference of the locations

of Vi and Vj (i.e., it is the cost as defined before). Adding up all the values

we get the cost of the layout = 18. However, this is not optimal. We present

one of the optimal layouts in Table 3.2 with cost = 14.

This min-cost social network embedding problem is a variant of the Mini-

mum Linear Arrangement problem, which is known to be NP-hard [82]. The

best known heuristic to solve this problem is Simulated Annealing, which

itself is computationally infeasible for large graphs [83].

47

In this chapter, we first propose a fast multi-level heuristic to solve this

problem, which can handle graphs with millions of nodes. The Bondhu sys-

tem uses this algorithm to obtain disk layout.

Second, we solve the weighted version of this problem. We use weighted

graphs to capture user interactions in the social network. A high edge weight

between two users implies that they are more likely to access each other’s

data and so they should be close by in the disk layout. We use the function

δ(Vi, Vj) to capture the edge weight (w). Thus,

δ(Vi, Vj) =

 0 if Vi, Vj are not friends

w if Vi, Vj are friends

We make one final point about disk geometries before we present our

techniques. While disk geometries are often proprietary, manufacturers do

present a logical abstraction of the disk which is known as the Logical Block

Addressing (LBA) scheme. It is a simple linear addressing scheme where

blocks are addressed by an integer index starting from 0. The LBA scheme

is essentially a one-dimensional representation of the complex physical geom-

etry of the disk. Disk manufacturers ensure that accessing consecutive blocks

in the LBA space is similar to accessing consecutive blocks in the physical

geometry. Experimental results [84, 77] also support this claim. Therefore,

we use this simple one-dimensional model of the disk for data layout.

3.3 Disk Layout Algorithm

In this section we present the disk layout algorithm of the Bondhu system.

At first we present the intuition behind our proposed algorithm and then

explain it in detail in the following subsections.

48

3.3.1 Overview

OSNs are power-law graphs which are small world in nature. These are known

to exhibit strong community structure. Therefore, we adopt an approach

to disk layout algorithms for OSN applications that take the community

structure into account. This has multiple benefits. First, the problem space

is reduced. So, while making a disk placement decision inside a community we

can consider only the members of that community. Second, a bad placement

choice will have relatively less impact since the worst possible placement

will likely be limited by the community boundary. Third, we can use the

existing community detection techniques that are known to find good quality

communities in a social graph.

Motivated by these observations, we present the layout algorithm of the

Bondhu system. Figure 3.4 illustrates our approach. The algorithm consists

of three modules: i) Community Detection: using existing community de-

tection techniques, we divide the social graph into several communities, ii)

Intra-Community Layout: using a greedy heuristic we find a layout for the

users within the communities, and iii) Inter-Community Layout: we orga-

nize the different communities on the disk by considering inter-community

tie strength. These three parts of the framework are discussed below.

3.3.2 Community Detection

The goal of the community detection module is to organize the users of

the social graph into clusters, so that many edges connect users within the

same cluster and relatively few edges connect users in different clusters. The

community detection module makes use of existing techniques for graph par-

titioning and modularity optimization. We select these two algorithm classes

49

c1 c2 c3 c4

Community Detection Module

Intra-Community Layout Module

c1 c2 c4c3

c4 c3 c1 c2
Final Layout

Social Graph

Inter-Community Layout Module

Figure 3.4: Overview of the Bondhu system’s approach

because: i) they operate on graphs with large number of vertices, ii) they are

known to produce good clusterings, and iii) they are fast, i.e., can find com-

munities on graphs containing millions of nodes within seconds. We briefly

discuss the algorithms here.

Graph Partition Driven Community Detection

Our graph partition driven community detection algorithm (ParCom) is

based on the multilevel k-way hypergraph partitioning scheme of [67, 85].

The goal of ParCom is to partition the social graph into k equal subsets

such that the edge-cut is minimized. This is equivalent to minimizing the

50

number of friends in other partitions. ParCom works as follows. First, the

social graph is coarsened down to a small number of vertices. In this phase a

sequence of smaller graphs is constructed from the original graph by collaps-

ing vertices together using the heavy-edge matching (HEM) technique. The

weights of the edges are also recalculated. Then this smaller graph is divided

into k-parts using recursive bi-section scheme. Finally the partitions are un-

coarsened back to the original graph in steps and at each step the partitions

are refined using local refinement heuristics. Fore more details, see [67, 85].

Modularity Optimization Driven Community Detection

Our modularity optimization driven community detection algorithm (Mod-

Com) is based on [86]. It is able to detect good quality communities in large

networks (118 million nodes).

The modularity of a partition is a scalar value between −1 and 1 that mea-

sures the density of intra-community links as compared to inter-community

links. More specifically, modularity is defined as the fraction of edges that

fall within the communities minus the expected value of the fraction if the

edges were randomly distributed (by preserving node degrees). Formally, it

is defined as:

Q =
1

2M

∑
Vi,Vj

[
δ(Vi, Vj)−

kikj
2M

]
σ(ci, cj) (3.3)

Here, M = number of edges, δ(Vi, Vj) = weight of the edge between user

Vi and Vj, ki = degree of user Vi (sum of the weights of the links/edges

connected to user Vi), ci = community of user Vi, and σ(ci, cj) = 1, if ci = cj,

and 0 otherwise.

ModCom works in two phases. In the first phase users are arranged in

51

a random order and each of the users is assigned to a different community.

Then for each user Vi the gain in modularity is calculated by removing it from

its own community and by assigning it to any of its friends’ communities.

User Vi is then moved to its friend Vj’s community, for which the modularity

gain is maximum. In case of no modularity gain, Vi stays in its original

community. This first phase is repeated iteratively for all of the users until

no further gain in modularity is possible. In the second phase, a new graph

consisting of the communities obtained in the first phase is created. Note

that the edge weights are recalculated for this phase. After this, the first

phase is run again and the process is continued until no further changes are

possible. For more details, see [86].

It is important to note that the difference between ModCom and ParCom is

that in ModCom the number of communities cannot be controlled explicitly

as it can be in ParCom. This affects our later experimentation.

3.3.3 Intra-Community Layout

Next, the intra-community layout module takes as input the communities

that are produced by the community detection module. For each community

it creates a layout for the users within that community. We use a greedy

heuristic to find a layout for each of the communities. The heuristic works as

follows. We start with the most popular user, i.e., the user with the highest

edge degree (=sum of link weights) and place that user in the middle of

the disk layout. Next, among all the friends of that user we choose the one

that is connected to the user with the heaviest edge. This is to ensure that

if two users are strongly connected, they should be placed close by on the

layout. In case of a tie, we choose the friend with the higher edge degree

52

(the more popular friend). Intuitively, by adding a popular user early, we

provide more choice for the greedy algorithm. We place the friend to the left

of the already placed user on the layout. We then create a modified graph

by merging the user and her friend. The edges connected to these two users

are now connected to the combined node. In case of a common friend of the

two users, we assign the weight of the edge between the combined node and

the common friend as the sum of the individual edge weights.

Next, among all the friends of this combined node we choose the one that

is connected to it with the heaviest edge and place it on the right. We repeat

the above steps iteratively by placing the friends to the left and to the right

of the already placed users alternatively.

The different components of the algorithm are presented in Algorithm 3.1

(layout algorithm), Algorithm 3.2 (finding the maximally connected friend),

and Algorithm 3.3 (creation of the combined node).

3.3.4 Inter-Community Layout

Our third component is the inter-community layout module. It takes as

input: i) the communities produced by the community detection module,

and ii) the layout produced within each community by the intra-community

layout module. The goal of this component is to create a layout of the

communities. This enables us to capture the relationships among different

communities. For example, if a community ci is strongly connected to another

community cj, these two should be placed close by on the disk – this reasoning

is similar to the one used for the intra-community layout module.

To create the inter-community layout, we create a graph using the differ-

ent communities as vertices. The weight of the edge between community

53

Algorithm 3.1 Calculate Layout L on Graph G = (V,E(w))

enum{RIGHT = 1, LEFT = 2}
left← right← (N+1)

2

Vc ← ∅
direction← RIGHT
//continue until we combine all the nodes
while size(G) > 1 do

//find the friend who is maximally connected to Vc
//in case of Vc = ∅, return the node with the highest edge degree
Vi ← max connected(Vc)
//combine Vc and Vi to create a new graph with recalculated edge

weights
(G, Vc)← combine(Vc, Vi, G)
//alternate between left and right to place Vi
if direction = LEFT then

Lleft ← Vi
right← right+ 1
direction← RIGHT

else
Lright ← Vi
left← left− 1
direction← LEFT

end if
end while

54

Algorithm 3.2 max connected(Vc)

if [theninitial state]Vc = ∅
//return the one with the highest edge degree
Vs ← Vi | edgeDegree(Vi) ≥ edgeDegree(Vj),

∀Vi ∈ V, ∀Vj ∈ V, Vi 6= Vj
if size(Vs) > 1 then

//return a random one in case of tie return random(Vi) |Vi ∈ Vr
elsereturn Vs
end if

else[normal case operation]
//select the friend connected to the heaviest edge of Vc
Vs ← Vi | edgeWeight(Vc, Vi) ≥ edgeWeight(Vc, Vj),

∀Vi ∈ friend(Vc),∀Vj ∈ friend(Vc), Vi 6= Vj
if [thenthere is a tie]size(Vs) > 1

//select the one with the highest edge degree
Vr ← Vi | edgeDegree(Vi) ≥ edgeDegree(Vj),

∀Vi ∈ Vs, ∀Vj ∈ Vs, Vi 6= Vj
if [thenthere is a tie again]size(Vr) > 1

//return a random one from the list return random(Vi) |Vi ∈ Vr
elsereturn Vr
end if

elsereturn Vs
end if

end if

55

Algorithm 3.3 combine(Vc, Vi, G = (V,E(w)))

//create a new node by joining Vc & Vi
V ′c ← createNode(Vc, Vi)
//add the new node to the set of vertices
V ← V ∪ V ′c

//start by deleting the edge between Vc & Vi
deleteEdge(Vc, Vi)
for all F ∈ friend(Vc) do

w ← edgeWeight(Vc, F)
//delete edges between Vc & its friends
deleteEdge(Vc, F)
//add edges between the new node & Vc’s friends
addEdge(V ′c , F, w)

end for
for all F ∈ friend(Vi) do

w ← edgeWeight(Vi, F)
//delete edges between Vi & its friends
deleteEdge(Vi, F)
//in case of a common friend of Vc & Vi, we already created an edge
if isEdge(V ′c , F) then

w′ ← edgeWeight(V ′c , F)
//increase the weight of the already created edge
setEdgeWeight(V ′c , F, w + w′)

else[otherwise create a new edge]
addEdge(V ′c , F, w)

end if
end for
V ← V − Vc − Vi //delete Vc & Vi from the set of vertices return (G, V ′c)

56

ci and community cj is calculated as the sum of the weights of the edges

from the members of community ci to the members of community cj. After

creating the community graph we run the same iterative algorithm as the

intra-community layout module to find a layout of the communities.

When this is done, we expand the layout within each community, which

was previously obtained from the intra-community layout module. This gives

us the final disk layout containing all the users of the social graph.

Example: We present a working example of our techniques in Figure 3.5.

This is the same graph as shown in Figure 3.3. First, the community de-

tection module splits the graph into two communities: c1={V4, V6, V7} and

c2={V1, V2, V3, V5}. Then, the intra-community module finds a layout for

both of them separately. Let us examine the steps taken by the module for

c2. Here, the first user to be chosen can be either V3 or V1, since both of them

have the highest edge weight (=3). The algorithm chooses V3 at random and

places it in the middle of the layout. Next, the algorithm considers V1, V2,

and V5 (highest edge weight connected to V3=1). V1 is chosen since it is the

most popular of all (edge degree=3). V3 and V1 are combined to V3,1 and a

new graph is constructed. Now, the algorithm considers V2 and V5 (highest

edge weight to V3,1=2), and V5 is chosen at random (both V2 and V5 are

equally popular). V3,1 and V5 are combined to obtain V3,1,5, which leaves the

algorithm with the last user (V2) to be placed. The final layout produced for

c2 is: {V2, V1, V3, V5}. Likewise, the layout produced for c1 is: {V7, V6, V4}.

The steps for the inter-community layout module is trivial, since we only

have two communities in this example. So, the final layout produced is ei-

ther {c2, c1}={V2, V1, V3, V5, V7, V6, V4}, or {c1, c2}={V7, V6, V4, V2, V1, V3, V5}

depending on which community is chosen first by the inter-community layout

module.

57

V1

V5

V3

V2

V4

V6

V7

V7

V4

V4

V2

V1

VC

V5

V2

VC

V5

V2

VC

VC

VC

VC

VC
C = {3}

C = {3, 1}

C = {6}

C = {6, 7}

C = {6, 7, 4}

C = {3, 1, 5}

C = {3, 1, 5, 2}

V7 V6 V4

V7 V6

V6

V2 V1 V3 V5

V1 V3 V5

V1 V3

V3

Next Choice

Combined Node

Layout

VC

2

2

2

1

1

1

1

1

1

1

2

1

Figure 3.5: Working example

3.4 Implementation

We implement the Bondhu system as a layout manager for the Neo4j [64]

graph database. Neo4j is a very popular and widely used graph database. It

58

is suitable for building OSN applications as it offers a graph-oriented model

for data representation. A Neo4j graph consists of nodes, relationships, and

properties. Properties are mapping from a string key to a value and can be

associated with both nodes and relationships. The part of the Neo4j storage

engine that stores properties is known as the PropertyStore.

We modify the PropertyStore of Neo4j so that the records are organized by

the layout algorithms of the Bondhu system. Note that we rely on the native

file system so our layout decisions are propagated to the disk block level,

i.e., the modified PropertyStore database produced by the Bondhu system is

stored sequentially on the disk. Therefore, we start with an empty disk and

verify with the davl [87] tool that the database file is stored sequentially on

the disk at the block level.

Our implementation of the Bondhu system is in Java. The community

detection module makes use of the METIS library [88] for the ParCom algo-

rithm.

3.5 Modeling the Social Network

In this section we present three models to capture user interaction in a social

network. We use these models to evaluate our disk layout techniques later in

Chapter 5. These models vary in the way they assign weights to the edges

between users.

3.5.1 Uniform Model

The uniform model is the simplest of the three models. In this model we as-

sign equal weight (=1) to all social network edges. In other words, according

to this model a user is equally likely to access any of her friends’ informa-

59

V1

V5

V3

V2

V4

V6

V7

2

3

3

3.5

4

3.5

3

2.5

3.5

3

(a) Preferential Model

V1

V5

V3

V2

V4

V6

V7

2

2

2

2

2

3

2

2

3

2

(b) Overlap Model

Figure 3.6: Modeling the social network

60

tion. Listing the name of all of the friends of a given user can be viewed as

an example of this model.

3.5.2 Preferential Model

The preferential model is motivated from the observation that a user with

large number of friends is likely to be more active than a user with fewer

friends, e.g., make more status updates, post more frequently, etc. In other

words, a user with a larger number of friends is more active than a user with

fewer number of friends. While browsing, a user is more likely to access the

information of the more active friends.

To capture this type of interaction, the weight of the edge (Vi, Vj) should be

proportional to the edge degree of Vj. Note that this metric is not symmetric,

i.e., if Vj has a higher edge degree than Vi, then the weight of (Vi, Vj) is higher

than the weight of (Vj, Vi). On the other hand, disk locality is symmetric in

nature and to capture that our social graph models are undirected. Therefore,

according to the preferential model the weight of the edge (Vi, Vj) is set to

[edgeDegree(Vi) + edgeDegree(Vj)] /2. In Figure 3.6(a) we assign the edge

weights according to the preferential model.

3.5.3 Overlap Model

The overlap model is motivated by the following observation: two users with

a large number of common friends are more likely to share common interests

than two users with fewer number of common friends. Therefore, the two

users with the larger number of common friends are more likely to access

each other’s information. In other words, if user Vi has p common friends

with Vj and q common friends with Vk, and if (p > q), then Vi is more likely

61

to access Vj’s data than Vk’s data.

To assign the weight of the edge (Vi, Vj) according to the overlap model,

we calculate the number of common friends c between Vi and Vj and set the

edge weight as (c + 1). We add a 1 to make sure that we do not assign a 0

weight to the edge (Vi, Vj) in case of no common friends, since an edge weight

of 0 indicates there is no edge at all. In Figure 3.6(b), we assign the edge

weights according to the overlap model.

3.6 Related Work

Data organization techniques for improving disk performance broadly fall

into two categories: i) access pattern-oblivious, and ii) access pattern-aware.

Access pattern-oblivious techniques include placing data and meta-data to-

gether as in the Fast File System and its variants [72, 89, 90], writing

data sequentially to contiguous disk segments as in the Log-structured File

System [91], and explicitly grouping small files together on disk as in C-

FFS [92]. Access pattern-aware techniques can be further categorized into

three types depending on the level of abstraction they work at: i) cylinder

level [93, 94, 95], ii) block level [96, 76, 77, 75, 97, 98], and iii) file system

level [99].

The position of Bondhu is in the middle of these two extremes. On one

hand, it is not access pattern-oblivious in the sense that it captures the

community structure of the social network. On the other hand, it is not

completely access pattern-aware in the sense that it does not make placement

decisions based on the real traffic between users.

Aside from data organization, disk performance can be significantly im-

proved using intelligent prefetching and caching techniques [76, 100]. C-

62

Miner [76], for example, uses data mining techniques to learn the block

access patterns and uses that information to make prefetching and cache

replacement decisions. The Bondhu system can be extended to make so-

cial network-aware prefetching decisions, which remains as one of our future

works.

With the recent growth of OSNs, many focused on partitioning the social

graph to make OSN applications scalable [101, 102, 69]. SPAR [69], for ex-

ample, uses partitioning and replication techniques to reduce network traffic

across servers. Bondhu, on the other hand uses partitioning and community

detection techniques for disk performance improvement. An excellent survey

on existing community detection techniques is available at [103].

63

4 EXPERIMENTAL EVALUATION OF
LFGRAPH

In this chapter, we experimentally evaluate our LFGraph system (imple-

mented in C++). We evaluate LFGraph from the viewpoint of runtime,

memory footprint, as well as overhead and balancing w.r.t. both computation

and communication. We show that our power-law-aware publish-subscribe

mechanism lowers communication overhead significantly compared to exist-

ing systems. In addition, we show that LFGraph is able to achieve commu-

nication and computation load balance by using our hash-based placement

scheme. This suggests that LFGraph successfully exploits the variability

in the degree distribution of the high degree vertices of power-law graphs.

These techniques help LFGraph perform better than existing graph analytics

frameworks.

4.1 Experimental Setup

We compare LFGraph against the best-known graph processing system, i.e.,

PowerGraph [26], using its open-source version 2.1 [104].1

PowerGraph [104, 26] offers three partitioning schemes. In increasing order

of complexity, these variants are: i) Random, ii) Batch (greedy partitioning

without global coordination), and iii) Oblivious (greedy partitioning with

global coordination).

Our target cluster is Emulab and our setup consists of 32 servers each with

1Although GraphLab has lower communication overhead, its implementation is slower
than PowerGraph.

64

a quad-core Intel Xeon E5530, 12 GB of RAM, and connected via a 1 GigE

network. Due to brevity, we present results from only: 1) the Twitter graph

containing 41M vertices and 1.4B edges (Table 2.3), and 2) larger synthetic

graphs with log-normal degree distribution, containing 1B vertices and up to

128B edges. Note that although some benchmarks such as Graph500 [105]

target much larger graphs, they are intended for rating supercomputer sys-

tems. In addition, the vertex to server ratio is much lower in the Graph 500

benchmark compared to real-world analytics jobs. So, we focus on scenarios

which conform to real-world settings.

We study three main benchmarks: i) PageRank, ii) Single-Source Short-

est Path (SSSP), and iii) Triangle Counting. These applications are chosen

because they exhibit different computation and communication patterns: in

PageRank all vertices are active in all iterations, while in SSSP the num-

ber of active vertices rises in early iterations and falls in later iterations.

Thus PageRank is more communication-intensive while SSSP exhibits com-

munication heterogeneity across iterations. However, in both PageRank and

SSSP the values maintained by vertices are of fixed size. So, we examine

LFGraph’s behavior under the Triangle Counting benchmark. In addition

to the variable-sized values, the Triangle Counting benchmark operates on

an undirected graph. So, it helps us to better understand LFGraph’s perfor-

mance under bidirectional information flows.

We summarize our key conclusions:

• For communication-heavy analytics such as PageRank, when including

the partitioning overhead, LFGraph exhibits 5x to 380x improvement

in runtime compared to PowerGraph, while lowering memory footprint

by 8x to 12x.

65

• When ignoring the partitioning overhead, LFGraph’s per-iteration run-

time is 2x faster than the best PowerGraph variant.

• Intelligent partitioning is prohibitive at most cluster sizes. In a small

cluster, distributed graph processing is compute-heavy, thus intelligent

partitioning (e.g., in PowerGraph) has little effect. In a large cluster, in-

telligent partitioning can speed up iterations, however the partitioning

cost itself increases with cluster size and contributes sizably to runtime.

• LFGraph’s hash-based placement scheme achieves both computation

and communication balance across workers, and lowers overall runtime.

4.2 PageRank Benchmark

4.2.1 Runtime

We ran the PageRank benchmark with 10 iterations2 on the Twitter graph.

Figure 4.1 compares LFGraph against the three PowerGraph variants. This

plot depicts runtime ignoring the partitioning iteration for PowerGraph’s

Oblivious and Batch variants. Each datapoint is the median over 5 trials.

The reader will notice missing data points for PowerGraph at cluster sizes

of 4 servers and fewer. This is because PowerGraph could not load the graph

at these small cluster sizes – this is explained by the fact that it stores both

in-links and out-links for each vertex, as well as book-keeping information,

e.g., mirror locations.

Among the PowerGraph variants, random partitioning is the slowest com-

pared to the intelligent partitioning approaches – this is as expected, since

partitioning makes iterations faster. However, LFGraph is 2x faster than the

2Our conclusions hold even with larger number of iterations.

66

best PowerGraph variant. Thus, even on a per-iteration basis, LFGraph’s

one-pass compute and fetch-once behavior yields more benefit than Power-

Graph’s intelligent partitioning.

 0

 20

 40

 60

 80

 100

 120

1 2 4 8 16 32

T
im

e
(s

ec
)

Number of servers

LFGraph
PowerGraph-Random

PowerGraph-Oblivious
PowerGraph-Batch

Figure 4.1: PageRank runtime comparison for Twitter graph (10
iterations), ignoring partition time.

Next, Figure 4.2 includes the partitioning overhead in the runtime, and

shows runtime improvement of LFGraph. In a small cluster with 8 servers,

LFGraph is between 4x to 100x faster than the PowerGraph variants. In

a large cluster with 32 servers the improvement grows to 5x–380x. The

improvement is the most over the intelligent partitioning variants of Power-

Graph because LFGraph avoids expensive partitioning.

LFGraph’s improvement increases with cluster size. This indicates in-

telligent partitioning is prohibitive at all cluster sizes. In a small cluster,

distributed graph processing is compute-heavy thus intelligent partitioning

(e.g., in PowerGraph) has little effect. In a large cluster, intelligent partition-

ing can speed up iterations – however, the partitioning cost itself is directly

proportional to cluster size and contributes sizably to runtime.

67

 1

 10

 100

 1000

8 16 32

Fa
ct

or
 im

pr
ov

em
en

t

Number of servers

Random
Oblivious

Batch

Figure 4.2: PageRank runtime improvement for Twitter graph (10
iterations), including partition time.

4.2.2 Memory Footprint

While PowerGraph stores in- and out-links and other book-keeping infor-

mation, LFGraph relies only on in-links and publish-lists (Section 2.3). We

used the smem tool to obtain LFGraph’s memory footprint. For PowerGraph

we used the heap space reported in the debug logs. Figure 4.3 shows that

LFGraph uses 8x to 12x less memory than PowerGraph.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

1 2 4 8 16 32

M
em

or
y

fo
ot

pr
in

t
(G

B)

Number of servers

LFGraph
PowerGraph

Figure 4.3: Memory footprint of LFGraph and PowerGraph

68

 0

 50

 100

 150

 200

 250

 300

 350

1 2 4 8 16 32

Pe
r

se
rv

er
 n

et
w

or
k

co
m

m
un

ic
at

io
n

(M
B)

Number of servers

LFGraph
PowerGraph

Figure 4.4: Network communication for LFGraph and PowerGraph

4.2.3 Communication Overhead

Figure 4.4 shows that LFGraph transfers about 4x less data per server than

PowerGraph – this is consistent with our analysis in Section 2.4. We also

notice that the LFGraph’s communication reaches a peak at about 4 servers.

This is because the per-server overhead equals the total communication over-

head divided by the number of servers. As the cluster size is increased, there

is first a quick rise in the total communication overhead (see Section 2.4 and

Figure 2.3). Thus the per-server overhead rises at first. However as the total

communication overhead plateaus out, the cluster size increase takes over,

thus dropping the per-server overhead. This creates the peak in between.

Finally, we observe that although the total communication overhead rises

with cluster size (Figure 2.3), in the real deployment the per-iteration time

in fact falls (Figure 4.1). This is because of two factors: i) communication

workers schedule network transfers in parallel, and ii) Emulab offers full

bisection bandwidth offered between every server pair. Since (ii) is becoming

a norm, our conclusions generalize to many datacenters.

69

4.2.4 Computation and Communication Balance

As a counterpart to Section 2.5, Figure 4.5 shows, for different cluster sizes,

the average overhead at a server (measured in time units) along with the stan-

dard deviation bars. The small bars indicate good load balance in LFGraph.

The communication bars are smaller than the computation bars primarily

due to the stability of Emulab’s VLAN.

 0

 5

 10

 15

 20

 25

 30

 35

2 4 8 16 32

T
im

e
(s

ec
)

Number of servers

Computation balance

(a) Computation Balance

 0

 2

 4

 6

 8

 10

 12

2 4 8 16 32

T
im

e
(s

ec
)

Number of servers

Communication balance

(b) Communication Balance

Figure 4.5: Computation and communication balance in LFGraph

70

 0

 10000

 20000

 30000

 40000

 50000

 60000

1 2 4 8 16 32

T
im

e
(m

s)

Number of servers

Computation
Communication

Figure 4.6: Communication and computation split of PageRank
computation

4.2.5 Computation vs. Communication

Figure 4.6 shows the split between computation and communication at differ-

ent cluster sizes. First, computation time decreases with increasing number

of servers, as expected from the increasing compute power. Second, com-

munication time variation with cluster size mirrors the per-server network

overhead plotted in Figure 4.4 and discussed earlier. Third, compute domi-

nates communication in small clusters. However, at 16 servers and beyond,

the two phases take about the same time as each other. This indicates that

the importance of balancing computation and communication load in order

to achieve the best runtime. LFGraph achieves this balance.

4.2.6 Improvement Breakdown

In order to better understand the sources of improvement in LFGraph we

plot the overall runtime of 10 iterations of PageRank along with the time

spent in the communication phase for both LFGraph and PowerGraph in

Figure 4.7. Note that although communication and computation are disjoint

71

in LFGraph, they overlap in PowerGraph. So, it is impossible to accurately

measure the communication-computation split in PowerGraph. Therefore,

we assume that the time spent in communication is proportional to the

amount of data transferred and calculate the communication time of Power-

Graph. The plot indicates that LFGraph’s performance improvement is due

to shorter communication and computation phases. First, LFGraph transfers

less data. So, communication phase is shorter. Second, LFGraph processes

only incoming edges. So, its computation phase is shorter compared to that

of PowerGraph.

 0

 20000

 40000

 60000

 80000

 100000

 120000

8 16 32 8 16 32

T
im

e
(m

s)

Number of servers

Total
Communication

PowerGraphLFGraph

Figure 4.7: Breakdown of performance gain in LFGraph compared to
PowerGraph

One important observation from the plot is: although we expected the

computation phase to be 2x faster in LFGraph compared to PowerGraph,

the improvement is ranging from 5x to 7x. This is because communication

and computation are overlapping in PowerGraph. So, the increased commu-

nication overhead is negatively affecting the computation time as well. In

addition, because communication and computation are disjoint in LFGraph,

we can optimize communication by batching data transfers. On the other

hand, PowerGraph is unable to perform such optimizations. So, the time re-

72

quired for communication is much higher in PowerGraph than what is shown

in the plot.

4.2.7 PageRank on Undirected Graph

We repeat the PageRank benchmark on the Twitter Graph by making the

edges undirected. This is important for two reasons. First, we showed in

Section 2.4.1 that LFGraph’s improvement over PowerGraph is the largest

when the incoming and outgoing edge lists of vertices are disjoint. The

improvement is the lowest when the incoming and outgoing edge lists of

vertices overlap completely, i.e., the graph is undirected. So, this experiment

provides more insight on LFGraph’s runtime and communication overhead for

undirected graphs. Second, it is important to compare the memory overhead

of LFGraph and PowerGraph for undirected graphs because PowerGraph

already stores both incoming and outgoing edges. So, in case of an undirected

graph PowerGraph’s memory overhead for storing the edge list should be

equal to that of LFGraph’s.

 0

 20

 40

 60

 80

 100

 120

 140

2 4 8 16 32

T
im

e
(s

ec
)

Number of servers

LFGraph
PowerGraph

Figure 4.8: PageRank runtime comparison for undirected Twitter graph
(10 iterations), ignoring partition time.

Figure 4.8 shows PageRank runtime on the undirected version of the Twit-

73

ter graph for 10 iterations, ignoring partition time. As before, PowerGraph

was unable to load the graph on less than 8 servers. Interestingly, LFGraph

was unable to run the benchmark on a single server, because of the increased

size of the undirected version of the graph. We see that even for undirected

graphs LFGraph runs faster compared to PowerGraph. However, the im-

provement is 5x as opposed to the 6x observed in the directed graph case.

 0

 50

 100

 150

 200

 250

 300

 350

2 4 8 16 32

Pe
r

se
rv

er
 n

et
w

or
k

co
m

m
un

ic
at

io
n

(M
B)

Number of servers

LFGraph
PowerGraph

Figure 4.9: Network communication for LFGraph and PowerGraph on
undirected Twitter graph

The reduction in improvement is justified by Figure 4.9, where we plot

the communication overheads of LFGraph and PowerGraph. For undirected

graphs, LFGraph’s communication overhead is up to 3.4x lower compared to

PowerGraph’s. Note that for directed graphs LFGraph exhibited 4.8x lower

communication overhead compared to PowerGraph. This behavior conforms

to our analysis in Section 2.4.1.

Finally, in Figure 4.10, we show the memory overhead for LFGraph and

PowerGraph for the undirected Twitter Graph. Contrary to our speculation,

we observe that LFGraph’s memory overhead is significantly lower compared

to PowerGraph’s memory overhead. This is for two reasons. First, Power-

Graph has to maintain location information of the mirrors, which requires

74

 0

 2

 4

 6

 8

 10

 12

2 4 8 16 32

M
em

or
y

fo
ot

pr
in

t
(G

B)

Number of servers

LFGraph
PowerGraph

Figure 4.10: Memory footprint of LFGraph and PowerGraph for the
undirected Twitter graph

additional memory. Second, PowerGraph maintains two lists even for undi-

rected graphs when the incoming and outgoing lists are identical. Therefore,

we conclude that LFGraph performs better than PowerGraph even for undi-

rected graphs for the PageRank benchmark.

4.3 SSSP Benchmark

We ran the SSSP benchmark on the Twitter graph. The benchmark ran for

13 iterations. Figure 4.11 shows the comparison between LFGraph and the

three PowerGraph variants, ignoring the partitioning time for PowerGraph’s

Oblivious and Batch strategies.

First, we observe that LFGraph successfully ran the benchmark on a small

cluster (4 servers and less), while PowerGraph could not, due to its memory

overhead. Second, unlike in PageRank (Section 4.2), LFGraph and Pow-

erGraph are comparable. At 8 servers, LFGraph’s performance is similar

to that of PowerGraph’s random placement but worse than PowerGraph’s

intelligent placement strategies. This is due to two factors: i) SSSP in-

75

 0

 10

 20

 30

 40

 50

 60

 70

 80

1 2 4 8 16 32

T
im

e
(s

ec
)

Number of servers

LFGraph
PowerGraph-Random

PowerGraph-Oblivious
PowerGraph-Batch

Figure 4.11: SSSP runtime comparison for Twitter graph, ignoring
partition time

curs less communication than PageRank, especially in later iterations, and

ii) LFGraph does not store out-links, thus unlike PowerGraph it cannot ac-

tivate/deactivate vertices for the next iteration. Recall that in LFGraph,

a vertex has to iterate through all of its in-neighbors to check which were

updated in the previous iteration.

At 16 servers and beyond, LFGraph is better than PowerGraph’s random

placement. At 32 servers LFGraph exhibits similar runtime as the Oblivious

and Batch strategies. This is because communication starts to dominate

computation at these cluster sizes.

Finally, Figure 4.12 shows LFGraph’s improvement over the PowerGraph

variants, when including the partitioning time. We observe up to a 560x

improvement.

We conclude that for SSSP-like analytics LFGraph is almost always prefer-

able to PowerGraph, with the only exception being the corner-case scenario

where the graph is loaded once and processed multiple times and in a cluster

that is medium-sized (8–16 servers in Figure 4.11).

76

 0.1

 1

 10

 100

 1000

8 16 32

Fa
ct

or
 im

pr
ov

em
en

t

Number of servers

Random
Oblivious

Batch

Figure 4.12: SSSP runtime improvement for Twitter graph, including
partition time

4.4 Larger Graphs

We create 10 synthetic graphs varying in number of vertices from 100M to

1B, and with up to 128B edges. We run the SSSP benchmark on it. These

graphs are generated by choosing out-degrees from a log-normal distribution

with µ = 4 and σ = 1.3, with out-neighbors selected at random. To avoid the

network overhead for graph creation, we cap the in-degree of each vertex at

128 and choose in-neighbors at random such that the probability of choosing a

vertex as an in-neighbor follows the aforesaid log-normal distribution. Other

papers [27] have used similar graphs for evaluating their systems.

We performed this experiment on a slightly different setup – a 12 server

Emulab cluster with each server containing four 2.2 GHz E5-4620 Sandy

Bridge processors, 128 GB RAM, and connected via a 10 GigE network.

Figure 4.13 shows the results for LFGraph. We juxtapose the Pregel per-

formance numbers from [27] – those Pregel experiments used 300 servers with

800 workers. In comparison, our LFGraph deployment with only 12 servers

with 96 workers uses around 10x less compute power. Even so we observe an

overall improvement in runtime. The cores per server ratio is higher in the

77

 0

 100

 200

 300

 400

 500

 600

 700

 800

100 200 300 400 500 600 700 800 900 1000

T
im

e
(s

ec
)

Number of vertices (millions)

LFGraph
Pregel

Figure 4.13: SSSP runtime for a synthetic graph

LFGraph setting – we believe this is in keeping with current architecture and

pricing trends. Thus we conclude that LFGraph can perform comparably to

industrial-scale systems while using only a fraction of the resources.

4.5 Undirected Triangle Count Benchmark

Finally, we present results from undirected triangle count benchmark on the

undirected version of the Twitter graph in Figure 4.14. Here, the values

associated with the vertices are the edge-lists. So, the sizes of values are

variable and large compared to PageRank (a single floating point) and SSSP

(a single integer). So, this benchmark is communication intensive.

Due to the extensive resource requirement of Triangle Counting computa-

tion, we performed this experiment on a beefier cluster – an 8 server Emulab

cluster with each server containing four 2.2 GHz E5-4620 Sandy Bridge pro-

cessor, 128 GB RAM, and connected via a 10 GigE network. We make two

important observations here. First, LFGraph outperforms PowerGraph in

terms of runtime by almost a factor of 2. Second, the computation could not

be performed on a single machine in case of PowerGraph due to its extensive

78

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

1 2 4 8

T
im

e
(s

ec
)

Number of servers

LFGraph
PowerGraph

Figure 4.14: Triangle Counting on the undirected Twitter Graph

memory requirement. Thus, LFGraph outperforms PowerGraph in terms of

both runtime and memory overhead for communication heavy workloads.

4.6 Summary

We have presented LFGraph, a system for fast, scalable, distributed, in-

memory graph analytics. We have shown analytically that LFGraph’s power-

law-aware techniques incur lower communication overhead than existing sys-

tems, and exhibit good load balance. These techniques help LFGraph to

offer low pre-processing overhead, low memory footprint, and good scalabil-

ity. LFGraph is faster than the best existing system by 380x for PageRank

and by 560x for SSSP. We have also shown, analytically and experimen-

tally, that intelligent graph partitioning schemes yield little benefit and are

prohibitive.

79

5 EXPERIMENTAL EVALUATION OF
BONDHU

In this chapter, we present the experimental evaluation of the Bondhu system.

First, we present a visualization of disk block access patterns to show that

the graph-aware placement techniques in Bondhu cluster disk accesses. Later,

we show the effectiveness of clustered disk accesses in lowering the response

time for OSN queries. We also present results by varying the granularity of

clusters. Our experimental results indicate that while taking the small world

nature (i.e., community structure) into account yields clear benefits, models

with more complexity beyond the graph structure may yield low additional

benefit.

5.1 Experimental Setup

We use the Facebook New Orleans dataset collected in [78]. This dataset

contains 63731 users and 817090 links. We assign appropriate weights to

the social graph according to our uniform, preferential, and overlap models.

Unless otherwise specified the experiments are based on the uniform model.

We run two instances of Neo4j that store the above OSN – one with the

integrated Bondhu system handling the data layout and the other one is the

unmodified Neo4j. We call the data layout scheme of the unaltered Neo4j

the default layout. Based on the method used in the community detection

module, the Bondhu system has two data layout schemes built-in: ParCom

and ModCom (see Section 3.3 for details).

80

We use two metrics to evaluate the data layout schemes of the Bondhu

system. The first metric is the cost as defined in Section 3.2 (Equation 3.1).

The cost metric measures the spatial clustering of the friends of a user on the

disk. Therefore, a lower cost means that the data of related users are placed

close by on the disk. Thus, operations like listing friends and wall posts will

be faster. Our second metric is response time. This measures the time to

fetch data blocks from all the friends of a random user. This captures the

performance of an application with our layout schemes. An improvement in

the response time metric suggests that the disk is able to handle more requests

per unit time and that the user-perceived delay in getting the response to

a request is reduced. We next describe the workload we use to measure the

response time metric.

Our workload captures the event of listing the friends of a user, which is

a very common operation in an OSN. To do this we build a sample OSN

application on top of Neo4j. First, we populate the Neo4j database with the

social graph. Next, we store a data block (property in Neo4j) for each user in

the graph. The Bondhu system handles the data layout automatically beyond

that point. Next, we write an automated script that logs into the system as

a random user and fetches the data blocks for all the friends of that user.

We measure the response time for the whole operation. To make sure that

the response time is not adversely affected by other processes accessing the

disk at the same time, we carry out the same operation 6 times and take the

minimum. We repeat this for 1500 random users. We use the same workload

for all of our experiments except for the one on the effect of different models

(Section 5.8).

To ensure that the data is served from the disk (and not from the previous

cached results in the memory) we flush the memory as follows: First, we use

81

0 23 46 69 93 116 139 162 186
Request Time (seconds)

0

3

6

9

12

M
B

/s

0 23 46 69 93 116 139 162 186
Request Time (seconds)

0

30

60

90

120

S
e
e
ks

 /
 s

e
c

0 23 46 69 93 116 139 162 186
Request Time (seconds)

1161333

1169416

1177499

1185582

1193666
D

is
k

o
ff

se
t

(M
B

)

Disk IO

Figure 5.1: Blocks accessed in Neo4j with the Bondhu system handling
data layout. Compare with Figure 3.1 (default approach).

the sync command to write any buffered data to disk. Then, we use the

drop caches mechanism in the Linux kernel to drop the pagecache, dentries,

and inodes from the memory, causing the memory to be free from any cached

data. All our experiments are conducted on an HP DL160 compute block

with 2 quad core Intel Xeon 2.66 GHz processors, 16 GB of memory, and 2

TB of storage.

5.2 Visualization of Block Access Patterns

To contrast with the disk block access patterns of the default layout pre-

sented in Section 3.1, we repeat the same experiment with Bondhu enabled

Neo4j system. Here we use ParCom with 64 communities. Per user data size

is 400KB as before. We conduct our workload based measurements and trace

the block level I/O for each user request. The visualization of the trace is

presented in Figure 5.1. Each dot shows a read request, its disk offset, and

time of request. Here, we observe a significantly better disk block access pat-

tern compared to Figure 3.1. In Figure 3.1 the block accesses were scattered,

whereas in Figure 5.1 the block accesses are clustered (prominent at 23, 46,

116–139 seconds). This suggests that the Bondhu system is clustering the

82

related friends’ data close by on the disk. This translates to less disk arm

movement and thus faster seek and response time.

5.3 Effect of Data Size

In an OSN application the data associated with a particular user can be of

different sizes, e.g., it may contain any of name, address, profile picture, wall

posts, etc. Therefore, it is important to see the effect of varying user data

block sizes on the performance of the layout algorithms. First, we examine

the effect of varying data block sizes on the response time metric. Then we

present a scatter plot to show the correlation between the improvement in the

cost metric and the improvement in the response time metric. This shows to

what extent the improvement in data locality translates to the improvement

in response time.

For this experiment we create data blocks of 4B, 40B, 400B, 4KB, 40KB,

and 400KB for each of the users and conduct our workload based measure-

ment. We use ParCom with 64 communities, compare it with the default

layout, and plot the improvement in the response time metric (the lower

the response time compared to the default layout, the more is the improve-

ment). We plot the CDF of the improvement for the different data sizes in

Figure 5.2(a) and the 5th percentile, quartiles, and the 95th percentile of the

same results in Figure 5.2(b).

We see a 22% to 48% median improvement in response time compared to

the default layout across various data sizes. The Bondhu layout manager per-

forms best when the user data size is 40B. When the data sizes increase from

4B to 40B we see an increase from 42% to 48% in the median improvement

compared to the default layout. Beyond that, the improvement percentage

83

-80
-60
-40
-20
 0

 20
 40
 60
 80

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1%
 im

pr
ov

em
en

t
in

 r
es

po
ns

e
tim

e
ov

er
 d

ef
au

lt
la

yo
ut

CDF

4 B
40 B

400 B

4 KB
40 KB

400 KB

(a) CDF

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

4B 40B 400B 4KB 40KB 400KB%
 im

pr
ov

em
en

t
in

 r
es

po
ns

e
tim

e
ov

er
 d

ef
au

lt
la

yo
ut

Data size

5th Percentile
Quartiles

Median
95th Percentile

(b) 5th percentile, quartiles, and 95th percentile

Figure 5.2: Percentage of improvement in response time compared to the
default layout for various data sizes (without caching)

decreases and at 400KB the median improvement reaches 22%.

The reasoning for the above behavior is as follows. The native file system

reads data in chunks of 4KB blocks. Therefore, when user block sizes are

small, a file system read fetches multiple users’ data together. For example,

with 4B user block size, a read yields around 1024 users’ data. With 40B

user block size, a read yields around 102 users’ data, and with 400B user

block size, a read yields around 10 users’ data. Due to the randomness of the

data placement scheme of the default layout, the expected number of friends

84

present per read decreases by a factor of 10 when data block sizes grow from

4B to 40B to 400B. For Bondhu, however, the expected number of friends

present per read does not decrease much when data block sizes grow from

4B to 40B. This is due to the clustering property of Bondhu. In contrast,

when the block sizes grow from 40B to 400B, the expected number of friends

present in per read decreases dramatically. Therefore, we see the drop in

improvement after 40B.

In summary, when user data size is smaller than the file system block size,

the improvement is high due to fact that a single file system read yields

more correlated data. So, the number of seeks required to fetch all friends’

data is reduced. This phenomenon begins to vanish when user data sizes

grow larger than the file system block size. Beyond that point, the Bondhu

system improves performance by reducing the seek distance.

Next, Figure 5.3 examines the correlation between the improvement in the

cost metric and the improvement in the response time. This shows how

the smart placement decision of the Bondhu system translates to better

application-level performance. As defined in Section 3.2, the cost metric

for a user is the sum of differences between the user and her friends’ data

location. We calculate the cost metric for the users using the placement in

both the default layout and the ParCom layout. A larger cost denotes that

the friends of a user are far away in the disk. We then calculate the fraction

of improvement by using the ParCom layout scheme of the Bondhu system

over the default layout. For the corresponding users we measure the fraction

of improvement in response time metric and plot the results using a scatter

plot. The results are presented in Figures 5.3(a) and 5.3(b) for two different

data sizes. Figure 5.3(a) shows good correlation since most points are along

the x = y line. For Figure 5.3(b) the correlation is less prominent because of

85

-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1

Im
pr

ov
em

en
t

in
 r

es
po

ns
e

tim
e

ov
er

 d
ef

au
lt

la
yo

ut

Cost improvement over default layout

(a) Data size: 40B

-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1

Im
pr

ov
em

en
t

in
 r

es
po

ns
e

tim
e

ov
er

 d
ef

au
lt

la
yo

ut

Cost improvement over default layout

(b) Data size: 400KB

Figure 5.3: Correlation between cost improvement and response time
improvement (without caching)

the prior discussion.

5.4 Effect of Caching

In the previous section we ensure that all the requests are served from the

disk and not from the memory. However, serving results from the memory

reduces the response time by a large fraction for any application. So, we

enable caching for both Neo4j and Bondhu. The results presented in this

86

-100

-50

 0

 50

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1%
 im

pr
ov

em
en

t
in

 r
es

po
ns

e
tim

e
ov

er
 d

ef
au

lt
la

yo
ut

CDF

4 B
40 B

400 B

4 KB
40 KB

400 KB

(a) CDF

-20

-10

 0

 10

 20

 30

 40

 50

4B 40B 400B 4KB 40KB 400KB%
 im

pr
ov

em
en

t
in

 r
es

po
ns

e
tim

e
ov

er
 d

ef
au

lt
la

yo
ut

Data size

5th Percentile
Quartiles

Median
95th Percentile

(b) 5th percentile, quartiles, and 95th percentile

Figure 5.4: Percentage of improvement in response time compared to the
default layout for various data sizes (with caching)

section examine the effect of caching on the response time metric.

We use the same workload as discussed earlier, but without flushing the

cache between successive user requests. A user issues 10 successive requests

to fetch the data blocks of all of her friends. As before we conduct this

experiment for 1500 randomly selected users.

As with the previous experiment, we plot the CDF of the improvement

in response time for the different data block sizes in Figure 5.4(a) and the

5th percentile, quartiles, and the 95th percentile of the same results in Fig-

87

-1

-0.5

 0

 0.5

 1

-1 -0.5 0 0.5 1Im
pr

ov
em

en
t

in
 r

es
po

ns
e

tim
e

ov
er

 d
ef

au
lt

la
yo

ut

Cost improvement over default layout

Data size: 400KB

Figure 5.5: Correlation between cost improvement and response time
improvement (with caching)

ure 5.4(b). When the data size is small we do not see much improvement

using our layout scheme. As the data sizes increase from 4KB to 40KB to

400KB the benefit of using the Bondhu system kicks in as seen by the rise

in median response time improvement from 0% to 16% to 26% respectively.

This is because when the data sizes are small, the information of all the users

can be kept in memory. Therefore, requests for data can be readily served

from the memory for the default layout as well as for the Bondhu layout

schemes. When the data size grows beyond some threshold (40KB here), all

the user data blocks cannot be kept in memory. If the data cannot be served

from memory, it has to be fetched from disk and thus the previous section’s

described behavior kicks in.

To investigate whether the improvement in response time for larger data

sizes is indeed due to the placement decisions by the Bondhu system, we

present a scatter plot of the improvement in response time vs. the improve-

ment in the cost metric in Figure 5.5. This is similar to the one presented

in the previous section but with caching enabled. We observe a fair amount

of correlation between the improvement in the two metrics in this case as

88

well. However, the correlation is not as strong as in Figure 5.3(b). With

caching enabled, a fraction of the friends’ data will be readily available in

the memory. For the already cached data no disk read will be performed.

In summary, the worst case median improvement achieved by Bondhu is

0% (small data sizes with caching) and the best case improvement in 48%

(medium data sizes without caching). Thus, it is always preferable to use

Bondhu.

5.5 Effect of Number of Communities in ParCom

One of the parameters that can be tuned in ParCom is the number of com-

munities. The fewer the number of communities, the larger the size of a

community. For instance, with 1 community, the layout decision is solely

handled by the intra-community layout module. With an increase in the

number of communities, the inter-community layout module influences lay-

out more. For a given social network graph, we desire to tune the number of

communities in such a way that the best disk layout is obtained.

We vary the number of communities in ParCom and examine the improve-

ments in the cost metric and in the response time metric over the default

layout. The workload is the same as discussed earlier and the data size per

user is 4KB. The results are presented in Figures 5.6(a) and 5.6(b) respec-

tively. In Figure 5.6(a) we see that as the number of communities increases

from 2 to 32 we experience a steady improvement in the cost metric. When

we have fewer communities, the intra-community detection module is mostly

responsible for the layout and the Bondhu system does not capture the com-

munity structure of the social graph. Therefore, the improvement grows

quickly as the number of communities is increased. However, this curve

89

-80

-60

-40

-20

 0

 20

 40

 60

 80

 100

2 4 8 16 32 64 128 256 512 1024

%
 c

os
t

im
pr

ov
em

en
t

ov
er

de
fa

ul
t

la
yo

ut

Number of communities

5th Percentile
Quartiles

Median
95th Percentile

(a) Percentage of cost improvement over default layout

-40

-20

 0

 20

 40

 60

 80

2 4 8 16 32 64 128 256 512 1024

%
 im

pr
ov

em
en

t
in

 r
es

po
ns

e
tim

e
ov

er
 d

ef
au

lt
la

yo
ut

Number of communities

5th Percentile
Quartiles

Median
95th Percentile

(b) Percentage of improvement in response time over default layout

Figure 5.6: Performance of ParCom

hits a knee at 64 communities and plateaus out thereafter. This is because

the community detection module has lower marginal utility in finding more

community structure in the graph towards the right end of the plot.

A similar pattern is observed in Figure 5.6(b), where we plot the improve-

ment in the response time metric over the default layout for different number

of communities. When the number of communities is 2, the median improve-

ment in the response time metric is around 11% for ParCom and this grows

quickly. The knee is reached at 32 communities, where the response time of

90

ParCom is 40% lower than that of the default layout. The reasoning is the

same as in the previous paragraph.

5.6 Performance of ModCom

We now focus on ModCom and examine the improvements in the cost met-

ric and the response time metric over the default layout. Unlike ParCom

we cannot set the number of communities in ModCom since the number of

communities evolve depending on the structure of the social graph. How-

ever, ModCom produces communities at different granularities. Recall that

the algorithm is iterative – at level 0, there are as many communities as the

number of nodes. Level (i + 1) combines the communities of level i, and

produces fewer communities. We configure the Bondhu system so that it can

organize the disk layout based on the communities found at any level. For

example, if we set level=2, then the community detection module produces

388 communities which is then fed to the intra- and intra-community layout

modules in succession. The workload and the metrics considered are same

as the other experiments. Data block size for each user is set to 4 KB.

In Figure 5.7(a) we present the improvement in cost metric compared to the

default layout for varying number of communities found by the community

detection module. We observe that unlike ParCom, the median improvement

(≈ 67%) does not change much by varying the number of communities. This

is because ModCom does not produce a community until it has found a good

one (based on the value of the modularity). For the same reason, a flat

pattern is observed for the response time metric in Figure 5.7(b).

91

-80
-60
-40
-20
 0

 20
 40
 60
 80

 100

3687 388 218 210

%
 c

os
t

im
pr

ov
em

en
t

ov
er

 d
ef

au
lt

la
yo

ut

Number of communities

5th Percentile
Quartiles

Median
95th Percentile

(a) Percentage of cost improvement over default layout

-40

-20

 0

 20

 40

 60

3687 388 218 210%
 im

pr
ov

em
en

t
in

 r
es

po
ns

e
tim

e
ov

er
 d

ef
au

lt
la

yo
ut

Number of communities

5th Percentile
Quartiles

Median
95th Percentile

(b) Percentage of improvement in response time over default layout

Figure 5.7: Performance of ModCom

5.7 Organ Pipe Layout

Next, we compare our layout algorithm with the popular organ pipe algo-

rithm [73, 74], which is used in multimedia file systems. Given a set of

records R1, R2, . . . , RN with global access probabilities P1, P2, . . . , PN , and∑N
i=1 Pi = 1, the organ pipe algorithm places the record Ri with the largest

Pi in the middle and then iteratively places the record with the next largest

Pi alternatively to the left and to the right of the already placed record(s).

So, according to the organ pipe scheme, the most popular user (the user with

92

-80

-60

-40

-20

 0

 20

 40

 60

 80

 100

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

%
 im

pr
ov

em
en

t
in

 r
es

po
ns

e
tim

e
ov

er
 d

ef
au

lt
la

yo
ut

CDF

Organ-pipe
Bondhu (ParCom)

Median

Figure 5.8: Comparison with organ pipe layout

the largest edge degree) is placed in the middle and the users with the next

largest edge degrees are placed alternately to the left and to the right of the

already placed user(s).

We modify the Bondhu system to organize data according to the organ

pipe scheme and compare it with ParCom (number of communities=64).

Figure 5.8 plots the CDF of the improvements of the response time metric

compared to the default layout for both. The data block size for each user

is 4KB and the workload is the same as the preceding experiments.

The organ pipe is better than the default layout by 10% (on average), but

ParCom outperforms the default layout by 38%. The organ pipe scheme

assumes that popular users are popular across the system, which is not valid

for an OSN. An OSN has a very specific community structure and in this

structure popular users are popular only among their friends.

5.8 Effect of Different Models

So far all the experimental results are based on the uniform model. In this

section we present results using the different models presented in Section 3.5:

93

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

pref:pref

pref:over

pref:unif

over:pref

over:over

over:unif

unif:pref

unif:over

unif:unif

def:pref

def:over

def:unif

R
es

po
ns

e
tim

e
(m

s)

Models (model:workload)

5th Percentile
Quartiles

Median
95th Percentile

Figure 5.9: Effect of different models

i) the preferential model, ii) the overlap model, and iii) the uniform model.

To provide as a baseline for comparison we also present results using the

default layout. We use the same social graph as the previous experiments.

Data block size for each user is 4KB. The Bondhu system takes the model as

the input, creates a layout using that model, and organizes the data according

to that layout.

We use 3 different workloads based on the graph models. First, in the

uniform workload we randomly select a user who issues a request to access

one of her friends’ blocks at random. Second, in the preferential workload

the randomly selected user issues a request to access a friends’ data blocks

with probability proportional to the friend’s degree. Third, in the overlap

workload the randomly selected user issues a request to access one of her

friends’ data blocks with probability proportional to the number of common

friends with the friend. In each of these workloads a user issues 1000 suc-

cessive requests and the response time is measured. Each measurement is

taken 10 times and we take the minimum response time. We conduct this

experiment for 1000 users in total.

We run each of the 3 workloads on the 4 different layouts and present the

94

results in Figure 5.9. Each run of the experiment is denoted by (model :

workload), where model denotes the models we use: {preferential, overlap,

uniform, default} and workload denotes the workloads we use: {preferential,

overlap, uniform}. We plot the 5th percentile, quartiles, and the 95th per-

centile of the response time for all of the runs.

We make three observations from this plot. First, the default layout per-

forms twice worse than any of the other models (median response time:

175ms). Second, the performance of the layout produced by the uniform

model is quite comparable to the performance of the layout produced by the

preferential and overlap models. Third, the performance of a specific layout

does not vary much over the different workloads.

One directional conclusion from these observations is that although it is

possible to create complex models (e.g., [106]) to capture user interactions in

a social network, often the simplest model (such as the uniform model) is suf-

ficient to make important disk layout decisions. Taking more complex models

into account may yield little added benefit for the amount of effort involved.

The social graph structure is the biggest influence on disk performance.

5.9 Effect of OSN Evolution

With the evolution of the OSN, the layout may need to be reorganized to

reflect the new social graph. While techniques for modifying disk layout

incrementally are beyond the scope of this thesis, we examine how frequently

the layout needs to be reorganized. To do this, we first create older versions

of the graph by removing edges and nodes at random respectively. Next we

use the layout obtained from that older version to host the latest version of

the graph. The nodes in the latest graph that are not present in the older

95

-160

-140

-120

-100

-80

-60

-40

-20

 0

 10 20 30 40 50 60 70 80 90

%
 c

os
t

de
gr

ad
at

io
n

fr
om

 a
ct

ua
l l

ay
ou

t

% of edges removed

(a) Edge removal

-45
-40
-35
-30
-25
-20
-15
-10
-5
 0

 1 2 3 4 5 6 7 8 9 10

%
 c

os
t

de
gr

ad
at

io
n

fr
om

 a
ct

ua
l l

ay
ou

t

% of nodes removed

(b) Node removal

Figure 5.10: Effect of OSN evolution: older layout performance

graph are placed sequentially after the old layout to produce the new layout.

We measure the percentage of degradation in the cost metric from using the

older layout instead of the layout based on the latest graph. Intuitively, as

long as the percentage of degradation is reasonable, the old layout can be used

and reorganization is not needed. The results are plotted in Figures 5.10(a)

and 5.10(b) respectively.

Figure 5.10(a) shows that even when the layout is based on a graph with

40% edges removed from the current graph, the cost metric degrades by less

96

than 10%. Most social networks reach a plateau in terms of the number of

nodes after a point [107]. Therefore, reorganization will be infrequent after

that point. On the other hand, Figure 5.10(b) shows when the layout is

based on a graph with only 5% nodes removed from the current graph, the

degradation is greater than 15%. However, note that the performance of an

old layout can only be as bad as the default layout. Therefore, although a

layout based on 10% fewer nodes has 42% cost degradation compared to the

layout based on the current graph, it still has around 72% cost improvement

over the default layout (since the layout based on the actual graph has 80%

cost improvement over the default layout, see Figure 5.6(a)). As seen in [107],

the growth rate of Facebook was around 50% over a period of 9 months (Mar

’09 - Dec ’09). This suggests that even at this growth rate reorganization

can be done infrequently while still doing better than the default layout.

5.10 Summary

We have presented power-law-aware techniques for disk layout organization

for graph databases running OSN applications. We incorporated our tech-

niques into the Neo4j graph database by building a layout manager called

the Bondhu system. Experimental results with realistic workloads exhibited

that our power-law-aware techniques achieve up to 48% improvement in cost

and response time compared to the default layout. Our results also indicate

that models with more complexity beyond the power-law graph structure

may yield low additional benefit.

97

6 CONCLUSION AND FUTURE WORK

In this thesis, we have shown that techniques which leverage the structure of

the power-law graph make graph computation faster and graph storage more

efficient. In doing so we have presented the design and implementation of

two systems. Our first contribution, LFGraph, is a distributed graph analyt-

ics framework. LFGraph’s power-law aware techniques lower communication

overhead and ensure communication and computation balance. These tech-

niques make graph analytics faster. Our second contribution, Bondhu, is a

disk layout manager for graph databases. Bondhu’s power-law-aware place-

ment techniques make disk accesses faster for social networking applications.

These techniques lower response time for queries in graph databases.

Future Work: We suggest several directions for future research related to

this thesis:

• LFGraph requires that sufficient memory is available in the cluster to

store the graph and the associated values. However, this assumption

might not hold with increasing graph sizes. In addition, users might

not have access to a cluster with sufficient memory. So, new techniques

should be explored which can perform fast graph analytics with lim-

ited memory. Disk-based analytics systems [38] fall short because they

do not work in a distributed setting and cannot efficiently utilize the

available memory in a cluster. In order to design new techniques for

‘wimpy’ clusters, careful consideration should be given to which part

98

of the graph and values should be stored in-memory and which part

should be stored in disk for faster analytics.

• SSDs are becoming popular and cheaper as storage media [108]. Layout

techniques which work for traditional hard disk drives are not suitable

for SSDs, because SSDs are better at random accesses than hard disk

drives. In addition, SSDs have limited write cycle. Recent works have

focused on tuning key-value storage systems for SSDs [109]. So, fur-

ther investigation is necessary to design layout techniques for graph

databases on SSDs.

• In LFGraph, the graph computations are synchronous in nature and

run to completion. However, in scenarios where a deadline is imposed

to obtain a final result, users might be satisfied with partial or impre-

cise results. Techniques for computation and representation of partial

results for graph computation are an interesting future direction.

• Other NoSQL storage systems such as key-value storage systems [110,

111] and in-memory storage systems [112, 113] are also used to store

graph data [114, 115]. These systems might benefit by exploiting the

structure of underlying data. Further investigation is necessary to ef-

fectively discover the structure of data in these unstructured storage

systems and to utilize the discovered structure for better system per-

formance.

99

REFERENCES

[1] R. Albert, “Scale-free networks in cell biology,” Journal of Cell Science,
vol. 118, pp. 4947–4957, 2005.

[2] H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai, and A. L. Barabási,
“The large-scale organization of metabolic networks,” Nature, vol. 407,
pp. 651–654, 2000.

[3] J. J. Hopfield, “Neural networks and physical systems with emer-
gent collective computational abilities,” Proceedings of the National
Academy of Sciences of the United States of America, vol. 79, no. 8,
pp. 2554–2558, 1982.

[4] S. R. Proulx, D. E. L. Promislow, and P. C. Phillips, “Network thinking
in ecology and evolution,” Trends in Ecology and Evolution, vol. 20,
no. 6, pp. 345–353, 2005.

[5] “Facebook,” http://www.facebook.com.

[6] “Twitter,” http://twitter.com.

[7] “LinkedIn,” http://www.linkedin.com/.

[8] T. Lux and M. Marchesi, “Scaling and criticality in a stochastic multi-
agent model of a financial market,” Nature, vol. 397, pp. 498–500, 1998.

[9] B. G. Ryder, “Constructing the Call Graph of a Program,” IEEE
Transactions on Software Engineering, vol. 5, pp. 216–226, 1979.

[10] R. Albert, H. Jeong, and A.-L. Barabási, “Internet: Diameter of the
World-Wide Web,” Nature, vol. 401, pp. 130–131, 1999.

[11] A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan,
R. Stata, A. Tomkins, and J. Wiener, “Graph Structure in the Web,”
in Proceedings of the 9th International World Wide Web Conference
(WWW ’00), 2000, pp. 309–320.

[12] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On Power-Law Relation-
ships of the Internet Topology,” ACM SIGCOMM Computer Commu-
nication Review, vol. 29, pp. 251–262, 1999.

100

[13] J. R. Banavar, A. Maritan, and A. Rinaldo, “Size and form in efficient
transportation networks,” Nature, vol. 399, pp. 130–132, 1999.

[14] H. Kwak, C. Lee, H. Park, and S. Moon, “What is Twitter, a Social
Network or a News Media?” in Proceedings of the 19th International
Conference on World Wide Web (WWW ’10), 2010, pp. 591–600.

[15] S. Milgram, “The Small World Problem,” Psychology Today, vol. 2, pp.
60–67, 1967.

[16] “Google Search,” http://google.com.

[17] “Bing Search,” http://www.bing.com.

[18] “Yahoo! Search,” http://www.yahoo.com.

[19] “Google Maps,” https://maps.google.com/.

[20] “Bing Maps,” http://www.bing.com/maps/.

[21] “MapQuest Maps,” http://www.mapquest.com/.

[22] “Hitting It Off, Thanks to Algorithms of Love,” http://tinyurl.com/
yv4xep.

[23] “Inside Match.com: It’s all about the algorithm,” http://tinyurl.com/
ko7aa89.

[24] “eHarmony’s Algorithm of Love,” http://tech.fortune.cnn.com/2010/
09/23/the-algorithm-of-love/.

[25] “FlockDB,” https://github.com/twitter/flockdb.

[26] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, “Power-
Graph: Distributed Graph-Parallel Computation on Natural Graphs,”
in Proceedings of the 10th USENIX Symposium on Operating Systems
Design and Implementation(OSDI ’12), 2012, pp. 17–30.

[27] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski, “Pregel: A System for Large-Scale Graph
Processing,” in Proceedings of the 2010 ACM SIGMOD International
Conference on Management of Data (SIGMOD ’10), 2010, pp. 135–
146.

[28] S. N. Dorogovtsev and J. F. F. Mendes, “Evolution of Networks,” June
2001, http://arxiv.org/abs/cond-mat/0106144.

[29] S. H. Strogatz, “Exploring Complex Networks,” Nature, vol. 410, pp.
268–276, 2001.

101

[30] D. J. Watts and S. H. Strogatz, “Collective Dynamics of ‘Small-World’
Networks,” Nature, vol. 393, pp. 440–442, 1998.

[31] A.-L. Barabási and R. Albert, “Emergence of Scaling in Random Net-
works,” Science, vol. 286, no. 5439, pp. 509–512, 1999.

[32] J. Kleinberg, “The Small-World Phenomenon: An Algorithmic Per-
spective,” in Proceedings of the 32nd ACM Symposium on Theory of
Computing, 2000, pp. 163–170.

[33] L. A. Adamic, R. M. Lukose1, A. R. Puniyani, and B. A. Huberman,
“Search in Power-Law Networks,” Physical Review E, vol. 64, 2001.

[34] R. Pastor-Satorras and A. Vespignani, “Epidemic Spreading in Scale-
Free Networks,” Physical Review Letters, vol. 86, pp. 3200–3203, 2001.

[35] M. Small, X. Xu, J. Zhou, J. Zhang, J. Sun, and J. an Lu, “Scale-free
Networks which are Highly Assortative but not Small World,” Physical
Review E, vol. 77, 2008.

[36] L. A. N. Amaral, A. Scala, M. Barthélémy, and H. E. Stanley, “Classes
of Small-World Networks,” Proceedings of the National Academy of
Sciences of the United States of America, vol. 97, no. 21, pp. 111 490–
11 152, 2000.

[37] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M.
Hellerstein, “Distributed GraphLab: A Framework for Machine Learn-
ing and Data Mining in the Cloud,” Proceedings of the VLDB Endow-
ment, vol. 5, no. 8, pp. 716–727, 2012.

[38] A. Kyrola, G. Blelloch, and C. Guestrin, “GraphChi: Large-Scale
Graph computation on Just a PC,” in Proceedings of the 10th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
’12), 2012, pp. 31–46.

[39] L. Page, S. Brin, R. Motwani, and T. Winograd, “The PageRank Ci-
tation Ranking: Bringing Order to the Web,” Stanford InfoLab, Tech-
nical Report 1999-66, 1999.

[40] S. Suri and S. Vassilvitskii, “Counting Triangles and the Curse of the
Last Reducer,” in Proceedings of the 20th international Conference on
World Wide Web (WWW ’11), 2011, pp. 607–614.

[41] I. Bordino, P. Boldi, D. Donato, M. Santini, and S. Vigna, “Temporal
Evolution of the UK Web,” in Proceedings of the 1st International
Workshop on Analysis of Dynamic Networks (ICDM-ADN ’08), 2008,
pp. 909–918.

102

[42] P. Boldi, M. Rosa, M. Santini, and S. Vigna, “Layered Label Propa-
gation: A MultiResolution Coordinate-Free Ordering for Compressing
Social Networks,” in Proceedings of the 20th International Conference
on World Wide Web (WWW ’11, 2011, pp. 587–596.

[43] P. Boldi and S. Vigna, “The WebGraph Framework I: Compression
Techniques,” in Proceedings of the 13th International World Wide Web
Conference (WWW ’04), 2004, pp. 595–601.

[44] Z. Khayyat, K. Awara, A. Alonazi, H. Jamjoom, D. Williams, and
P. Kalnis, “Mizan: A System for Dynamic Load Balancing in Large-
scale Graph Processing,” in Proceedings of the 8th European Conference
on Computer Systems (EuroSys ’13), 2013.

[45] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring Network
Structure, Dynamics, and Function using NetworkX,” in Proceedings
of the 7th Python in Science Conference (SciPy ’08), 2008, pp. 11–15.

[46] V. Prabhakaran, M. Wu, X. Weng, F. McSherry, L. Zhou, and M. Hari-
dasan, “Managing Large Graphs on Multi-Cores with Graph Aware-
ness,” in Proceedings of the 2012 USENIX conference on Annual Tech-
nical Conference (USENIX ATC ’12), 2012, pp. 41–52.

[47] “Apache Giraph,” http://incubator.apache.org/giraph/.

[48] “GoldenOrb version 0.1.1,” http://goldenorbos.org/.

[49] “Phoebus,” https://github.com/xslogic/phoebus.

[50] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M.
Hellerstein, “GraphLab: A New Parallel Framework for Machine
Learning,” in Proceeding of the 26th Conference on Uncertainty in Ar-
tificial Intelligence (UAI ’10), 2010, pp. 340–349.

[51] “Apache Hama,” http://hama.apache.org.

[52] S. Venkataraman, E. Bodzsar, I. Roy, A. AuYoung, and R. S. Schreiber,
“Presto: Distributed Machine Learning and Graph Processing with
Sparse Matrices,” in Proceedings of the 8th European Conference on
Computer Systems (EuroSys ’13), 2013.

[53] R. Power and J. Li, “Piccolo: Building Fast and Distributed Programs
with Partitioned Tables,” in Proceedings of the 9th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI ’10),
2010, pp. 1–14.

[54] B. Shao, H. Wang, and Y. Li, “Trinity: A Distributed Graph Engine on
a Memory Cloud,” in Proceedings of the ACM International Conference
on Management of Data (SIGMOD ’13), 2013.

103

[55] D. Gregor and A. Lumsdaine, “The Parallel BGL: A Generic Library
for Distributed Graph Computations,” in Proceedings of the 4th Work-
shop on Parallel/High-Performance Object-Oriented Scientific Com-
puting (POOSC ’05), 2005.

[56] J. Dean and S. Ghemawa, “MapReduce: Simplified Data Processing
on Large Clusters,” in Proceedings of the 6th Symposium on Opearting
Systems Design and Implementation (OSDI ’04), 2004, pp. 137–149.

[57] “Apache Hadoop,” http://hadoop.apache.org/.

[58] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley,
M. J. Franklin, S. Shenker, and I. Stoica, “Resilient Distributed
Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Com-
puting,” in Proceedings of the 9th USENIX Symposium on Networked
Systems Design and Implementation (NSDI ’12), 2012.

[59] “Apache Mahout,” http://mahout.apache.org/.

[60] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst, “HaLoop: Efficient
Iterative Data Processing on Large Clusters,” Proceedings of the VLDB
Endowment, vol. 3, no. 1-2, pp. 285–296, 2010.

[61] J. Ekanayake, H. Li, B. Zhang, T. Gunarathne, S.-H. Bae, J. Qiu, and
G. Fox, “Twister: A Runtime for Iterative MapReduce,” in Proceed-
ings of the 19th ACM International Symposium on High Performance
Distributed Computing (HPDC ’10), 2010, pp. 810–818.

[62] U. Kang and C. E. T. C. Faloutsos, “PEGASUS: A Peta-Scale Graph
Mining System - Implementation and Observations,” in Proceedings of
the 9th IEEE International Conference on Data Mining (ICDM ’09),
2009, pp. 229–238.

[63] “InfiniteGraph,” http://www.objectivity.com.

[64] “Neo4j,” http://www.neo4j.org.

[65] A. Abou-Rjeili and G. Karypis, “Multilevel Algorithms for Partitioning
Power-Law Graphs,” in Proceedings of the 20th International Confer-
ence on Parallel and Distributed Processing (IPDPS ’06), 2006.

[66] G. Karypis and V. Kumar, “Parallel Multilevel k-way Partitioning
Scheme for Irregular Graphs,” in Proceedings of the 1996 ACM/IEEE
Conference on Supercomputing (SC ’96), 1996.

[67] G. Karypis and V. Kumar, “Multilevel k-way Partitioning Scheme
for Irregular Graphs,” Journal of Parallel and Distributed Computing,
vol. 48, pp. 96–129, 1998.

104

[68] I. Stanton and G. Kliot, “Streaming Graph Partitioning for Large Dis-
tributed Graphs,” in Proceedings of the 18th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining (KDD
’12), 2012, pp. 1222–1230.

[69] J. M. Pujol, V. Erramilli, G. Siganos, X. Yang, N. Laoutaris,
P. Chhabra, and P. Rodriguez, “The Little Engine(s) that Could: Scal-
ing Online Social Networks,” in Proceedings of the ACM SIGCOMM
2010, 2010, pp. 375–386.

[70] S. Salihoglu and J. Widom, “GPS: A Graph Processing System,” Stan-
ford University, Technical Report, 2012.

[71] R. Chen, M. Yang, X. Weng, B. Choi, B. He, and X. Li, “Improving
Large Graph Processing on Partitioned Graphs in the Cloud,” in Pro-
ceedings of the 3rd ACM Symposium on Cloud Computing (SoCC ’12),
2012, pp. 1–13.

[72] M. K. Mckusick, W. N. Joy, S. J. Leffler, and R. S. Fabry, “A Fast File
System for UNIX,” ACM Transactions on Computer Systems, vol. 2,
pp. 181–197, 1984.

[73] C. K. Wong, “Minimizing Expected Head Movement in One-
Dimensional and Two-Dimensional Mass Storage Systems,” ACM
Computing Surveys, vol. 12, pp. 167–178, June 1980.

[74] C. K. Wong, Algorithmic Studies in Mass Storage Systems. New York,
NY, USA: W. H. Freeman & Co., 1983.

[75] M. Bhadkamkar, J. Guerra, L. Useche, S. Burnett, J. Liptak, R. Ran-
gaswami, and V. Hristidis, “BORG: Block-reORGanization for Self-
optimizing Storage Systems,” in Proceedings of the 7th USENIX Con-
ference on File and Storage Technologies, 2009, pp. 183–196.

[76] Z. Li, Z. Chen, S. M. Srinivasan, and Y. Zhou, “C-Miner: Mining Block
Correlations in Storage Systems,” in Proceedings of the 3rd USENIX
Symposium on File and Storage Technologies, 2004, pp. 173–186.

[77] H. Huang, A. Hung, and K. G. Shin, “FS2: Dynamic Data Replica-
tion in Free Disk Space for Improving Disk Performance and Energy
Consumption,” in Proceedings of 20th ACM Symposium on Operating
System Principles. ACM Press, 2005, pp. 263–276.

[78] B. Viswanath, A. Mislove, M. Cha, and K. P. Gummadi, “On the
Evolution of User Interaction in Facebook,” in Proceedings of the 2nd
ACM SIGCOMM Workshop on Social Networks, August 2009.

[79] A. D. Brunelle, blktrace User Guide, February 2007.

105

[80] C. Mason, “Seekwatcher,” http://oss.oracle.com/ ma-
son/seekwatcher/.

[81] G. Soundararajan, V. Prabhakaran, M. Balakrishnan, and T. Wobber,
“Extending SSD Lifetimes with Disk-Based Write Caches,” in FAST
’10, 2010, pp. 101–114.

[82] M. R. Garey, D. S. Johnson, and L. Stockmeyer, “Some Simplified NP-
complete Problems,” in Proceedings of the Sixth Annual ACM Sympo-
sium on Theory of Computing, 1974, pp. 47–63.

[83] J. Petit, “Experiments on the Minimum Linear Arrangement Prob-
lem,” Journal of Experimental Algorithmics, vol. 8, December 2003.

[84] J. Schindler and G. R. Ganger, “Automated Disk Drive Characteriza-
tion,” CMU-CS-99-176, Tech. Rep., 1999.

[85] G. Karypis and V. Kumar, “A Fast and High Quality Multilevel Scheme
for Partitioning Irregular Graphs,” SIAM Journal on Scientific Com-
puting, vol. 20, pp. 359–392, 1998.

[86] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
Unfolding of Communities in Large Networks,” Journal of Statistical
Mechanics: Theory and Experiment, p. P10008, 2008.

[87] “Disk Allocation Viewer for Linux,” http://davl.sourceforge.net/.

[88] “METIS: Family of Multilevel Partitioning Algorithms,”
http://glaros.dtc.umn.edu/gkhome/views/metis.

[89] R. Card, , T. Ts’o, and S. Tweedie, “Design and Implementation of
the Second Extended Filesystem,” in Proceedings of the First Dutch
International Symposium on Linux, 1994.

[90] S. C. Tweedie, “Journaling the Linux ext2fs Filesystem,” in LinuxExpo,
1998.

[91] M. Rosenblum and J. K. Ousterhout, “The Design and Implementation
of a Log-Structured File System,” ACM Transactions on Computer
Systems, vol. 10, pp. 26–52, February 1992.

[92] G. Ganger and M. F. Kaashoek, “Embedded Inodes and Explicit
Grouping: Exploiting Disk Bandwidth for Small Files,” in Proceedings
of the 1997 USENIX Technical Conference, 1997, pp. 1–17.

[93] Y. Manolopoulos and J. G. Kollias, “Optimal Data Placement in Two-
Headed Disk Systems,” BIT, vol. 30, no. 2, pp. 216–219, 1990.

106

[94] P. Vongsathorn and S. D. Carson, “A System for Adaptive Disk Rear-
rangement,” Software: Practice and Experience, vol. 20, pp. 225–242,
March 1990.

[95] C. Ruemmler and J. Wilkes, “Disk Shuffling,” HP Technical Report,
HPL-91-156, Tech. Rep., 1991.

[96] S. Akyürek and K. Salem, “Adaptive Block Rearrangement,” ACM
Transactions on Computer Systems, vol. 13, pp. 89–121, May 1995.

[97] W. W. Hsu, A. J. Smith, and H. C. Young, “The Automatic Improve-
ment of Locality in Storage Systems,” ACM Transactions on Computer
Systems, vol. 23, pp. 424–473, November 2005.

[98] B. Salmon, O. Salmon, E. Thereska, C. A. N. Soules, and G. R. Ganger,
“A Two-Tiered Software Architecture for Automated Tuning of Disk
Layouts,” in Proceedings of the First Workshop on Algorithms and Ar-
chitectures for Self-Managing Systems. ACM, 2003, pp. 13–18.

[99] J. A. Nugent, A. C. Arpaci-dusseau, and R. H. Arpaci-dusseau, “Con-
trolling your PLACE in the File System With Gray-Box Techniques,”
in Proceedings of the USENIX Annual Technical Conference (USENIX
’03), 2003, pp. 311–324.

[100] X. Ding, S. Jiang, F. Chen, K. Davis, and X. Zhang, “DiskSeen: Ex-
ploiting Disk Layout and Access History to Enhance I/O Prefetch,” in
Proceedings of the 2007 USENIX Annual Technical Conference, 2007,
pp. 20:1–20:14.

[101] J. M. Pujol, V. Erramilli, and P. Rodriguez, “Divide and Conquer:
Partitioning Online Social Networks,” CoRR, vol. abs/0905.4918, 2009.

[102] J. M. Pujol, G. Siganos, V. Erramilli, and P. Rodriguez, “Scaling On-
line Social Networks without Pains,” in Proceeding of the 5th Interna-
tional Workshop on Networking Meets Databases, October 2009.

[103] S. Fortunato, “Community Detection in Graphs,” Physics Reports, vol.
486, no. 3-5, pp. 75–174, 2010.

[104] “GraphLab version 2.1,” http://graphlab.org.

[105] “The Graph500 Benchmark,” http://www.graph500.org.

[106] F. Benevenuto, T. Rodrigues, M. Cha, and V. Almeida, “Character-
izing User Behavior in Online Social Networks,” in Proceedings of the
9th ACM SIGCOMM Internet Measurement Conference, ser. IMC ’09.
New York, NY, USA: ACM, 2009, pp. 49–62.

[107] “Facebook Growth,” http://tinyurl.com/4flny8c.

107

[108] C. Cronin, “The Evolution of Storage – 2012 Isn’t Just the Year
of the Dragon,” http://www.icc-usa.com/insights/the-evolution-of-
storage-2012-isnt-just-the-year-of-the-dragon/, 2012.

[109] R. Branson, “Cassandra and Solid State Drives,”
http://www.slideshare.net/planetcassandra/cassandra-and-solid-
state-drives-22509249, 2013.

[110] A. Lakshman and P. Malik, “Cassandra – A Decentralized Structured
Storage System,” ACM SIGOPS Operating Systems Review, vol. 44,
pp. 35–40, 2010.

[111] “MongoDB,” http://www.mongodb.org/.

[112] “Redis,” http://redis.io.

[113] “Memcached,” http://memcached.org.

[114] “Titan: Distributed Graph Database,” http://thinkaurelius.github.io
/titan/.

[115] “Redis-Graph: A powerful graph Implementation using redis sets,”
https://github.com/tblobaum/redis-graph.

108

