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ABSTRACT 

Sorghum is a photoperiod-sensitive, short-day tropical species that shows long 

delays in flowering at temperate latitudes. Most temperate-adapted sorghum cultivars are 

photoperiod-insensitive and dwarfed for grain production. Classical segregation studies 

predict that temperate adaptedness involves four major loci each for maturity and 

dwarfing. Two major maturity loci, Ma1 (PRR37) and Ma3 (phytochrome B), and a single 

major dwarfing locus, Dw3 (PGP1/br2), have been cloned. Sorghum conversion (SC) lines 

are exotic varieties that have been introgressed with early maturity and dwarfing QTL from 

a common, temperate-adapted donor using a minimum of four backcrosses. In this study 

partially-isogenic populations were generated by crossing six diverse SC lines to their 

corresponding exotic progenitor (EP) lines to assess the phenotypic effects of individual 

introgressions from the temperate-adapted donor. Initial genotyping results revealed one 

of the six populations resulted from an outcross. In summer 2012, 192 F3 lines from the 

five remaining populations were phenotyped for plant height and maturity. Subsets of 109-

175 F3 lines were genotyped using Illumina genotyping-by-sequencing (GBS) and used for 

QTL analysis. QTL models explained 62.31-88.16% of the phenotypic variation for height 

and maturity in these partially isogenic populations. Nearly all variation was accounted for 

by the linked Ma1/Dw2 loci on chromosome 6 and the Dw3 and Dw1 loci on chromosomes 

7 and 9 respectively. The Dw1 locus fractionated into linked QTL for height and maturity, 

and a novel height QTL on chromosome 3 was discovered. Evidence is presented for 

multiple functionally distinct alleles at Ma1, and for large differences in recombination rate 

among populations on chromosome 6. Candidate genes underlying QTL for Dw2, Dw1, and 

the new Dw1-linked maturity locus on chromosome 9 are discussed.  
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Introduction & Literature Review 

Sorghum (Sorghum bicolor (L) Moench), a C4 grass and relative of maize, ranks fifth 

in global cereal production and is an important source of food, feed, fiber and fuel. Sorghum  

was domesticated approximately 3000 years ago in Ethiopia, with additional centers of 

origin in parts of the Congo, India, Sudan, and Nigeria (Ayana and Bekele 1998). Sorghum is 

especially adapted to growth in hot, arid, or semi-arid climates. This water-efficient crop 

requires fewer inputs than maize, with drier states such as Kansas, Texas, Nebraska, 

Oklahoma, and Missouri producing most of the grain sorghum grown in the U.S. The U.S. 

exports almost half of the sorghum it produces, controlling 70% to 80% of world exports, 

where the other one-third of domestic production goes towards biofuels such as ethanol, in 

comparison to global production, where over half of the sorghum grown is for human 

consumption (“Environmental Protection Agency” 2013).  

The genus Sorghum encompasses many species, including perennials S. halapense 

(Johnson grass), S. propinquum, S. almum, and S. nitidum, and the annual Sorghum bicolor 

which contains wild, weedy, and cultivated taxa. Sorghum has a genome size of 736 Mb and 

is diploid. Its relatively small genome makes it a suitable model for other related crops with 

much larger genomes or polyploidy, such as sugar cane. This provided the justification for 

sorghum being the third plant species to have its genome sequenced. An 8x draft sequence 

of cultivar BTx623 was released in 2007. (Nelson et al. 2011).   

Cultivated Sorghum bicolor is traditionally classified into five races: bicolor, guinea, 

caudatum, kafir, and durra (John Roy Quinby 1974). This classification is based on the 

phenotypic characteristics of the spikelet and panicle. A study using a genetic data set of 
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434 single nucleotide polymorphisms and simple sequence repeat alleles in a 216 exotic 

sorghum line panel found genetic groups that correspond closely to the guinea, caudatum, 

kafir, and durra races of sorghum, but bicolor was paraphyletic (Patrick J. Brown, Myles, 

and Kresovich 2011). Bicolor sorghums have a wide geographical distribution, are diverse, 

and are more likely than other races to resemble wild sorghums. Guinea sorghums are 

adapted to moist environments and originate in western Africa, spreading into eastern 

Africa and India. They are characterized by long, loose, open inflorescence architecture. 

Caudatum sorghums originate from eastern and central Africa and have excellent seed 

quality for grain sorghum breeding, with dense to slightly open panicles. Kafir sorghums 

originate from southern Africa and also play an important role in grain sorghum breeding, 

with erect, cylindrical panicles. Durra sorghums are found within arid environments in 

India and the Horn of Africa, and are identified by dense and compact inflorescence 

structure (Brown, Myles, and Kresovich 2011). Because of the variability found in each race 

and intermediates between races, the five races have been further subdivided into 70 

working groups (Quinby 1974). 

Apart from the phenotypic races, sorghum is classified into four groups based on 

utility: dwarf grain sorghum, juicy-stemmed sweet sorghum, grassy forage sorghums, and 

broomcorn. Recently, a new group consisting of photoperiod-sensitive biomass sorghums 

has been developed to be utilized for bioenergy production. With its high yield potential, 

established production systems, and high water-use efficiency (Jakob, Zhou, and Paterson 

2009), sorghum is an ideal candidate for bioenergy production. The U.S. has made 

significant investments in basic research and technology to reach the Congressionally 

mandated target of 36 billion gallons (136 billion liters) of renewable liquid biofuel per 
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year by 2022 (Dweikat et al. 2012). Sorghum grown for bioenergy production systems has 

the advantage of being established by seed, along with the potential to be perennialized 

(Rooney et al. 2007), in comparison to current perennial candidates propagated by 

rhizomatous plugs. Bioenergy sorghum differs from other temperate-grown sorghums by 

being fully photoperiod-sensitive to produce maximum biomass by prolonged vegetative 

growth.  

Many elite agronomic traits exist in locally adapted grain and sweet types, such as 

disease resistance and cold tolerance, but the majority of the diversity found in sorghum is 

in exotic tropical accessions (Billot et al. 2013). Studies of pedigree records and 

comparative molecular assays suggest that sorghum genotypes grown in the U.S. represent 

only a fraction of the full range of diversity that exists in the species (Ahnert et al. 1996). 

The International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) and the U.S. 

National Plant Germplasm System (NPGS) have taken the initiative to collect and discover 

existing sorghum diversity through building their sorghum collections to approximately 

35,000-40,000 accessions (“GRIN NPGS” 2013).  

Several diversity studies on sorghum have been done using restriction fragment 

length polymorphisms (RFLPS), random amplified polymorphic DNA (RAPDs), simple 

sequence repeats (SSRs), amplified fragment length polymorphisms (AFLPS), and single 

nucleotide polymorphisms (SNPS)(Morris et al. 2013; Ahnert et al. 1996; S. Smith et al. 

2010; Agrama and Tuinstra 2004; Casa et al. 2005; Robert R. Klein et al. 2008). Sorghum is 

primarily a self-pollinating crop, but will readily outcross. Reflecting this pattern, sorghum 

has lower linkage disequilibrium (LD) than rice, another self-pollinating species with less 

tendency to outcross, and much higher LD than outcrossing maize (Morris et al. 2013) . The 
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average extent of LD decay has been previously reported at 15–20 kb (Hamblin et al. 2005) 

and 50–100 kb (Bouchet et al. 2012), with the most recent reported rate of 150 kb (Morris 

et al. 2013). Of the major races, bicolor is the most genetically diverse, supporting the 

hypothesis that bicolor is the progenitor Sorghum bicolor from which other cultivated races 

evolved. The lowest genetic diversity is seen in the kafir race, found primarily in South 

Africa, which may reflect a more recent origin of this race when it split from the eastern 

guineas ( Brown, Myles, and Kresovich 2011).  

A recent study identified the Sh1 gene responsible for seed shattering in sorghum, 

and showed that it encodes a YABBY transcription factor (Z. Lin et al. 2012). Three 

independent loss-of-function alleles of Sh1 confer loss of seed shattering in different races 

of cultivated sorghum (Olsen 2012). Because seed shattering is one of the key traits 

distinguishing wild and cultivated grasses, these data suggest that independent 

domestication events may have given rise to the different races of cultivated sorghum. 

Hybrid seed production in sorghum relies on cytoplasmic male sterility (CMS). The 

A1 sterile cytoplasm is nearly universally used and relies on the interaction between kafir 

nuclear genes, specifically the Rf1 locus (R. R. Klein et al. 2006) and durra cytoplasm. For 

this reason, most of the elite female lines for widespread commercial hybrid production 

today are derived from kafir germplasm.  

Sorghum was introduced into the United States from Africa around 1874-1908. A 

diverse but limited number of founder cultivars, including “milo” (durra), guinea, and kafir, 

were widely planted, and spontaneous mutations for dwarfing and early maturity were 

selected in individual plants during hand harvest. By 1960, 95% of U.S. sorghum was 

planted to hybrids within this severely bottlenecked founder pool (S. Smith et al. 2010). 
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Plant breeders and scientists recognized that this could cause problems through common 

susceptibility to new diseases or abiotic stresses.  Though there were many diverse 

accessions in the world sorghum collection, most of these could not be utilized in the U.S. 

for breeding because of their photoperiod-sensitivity and extreme height. A program was 

set in place to “convert” many of these accessions to photoperiod-insensitivity and reduced 

height in order to increase their utility for commercial grain sorghum breeding (John Roy 

Quinby 1974). Dwarfing and maturity genes from the very dwarf, photoperiod-insensitive 

Figure 1 The Sorghum Conversion program. An elite, early-maturing, dwarf donor line, 
BTx406, was used to introgress QTL for early maturity and dwaring into ~800 exotic 
sorghum accessions. Early-maturing dwarf plants were selected from the selfed progeny 
of each backcross. After five backcrosses, most of the exotic progenitor’s genome is 
recovered in a sorghum converted (SC) line that is early and short.  
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BTx406 cultivar were introgressed into the exotic accessions using a backcrossing scheme 

(fig 1). The initial cross was made in Puerto Rico between the exotic progenitor parent and  

BTx406, resulting in a photoperiod-sensitive, tall F1. The F2 self-pollinated seed from selfed 

F1 plants was planted in Texas where short, early maturing plants were selected. Seed from 

selected early dwarfs was sent back to Puerto Rico to repeat the backcrossing cycle up to five 

times. The final products were a series of sorghum converted (SC) lines, having the 

cytoplasm and up to 99% of the genes from the exotic progenitor parent and the introgressed 

maturity and height QTL from BTx406. 

Introgressed regions still remaining after five backcrosses from the donor BTx406 

are putative height and maturity QTL. To identify the number and location of QTL for these 

traits, partially-isogenic populations can be constructed using the exotic progenitor (EP) 

lines and their corresponding SC lines as parents. Partially-isogenic lines from these 

populations can then be identified to study the individual and interaction effects of the 

introgressed QTL in multiple combinations. With over 673 SC lines generated (Patrick J. 

Brown and Paterson 2013), multiple partially-isogenic populations can be constructed to 

study QTL effects in different genetic backgrounds. Identifying these height and maturity 

QTL and characterizing the underlying genes will accelerate population improvement and 

gene flow between diverse exotic accessions and elite temperate material.  

Sorghum varies widely in height. Wild-type and traditional landrace sorghums grow 

up to 3-4 meters (J. R. Quinby and Karper 1953). This is desirable for subsistence 

agricultural systems where stover is used as building materials or fed to livestock. But in 

response to mechanized agricultural systems, grain sorghums have been developed with 

reduced height using recessive brachytic height mutations. Genetic control of sorghum 
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height has been classically determined to result from four height mutations designated as 

dw1, dw2 dw3, and dw4 (J. R. Quinby and Karper 1953). Most commercial grain sorghums 

contain three of the four height mutations in various combinations. Though other height 

mutants have been recognized, only the four brachytic mutations (which affect only 

internode length) are utilized for breeding purposes. Dw2 is linked to Ma1 on chromosome 

6, based on a previous observation that these two were linked (John Roy Quinby 1974). 

Dw1 is hypothesized to be Sb-HT9.1 on chromosome 9 (Patrick J. Brown et al. 2008).  

Recessive dw4 exists in most US sorghum accessions, with the exception of tall broomcorn 

varieties. Previous QTL analyses for both maturity and height in sorghum show that 

relatively few loci are involved in controlling these traits (Pereira et al. 1994; Lin, Schertz, 

and Paterson 1995).  

Only one height mutant has been cloned, dw3, which encodes a P-glycoprotein that 

modulates polar auxin transport (Multani et al. 2003). The recessive dw3 allele is 

characterized by an 882–base pair direct duplication found in exon 5. Direct duplications 

are prone to unequal crossovers, which is responsible for the frequent restoration of tall, 

wild-type phenotypes in fields of dwarf sorghum. Tall revertants have been observed as 

commonly as 1 out of every 600 plants (1 in 1,200 gametes) in genotypes with the unstable 

dw3 duplication (Karper 1932). Unequal crossovers have also resulted in base pair 

deletions around exon 5. These dw3 mutants, unlike those with the tandem repeat, are 

stable and are currently being used for grain sorghum improvement (Mitchell Reed 

Tuinstra and Johal 2013; Multani et al. 2003). Dw3 is noted for having a dwarfing effect that 

is limited to the lower stalk internodes, and the plant apex is actually longer in dw3 mutant 

plants, circumventing the problem of inadequate inflorescence exsertion found in other 
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dwarf sorghums. These mutants also have the benefit of increased stalk strength due to 

extra layers of parenchyma cells in the internodes (Multani et al 2003, Brown and Paterson 

2013). Other dwarfing genes may have similar benefits, creating the possibly of altering 

biomass composition in ways favorable for biofuel production.  

Sorghum originated as a photoperiod-sensitive tropical adapted species. In the 

Sahel region of Africa, annual rains vary in onset and duration in narrow latitudinal belts. 

Sorghum cultivars grown in these zones are strongly adapted to flower at the end of the 

rainy season. Photoperiod-sensitive plants detect small increases in the night length to 

initiate flowering at the opportune time in each particular environment.  Prolonged day 

length during the summer growing season at temperate latitudes prevents the necessary 

~11 hours of night length needed to cue flowering, often preventing full seed set or even 

flower initiation before the killing frost. Recessive mutations in the photoperiod pathway 

have been discovered and selected by farmers at temperate latitudes. These early 

selections rapidly displaced the original photoperiod sensitive cultivars, resulted in 

increased acreages of sorghum, and provided genetic material for the development of 

modern cultivars by plant breeders (C. W. Smith and Frederiksen 2000). 

Classical genetic segregation studies determined that four loci influenced flowering 

time in sorghum. These genes were designated maturity genes because they influenced the 

duration of growth, or days to maturity, and were respectively named Ma1, Ma2, Ma3, and 

Ma4 (John Roy Quinby 1974). Late maturity was found to be dominant or partially 

dominant to early maturity. Loss-of-function mutations in these maturity genes were likely 

critical both for early dispersal to temperate latitudes of Africa and Asia, and for 

subsequent crop improvement during the first 40 years of the 20th century, when growers 
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and plant breeders in the United States and elsewhere selected for early maturing cultivars 

suitable for grain production. Two of the four classical maturity genes, Ma1 and Ma3 have 

been cloned. Ma1 encodes a pseudoresponse regulator protein 37 (PRR37; Murphy et al. 

2011) and Ma3 encodes a phytochrome B (Childs 1997). Ma2 and Ma4 have no known 

location. In addition to the four classically determined loci, additional loci designated as 

Ma5, Ma6, and Ma7 have been reported (Mullet et al. 2010).  

Ma1 has a large effect on maturity through its direct role in activating and 

repressing genes in the floral pathway. Independent selection for early maturity in 

different temperate regions has resulted in multiple mutations in this gene, creating an 

allelic series for Ma1. The introgressed ma1 from donor BTx406 is the result of a single 

nucleotide deletion and frameshift upstream of the pseudoresponse regulator (PRR) 

domain (fig 2), causing a premature termination. A second allele often found in kafirs 

 

 

Figure 2 Allelic variation at sorghum Ma1;(A) wild-type functional SbPRR37 allele;             
(B) recessive Sbprr37-1 allele from donor BTx406; (C) Sbprr37-2 allele from a kafir;          
(D) Sbprr37-3 allele from ATx623. Exons are shown as boxes, and introns as solid lines. 
Yellow boxes, protein coding sequence; blue boxes, pseudoreceiver domain; red boxes, CCT 
domain; light blue boxes, missense coding post frameshift. (Murphy et al. 2011) 
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from temperate southern Africa contains a missense mutation in the PRR domain at a 

conserved Lys162 residue. A third allele, found in ATx623, the line used as to construct the 

reference genome, contains both the kafir Lys162Asn substitution and a nonsense mutation 

at Gln270 resulting in premature termination between the pseudoreceiver and CCT domains 

(Murphy et al. 2011). 

The manipulation of maturity loci has been of fundamental importance to the 

production of high-biomass sorghum for bioenergy (Rooney et al. 2007). The transition 

from vegetative to reproductive phases curtails biomass accumulation, so delayed 

flowering is desirable in order to obtain maximum biomass yield. The discovery of multiple 

maturity genes that induce photoperiod insensitivity enables a scenario where two early-

maturing lines can be hybridized to create photoperiod-sensitive, late maturing hybrids. 

This method is currently being used to create high-biomass lines for biofuel production 

(Mullet et al. 2010). 

Many previous linkage and association studies identified QTL for sorghum plant 

height and maturity. Plant height QTL have been reported on chromosomes 1,3,4, and 10 in 

individual studies (Pereira and Lee 1995; R. R. Klein et al. 2001; Y. R. Lin, Schertz, and 

Paterson 1995)and multiple studies have confirmed height QTL on chromosomes 7 (dw3), 

6 (dw2), and 9 (dw1) and maturity QTL on chromosome 6 (ma1) and on chromosome 9 

linked to dw1 (Hart et al. 2001; P. J. Brown et al. 2006; Y. R. Lin, Schertz, and Paterson 1995; 

Pereira and Lee 1995; R. R. Klein et al. 2001; Murray et al. 2008; Murray et al. 2009; Patrick 

J. Brown et al. 2008). High introgression frequencies in sorghum converted lines belonging 

to the guinea-kafir subpopulation were found at ~1 Mb on chromosome 6 and around 
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~41.9 Mb on chromosome 5 (Thurber et al. 2013). Additional maturity QTL displaying 

complementary dominance for photoperiod-sensitivity were found on chromosome 6 

(ma6), chromosome 1 (ma7), and chromosome 2 (ma5) (Mullet et al. 2010). These multiple 

studies reveal relatively few loci appear to influence maturity and height, with sub-

population specific loci confirming sorghum’s strong population structure.  

Recent advancements in next-generation sequencing (NGS) technologies have 

enabled small laboratories to generate large amounts of genetic data at a relatively low 

cost.  Two of the main NGS platforms in widespread use are 454 and Illumina. The 454 GS 

FLX Titanium XL+ platform currently generates ~1 million reads of 750 bp (~750 Mb total) 

in a 23 hour run and has an overall error rate of approximately 1% with reagent costs 

approximately $6,200 per run (Glenn 2011). The Illumina HiSeq2500 platform generates 

~200 million reads of 100 or 125 bp (~20 Gb total) with an 0.1% error rate. The Illumina 

Hiseq also offers the option of generating sequences from opposite ends of a DNA fragment 

(paired-end reads), and the new Illumina MiSeq instrument offers up to 20 million paired-

end, 250 bp reads. Costs are approximately $1,600 for a single-end run and $3,200 for 

paired-end and MiSeq runs.  When generating genome-wide SNP data for marker-trait 

association studies, read number is more important than read length, making the Illumina 

Hiseq platform an obvious choice. 

Genotyping-by-sequencing (GBS) is a multiplexed system used to construct reduced 

representation libraries for next-generation sequencing, usually on the Illumina Hiseq 

platform. It has been used as a tool for association studies and genomics assisted breeding 

in numerous species, even those with large complex genomes such as wheat (Poland et al. 

2012). Previously, high-throughput genome-wide genotyping of SNPs on “SNP chips” 
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required a SNP discovery phase to design pre-synthesized probe sequences. Such methods 

were used extensively in human genetics and medicine, but humans are a relatively low 

diversity species with ample research funding. Next-generation sequencing techniques 

using GBS have facilitated large-scale discovery of SNPs in various model and non-model 

plant species, with and without sequenced genomes, for linkage map construction, genetic 

diversity analyses, association mapping, and marker-assisted selection (Kumar, Banks, and 

Cloutier 2012).  

In this study, GBS was used to obtain genome-wide SNP data for six partially 

isogenic sorghum populations. The SNP data were used to construct linkage maps, 

populations were phenotyped for plant height and flowering time, and QTL analysis was 

used to identify regions controlling the traits of interest. These data are used to make 

inferences about the incidence and effect sizes of key dwarfing and maturity QTL in SC lines 

from different genetic backgrounds, and to generate hypotheses about the genes 

underlying these QTL. 
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Methods 

Population Development 

Seed for the six SC lines was obtained from the USDA-ARS Cropping Systems 

Research Laboratory (Lubbock, TX) and seed for the six EP lines was obtained from the 

NPGS (“National Plant Germplasm System” 2013). Information on the geographic origins 

and morphological racial classification of each SC line were obtained from Texas A&M 

University (TAMU). The initial F1 crosses between the EP and matching SC lines were made 

in the greenhouse in the winter of 2010-2011 after photoperiod induction for 10 weeks of 

12-hour days in a growth chamber. Two F1 plants were made for the cross between an SC 

627 female and an EP 627 male (population 627), and similarly two F1 plants were made 

for populations 757, 991, and 1203 and one F1 was made for populations 673 and 1038. 

F1’s were selfed in the greenhouse in Summer 2011, again after 10 weeks of photoperiod-

induction in the growth chamber. F2 seed was grown in the 2011-2012 winter nursery in 

Puerto Vallarta with one panicle from each individual F2  selfed. 

 

Figure 3 Partially-isogenic line creation. By crossing an exotic progenitor with the 
corresponding sorghum converted line, numerous isogenic combinations are possible. 
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In Urbana in Summer 2012, 192 F3 rows were planted for each of the six SC x EP 

populations, in addition to four rows of each parent, for a total of 1,200 rows. Rows were 

16’ long with 4’ alleys and 30” row spacing. Each row was thinned to ~6” spacing in order 

to distinguish tillers from the main stalk later in the season.  

Phenotyping 

Plant height was measured in cm to the apex of a plant, and maturity was measured 

in days from planting at the initiation of anthesis. These traits were phenotyped on 

individual F2 plants in Puerto Vallarta, and on F3 rows in Urbana. Urbana maturity 

phenotypes were the average of the first and last plant to flower in the each row. Urbana 

height phenotypes were the average of the shortest and tallest plant in each row for the 

very tall, very late maturing populations (populations 991, 1038, 1203; measured after the 

killing frost), and the average of all individual plant heights in each row for populations 673 

and 757.  

 It was observed in Puerto Vallarta that some F2 populations segregated for traits 

that could be easily characterized within their populations. Population 1038 segregated for 

awn length and population 991 segregated for anther color, either being yellow or pink, 

and both traits were recorded.  

Genotyping 

Pooled genomic DNA was extracted from five etiolated seedlings from each F3 line 

using a modified CTAB protocol (Thurber et al. 2013). Samples were then quantified using 

PicoGreen (Invitrogen, NY, USA).  To create the genomic libraries, DNAs (~250ng) were 

double digested with either PstI-HF and BfaI or PstI-HF and HinP1I and ligated to one of 

384 unique DNA barcodes. The resulting samples were then pooled for amplification and 
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size selection (Thurber et al. 2013). Each 384-sample library was submitted to the W.M. 

Keck Center at the University of Illinois for single-end 100 bp sequencing on the Illumina 

HiSeq2000. The Keck Center performed an additional qPCR assay on each library to adjust 

concentrations before sequencing.  

A subset of 109-175 F3’s from each population were genotyped using genotyping-

by-sequencing (GBS). 384 barcoded samples were included in each of the two Illumina 

lanes. Sample size per lane was increased from the usual 96-plex used for inbred lines since 

LD in biparental crosses is much higher. The TASSEL GBS pipeline (www.maizegenetics.net 

2013) was used to process raw Illumina data using the default parameters, and the 

undocumented ViterbiAlgorithmPlugin  (P. Bradbury, personal communication) was used 

to impute heterozygous genotypes and locate likely crossovers using a window size of 50 

SNPs, minor allele frequency cutoff of 0.3, and an LD (r2) filter of 0.2. This plugin addresses 

the problem of undercalling heterozygous genotypes in low-coverage GBS data. SNPs 

segregating only in progeny traced back to one of the two source F1 plants within a 

population were excluded using the minor allele frequency cutoff of 0.3. The complete 

UNIX script file used for generation of genotype data from raw Illumina reads is included in 

Appendix B. 

QTL Analysis 

R/qtl (“www.rqtl.org/” 2013) was used to create genetic maps and conduct QTL 

analysis in each population. Permutation-based significance thresholds for each population 

and phenotype were determined using Haley-Knott (HK) regression with 1,000 

permutations at alpha= 0.05. QTL were constructed using the sim.geno function with 100 

simulations and a step size of zero, where genotypes are drawn only at marker locations. A 
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drop-one-QTL-at-a-time ANOVA at alpha=0.05 was used to determine significant QTL and 

calculate individual term variances for models of each phenotype. The complete R/qtl 

script used to analyze the genotype data is included in Appendix C. 
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Results and Discussion 

Population Development 

Population Selection and Creation 

The six populations developed for this project represent all the major racial groups 

and much of the genetic diversity in sorghum. However, these six populations represent a 

subset of the total number of attempted crosses. Several exotic parents did not flower even 

after photoperiod induction. Therefore, our sampling may be biased against lines with very 

stringent photoperiod induction requirements, and towards kafir lines from temperate and 

subtropical latitudes in southern Africa (populations 627, 673, and 757). No guinea 

populations were developed, possibly due to lack of photoperiod induction. However, 

guineas are relatively closely related to the kafirs (fig 4). 

Seed color segregation was observed in F2 panicles derived from one of the two F1 

source plants of population 627.  Segregation for plant architecture in the resulting F3 rows 

suggested that half of population 627 resulted from an unintended outcross. F3 rows from 

the other source of population 627 appeared identical to the original EP parent and did not 

segregate, and were assumed to result from self-pollination instead of a true cross. 

Molecular characterization of a subset of F3 families from both sources of population 627 

confirmed both of these hypotheses; consequently no phenotypes were collected on 

population 627. The other three populations that were derived from two F1 source plants 

(757, 991, 1203) did not display any phenotypic or molecular divergence between sources.  
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 Figure 4 Genetic diversity of sorghum populations evaluated in this study. Principal 
components analysis (PCA) was performed on 580 diverse EP lines using ~20k genome-
wide SNPs. EP lines are colored by their morphological race. Populations evaluated include 
two kafirs (Pops 673 and 757), one durra (1038), one caudatum (1203), and one bicolor 
(991).  

 

Field Development Urbana 

Thinning each row assisted in collecting height and maturity measurements by 

helping to distinguish individual F3 plants from tillers. Population 1203 was highly tillering 

and remained problematic even after thinning. All rows were thinned when the field was at 

the V5-V6 growth stage. Emphasis for thinning was placed on plant spacing instead of size 

or vigor to prevent bias in selecting larger plants over dwarfs.   

 Throughout the growing season each population started to differentiate 

phenotypically. Population 991 was easy to thin and appeared to allocate fewer resources 

to root versus shoot biomass, while populations 1038 and 1203 were difficult to thin and 

appeared to have greater relative root biomass. The summer of 2012 was also very dry, 
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with a period of plant wilting occurring in population 991 and a period of leaf curling in 

1038. These responses to abiotic stresses appeared relatively uniform within populations, 

but may have influenced the relative height and maturity distributions between 

populations.  

 

Phenotyping  

Trait Ranges and Distributions 

Height (HT) and maturity (MA) phenotypes were normally distributed in each 

population and in both Puerto Vallarta (PV) and the Urbana Energy Farm (EF) locations (fig 

5), with the following exceptions: 1) some PV maturity distributions were truncated on the 

early side because early maturing F2’s were measured en masse upon arrival to the winter 

nursery;  2) population 627 did not have a distribution like the other F2’s since half of the 

population was a self of the exotic progenitor parent; and 3) Urbana heights for population 

1203 along with the EP parents of populations 991, 1038, and 1203 were truncated 

because of the limitation of the growing season, with a the killing frost in early October. In 

the booting stage, the peduncle rapidly elongates and increases height, temporarily giving 

some earlier maturing F3 plants a greater height than their late-maturing EP parents.  

A much greater range in height and maturity was found in F3s grown in Urbana 

compared to F2’s grown in Puerto Vallarta. The PV maturity range of all six populations 

combined was ~15 days whereas the EF maturity range was ~80 days. All six populations 

reached at least the booting stage of maturation in EF by the end of the growing season. 

Phenotypic differences between these two short- and long-day environments indicate a 

photoperiod response, since growing degree day (GDD) accumulation was similar between 



20 
  

environments for most of the growing season. The increase in additive genetic variance in 

F3 versus F2 generations could also account for some of the increased HT and MA range in 

the temperate EF locations. Cooler weather at the end of the Urbana growing season 

lengthened the right tail of the maturity distributions when measured in days rather than 

GDDs. HT was much greater in EF than in PV for three populations (991, 1038, and 1203) 

indicating a strong photoperiod response. The two kafir populations (673 and 757) had 

smaller differences in MA and HT between tropical and temperate environments, indicating 

a weaker photoperiod response.  Population-level variability for MA and HT in the 

temperate EF environment was lowest for population 673 (~20 days and ~60 cm), and 

highest for population 991(~75 days and ~330 cm). Population 673 was both shortest and 

earliest, with mean HT and MA values of ~140 cm and ~70 days respectively, population 

1203 was tallest, with a mean HT of ~380 cm, and population 1038 was latest with a mean 

MA of ~105 days. The weaker photoperiod response in the kafir populations 673 and 757 

is not unexpected since they originate from the temperate latitudes of Southern Africa.  

Trait Correlations within and between Long and Short-Day Environments 

For each population, HT was correlated between short and long day environments 

but MA was not based on the Pearson correlation coefficient r2. The lack of MA correlation 

between environments suggests that most MA variation in EF is due to photoperiod-

response. This is expected as the short-day environment fulfills the photoperiod induction 

requirement (~11 hours of uninterrupted darkness) for the entire growing season, 

whereas the long-day environment only begins to fulfill this requirement in late September, 

four months after planting. 
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There were no significant Pearson correlations between HT and MA in PV, but 

several populations had significant correlations between HT and MA in Urbana. 

Populations that had a larger range in MA and HT and presumably stronger photoperiod-

response had a lower r2 value than shorter, earlier maturing populations. Populations with 

low correlation included 1038, which had a large number of late maturing dwarfs, and 

1203, which had a large number of medium maturing tall plants. Correlations between HT 

and MA varied from 0.72 for population 673 to 0.17 for population 1038. The correlation 

across five populations combined was 0.01 in PV, versus 0.51 in EF. Trait correlation 

scatterplots between and among both environments can be found in Appendix A. 
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Figure 5 Boxplots of height and maturity distributions for partially-isogenic F3 populations, 
split by location and population, with biparental phenotypes indicated by diamonds. 
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Qualitative Traits  

Table 1 Segregation ratios of qualitative anther color and awn length traits in Pops 991 and 
1038, respectively. 

Population 991 Anther Color 

Pink Yellow Total χ² 3:1 p-val 

139 60 199 0.09 

Population 1038 Awn Length 

Long awn Short awn Total χ² 3:1 p-val 

139 53 192 0.40 

 

Anther and awn phenotypes appeared to segregate in simple Mendelian 3:1 ratios, 

suggesting the involvement of a single dominant locus for both traits. Pink anthers were 

dominant to yellow anthers and long awns were dominant to short awns. Phenotypes for 

these binary traits were only recorded for the F2s in the PV location (table 1). At 

alpha=0.05, we failed to reject the null hypothesis of a 3:1 ratio by χ² test, based on the p-

values of 0.09 in population 991 and 0.40 in 1038. The nearly-significant segregation 

distortion in favor of yellow anthers in population 991 may result from the difficulty in 

differentiating the two colors when the anthers on mature panicles turned brown.  

 

Genotyping and Genetic Map Construction 

Marker Segregation in Partially Isogenic Populations 

A subset of 109-175 F3’s from each population were genotyped using genotyping-

by-sequencing (GBS). 384 barcoded samples, instead of the usual 96-plex used for inbred 

lines, were used since LD in biparental crosses is much higher. The populations used in this 

study are different from ordinary biparental populations in that the two parents of each 

populations are partially isogenic. After five backcrosses in the absence of selection, each 
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SC line is expected to contain just 3.125% DNA from the elite donor BTx406. However, 

introgression number and size varied among populations (table 2). A high introgression 

number and size could be contributed to unfinished conversion, limited recombination 

around conversion targets, or a large number of conversion targets. Another possibility is 

that due to seed mix-up or contamination, the individual plants used as parents for a given 

cross were less isogenic than they could be. Marker density averaged 11.6 markers per Mb 

across all populations. Marker density was highest in population 673 and lowest in 

population 1038, possibly because 1038 contained more introgressed centromeric regions 

with low marker density. Introgressions across all populations were concentrated on 

chromosomes 6, 7, and 9. 

Table 2 Genotyping results for each population. 

Population 
Marker 
Number 

Number of 
Chromosomes 

w/ Introgressions  

Total Number 
of 

Introgressions  
Total Introgression 

Length (Mb) 
Marker Density  
(marker #/Mb) 

673 162 3 9 9.752 16.61 

757 487 5 10 41.06 11.86 

991 7418 10 18 603.7 12.29 

1038 3339 10 25 459.6 7.27 

1203 1161 6 14 118.1 9.83 

 

Comparison of Genetic Distance vs. Physical Distance among Populations 

Comparison of recombination rates among populations was possible for portions of 

chromosomes 6, 7 and 9. All populations segregated for a portion of chromosome 6 that 

includes the linked Ma1-Dw2 loci for maturity and height at ~40 Mb (fig 10). In four of the 

five populations the segregating introgression on chromosome 6 extended nearly to the 

beginning of chromosome 6, and in three populations there was very little evidence of 

recombination from 4-40 Mb. Only population 991 showed substantial recombination 
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across this region, with ~10X greater genetic distance from 4-40 Mb than populations 757, 

1038, and 1203. The higher observed recombination in this region in population 991 

suggests that this population could be useful in separating the effects of maturity and 

height QTL in this large LD block. Recombination rates in shared introgressed regions on 

chromosomes 7 and 9 are much more uniform across populations, suggesting that the 

differences observed on chromosome 6 do not result from genome-wide differences in 

recombination rate. 

 

Figure 6 Genetic versus physical distance in five partially-isogenic populations for selected 
regions of chromosomes 6, 7, and 9. The slope of the line reflects the recombination rate. 
Higher recombination is observed in chromosomal arms compared to centromeric regions. 
Chromosome 6 varies almost 10X in recombination rate amongst populations between 4-
40 Mb, compared to the relative consistency on chromosomes 7 and 9. 
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QTL Analysis 

QTL Number and Effect Size 

Each population contained 2-5 significant QTL for either height or maturity (table 

4). The QTL with the largest effects on height and maturity were both found in population 

1038, and explained 78.94% and 65.23% of the phenotypic variance respectively. 

Significant interactions were found between maturity QTL in population 757 and between 

height QTL in populations 1038 and 1203. The highest total model variance explained was 

88.16% for height in population 673 and lowest for height in population 1203 at 62.31%. 

Total introgressions differed from significant introgressions associated with height and 

maturity for each population (figs 7 & 8). 

Although population 1038 had an introgression on chromosome 7 spanning dw3, no 

significant QTL for height was detected in this region. We infer that EP 1038 already 

contained a native recessive dw3 allele, but that the source of SC 1038 we used was still 

introgressed with the donor dw3. It was previously reported that SC1038 contains a native, 

stable dw3 allele defined by a 6 base-pair insertion, different from the unstable duplication 

found in the donor BTx406 ( Tuinstra and Johal 2013). Therefore, several different 

versions of SC 1038 must exist, with several different recessive dw3 alleles. The lack of 

height QTL in this region in pop 1038 suggests that these two dw3 alleles do not differ in 

their effects. 
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Figure 7 Complete QTL maps for each population with permutation thresholds for height 
and maturity (thresholds nearly equal within pops). 
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Figure 8 Significant QTL maps for each population with permutation thresholds for height 
and maturity. 
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Table 3 QTL models for height and maturity in partially-isogenic sorghum populations. 
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Incidence of Putative Ma1, Dw2, Dw3, and Dw1  

QTL were classified into six groups based on physical location across three 

chromosomes (table 4). Maturity QTL near the Ma1 locus at 40.3 Mb on chromosome 6 were 

found in all populations. The putative Ma1 QTL in Population 757 was the furthest from 

cloned Ma1 gene at almost two Mb away, but this was the closest segregating marker to the 

Ma1 locus in this population. Low marker density in this region in population 757 may be 

due to genetic similarity with the elite donor BTx406. Two populations, 991 and 1203, 

segregated for plant height QTL near the cloned dw3 locus at 58.6 Mb on chromosome 7.  

  

Table 4 Comparison of QTL locations (Mb) across populations with reference to known 
(cloned or uncloned) loci. 

Population Chr 3 Chr 6 Chr 6 Chr 7 Chr 9 Chr 9 

Locus Dw?1 Ma1 Dw2 Dw3 Dw1 Ma? 

Position ? 40.3 ? 58.6 ? ? 

673 - 39.92 44.42 - - - 

757 - 42.19 43.02 - 57.28 59.03 

991 41.87 40.06 43.67 58 57.77 - 

1038 - 41.41 - - 56.7 - 

1203 - 39.87 42.62 58.83 - 58.65 

1. Novel loci 

 For uncloned loci, populations 673, 757, 991 and 1203 have plant height QTL around 

the putative Dw2 locus, expected to be several Mb distal to ma1 on chromosome 6. Some 

disagreement existed between populations for location of dw2, which mapped within a 1.8 

Mb region containing three genes encoding putative endo1,3;1,4betaDglucanase precursors. 

A mutation found in the rice ortholog of these genes, OsGLU1, results in a dwarf phenotype 

characterized by a reduction in cell elongation, a decrease in cellulose content, and an 

increase in pectin content. It was therefore suggested that OsGLU1 affects both internode 
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elongation and cell wall composition of rice, with gibberellins and brassinosteroids 

responsible for inducing OsGLU1 expression (Zhou et al. 2006).  Populations 757, 991, and 

1038 segregate for plant height QTL around the putative dw1 locus. Based on these three 

QTL regions, dw1 falls within a 1.07 Mb region between 56.7 and 57.77 Mb on chromosome 

9. This gene rich region contains several potential candidate genes, such as a putative auxin 

responsive protein (Sb09g027990), an auxin responsive Aux/IAA gene family member 

(Sb09g028210), a putative gibberellin 2-beta-dioxygenase (Sb09g028360), a putative auxin 

response factor 15 (Sb09g028450), a fasciclin domain containing protein (Sb09g028480), 

and an AP2 domain containing protein (Sb09g028567). 

The dw1 locus fractionated into two linked height and maturity QTL as previously 

reported (Thurber et al. 2013). This ma locus on chromosome 9 is possibly one of the 

unmapped classical maturity loci (ma2 or ma4). Two populations, 757 and 1203, segregated 

for this maturity locus, which mapped to a ~0.4 Mb region around ~58.6-59 Mb. Population 

991 also appeared to have a weak maturity QTL at this locus at 58.47 Mb, but this QTL did 

not pass the permutation threshold. This region is close to a possible candidate gene 

encoding a putative early flowering (ELF3) protein (Sb09g030700). Natural variation in 

Hd17, a rice homolog of Arabidopsis ELF3, in japonica rice was found to play an important 

role in maintaining circadian rhythms and was associated with differences in flowering time 

(Matsubara et al. 2012). 

A novel height locus found only in population 991 was also the only locus reported 

on chromosome 3. A previous QTL study reported the incidence of a potential height QTL on 

this chromosome (Y. R. Lin, Schertz, and Paterson 1995). This QTL mapped to ~7 Mb interval 

beginning at 41.9 Mb.  
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Comparison of Additive Effects by Population 

Table 5 Comparison of additive effects1 between populations. 

Population Chr 3 Chr 6 Chr 6 Chr 7 Chr 9 Chr 9 

Locus Dw? Ma1 Dw2 Dw3 Dw1 Ma? 

673 - 5.36 18.49 - - - 

757 - 7.08 24.15 - 30.02 5.77 

991 1.72 20.69 50.98 46.58 21.44 - 

1038 - 20.64 37 - 69 - 

1203 - 18.86 33.66 38.45 - 8.62 

1. maturity (days) and height (cm) 

Variation among the additive effects was observed for QTL of both traits. Ma1 has a 

known allelic series, with kafirs having a distinct allele (Murphy et al. 2011), but the additive 

effects of the ma1 allelic series are unknown. Our results show the additive effects of ma1 

among the populations noticeably split between the kafirs (673, 757) and the other three 

populations. The kafirs native ma1 allele appears to confer partial photoperiod insensitivity, 

with an average additive effect of 6.22 days compared to 20.62 days (table 5) of the three 

other populations, a 3x greater delay effect in maturity. The other maturity QTL on 9 had an 

average effect of 7.2 days when comparing populations 757 and 1203. 

The additive effects of the height QTL were not as uniform among the populations as 

maturity, with later maturing populations tending to have larger height QTL effects. The 

effects of dw2 had a range of 18.49 to 65 cm, whereas dw1 had a range of 15 to 69 cm. The 

effects of dw3 were less variable with an average additive effect of 43.23 cm and range of 10 

cm. The only locus on chromosome 3 for height and found only in population 991 had a low 

additive effect of 1.72 cm, but a relatively high dominance effect of 30.24 cm (table 4). 
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Qualitative Traits 

A QTL for awn length in population 1038 mapped to chromosome 10 at 59.32 Mb 

(fig 11). No height or maturity QTL were found on this chromosome in any populations in 

this experiment. Variation in awn length is observed in many other grass species such as 

wheat, rice, and barley, and depending on the species, this phenotype functions for heat 

dispersal, seed dispersal, and even as a photosynthetic organ. The short awn 2 (lks2) gene, 

which encodes a SHI-family transcription factor found in barley, produces awns around 

50% shorter than normal (Yuo et al. 2012), similar to the phenotype observed in 

population 1038. An orthologous gene in sorghum maps to an expressed, putative SHI gene 

at 59.53 Mb (Sb10g029800) on chromosome 10 (“www.phytozome.net” 2013), making it a 

potential candidate gene. 

The anther color gene mapped on chromosome 6 around 54.02 Mb in population 

991 (fig 11). This QTL mapped to a ~650,000 bp region containing three putative 

anthocyanin regulatory Lc proteins orthologous to the b locus in maize, which encodes a 

transcription factor that regulates the expression of genes responsible for producing the 

purple anthocyanin pigment (Selinger and Chandler 1999). Unpublished data from our 

group also maps the plant color locus p, which conditions the accumulation of anthocyanin 

in vegetative tissue, to this locus. As in maize, tissue-specific anthocyanin production in 

sorghum is apparently the result of different b/p alleles being expressed in distinct tissues. 
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Figure 9 Qualitative trait associated peaks for populations 991 and 1038 with permutation 
thresholds shown as dashed horizontal lines. 
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Conclusion 

The creation of partially isogenic populations aids in the identification of QTL that 

influence sorghum height and maturity. Compared to typical biparental populations, 

partially isogenic populations have simplified genetic architecture, and QTL models in 

these populations explain a large proportion of the phenotypic variation. Genotyping-by-

sequencing libraries were constructed using 384 barcodes instead of the usual 96 to reduce 

genotyping costs to under $10 per sample. Large differences in recombination rate among 

populations are observed on chromosome 6. 

As previously documented, a small number of QTL have relatively large effects on 

height and maturity. Introgressions on chromosomes 6, 7, and 9 accounted for most of the 

variation found for both traits. A maturity QTL mapped to the known, cloned Ma1 locus on 

chromosome 6 in all populations, and evidence was presented for a series of functionally 

distinct alleles at Ma1, present in different racial groups, with drastically different additive 

effects. A height QTL mapped to the cloned Dw3 locus in populations 991 and 1203. Height 

QTL were also mapped near the uncloned Dw2 locus on chromosome 6 and near the 

uncloned Dw1 locus on chromosome 9. The Dw1 locus was shown to fractionate into 

distinct height and maturity loci. Potential candidate genes were identified for these three 

unknown loci. A unique population-specific height locus was discovered on chromosome 3 

in population 991. Potential candidate genes were found for several qualitative traits: 

anther color in population 991 and awn length in population 1038. 

Identifying and fine-mapping QTL for height and maturity will further help breeders 

utilize and introgress these QTL into desired genetic backgrounds, while exploiting and 

recovering existing diversity around these regions. Individual lines with recombination 
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events in these QTL regions can be used for future fine-mapping and gene characterization 

experiments, notably dw1 on chromosome 9, dw2 on chromosome 6, and a previously 

uncharacterized maturity QTL on chromosome 9. Identifying additional population-specific 

QTL that influence height and maturity, such as the height locus on chromosome 3 in 

population 991, is possible through the creation of additional near isogenic populations 

using the large diverse panel of sorghum converted lines and their exotic progenitors. The 

efficiency of future experiments can be enhanced by optimizing barcode number and 

population size.  

  



37 
  

Literature Cited 

Agrama, H. A., and M. R. Tuinstra. 2004. “Phylogenetic Diversity and Relationships among 

Sorghum Accessions Using SSRs and RAPDs.” African Journal of Biotechnology 2 (10) 

(February 27): 334–340. doi:10.4314/ajb.v2i10.14848. 

Ahnert, D., M. Lee, D. F. Austin, C. Livini, W. L. Woodman, S. J. Openshaw, J. S. C. Smith, K. 

Porter, and G. Dalton. 1996. “Genetic Diversity among Elite Sorghum Inbred Lines 

Assessed with DNA Markers and Pedigree Information.” Crop Science 36 (5): 1385–

1392. doi:10.2135/cropsci1996.0011183X003600050049x. 

Ayana, Amsalu, and Endashaw Bekele. 1998. “Geographical Patterns of Morphological 

Variation in Sorghum (Sorghum Bicolor (L.) Moench) Germplasm from Ethiopia and 

Eritrea: Qualitative Characters.” Hereditas 129 (3): 195–205. doi:10.1111/j.1601-

5223.1998.t01-1-00195.x. 

Billot, Claire, Punna Ramu, Sophie Bouchet, Jacques Chantereau, Monique Deu, Laetitia 

Gardes, Jean-Louis Noyer, et al. 2013. “Massive Sorghum Collection Genotyped with 

SSR Markers to Enhance Use of Global Genetic Resources.” PLoS ONE 8 (4) (April 2): 

e59714. doi:10.1371/journal.pone.0059714. 

Bouchet, Sophie, David Pot, Monique Deu, Jean-François Rami, Claire Billot, Xavier Perrier, 

Ronan Rivallan, et al. 2012. “Genetic Structure, Linkage Disequilibrium and Signature of 

Selection in Sorghum: Lessons from Physically Anchored DArT Markers.” PLoS ONE 7 

(3) (March 13): e33470. doi:10.1371/journal.pone.0033470. 

Brown, P. J., P. E. Klein, E. Bortiri, C. B. Acharya, W. L. Rooney, and S. Kresovich. 2006. 

“Inheritance of Inflorescence Architecture in Sorghum.” Theoretical and Applied 

Genetics 113 (5) (September 1): 931–942. doi:10.1007/s00122-006-0352-9. 

Brown, Patrick J., Sean Myles, and Stephen Kresovich. 2011. “Genetic Support for Phenotype-

Based Racial Classification in Sorghum.” Crop Science 51 (1): 224. 

doi:10.2135/cropsci2010.03.0179. 

Brown, Patrick J., and Andrew H. Paterson. 2013. “Bridging Classical and Molecular Genetics 

of Sorghum Plant Stature and Maturity.” In Genomics of the Saccharinae, edited by 

Andrew H. Paterson, 333–345. Plant Genetics and Genomics: Crops and Models 11. 

Springer New York. http://link.springer.com/chapter/10.1007/978-1-4419-5947-8_14. 

Brown, Patrick J., William L. Rooney, Cleve Franks, and Stephen Kresovich. 2008. “Efficient 

Mapping of Plant Height Quantitative Trait Loci in a Sorghum Association Population 

With Introgressed Dwarfing Genes.” Genetics 180 (1) (September 1): 629–637. 

doi:10.1534/genetics.108.092239. 

Casa, A. M., S. E. Mitchell, M. T. Hamblin, H. Sun, J. E. Bowers, A. H. Paterson, C. F. 

Aquadro, and S. Kresovich. 2005. “Diversity and Selection in Sorghum: Simultaneous 

Analyses Using Simple Sequence Repeats.” Theoretical and Applied Genetics 111 (1) 

(June 1): 23–30. doi:10.1007/s00122-005-1952-5. 

Childs, K. 1997. “The Sorghum Photoperiod Sensitivity Gene, Ma3, Encodes a Phytochrome B.” 

PLANT PHYSIOLOGY 113 (2) (February 1): 611–619. doi:10.1104/pp.113.2.611. 

Dweikat, Ismail, Clifford Weil, Stephen Moose, Leon Kochian, Nathan Mosier, Klein Ileleji, 

Patrick Brown, et al. 2012. “Envisioning the Transition to a next-Generation Biofuels 

Industry in the US Midwest.” Biofuels, Bioproducts and Biorefining 6 (4): 376–386. 

doi:10.1002/bbb.1342. 



38 
  

“Environmental Protection Agency.” 2013. Accessed May 28. 

http://www.epa.gov/agriculture/ag101/cropmajor.html. 

Glenn, Travis C. 2011. “Field Guide to next-Generation DNA Sequencers.” Molecular Ecology 

Resources 11 (5): 759–769. doi:10.1111/j.1755-0998.2011.03024.x. 

“GRIN NPGS.” 2013. Accessed July 29. http://www.ars-grin.gov/npgs/. 

Hamblin, Martha T., Maria G. Salas Fernandez, Alexandra M. Casa, Sharon E. Mitchell, Andrew 

H. Paterson, and Stephen Kresovich. 2005. “Equilibrium Processes Cannot Explain High 

Levels of Short- and Medium-Range Linkage Disequilibrium in the Domesticated Grass 

Sorghum Bicolor.” Genetics 171 (3) (November 1): 1247–1256. 

doi:10.1534/genetics.105.041566. 

Hart, G. E., K. F. Schertz, Y. Peng, and N. H. Syed. 2001. “Genetic Mapping of Sorghum 

Bicolor (L.) Moench QTLs That Control Variation in Tillering and Other Morphological 

Characters.” Theoretical and Applied Genetics 103 (8) (December 1): 1232–1242. 

doi:10.1007/s001220100582. 

Jakob, Katrin, Fasong Zhou, and Andrew H. Paterson. 2009. “Genetic Improvement of C4 

Grasses as Cellulosic Biofuel Feedstocks.” In Vitro Cellular & Developmental Biology - 

Plant 45 (3) (June 1): 291–305. doi:10.1007/s11627-009-9214-x. 

Karper, R. E. 1932. “A Dominant Mutation of Frequent Recurrence in Sorghum.” The American 

Naturalist 66 (707) (November 1): 511–529. doi:10.2307/2456778. 

Klein, R. R., P. E. Klein, J. E. Mullet, P. Minx, W. L. Rooney, and K. F. Schertz. 2006. “Fertility 

Restorer Locus Rf1 of Sorghum (Sorghum Bicolor L.) Encodes a Pentatricopeptide 

Repeat Protein Not Present in the Colinear Region of Rice Chromosome 12.” Theoretical 

and Applied Genetics 112 (2) (January 1): 388–388. doi:10.1007/s00122-005-0134-9. 

Klein, R. R., R. Rodriguez-Herrera, J. A. Schlueter, P. E. Klein, Z. H. Yu, and W. L. Rooney. 

2001. “Identification of Genomic Regions That Affect Grain-Mould Incidence and Other 

Traits of Agronomic Importance in Sorghum.” Theoretical and Applied Genetics 102 (2-

3) (February 1): 307–319. doi:10.1007/s001220051647. 

Klein, Robert R., John E. Mullet, David R. Jordan, Frederick R. Miller, William L. Rooney, 

Monica A. Menz, Cleve D. Franks, and Patricia E. Klein. 2008. “The Effect of Tropical 

Sorghum Conversion and Inbred Development on Genome Diversity as Revealed by 

High-Resolution Genotyping.” Crop Science 48 (Supplement_1): S–12. 

doi:10.2135/cropsci2007.06.0319tpg. 

Kumar, Santosh, Travis W. Banks, and Sylvie Cloutier. 2012. “SNP Discovery through Next-

Generation Sequencing and Its Applications.” International Journal of Plant Genomics 

2012 (November 22). doi:10.1155/2012/831460. 

http://www.hindawi.com/journals/ijpg/2012/831460/abs/. 

Lin, Y. R., K. F. Schertz, and A. H. Paterson. 1995. “Comparative Analysis of Qtls Affecting 

Plant Height and Maturity across the Poaceae, in Reference to an Interspecific Sorghum 

Population.” Genetics 141 (1) (September): 391–411. 

Lin, Zhongwei, Xianran Li, Laura M. Shannon, Cheng-Ting Yeh, Ming L. Wang, Guihua Bai, 

Zhao Peng, et al. 2012. “Parallel Domestication of the Shattering1 Genes in Cereals.” 

Nature Genetics 44 (6) (June): 720–724. doi:10.1038/ng.2281. 

Matsubara, Kazuki, Eri Ogiso-Tanaka, Kiyosumi Hori, Kaworu Ebana, Tsuyu Ando, and 

Masahiro Yano. 2012. “Natural Variation in Hd17, a Homolog of Arabidopsis ELF3 That 

Is Involved in Rice Photoperiodic Flowering.” Plant and Cell Physiology 53 (4) (April 

1): 709–716. doi:10.1093/pcp/pcs028. 



39 
  

Morris, Geoffrey P., Punna Ramu, Santosh P. Deshpande, C. Thomas Hash, Trushar Shah, Hari 

D. Upadhyaya, Oscar Riera-Lizarazu, et al. 2013. “Population Genomic and Genome-

Wide Association Studies of Agroclimatic Traits in Sorghum.” Proceedings of the 

National Academy of Sciences 110 (2) (January 8): 453–458. 

doi:10.1073/pnas.1215985110. 

Mullet, John E., William L. Rooney, Patricia E. Klein, Daryl Morishige, Rebecca Murphy, and 

Jeff A. Brady. 2010. “Discovery and Utilization of Sorghum Genes (ma5/ma6).” 

Multani, Dilbag S., Steven P. Briggs, Mark A. Chamberlin, Joshua J. Blakeslee, Angus S. 

Murphy, and Gurmukh S. Johal. 2003. “Loss of an MDR Transporter in Compact Stalks 

of Maize br2 and Sorghum dw3 Mutants.” Science 302 (5642) (October 3): 81–84. 

doi:10.1126/science.1086072. 

Murphy, R. L., R. R. Klein, D. T. Morishige, J. A. Brady, W. L. Rooney, F. R. Miller, D. V. 

Dugas, P. E. Klein, and J. E. Mullet. 2011. “Coincident Light and Clock Regulation of 

Pseudoresponse Regulator Protein 37 (PRR37) Controls Photoperiodic Flowering in 

Sorghum.” Proceedings of the National Academy of Sciences 108 (39) (September 19): 

16469–16474. doi:10.1073/pnas.1106212108. 

Murray, Seth C., William L. Rooney, Martha T. Hamblin, Sharon E. Mitchell, and Stephen 

Kresovich. 2009. “Sweet Sorghum Genetic Diversity and Association Mapping for Brix 

and Height.” The Plant Genome Journal 2 (1): 48. 

doi:10.3835/plantgenome2008.10.0011. 

Murray, Seth C., William L. Rooney, Sharon E. Mitchell, Arun Sharma, Patricia E. Klein, John 

E. Mullet, and Stephen Kresovich. 2008. “Genetic Improvement of Sorghum as a Biofuel 

Feedstock: II. QTL for Stem and Leaf Structural Carbohydrates.” Crop Science 48 (6): 

2180. doi:10.2135/cropsci2008.01.0068. 

“National Plant Germplasm System.” 2013. Accessed June 5. http://www.ars-grin.gov/npgs/. 

Nelson, James C., Shichen Wang, Yuye Wu, Xianran Li, Ginny Antony, Frank F. White, and 

Jianming Yu. 2011. “Single-Nucleotide Polymorphism Discovery by High-Throughput 

Sequencing in Sorghum.” BMC Genomics 12 (1) (July 7): 352. doi:10.1186/1471-2164-

12-352. 

Olsen, Kenneth M. 2012. “One Gene’s Shattering Effects.” Nature Genetics 44 (6) (June): 616–

617. doi:10.1038/ng.2289. 

Pereira, M. G., and M. Lee. 1995. “Identification of Genomic Regions Affecting Plant Height in 

Sorghum and Maize.” Theoretical and Applied Genetics 90 (3-4) (March 1): 380–388. 

doi:10.1007/BF00221980. 

Poland, Jesse A., Patrick J. Brown, Mark E. Sorrells, and Jean-Luc Jannink. 2012. “Development 

of High-Density Genetic Maps for Barley and Wheat Using a Novel Two-Enzyme 

Genotyping-by-Sequencing Approach.” PLoS ONE 7 (2) (February 28): e32253. 

doi:10.1371/journal.pone.0032253. 

Quinby, J. R., and R. E. Karper. 1953. “Inheritance of height in sorghum.” 98–99 pp. 

CABDirect2. 

Quinby, John Roy. 1974. Sorghum Improvement and the Genetics of Growth. Texas Agricultural 

Experiment Station. 

Rooney, William L., Jürg Blumenthal, Brent Bean, and John E. Mullet. 2007. “Designing 

Sorghum as a Dedicated Bioenergy Feedstock.” Biofuels, Bioproducts and Biorefining 1 

(2): 147–157. doi:10.1002/bbb.15. 



40 
  

Selinger, David A., and Vicki L. Chandler. 1999. “Major Recent and Independent Changes in 

Levels and Patterns of Expression Have Occurred at the B Gene, a Regulatory Locus in 

Maize.” Proceedings of the National Academy of Sciences of the United States of 

America 96 (26) (December 21): 15007–15012. 

Smith, C. Wayne, and Richard A. Frederiksen. 2000. Sorghum: Origin, History, Technology, and 

Production. John Wiley & Sons. 

Smith, Stephen, Valerio Primomo, Roger Monk, Barry Nelson, Elizabeth Jones, and Kay Porter. 

2010. “Genetic Diversity of Widely Used U.S. Sorghum Hybrids 1980–2008.” Crop 

Science 50 (5): 1664. doi:10.2135/cropsci2009.10.0619. 

Thurber, Carrie S., Justin M. Ma, Race H. Higgins, and Patrick J. Brown. 2013. “Retrospective 

Genomic Analysis of Sorghum Adaptation to Temperate-Zone Grain Production.” 

Genome Biology 14 (6) (June 26): R68. doi:10.1186/gb-2013-14-6-r68. 

Tuinstra, Mitchell R., and Gurmukh S. Johal. 2013. “A Stable dw3 Allele for Sorghum and a 

Molecular Marker to Facilitate Selection.” 

Tuinstra, Mitchell Reed, and Gurmukh S. Johal. 2013. “Stable dw3 Allele for Sorghum and a 

Molecular Marker to Facilitate Selection.” Accessed July 29. 

http://www.google.com/patents?id=M5vvAQAAEBAJ. 

“Www.maizegenetics.net.” 2013. Accessed July 23. 

http://www.maizegenetics.net/index.php?option=com_content&task=view&id=89&Itemi

d=119. 

“Www.phytozome.net.” 2013. Accessed July 2. http://www.phytozome.net/. 

“Www.rqtl.org/.” 2013. Accessed July 30. http://www.rqtl.org/. 

Yuo, Takahisa, Yuko Yamashita, Hiroyuki Kanamori, Takashi Matsumoto, Udda Lundqvist, 

Kazuhiro Sato, Masahiko Ichii, Stephen A. Jobling, and Shin Taketa. 2012. “A SHORT 

INTERNODES (SHI) Family Transcription Factor Gene Regulates Awn Elongation and 

Pistil Morphology in Barley.” Journal of Experimental Botany 63 (14) (September 1): 

5223–5232. doi:10.1093/jxb/ers182. 

Zhou, Hua-Lin, Si-Jie He, Yang-Rong Cao, Tao Chen, Bao-Xing Du, Cheng-Cai Chu, Jin-Song 

Zhang, and Shou-Yi Chen. 2006. “OsGLU1, A Putative Membrane-Bound Endo-1,4-ß-

D-Glucanase from Rice, Affects Plant Internode Elongation.” Plant Molecular Biology 

60 (1) (January 1): 137–151. doi:10.1007/s11103-005-2972-x. 
 

  



41 
  

Appendix A 

  
Figure 10 Scatterplots showing height correlations between temperate (Urbana) and 
tropical (PV) locations, split by population. 
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Figure 11 Scatterplots showing maturity correlations between temperate (Urbana) and 
tropical (PV) locations, split by population. 



43 
  

  

Figure 12 Scatterplots showing height and maturity correlations in the tropical (PV) 
location, split by population. 
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Figure 13 Scatterplots showing height and maturity correlations in the temperate (Urbana) 
location, split by population. 
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Appendix C 

library(qtl) 
 
#Construct genetic map 
p0673=read.cross("csv",dir="”sep=""),na.strings=c("N"),genotypes=c("A","M","C","
Y","Z"),estimate.map=T) 
plot(p0673) 
 
#Look at LD within pops 
rf0673=est.rf(p0673) 
plot.rf(rf0673) 
 
#QTL discovery 
p0673=calc.genoprob(p0673,step=0,error.prob=0.01) 
out.em.p0673=scanone(p0673,pheno.col=c(1,2)) 
write.table(out.em.p0673, file = ".txt", append =FALSE, quote=TRUE, 
sep="\t",eol="\n", na ="NA", dec =".", row.names =TRUE,col.names =TRUE, 
qmethod=c("escape", "double"),fileEncoding="") 
 
#Plot QTL 
plot(out.em.p0673, , main="POP0673", ylab="LOD", lodcolumn=c(1,2) , chr=6, 
show.marker.names=F) 
 
#Permutation thresholds for each phenotype 
operm.hk=scanone(p0673, method="hk", n.perm=1000,pheno.col=c(1,2)) 
summary(operm.hk,alpha=0.05, pvalues=TRUE) 
abline(h=1.99, lwd=1,lty=2,col=1) 
abline(h=1.98, lwd=1,lty=2,col="blue") 
 
#Constructing Model 
#Simulate genotypes 
hyper = sim.geno(p0673, step=0, n.draws=100, err=0.001) 
#Construct QTL 
chr=c(6,6) 
pos=c(0,8.37) 
qtl=makeqtl(hyper,chr,pos) 
#Model 
my.formula=y~Q1 
out.fitqtl=fitqtl(hyper1,pheno.col=1,qtl=qtl, formula=my.formula, get.ests=TRUE) 
summary(out.fitqtl) 

 
 


