
c© 2013 Michael Brandon Rogers

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Illinois Digital Environment for Access to Learning and Scholarship Repository

https://core.ac.uk/display/19529741?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A SURVEY OF THE HAZARDS OF USING USB AS A UNIVERSAL
CHARGING STANDARD AS PERTAINS TO SMART DEVICES

BY

MICHAEL BRANDON ROGERS

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2013

Urbana, Illinois

Adviser:

Associate Professor Yih-Chun Hu

ABSTRACT

The Universal Serial Bus protocol was designed to be, and has become, the

single standard used for interfacing with computer peripherals and electronic

components. The proliferation of this protocol has resulted in USB power

outlets in public places being a common sight. However, the very univer-

sality of the protocol, combined with the rapidly shrinking size of computer

processors and microcontrollers, creates some rather severe security vulner-

abilities.

Plugging a USB smart device into a compromised port, even one purported

to be solely a power delivery system, can allow an attacker to perform many

different malicious actions, the range and severity of which depend on the

length of time the device remains attached, the specific type of device in

question, and the resources of the attacker. This thesis presents a survey of

the types of attacks possible against some of the most common and popular

devices, a comparison of these devices from the standpoint of defense against

these types of attacks, and possible mitigation strategies.

ii

To my parents, for their love and support.

iii

ACKNOWLEDGMENTS

Thanks to my adviser, Professor Yih-Chun Hu, without whom this would

not have been possible; to my friends, whose support and commiseration

carried me through the tough times; and thanks to my loving family, who

never stopped encouraging me.

iv

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION . 1
1.1 Proliferation of smart devices 1
1.2 Proliferation of USB charging stations 2
1.3 Potential avenues of attack . 2

CHAPTER 2 ATTACKS AGAINST IOS DEVICES 4
2.1 USB interface . 4
2.2 Existing attacks . 6
2.3 Potential attacks . 10

CHAPTER 3 ATTACKS AGAINST ANDROID DEVICES 13
3.1 USB interface . 13
3.2 Existing attacks . 16
3.3 Potential attacks . 20

CHAPTER 4 ATTACKS AGAINST WINDOWS MOBILE DEVICES 23
4.1 USB interface . 23
4.2 Existing attacks . 24
4.3 Potential attacks . 25

CHAPTER 5 COMPARISON . 28
5.1 Attacks common to all platforms 28
5.2 Attacks common to Android and iOS 30
5.3 Attacks unique to a single platform 31

CHAPTER 6 MITIGATION . 33
6.1 Software-based mitigation techniques 33
6.2 Hardware-based mitigation techniques 37
6.3 User prevention techniques . 38

CHAPTER 7 CONCLUSIONS . 40

REFERENCES . 42

v

CHAPTER 1

INTRODUCTION

The USB protocol was originally designed to enable the transfer of both data

and power. The average battery life of a smart device and the wireless data

capabilities these devices possess, though, have resulted in USB connections

being more frequently used for power than for data. However, even if the

intent of the user is simply to charge the device, the potential for data transfer

is still present if the USB port being used is being driven by a processor

such as a computer or microcontroller. In the case of a home or workplace

personal computer, this is expected behavior and not necessarily cause for

concern (unless the computer has been compromised by malware); in the case

of a USB charging station which should not have such a processor, however,

this behavior can be used for malicious purposes.

1.1 Proliferation of smart devices

Smartphones in their original incarnation were referred to as personal digital

assistants, or PDAs. They were bulky, clumsy, lacked touchscreens, and were

significantly more expensive than any other type of phone. Since then, the

smartphone has evolved to the point where smartphone users outnumber

normal cellular phone users in the United States [1], with models to fit all

budgets. This is a self-reinforcing cycle, as the prevalence of smartphones has

caused developers to focus on improving smartphone technology, giving rise

to smaller, more efficient processors and better communications protocols

such as 3G and LTE; these improvements in turn create still greater demand

for smartphones.

As smartphones become a part of more people’s everyday lives, security for

them becomes more and more important. One particular problem comes in

the form of perception; cellular phones are viewed as phones, or as mobile e-

1

readers, or as portable social media platforms, when they are actually small,

fully-functioning computers. And like any computer, they are susceptible to

malware and vulnerable to attacks if proper precautions are not taken.

1.2 Proliferation of USB charging stations

With the proliferation of portable, personal smart devices have come at-

tendant services being offered in public locations. It is not uncommon to

see electronic device vending machines in major airports, offering portable

batteries, headphones, or even personal electronic devices such as portable

gaming systems and music players. One such service which is becoming in-

creasingly widespread is the USB charging station or kiosk.

These kiosks are especially prevalent in areas with a large number of trav-

elers, such as airports, train stations, and hotels. There are even third-party

services offering to install and maintain these kiosks as a service [2]. These

charging options are becoming more widespread, and their prevalence and

utility are leading them to become more widely accepted in light of the in-

creasing number of travelers with smart devices in need of recharging.

1.3 Potential avenues of attack

The fact that USB supports both power and data is what leads to the threats

this thesis will analyze. Such threats can come from any USB connection

made with a smart device, whether or not the user of the device is aware

the connection is capable of being used for more than simply power. This

implies there are two different situations which must be taken into account.

The first situation is when the user is aware of the data connection abilities

of the system he or she is connecting to. In this case, attacks are caused by

prior tampering with the system, normally through infection by malware. A

system so infected can then attack a connected smart device, and is partic-

ularly insidious because any data transfer activities noticed may be ignored

as normal when they are in fact signs of an attack. The problem becomes

compounded when the fact that an infected smart device can itself infect a

host system is taken into account.

2

The second situation arises when the victim connects to a USB socket solely

for the purposes of charging the smart device, ignorant of the USB host an

attacker has connected to the outlet. Such a user may or may not be paying

attention to the screen of his or her smart device in such a scenario, depending

on the level of charge in the device and other potential draws on his or her

attention. Detection of a modified charging station by simple observation is

difficult, if not impossible; any marks made by the accessing of the station’s

internals may be dismissed as normal wear, and microcomputers capable of

performing a sophisticated attack while fitting inside a very small space are

not only feasible, but available off the shelf. The Raspberry PI computer,

in particular, has USB connectivity, is very inexpensive, and is small enough

to hide easily, measuring 85.60mm x 56mm x 21mm [3]. Dedicated purpose-

built hardware could be made even smaller.

In either event, the problem becomes one of trust. Whether a device is

being trusted with or without reason, the problem remains. The following

chapters will explore what can be done when that trust is misplaced, and

what can be done to guard against the results.

3

CHAPTER 2

ATTACKS AGAINST IOS DEVICES

The iPhone is, without a doubt, one of the most popular smartphones on the

market today. The iPad broke new ground and in many ways opened the door

to the current popularity of tablets. Many companies issue iPhones to their

employees or only support iPhones, citing ease of mobile device management

on the closed platform and the security the closed-source operating system

offers, as well as the productivity gains available owing to the large amount

of third-party applications available and the ease of creating applications if

none of the existing ones serve. However, the USB communication which

allows easy synchronization of emails, contacts, and other personal data also

presents vulnerabilities which may overlook.

2.1 USB interface

When connecting an iOS device, the host operating system acts as it does for

any USB device and binds the appropriate driver(s) based on the device and

vendor IDs the USB device reports, along with the device’s declared endpoint

types. For the iPhone specifically, this consists of a PTP interface (Picture

Transfer Protocol, used to access the camera’s photograph folder only), the

Apple Mobile Device interface (used to transfer media and settings), and

optionally a USB ethernet interface (used for internet tethering) [4].

2.1.1 The Picture Transfer Protocol interface

The Picture Transfer Protocol is a communication protocol, rather than

defining any particular storage method or format [5]. Because is it solely

a communication protocol, implementation of the storage back end is the

responsibility of the device, meaning that with regards to this particular

4

protocol, the device is only as secure as the storage handling it presents to

the host. The Picture Transfer Protocol is employed in most devices which

have a digital camera (or are exclusively digital cameras).

While the Picture Transfer Protocol does allow for live real-time commu-

nication between the camera itself and the host computer, this functionality

is not enabled on iOS by default (there exists third-party software which

allows for this, but not via the PTP USB endpoint and as such are beyond

the scope of this thesis).

The Picture Transfer Protocol allows the connected host device sandboxed

access to the camera’s storage area only, making it mostly unsuitable for

security exploits beyond theft of photographs. However, some iOS devices,

such as the iPad, actually implement a generic USB mass storage device class

as opposed to the PTP class, and as such are considerably more vulnerable

[6].

2.1.2 The USB Ethernet interface

The Apple USB Ethernet interface offered by iOS devices presents some end-

points of the device as a vendor-specific USB device, which then requires a

specific driver for the host to populate the iOS device as an ethernet con-

nection. This interface is provided primarily for use by cellular data-enabled

devices such as the iPhone and some versions of the iPad, so that cellular

data may be used to connect to the internet in areas where a standard inter-

net connection is not available. The driver used on both Windows and Mac

OSX is Apple’s proprietary driver; however, open source versions which are

compatible with Linux are available [7].

It is interesting to note that while support for internet tethering is native

to iOS, it requires support from the cellular network provider and is routed

through a different system than normal device-based cellular data traffic so

that tethered internet traffic can be tracked (and billed) separately. Since cel-

lular data providers charge an additional fee for this service, there are several

options available for jailbroken devices which configure the device to proxy

traffic from a host through the device’s built-in cellular data connection, by-

passing the native device functionality as well as the service provider’s checks

on tethered data usage.

5

2.1.3 The Apple Mobile Device interface

The Apple Mobile Device interface is the primary interface through which a

host computer communicates with an iOS-based smart device. On Windows

and OSX systems, it provides the interface for iTunes, Apple’s media man-

agement software; on Linux systems, open-source third party drivers use it

to provide a link to other media management software such as Rhythmbox.

On a normal, non-jailbroken iOS device, this interface provides access to

the user data partition on the device via the Apple File Connection (AFC)

service [8]. This service acts as an interface between the host computer and

the filesystem on the device. Files can be read from or written to the device

via calls to the AFC service; the AFC service also offers other filesystem

commands such as creation of symlinks and hardlinks and setting file sizes

and modification times.

Jailbroken devices

On a jailbroken device, a second service (denoted Apple File Connection

2) is installed and set to run with root permissions at boot time. This

AFC2 service is functionally identical to the AFC service, but where the

AFC service is jailed to the user data area of the device, the AFC2 service

has access to the system data partition, allowing low-level root access to

the iOS operating system itself. Effectively, jailbreaking has the end goal of

installing this service in a stable manner, because with the low-level system

access this grants any and every conceivable change to iOS itself becomes

feasible [8].

2.2 Existing attacks

The popularity of the iPhone has made it a target of many attacks, despite

Apple’s best efforts at policing their App Store and their requirement that

any installed applications be digitally signed. This is due in part to the

comparatively large number of vulnerabilities present in iOS. As recently as

March of 2013, the iPhone was found to have more vulnerabilities present

than Windows Phone, BlackBerry, and Android combined [9].

6

Some of these vulnerabilities are what enable jailbreaking, while others are

used simply to attack the phone. Moreover, jailbreaking itself lends a device

to attacks more easily. The existence of an untethered jailbreak implies that

the device is susceptible to boot-time code injection independently of an

attached host device, at least after the initial exploit is executed against the

phone in the first place.

2.2.1 Stock iOS

Attacks against a smart device running iOS can range from the simple to

the sophisticated. The first class of attacks, and the simplest, are not truly

active attacks at all; they simply take advantage of the fact that the entire

user data partition is available over the data connection. These attacks take

the form of data theft. Because iOS and iTunes support synchronizing of

emails, contacts, and calendars along with photographs, music, and videos,

all of this information is freely accessible to any host computer an iOS device

is connected to, regardless of whether or not the device is locked with a

PIN. Also, because the AFC service is separate from the mobilesync service,

reading from the filesystem does not trigger the on-screen synchronization

notification, leaving victims totally unaware that all of their personal data is

being copied directly off of their phone.

The next level of attack is slightly more active, and is not aimed at the

smart device itself. Rather, it is targeted at any host computer the device

normally synchronizes with. Similarly to reading, it is possible to write data

to the user partition via the AFC service without triggering any alerts to

the victim. It is also possible to perform mobilesync’s job manually, regis-

tering new files with the device by manipulating Apple’s .plist files directly.

This was tested experimentally by connecting an iPhone 3G and an iPhone

4 to a compromised virtual machine running Linux. Upon connection of the

iDevice, a ringtone was copied to the device and registered with the system

manually, bypassing the use of mobilesync. No data transfer or synchroniza-

tion notification was given; the only way to tell that anything had been done

was to look at the list of ringtones and observe the presence of a new one. A

naive attacker may plant a link to an infectious website and hope that the

victim will follow it. A sophisticated attacker will copy an existing file, such

7

as a document or a photograph; embed a virus or trojan within it; and copy

it back to the device, overwriting the original so that a file which the victim

has every reason to believe is valid and supposed to be there is in fact a piece

of malware waiting to be executed. This may be done over either the AFC

or PTP communication channels, although doing so over PTP requires ma-

nipulation solely of image files where doing so over AFC allows the attacker

to target any type of data file present on the device.

A minor next step up the ladder of attack sophistication keeps the same

target of a victim’s host computer, but applies to devices which implement

the USB mass storage device protocol rather than the PTP protocol, such as

the iPad [6]. USB mass storage devices encompass such devices as memory

sticks and external hard drives, and as such are capable of executing com-

mands as soon as they are connected to a host via autorun. While some

anti-virus software will disable autorun on mass storage devices specifically

to guard against this sort of attack, not all do, and not all host computers

run anti-virus software in the first place. If autorun is not disabled, then

any executable file can be made to run as soon as the compromised device is

connected, allowing the immediate execution of malware.

The final class of attacks aims at the smart device itself. Apple attempts

to guard against malware being installed on an iOS device by sandboxing

applications and requiring each installed application to be signed with a valid

Apple developer ID and bound to that specific device. There is, however,

a way around these precautions, which is the Apple provisioning profile,

used for developers to be able to push builds of their own applications to

their own devices prior to release for testing purposes. A malicious USB

charger running a microcontroller or miniaturized computer can deploy such

a profile to a connected device, then install a malware application. This

particular technique has both advantages and disadvantages. Because it uses

Apple-signed profiles, it allows malicious applications to be installed without

jailbreaking the device. However, acquiring the provisioning profile requires a

developer’s account, and only 100 devices may be given provisioning profiles

per developer’s account; additionally, there is currently no automated method

for removing a registered device from a developer’s account. Couple this with

the fact that developer’s accounts cost money, and this attack becomes self-

limiting fairly quickly, at least as pertains to number of devices that can

be attacked by the same setup. Additionally, unlike the previous types of

8

attacks, this one requires the screen to be unlocked, at least briefly [10].

While quantity is not a viable option for this attack, though, quality is;

because the user file system is readable, it is possible to assess a connected

smart device for information on the owner. If the owner is judged to be

a sufficiently high-priority target with an unlocked device, a provisioning

profile can be generated and malware installed.

Finally, if none of these types of attacks are sufficient for the attacker’s

purposes, the attacker is left to either target jailbroken devices, or jailbreak

the connected device manually. While most modern jailbreaks require the

device to be rebooted in DFU (Device Firmware Upgrade) mode, there exists

a history of jailbreak techniques employing vulnerabilities present in the iOS

stock software libraries which do not require a device reboot. This includes

the relatively infamous ‘Slide to Unlock’ website which exploited an overflow

in libtiff [11]. Depending on the version of iOS the connected device is run-

ning, it may be possible to silently jailbreak it, at least to the point where

Apple’s digital signing can be circumvented.

2.2.2 Jailbroken Devices

By default, the jailbreaking process installs several additional applications

meant to enhance the usability of the newly available features and facili-

tate the installation of jailbroken applications. One such application is the

Bourne-Again SHell, or bash [12], which is installed along with a default

password of ‘alpine’ for both the normal user account and the root account.

Many users opt to install OpenSSH for ease of remote access and control

of their jailbroken iDevice; however, it is far from uncommon for users to

neglect to change the default password, allowing anyone with an SSH client

and knowledge of the default password to gain full root access to their de-

vice. Since SSH can be tunneled over a USB connection [13], this presents

a vulnerability in the case of a compromised USB charger even if the device

has all wireless radios disabled. Examples of iPhone malware which exploit

this (via wireless communication) have already been found in the wild, in

the forms of the iKee and Privacy.A worms. The iKee worm was largely a

proof-of-concept and fairly benign, disabling the SSH service on infected de-

vices and altering the device wallpaper before attempting to spread in order

9

to patch the very vulnerability it exploits. The Privacy.A worm, however, is

actively malicious, stealing the information stored on compromised devices

and giving no overt sign of infection [14–16].

In addition to the vulnerabilities jailbroken applications themselves may

inadvertently introduce, jailbreaking an iOS device provides two primary av-

enues of attack for a malicious connected host. The first is simply a method

for circumventing Apple’s digital signing protocols, enabling the installation

of arbitrary applications and the execution of arbitrary code. This was one of

the grounds under which Apple was fighting the legality of jailbreaking [17];

by circumventing Apple’s signing practices, it becomes possible to install il-

legally downloaded pirated applications without paying the developers of the

software. This same ability allows for the installation of malicious applica-

tions, either as system services running with root permissions or, as in the

case of unjailbroken devices compromised with a provisioning profile, the in-

stallation of what appears to be an innocent or innocuous application which

is, in fact, malicious.

This leads into the second avenue of attack. Jailbreaking a device allows

root access to the operating system itself, allowing many activities and mod-

ifications which are not possible using solely Apple’s development kit for iOS

applications. Legitimate uses of this access are applications such as Win-

terboard, which allows full customization of the user interface; SBSettings,

which allows the enabling and disabling of some system settings without

going through the settings application, as well as the hiding of icons; and

modification of or addition to stock system sounds for notifications. This

same access allows malware authors to effectively rootkit a jailbroken device

running iOS, hiding any trace of their malicious application from the user’s

notice [11].

2.3 Potential attacks

This section covers theoretical attacks which have not yet been observed

experimentally or ‘in the wild’, but which are nevertheless possible and which

may be seen in the future. Since it is all but impossible to predict specific

vulnerabilities, this section will restrict itself to speculating on the possible

targets of exploits, without regard to the precise mechanism or mechanisms

10

behind the attack.

2.3.1 Stock iOS

It is likely that any new future attacks aimed at compromising non-jailbroken

iOS devices will focus on circumvention Apple’s protection protocols. The

ability to freely read the user partition, which comprises an entire class of

data theft attacks, does not require additional attacks at this time. How-

ever, the ability to install malware on a smart device with an eye to future

exploitation and data theft does require the ability to install applications on a

connected device, which in turn requires attacks aimed at Apple’s protection

mechanisms. Possible exploits of this type include ways to acquire additional

provisioning profiles, perhaps counterfeiting them or finding a way to reuse

them. It is unlikely, although not impossible, that silent jailbreaks will be

seen as part of an attack in the future, due to the increasing experience Apple

is accruing in blocking potential jailbreaking exploits.

Another possibility is an attack against Apple’s bootloader; such attacks

are the cornerstone of current jailbreak techniques, patching the bootloader

to inject jailbreak code when the device is rebooted. Because firmware update

(DFU) mode can be triggered via standard USB communication, it is possible

to modify system files at boot time on a connected device. Such a process is

time-consuming and obvious to the victim, but still possible.

Attacks which have not been seen used but which are possible today using

existing techniques are primarily of the data theft type, stealing all of a user’s

emails, contacts, and documents for later exploitation in phishing, spamming,

and identity theft purposes. Another possible attack is the aforementioned

targeting of the user’s host devices, either at home or at work, through the

use of infected data files copied to the connected device; this type of attack

has already been seen in the Stuxnet worm, although it targeted USB flash

drives rather than smart devices. Stuxnet employed a vulnerability in the

way Windows handles shortcut files which allowed for the propagation of

infection even if autorun was disabled [18]; this technique could be applied

to infected iOS smart devices as well.

11

2.3.2 Jailbroken devices

Jailbroken devices provide a much greater range of possibilities for future

attacks due to the low level root access to the operating system the jailbreak

grants. It is possible to see several different classes of attack against jailbro-

ken devices, depending on the sophistication of the attackers and their end

goals.

The first class of attack is an extension of data theft. It is possible to

insert a recording application into the phone stack of a jailbroken iPhone

and record phone conversations, which can then be sent over either a wire-

less or cellular data connection to a central server. There has already been

work done on using the accelerometer built into iOS smart devices for use

in recording keystrokes [19] as well as using the built-in camera to perform

virtual reconnaissance of a location the attacker does not have physical ac-

cess to [20]. These attacks are classed as potential future attacks because

the proof-of-concept applications have several issues which would need to be

resolved before they become viable threats, but the work is demonstrably

being done. Another proof-of-concept being worked on is the equivalent of a

keylogger for touchscreen-based keyboards, allowing the theft of passwords

and personal information typed into the device itself [21].

The second class of attack is not aimed directly at the smart device itself,

but rather aims to leverage the infected smart device as a malware delivery

vector targeted at one or more host computers. It is possible to modify the

USB device descriptor the smart device presents to a connected host. While

some anti-virus programs disable autorun for devices classed as USB mass

storage device hard disk drives, USB mass storage device CD-ROM drives

are still allowed to execute autorun files. Altering the existing descriptor, or

adding a new endpoint, would allow the infection of a host machine immedi-

ately upon connection to the infected device. Even in the absence of such an

exploit, there are other ways to infect a host machine upon connection [18].

12

CHAPTER 3

ATTACKS AGAINST ANDROID DEVICES

Where iOS is one of the most popular mobile operating systems on the market

today due largely to its simplicity and user-friendly interface, Android enjoys

a large market share [22] for the opposite reason. Android is a fully open-

source operating system, with the kernel source code freely available. Many

entirely custom versions of the Android kernel and operating system such as

CyanogenMod are available for many smart devices [23, 24]. However, this

openness and ability to customize comes with a concomitant price in security.

It is possible to gain root access to a smart device running Android over USB,

and it is relatively easy to write a piece of malware which can be installed

and run at the kernel level. Furthermore, Android supports its own brand of

shell over USB in the form of ADB, or the Android Debug Bridge [25].

3.1 USB interface

The USB interface of an Android smart device is an interesting study. The

Android kernel itself is based on a Linux kernel, and is capable of functioning

in both USB device mode (where the Android device acts as a subordinate

USB device for a host system) and USB host mode (where the Android device

acts as a host system, allowing it to support USB peripherals such as input

and storage devices) [26]. USB host is similar to the default USB device

support implemented in a standard Linux kernel; in order for the Android

device to function in device mode, however, Android uses the Gadget package

of kernel drivers, which has built-in support for the device to identify itself as

any number of different classes of device, and is further user-extensible in the

form of kernel modules [27]. This thesis will focus on the most common and

default USB connection types, and will touch on some of the more dangerous

available configurations.

13

3.1.1 Default Android

Android has been through several versions at this point in time, and differ-

ent versions interface over USB in different ways. At first, the filesystem of

the device was made visible to the host system as a normal USB mass stor-

age device, similar to a flash drive. This had several drawbacks, including

the need to keep system files and user files on different partitions to keep

users from inadvertently modifying import system data; also, while the unit

was mounted as a mass storage device, any other attempts to write to the

same filesystem would result in data corruption or fail outright, requiring the

device to essentially suspend most processes while it was connected. In or-

der to overcome these problems, Android migrated to using the MTP (Media

Transfer Protocol) interface starting with Android 3.0, Honeycomb [28]. The

Media Transfer Protocol is similar to the Picture Transfer Protocol employed

by iOS, but where PTP is optimized and designed for image files, MTP can

handle various different types and sizes of files more robustly. Because MTP

mode acts similar to PTP mode in that it is a protocol and access to the

filesystem is governed strictly by the USB device, it eliminates the need for

separate partitions on disk and allows the operating system total control over

input and output, eliminating the need to suspend processes while connected.

MTP also offers similar security to PTP, and for the same reason: the files

accessible by the host system are governed by the device and so as long as

the device does not reveal any sensitive files, there is little damage that can

be done over USB.

3.1.2 USB debugging enabled

In order to facilitate application development and to allow ease of commu-

nication and control with an Android device, the Android operating system

supports developer mode. This mode adds an endpoint to the USB de-

scriptor for the Android Debuging Bridge, or ADB. ADB effectively offers a

remote shell via USB, through which data can be transferred, the entire de-

vice filesystem can be browsed, commands can be run, and applications can

be installed or uninstalled [25]. This option is disabled by default; it must

be explicitly activated through the device developer settings menu, which

is itself hidden in recent versions of Android [29]. If enabled, however, it

14

grants a level of access greater than that of AFC in iOS devices. Where AFC

grants the ability to read and write the entire user filesystem, ADB grants

the ability to read, write, and execute over the entire device filesystem, in-

cluding system files, with normal user permissions. The only restriction on

this access is that it normally lacks root permissions, and there is no built-in

method for acquiring those permissions. Gaining a root shell requires either

a rooted device, or the use of a local root exploit. The discovery of such

exploits, however, are frequently what allow a device to be rooted in the first

place, and so any device which has a publicly available rooting procedure

may be at risk of being fully compromised via USB in the event debugging

mode is enabled.

3.1.3 Rooted devices

Rooting an Android device does not, in and of itself, present a new or altered

set of USB endpoints to a host system. The primary difference that rooting

a device makes is to potentially enhance the level of access the ADB shell

has. On an unrooted device, the command ‘su’ fails, and it is impossible

to gain root privilege using built-in system commands; on a rooted device,

the command ‘su’ succeeds, although most rooting procedures also install

an application which prompts a user on the device’s screen to confirm or

deny root access. This prompt ostensibly removes the ability to exploit

a connected Android device with root privileges stealthily, although it is

possible to combine such an attack with social engineering techniques and

convince the victim to allow such access.

3.1.4 Custom kernels / ROMs

Because the Android kernel employs the Gadget USB driver to connect to

host devices, there is a staggering array of possible ways for an Android

device running a custom kernel to identify itself to a host. Effectively, a

custom kernel can identify itself as any existing type of USB device, or create

a custom device type which works with a custom driver on the host system.

There are two ways in which this may be accomplished via the Gadget driver.

The first way is to compile the USB driving code into a kernel module,

15

which can then be loaded into the kernel like any other module. This requires

shell access, which is available either through ADB or a terminal program

installed on the device itself; it also requires root permissions, which means

this can only be done on rooted devices. The Gadget driver can only support

one such module at a time, however, so all desired device types must be

combined in the same module, the current module unloaded, and the new

module loaded in order to affect the descriptor presented to the host.

The second way is to compile the desired module into the kernel itself.

Because the module becomes part of the kernel, it cannot be unloaded; al-

tering it requires a modification to the kernel itself. While this does have the

drawback of requiring an alteration to the kernel (which will almost certainly

require a reboot of the device), it also has the advantage of not requiring a

rooted device for the new kernel to be flashed. If, however, the kernel is

modified in-place, a reboot is not required, but root permissions are required

to make the necessary changes to the system files. This is the method which

is initially required on most modern Android devices, as the default Gadget

driver is compiled into the kernel by default.

3.2 Existing attacks

While iOS has been found to have more vulnerabilities [9], Android receives

more press regarding exploitation of those vulnerabilities, as well as more

malware targeted specifically against it [30]. Part of this can be traced to the

difference in development environments. Where a developer’s license for iOS

requires payment, the tools to develop an application for Android are freely

available. This, combined with the freely and simply accessible source and

kernel code allow for a much deeper understanding of the internal workings

of the Android operating system, which in turn enables malware authors to

more easily develop malicious applications for the Android platform.

Another cause is the way third-party applications are handled. Apple

and Google both verify applications submitted to their marketplaces (the

iTunes App Store for iOS and the Google Play Store for Android); however,

applications for iOS must bear Apple’s digital signature from Apple’s own

signing authority before they can be installed on a normal device. Android

applications go through no such centralized signing procedure, which enables

16

unofficial application marketplaces, and which also allows a malicious appli-

cation to masquerade as a legitimate application much more easily.

3.2.1 Stock devices

Attacks against stock devices, which have USB debugging disabled by de-

fault, again can be classified according to sophistication of threat. The least

sophisticated, once again, takes the form of simple data theft and/or infection

of ordinary data files. However, outside of a few devices which implement

their own non-standard protocols and a few third-party applications, personal

data such as contacts and emails are not synchronized directly between An-

droid devices and host systems; as such, data theft of this type is limited to

those files presented as user data storage. While this is still problematic if a

user keeps personal or confidential documents or other files on their mobile

smart device, the potential damage done over USB is significantly lessened

owing to Android’s preference of cloud-based storage and synchronization.

On the opposite end of the spectrum of threats against the device itself are

techniques which target not Android itself, but the bootloader. Google makes

available as part of its SDK the program fastboot, which allows interaction

with the bootloader over USB. Using this program and other exploits, it

is possible to gain full access to the Android operating system itself. This

access allows reading and modification of system and application files, as well

as installation of new system services and applications (or the replacement

of existing services and applications with infected or otherwise malicious

versions). Because this class of attack grants access to system and application

files, far more user information is potentially at risk, including contacts,

email, and even stored passwords if an application has improper security.

Perhaps the most dangerous part of this type of attack is that with such low-

level access, it becomes possible to install and/or execute normal C binaries

(compiled for the appropriate mobile processor) which run outside the Dalvik

sandbox which normal Android applications are constrained to. The few

drawbacks this type of attack possesses from the point of view of the attacker

are that dumping the entire system contents is a time-consuming process (a

problem exacerbated by the increasing size of storage available in such devices

combined with the relatively slow increases in access speeds for that memory)

17

and the fact that some steps of the attack are obvious to anyone who observes

the screen of the device while it is occurring [31].

Going in the other direction, attacks by compromised stock Android de-

vices against a victim’s host computer are also potentially a severe problem.

The simplest such attack simply involves running a version of Android which

communicates by enumeration as a USB mass storage device rather than

using the Media Transfer Protocol; such devices are vulnerable to the same

autorun exploit some iOS devices are susceptible to. Some versions of An-

droid allow the user to switch between using MTP mode and mass storage

mode as a matter of convenience, which broadens the pool of potential victim

devices [32].

The more complicated attack types leverage similar or identical vulner-

abilities as the bootloader attack. Once access to the system files or root

access is gained, it becomes possible to alter the USB endpoints presented to

a connected host device. Because the Gadget driver allows complete speci-

fication of the behavior of the driver on the side of the mobile device, it is

entirely feasible to present the compromised device as something it is not,

and to engage in malicious behavior after it is bound to the host with the

(in)appropriate driver.

One attack would be to mimic a human-interface device such as a keyboard

or mouse [31]. Another such attack would be to mimic a USB CD-ROM

drive backed with an ISO image containing an autorun file which would in

turn execute a malicious binary; there is already software available which

can perform similar tasks with the innocuous goal of allowing the use of

an Android smart device to serve as bootable media for system recovery

purposes. This application depends on mass storage mode already being

installed and enabled in the system kernel [33], but attacks which allow doing

so are well known.

The last class of attacks against stock Android devices involves those

which, for one reason or another, have USB debugging mode enabled. While

under normal circumstances the Android operating system requests user con-

firmation of actions such as installation of new applications, it is possible to

counterfeit such confirmation using the USB interface itself [31]. With that

safeguard effectively neutralized, it becomes possible to both add and remove

normal Android applications over USB without the victim being aware of it.

This allows the installation of new malicious applications, or the replace-

18

ment of legitimate applications with malicious versions. This is much easier

to take advantage of on Android devices as opposed to iOS devices because

there is no signing authority required for Android applications; while Android

applications must be signed, a self-signed certificate may be used [34].

3.2.2 Rooted devices

While it seems unnecessary to devote a separate section to rooted devices

when an Android smart device can be completely subverted with no root

access necessary, a closer look at that particular attack highlights one po-

tentially fatal drawback from the perspective of an attacker. That attack

is aimed first at the bootloader and requires not only a device reboot, but

potentially several minutes of uninterrupted access. While it is not unrea-

sonable to make the assumption that a victim will believe the reboot to be

an innocent malfunction on the part of the phone or that charging will take

more than the several minutes the attack requires, neither is it an optimal sit-

uation. However, the bootloader exploit is meant to accomplish two things:

first, to enable access to the system via a shell, similar to ADB, and second,

to gain root access. Since rooting a device often requires USB debugging

mode to be enabled, and any user knowledgeable enough to root their device

is likely to have USB debugging mode enabled for their own purposes any-

way, it is well within the realm of possibility that a rooted device will have

USB debugging mode enabled, effectively granting an attacker a root shell

on the Android smart device over USB.

With that understanding, a rooted device with USB debugging enabled is

effectively completely under the attacker’s control. Applications can be in-

stalled, removed, and replaced with malicious copies. System processes run-

ning with administrative privileges can be installed to perform such actions

as sending documents, keystrokes, and user information back to a central

server over covert (or possibly even overt) channels. At this point, the only

two limits to what an attacker can accomplish are the attacker’s imagination

and the need for the attack to remain hidden from the victim, lest he or she

realize the compromised status of their device and perform a factory reset.

A factory reset, however, by its very nature only affects the operating

system itself; the bootloader remains untouched by system updates and re-

19

stores unless there is an overriding reason to modify it, because as long as the

bootloader is intact, a failed firmware update can be fixed; if the bootloader

code becomes damaged, the device essentially transforms into an expensive

paperweight. An attacker could conceivably modify the bootloader itself to

re-infect the device on every reboot, and for these reasons a system restore

would never touch the malicious code.

3.3 Potential attacks

Predicting potential attacks against the Android operating system over USB

is difficult due to both the wide variety of Android devices and versions on

the market, and to the wide variety of malicious activities possible once a

device has been compromised. Analysis of existing technologies and attacks

can however give a reasonable indication of the direction from which future

attacks are likely to come.

3.3.1 Stock devices

Since a stock device by default has only MTP mode (or in some cases USB

mass storage mode) enabled, attacks against such configurations are likely to

continue to seek out other, more vulnerable points of ingress. Existing attacks

target the bootloader, which most normal users never realize is a possibility.

However, the attacks seen thus far exploit the bootloader directly to gain

root access as soon as the device is connected. A potential future attack

is to plant malicious code in the device’s memory using the default data

connection (or, more likely, on any memory card installed in the device at

the time, since the MTP protocol as implemented on Android grants access

to the memory card’s root directory) and then to patch the bootloader so

that the added code is executed the next time the device is rebooted. A

user is unlikely to notice that the device reboot cycle is taking an extra few

seconds, which would be all that is necessary to install a back door into the

device.

20

3.3.2 Rooted devices

Since attacks against rooted devices are as varied as the tasks which the

processor the device is equipped with can accomplish, speculation on this

particular area will be restrained to the particularly novel. In this case,

that comprises a class of attacks which allow modification of the kernel itself

without requiring the flashing of a new kernel (a task which necessitates a

device reboot). There is a tool developed for Linux systems called Ksplice,

which is designed to allow kernel patches to be applied in-place, without a

system reboot, in order to make regular system updated more palatable to

end users [35]. Because Android is a Linux-based operating system, it is

theoretically possible to port Ksplice to Android.

Ksplice applies patches in a process which consists of two primary tasks.

The first analyzes the patch to be applied in the form of source code and

compares it to the existing kernel, then compiles the patch and appends it to

the appropriate area of the kernel. The second tool temporarily freezes exe-

cution of all programs other than Ksplice itself, goes to the areas of compiled

kernel code the patch deals with, and replaces the patched code with a long

jump to the patch code. It also ensures the return at the end of the patch

code will jump back to the appropriate assembly instruction in the original

kernel code; if the patch code does not possess a return statement, the long

jump is simply inserted at the end of the new code.

The development of the first step is primarily to allow ease of automation

across a number of kernel patches and versions. While the Android operating

system does indeed possess a large number of kernel versions, an attacker

intent on employing Ksplice or a similar kernel modification tool will only

be concerned with a small number of areas of kernel code. Because the

Android kernel is open source, and many device manufacturers make the

code for the modified kernel which runs on their devices publicly available,

manual analysis of the necessary code to be inserted is feasible, especially if

an attacker chooses to pursue a small number of potential target devices.

Creation and testing of a Ksplice-like tool and the patches it generates and

applies is made far simpler by the existence of two other tools. The first is

the set of cross-compilers made available by Google for the express purpose of

allowing developers to create native binary applications and services that run

outside of the Dalvik sandbox normal Android applications are constrained

21

to. These cross-compilers enable development on a normal Linux worksta-

tion. The second tool is a set of freely available virtual machine images of

several different versions on the Android operating system [36]. By using a

virtual machine of an Android device, it is possible to take a snapshot of

the current state of the system, test a kernel modification, and revert to the

snapshot in the event the modification renders the kernel inoperable. This

allows the testing of in-place kernel patching neither the risk of permanently

damaging a physical device nor the tedium of restoring a kernel image onto

a malfunctioning device.

22

CHAPTER 4

ATTACKS AGAINST WINDOWS MOBILE
DEVICES

This section will address the USB characteristics of both Windows Phone 8

(Microsoft’s latest smartphone operating system) and Windows 8 RT (Mi-

crosoft’s latest tablet operating system, designed for use on mobile processors

such as the Tegra). The decision to focus on Windows mobile operating sys-

tems rather than the more established BlackBerry family of smart devices

was made due to the rapid growth of Microsoft’s platforms in the market [37],

as well as the lack of a BlackBerry-based tablet computer. While Windows

Phone 8 may not command the same market share as iOS or even Android,

it is making strong inroads at a rapid pace, and even Apple has been forced

to admit that certain Windows Phone devices surpass their own offerings in

popularity at times [38].

4.1 USB interface

While Windows Phone 8 and Windows 8 RT are different operating systems,

both are optimized for use on a mobile device, and those mobile devices

possess USB connectivity. Therefore, both operating systems are potentially

vulnerable to a compromised USB charging station. Since they are distinct

platforms, this thesis will investigate each separately.

4.1.1 Windows Phone 8

The USB interface for Windows Phone 8, like modern versions of the Android

operating system, enables transfer of data between the device and a host

machine using the Media Transfer Protocol. Unlike Android, however, there

is no USB debugging option available for this operating system; the MTP

interface is the only USB interface the device provides.

23

4.1.2 Windows 8 RT

As anemic as the USB options on Windows Phone 8 are, the USB connec-

tivity for Windows 8 RT are fewer still. Windows 8 RT does not function

in USB device mode at all; the USB connectivity on this platform is limited

strictly to serving as a USB host. In many ways, Windows 8 RT is a desktop

operating system with a user interface optimized for use with touchscreen de-

vices such as tablets, rather than an operating system designed specifically

for use on mobile smart devices. This does not, however, render Windows 8

RT immune from USB-based attacks; it merely means that an attacker must

present their USB connection as a subordinate device rather than as a host

system.

4.2 Existing attacks

For a variety of reasons, including but not limited to the relative newness of

the operating systems; the lack of sophisticated USB connectivity; and the

closed-source nature of the operating systems, USB attacks against Windows

mobile devices have yet to come to light. This does not mean that none are

possible, or that none have occurred, however. Using current knowledge,

with little or no additional effort or research, certain existing attacks can

still be leveraged against these devices.

4.2.1 Windows Phone 8

As Windows Phone 8 supports the Media Transfer Protocol for transfer of

data between a host and the mobile device, any of the previously mentioned

attacks involving MTP are valid here as well. Attacks which leverage the

mobile device as a malware delivery vector by infecting data files on the

device itself are more likely to be successful, however, as Windows Phone

8 is designed to integrate well with Windows desktop operating systems,

which are by far the most common target for malware. Because the only

USB endpoint Windows Phone 8 reveals to a host is the MTP data transfer

interface, no other novel attacks are feasible ‘off-the-shelf’.

24

4.2.2 Windows 8 RT

While the other sections in this thesis refer to attacks from a malicious USB

host to a potentially vulnerable USB device, this is not an option against

Windows 8 RT. However, those sections dealing with infecting a mobile device

as a vector to then infect a host system are relevant here as well, since due to

the nature of Windows 8 RT, a victim who connects a Windows 8 RT tablet

to a compromised USB outlet has essentially brought their host system to the

attacker, cutting out the middleman of the infected mobile device altogether.

There is a fair amount of work that has already been done with regards to

compromising a host system with a malicious USB device, much of which is

relevant to this platform.

Windows 8 RT is effectively Windows 8 designed to work on mobile CPU

architectures. As such, the device drivers must be compiled specifically to

work on the different architecture, which means that existing USB attacks

will require some alterations. However, while the specifics of any given ex-

ploit may change, the high-level procedure of masquerading as a legitimate

device and then exploiting known security vulnerabilities in the driver for

that device remain the same. It is already known that various attacks such

as heap overflows are possible given the correct USB device and correspond-

ing driver [39]. The Gadget driver present in Android which allows the device

to emulate any type of USB device can be implemented on a Linux-based

USB controller posing as a USB charging station, and as such a malicious

station can take advantage of any USB device driver vulnerability discovered.

This class of attacks is problematic to develop for Windows 8 RT for one sim-

ple reason: because Windows 8 RT is compiled for a different architecture,

normal Windows binaries will not run on it. This means that debugging of

exploit code must be done using a remote connection to a debug service.

While this is far from insurmountable, it does make an attacker’s task more

difficult.

4.3 Potential attacks

Because Windows Phone 8 possesses only a Media Transfer Protocol interface

and Windows 8 RT has no USB interface wherein the mobile device serves as

a device rather than as a host, any potential attacks will likely be the result of

25

one or more of three possibilities: first, that there is an unknown vulnerability

in the existing protocols or connections that will be discovered; second, that

a future update will introduce a new communication channel which will be

vulnerable; or third, that a future update will introduce a vulnerability in

the existing communications channels. The third possibility would seem to

be most likely, given Microsoft’s history of vulnerability patching.

4.3.1 Windows Phone 8

Potential future attacks against Windows Phone 8 are likely to be the result

of an update to the functionality of the USB connection on the device. Both

iOS and Android allow for USB-enabled debugging of applications, which is

a feature that makes development of platform-specific applications much eas-

ier. The relative newness of the Windows Phone 8 platform means that the

application store for this operating system has fewer programs available than

its competitors, and allowing USB debugging would be one way to encourage

developers to close the gap. However, as has been pointed out elsewhere in

this thesis, USB debugging mode brings with it a host of potential vulnera-

bilities, up to and including vulnerabilities severe enough to allow the mobile

operating system itself to become compromised.

Another possibility would be the introduction of USB-based firmware re-

covery. As it stands now, a hardware factory reset can be performed on a

Windows Phone 8 device with nothing more than a power source to ensure

the recovery process is not interrupted by loss of power [40]. If USB flashing

of the operating system is ever enabled, it will present a viable avenue of

attack which has the potential for total system compromise.

4.3.2 Windows 8 RT

While Windows 8 RT is no more vulnerable to USB-based attacks than a

normal installation of Windows 8 on a normal host system, indirect attacks

against a host system are still possible. It is conceivable for a compromised

USB charging station to pose as a USB device and exploit a vulnerability in

a USB device driver on a Windows 8 RT tablet. That exploitation could in

turn be used to install malware which can then in turn infect other systems.

26

The precise mechanism behind that infection could be through wireless com-

munication with a home or workplace network, or by infecting USB memory

drives used to transfer files between the tablet and a host system.

Of course, the same possibility for future attacks through expanded USB

capabilities possessed by Windows Phone 8 also applies to Windows 8 RT.

Should Microsoft release an update which adds USB device-mode functional-

ity to Windows 8 RT, associated vulnerabilities will almost certainly follow.

Even something as simple as adding an MTP interface would then make

the device vulnerable to the same types of data theft and malware infection

attacks as other popular smart device operating systems.

27

CHAPTER 5

COMPARISON

All mobile smart devices have certain commonalities, which are forced upon

them by the purposes they must fulfill. One of those commonalities is the

ability to copy data both to and from them; this ability, which is necessary for

these devices to function as personal communications and media platforms,

also forms the crux of their vulnerabilities to malicious USB connectivity.

Additional connectivity, no matter how benign or beneficial the intended

usage, also brings with it additional risk regardless of the specifics of the

device in question.

5.1 Attacks common to all platforms

The one form of USB connectivity common to all three investigated platforms

(counting Windows Phone 8 but not the tablet counterpart Windows 8 RT)

is access to user documents, photographs, music, and videos. Therefore, any

attack designed to take advantage of this functionality has the potential to be

successful against any herein studied smartphone, regardless of the specific

operating system that device is running.

5.1.1 Data theft attacks

Data theft-type attack risks are serious across all platforms. This is because

all platforms offer relatively easy access to user media with no precautions

taken to ensure the identity of the connecting host device, or indeed whether

the USB connector is attached to a host device at all rather than the ex-

pected innocuous charging station. However, between the three investigated

platforms, iOS has the dubious honor of boasting the highest risk, owing

to the ability to synchronize not just personal media and documents but

28

emails, contacts, and internet bookmarks as well; all of these become poten-

tial targets for theft along with the standard documents and media which

are equally at risk regardless of device type.

5.1.2 Phone to computer attacks

Where the ability to read user data enables data theft attacks and a potential

breach of privacy, the ability to both read and write data creates the possi-

bility of significantly greater mischief. The addition of malicious files, or the

infection of existing benign files, engenders the possibility of using an infected

smart device to spread a worm or trojan to host systems, either at home or

at a workplace. Because this attack can originate from any malicious USB

connection, a possible (and disturbingly plausible) scenario is as follows: a

teenager on vacation with her family takes several pictures with her phone’s

camera. At the airport on the way back, she plugs her phone into a charging

station which has been compromised by an attacker; the microcomputer hid-

den in the charging station makes a copy of all her data for later mining, and

infects several with a novel worm designed to bypass antivirus software. She

returns home, and connects her phone to her personal computer; she then

views the photographs on her phone, infecting her computer with a worm.

The worm spreads over her family’s local area network, infecting all com-

puters it encounters. Her father, a government contractor, plugs his phone

in to his computer to synchronize and charge it; the worm on his personal

computer acts as the compromised USB charging station did, and infects

files on his phone with the same worm, this time targeting a presentation he

is to give to his manager. When he accesses his presentation at work, the

worm on his phone infects the entire local area network at his workplace,

compromising government contracts and secrets.

While this is a worst-case scenario and makes several optimistic assump-

tions (from the perspective of the attacker), it is nevertheless possible, and

only a single example of how blind trust of USB outlets can have disastrous

security implications. Of particular interest is that, by infecting a trusted

home network, any defenses aimed at preventing infection from covert sys-

tems such as compromised USB chargers are completely circumvented by

turning trusted systems into assets of the attacker. While this scenario, and

29

others like it, are possible on any of the three platforms, the greatest risk

is to Android and iOS devices, each for different reasons. Android devices

are at greater risk because of the possibility of reconfiguring the device it-

self to bypass protections through subversion of the operating system and/or

bootloader; iOS devices are at greater risk because of the greater variety of

user data available to manipulate. A possible attack iOS enables is manipu-

lation of internet bookmarks to redirect to malicious websites; they need not

even directly attack the user’s computer, but enable cross-site scripting or

cross-site request forgery attacks for further data theft.

5.2 Attacks common to Android and iOS

Windows Phone 8 has only the MTP data connection for a USB interface; as

such, the already discussed attacks are the only attacks that platform is cur-

rently known to be vulnerable to. Android and iOS, however, have expanded

USB functionality, with attendant vulnerabilities. One such vulnerability is

an extension of the data theft attacks all devices are vulnerable to. Where

Windows Phone 8 and the default PTP/MTP interfaces on iOS and An-

droid offer access only to the user’s data, the additional connectivity present

in iOS and Android allows for a complete imaging of the entire device, in-

cluding the system files. This allows such data as hidden files and encrypted

stored passwords to be compromised in addition to the user’s personal files.

The most severe vulnerability they have in common, however, stems from

the ability to install new applications over USB; additionally, this vulnera-

bility is similarly exacerbated in both types of device by the ability to escape

the restrictions manufacturers place on what can and cannot be done with

the device. Rooting and jailbreaking add a new aspect to an already serious

vulnerability.

Because data can be read from these devices and programs can be installed

to them, even on unmodified stock systems it becomes possible to replace a

legitimate application with a malicious one which can have behaviors ranging

from the annoying (such as inserting advertisements) to the intrusive (such

as stealing personal information and redirecting websites) to the destructive

(such as deleting personal files, over-using limited resources such as cellular

data, or sending false messages from accounts on the device).

30

While certain safeguards must be overcome to install applications on un-

modified devices, techniques already exist (and have been discussed elsewhere

in this thesis) for circumventing those safeguards. Furthermore, it is far from

uncommon for these devices to be modified to allow a greater degree of con-

trol over the system substrate for the user; these modifications also allow

a greater degree of control for an attacker. A jailbroken iOS device allows

Apple’s application signing requirements to be completely bypassed, while

USB debugging mode on an Android device allows the arbitrary installation

of applications without the need for an additional exploit. Without a doubt,

though, iOS is at greater risk for this type of attack simply because unmod-

ified devices allow applications to be installed with no additional exploits

required, provided the attacker is in the possession of an Apple developer’s

license.

5.3 Attacks unique to a single platform

While Android and iOS both offer similar functionality in terms of user ex-

perience, they arrive at the same location via very different routes. This

difference manifests in many ways, but of particular interest here is the dif-

ference in USB connectivity and what implications that difference has for

device security. Attacks unique to each family of devices are enabled by the

uniqueness of their USB interfaces.

5.3.1 iOS

The unique USB interface possessed by iOS is the proprietary Apple File

Connection link, which allows synchronization of a wide variety of personal

information and access to the complete device filesystem. This access is

not, in and of itself, completely unique, as a similar level of access can be

gained to Android devices; however, unlike Android, this vulnerability exists

on completely unmodified, out-of-the-box devices with no actual exploits

necessary. Connection of any iOS device to a compromised USB port can

result in unauthorized access to email accounts, internet bookmarks, and any

data stored by applications on the device such as stored encrypted passwords

for internet browsers or social media services.

31

5.3.2 Android

While both Android and iOS allow USB interaction with their respective

system bootloaders, iOS frequently patches and updates their bootloader

code in an effort to defeat jailbreaking. As such, bootloader attacks are far

more likely (and likely to be successful) against Android devices. Indeed,

one such exploit has already been published [31]. Additionally, the open-

source nature of the Android kernel (and the extensive Android modification

community) makes it uniquely vulnerable to attacks which involve partial or

complete reconfiguration of the kernel; these attacks are made even easier by

the fact that the Android kernel is based on the Linux kernel, which means

skills at working with the Linux kernel and Linux kernel coding resources are

applicable, reducing the necessary learning curve for any would-be attacker.

32

CHAPTER 6

MITIGATION

While there are a sizable number of attacks against all modern mobile smart

devices, there are ways to reduce the risk of using untrusted USB charging

outlets. There are three primary categories of these mitigation strategies:

methods implemented in software, methods implemented in hardware, and

modification of user behavior. The first category is perhaps the best from

a deployment standpoint, as developers can implement and push out these

changes as a normal update without requiring any additional effort or expen-

ditures from the end users. The second category often results in the greatest

security when the attacker is limited strictly to dealing in software; however,

it also causes users to incur the expense of the additional or new hardware

and so is difficult to get adopted. While the last category is traditionally one

of the most difficult security strategies to implement, it is becoming increas-

ingly necessary in the modern world. Still, any or all of these options can

present effective mitigation possibilities, and so this thesis will explore all of

them.

6.1 Software-based mitigation techniques

Many software-based mitigation techniques exist for other types of threats,

such as malware being installed through application marketplaces; some of

these techniques can be extended or modified for use as protection against

malicious USB connections. Different types of USB connectivity, however,

can require alternate security solutions.

The connectivity all smartphones investigated in this thesis share, how-

ever, can benefit from the same solutions. Each solution addresses a specific

problem or type of threat. The first threat common to all devices is that

of data theft. Use of the MTP or PTP communication channels by covert

33

USB hosts to steal personal information can be solved simply by prompting

the user to verify that they wish to connect to the host; if the USB outlet

the device is connected to is not meant to have connectivity, the user will

immediately know something is wrong. This feature is already present in

iOS 7 [10]. However, concomitant with this approach is the need to ensure

that user acceptance cannot be counterfeited, as is currently possible with

Android [31]; otherwise this protection does nothing more than engender a

false sense of security. Another concern is those devices which have been

jailbroken, rooted, or otherwise altered to allow modification of system files

and settings; it would be possible for an attacker to use this access to remove

the prompt altogether if done quickly enough (or if the user is not paying

sufficient attention).

The second threat related to this connectivity is that of infection of per-

sonal files for use as an infection vector against other systems. One possible

solution to this would be to take advantage of the increasing processing power

and memory of smart devices and run an anti-virus scan on every user file

on the device in real-time as they are modified, similar to on-access scan-

ning present in anti-virus software for personal computers. Android already

supports a wide variety of anti-virus applications in the official Google Play

store [41]. These applications are meant to guard against installation of mal-

ware, but could easily have their scope enhanced to include user data files

as well. This is not a perfect solution, however, as many mobile anti-virus

applications fail to recognize some known threats [42], no anti-virus software

is proof against unknown threats, and any anti-virus software will impact the

performance of either the device itself or the device’s battery life, particularly

if running an on-access service.

Another safeguard against this type of attack is to ensure the integrity

of the user’s data. Requiring user confirmation of any file transfer opera-

tion, either to or from the device, if instituted and used correctly, would

prevent unauthorized modification of personal files. However, this is not a

user-friendly approach, particularly if the user performs data transfers fre-

quently. It is likely that if this feature was instituted and made optional,

many users would disable it; if the feature was not made optional, those

platforms such as iOS and Android which can be made to support modifica-

tion of the operating system will likely see modifications aimed specifically at

disabling this feature. This brings up another problem: where a prompt to

34

accept a connection to a USB host would appear almost immediately upon

connection to a compromised USB charger, requiring any circumvention to

be very prompt, malicious modification of user data is initiated at the behest

of the attacker, and so can be delayed until the user is more likely to not be

paying attention; this would allow more time for circumvention techniques

to be applied, making this method less effective.

6.1.1 Techniques for iOS

The specific USB interface unique to iOS devices is the Apple File Commu-

nication link, which is a proprietary communications protocol that requires a

specific driver implementation. Because of this, it is well within the bounds

of possibility to alter the interaction between device and host in such a way

as to protect against security threats. Perhaps the best way to do this would

be to pair an iOS device with a host system, similar to the way Bluetooth

devices are paired; after pairing, the device can only communicate with that

specific host, and the pairing must be canceled before the device can be

synchronized with any other host. If this is enabled with a cryptographic

signature, perhaps tied to the device owner’s Apple ID, it becomes infeasible

for an attacker with space-limited hardware (as in the case of a compromised

USB charging station) to circumvent this protection, assuming the attacker

is unable to employ the USB connection to cancel the pairing.

As this option would restrict the communication possibilities of an iOS

device to a single host system, and a user may very well desire to synchronize

such a device with multiple systems, an alternative would be to require device

pairing with a certain maximum number of host systems. This number could

be as low as two (for a personal desktop and a laptop for traveling), or as

high as five, the maximum number of iTunes installations which an Apple

ID may be associated with. Allowing multiple pairings, however, introduces

the threat of a compromised USB outlet initiating a pairing with a device

which has not yet reached its maximum number of partners; therefore, if

this option is pursued, it becomes necessary to design the pairing procedure

in such a way as to absolutely require user knowledge and interaction for a

pairing to be successful.

Another vulnerability is the use of false or fraudulent information to ac-

35

quire an Apple provisioning profile to be used to install unsigned malicious

applications. While pairing will stop this attack by the simple expedient

of not allowing the installation of any applications from an untrusted host,

there is a way to prevent this particular attack in software without resorting

to that specific strategy. The provisioning profile attack works because it as-

signs the debugging permission to the application, and registers the device as

being used for debugging without any actual interaction with the device aside

from identification [10]; prevention, then, can be accomplished by adopting

Android’s policy of enabling debugging mode on the device in addition to

the existing protocols. If a user must manually enable debugging mode on

their device, then it does not matter if that device is covertly registered for

debugging.

6.1.2 Techniques for Android

The threats to Android systems from a compromised USB device are man-

ifold and severe. One vulnerability, exploiting a feature intended only for

developers and device recovery, allows the subversion of the entire operating

system [31]; another allows full control of the device with no additional ex-

ploits necessary. Each of these vulnerabilities must be addressed, although

software updates alone may not be sufficient in this case. This is because al-

most any successful exploit against an Android device carries the possibility

of granting the attacker complete control over the operating system, enabling

the bypassing of software-based security measures.

The first threat which requires addressing is the bootloader. The ability

to trigger the bootloader via USB enables the complete compromise of a

stock Android device [31]; therefore, it becomes of paramount importance

that this vulnerability be patched. The most obvious solution would be to

require a combination of hardware buttons to be pressed in order to access

the bootloader, removing the ability for USB to trigger it. While this will

make legitimate development on the Android platform slightly more difficult,

the security dividends it pays will more than make up for it. This change

would ideally be made to the bootloader code itself, enabling this mode to

be entered even in the event the primary device firmware is corrupted or

damaged.

36

The second threat which requires addressing is that of USB debugging

mode, which enables user-level access to the entire device sufficient to install

applications. Perhaps the best compromise between ease of use and secu-

rity is to keep the existing policy which requires user interaction to enable

USB debugging mode, but have that mode automatically deactivate when

the USB cable is disconnected. By requiring USB debugging mode to be

enabled specifically when debugging operations are desired, and automati-

cally disabling it afterward, devices will not be left in debugging mode when

connected to potentially compromised USB outlets. While this may be a nui-

sance to any developer who needs to frequently plug and unplug their device

for development purposes, again, the benefits from a security standpoint far

outweigh the minor inconvenience of a small portion of the user base.

6.2 Hardware-based mitigation techniques

The main drawback to any software-based defense against these attacks is

that a successful attack has the potential to allow a level of access which

enables the attacker to bypass the safeguards. Consequently, while it may

be more inconvenient both from a usability and a cost standpoint, hardware

based threat mitigation has the potential to be significantly more effica-

cious than techniques based in software. There are two primary methods

for hardware-based protections: those aimed at the devices themselves, and

those targeted at the USB connection itself. While both methods can ben-

efit all devices, those methods which require modification of a smart device

would effectively necessitate a user to purchase a new device in order to gain

the security benefits; as these smart devices cost hundreds of dollars, this

thesis will focus on the less-expensive (and thus more likely to be adopted)

technique of safeguarding the USB connection itself.

The main problem with using USB as a universal charging standard stems

from the fact that a USB cable comes with both data pins and power pins.

While it is possible to simply disable the power pins, this is a suboptimal

option as for two reasons. First, it requires a cable or adapter with the

sole purpose of enabling charging while disabling communication; this will

be a problem whatever the safeguard and is more of an inconvenience than

anything else. Second, and more problematic, is that the data pins can

37

also be used to negotiate the power transfer parameters between the device

and the charger; simply disabling the data pins could result in substandard

charging performance, and may, depending on the charger, actually result

in damage to the device if an attempt is made to supply more power than

the device was designed to handle. However, it is possible to create a circuit

which enables power negotiation but disables all other data transfer; indeed,

such a cable is already being sold [43].

6.3 User prevention techniques

The final class of threat mitigation techniques is simply user awareness. It

has long been known that the greatest threat to any security system is the

users who must interact with and enforce it; this is one of the reasons social

engineering attacks are still prevalent. Educating users in what to do (and

more importantly, what not to do) when it comes to using USB connections

can be an effective threat management strategy, but only if users can be

convinced to take the appropriate precautions.

The first precaution to be taken is, quite simply, not to trust public USB

connections. Anywhere there is a USB charging station, there are likely to

be standard power outlets, and standalone AC-to-USB power adapters are

readily available, inexpensive, and in some cases actually come bundled with

a smart device. Use of these adapters (provided the adapter comes from a

trusted source; manufacturers of USB picture frames have been known to

ship infected products, so it is a possibility that someone may ship infectious

chargers as well) bypasses any modifications an attacker may have made to

a USB charging station completely.

Other precautions are to not engage in risky behavior with a smart device.

Users who refrain from jailbreaking, rooting, and/or enabling USB debugging

modes are at less risk than those who indulge in such modifications. Users

who do not store personal or private information on their smart device are not

at risk of having that information stolen off of that device. Of course, these

solutions are problematic as many users would consider this to be defeating

the entire point of owning a smart device in the first place.

Finally, if a user must use a public USB charging station, they should be

aware of the normal behavior of their device, and be aware that any deviation

38

from that behavior may indicate an attack. Specifically, a device should not

reboot when connected to a power source, and a simple charger should not

register as a connected host system. Any sign that the device is synchronizing

should be assumed to mean that the device is in communication with a host

system, and if no such communication is intended, then something is wrong.

39

CHAPTER 7

CONCLUSIONS

The prevalence of smart devices in society is only going to increase. The USB

standard has risen to meet the demand of greater bandwidth, progressing

from standard 1.1 to 2.0 and most recently to 3.0 with theoretical file transfer

rates most modern hard disks would be hard-pressed to keep up with. These

two facts in tandem suggest that USB as a charging standard is here to

stay. Accordingly, it is becoming more important than ever that USB outlets

are not blindly trusted. Malware already exists that spreads via USB [18];

therefore, assuming the trustworthiness of any arbitrary USB outlet is foolish

in the extreme.

The knowledge already exists to subvert a USB charging station with a

microcomputer, and the knowledge already exists to launch a number of dan-

gerous and potentially crippling attacks against smart devices. Furthermore,

the knowledge already exists to leverage those smart devices as a further

infection vector against otherwise adequately protected personal computers

and workstations. These existing attacks underscore the importance of se-

curing devices against hostile or malicious USB connections, which subvert

interfaces meant to be beneficial to the user.

Worse than the existing attacks are the potential attacks which can be

created with sufficient time, effort, and resources. Relatively little work has

been done thus far on USB vulnerabilities in general and smart device-based

USB vulnerabilities in particular, but what work has been done presents an

alarming picture. Wherever there is the ability to transfer data to and from

a device, there is at least the possibility of turning that channel to nefarious

purposes. Even those devices such as Windows Phone 8 which restrict their

USB communication to a sandboxed user data area are not immune.

Of the devices investigated by this thesis, the most vulnerable type is

Android. An attack already exists which grants total control of an Android

device if it is connected to a compromised USB port, and the open source

40

nature of the operating system (along with its Linux roots) make finding

vulnerabilities and creating malware targeted at this platform far easier than

for any other.

The next most vulnerable mobile operating system is iOS. While total sub-

version of the firmware requires either a jailbroken device or for the attacker

to effect a jailbreak upon connection, the default USB connectivity grants

sufficient access to the device filesystem to permit a wide range of malicious

activity. The ability to install applications over USB also creates potential

problems in light of Apple’s policies regarding developer licenses.

The least vulnerable of the smart phone operating systems is Windows

Phone 8. This is due largely to the fact that Windows Phone 8 has elected

to simply not use any but the most basic of USB connectivity. Windows

Phone 8 is also a comparatively new operating system, and accordingly less

research has been done into any vulnerabilities it may possess. Nevertheless,

from a USB security standpoint it is currently the most secure option of those

investigated herein.

A special mention goes to Windows 8 RT. While it is not in use on smart-

phones, it is in use on tablet computers, and is the safest of all from the

threat of connecting to a covert USB host. However, Windows 8 RT is still a

Windows operating system, and receives security updates via the same mech-

anism and with approximately the same frequency as its personal computer

counterpart, Windows 8. This means that an attack aimed specifically at

Windows 8 RT, using a microcontroller meant to emulate the behavior of a

USB device rather than a host, has a high probability of being successful.

While the attacks presented and postulated in this paper represent symp-

toms of the problem, the problem itself is complacency; USB outlets are

trusted far beyond what they deserve, especially those in a public setting

which anyone may access. The mitigation techniques presented in this the-

sis are aimed at reducing that trust, both from smart devices and from the

end users themselves. Given that software-based security mechanisms have

always been — and likely always will be — an arms race between attackers

and defenders; hardware-based mechanisms are intrusive, expensive, or both;

and users can always be counted upon to misinterpret, ignore, or forget basic

security precautions, defending against these threats will require constant

vigilance.

41

REFERENCES

[1] J. Brenner, “Pew Internet: Mobile,” 2013, archived:
http://www.webcitation.org/6L5YMVJlz. [Online]. Available:
http://pewinternet.org/Commentary/2012/February/Pew-Internet-
Mobile.aspx

[2] ChargeAll Tutorials, “Cell Phone Charging Station Guide,” 2013,
archived: http://www.webcitation.org/6L5ZQWCT5. [Online].
Available: http://chargeall.com/cell-phone-charging-station-guide/

[3] Raspberry Pi, “FAQs — Raspberry Pi,” 2013, archived:
http://www.webcitation.org/6L5bHPZEh. [Online]. Available:
http://www.raspberrypi.org/faqs

[4] Moosy Research, “iPhone USB Tethering in Linux,” 2013, archived:
http://www.webcitation.org/6KrUHQs0b. [Online]. Available:
https://sites.google.com/site/moosyresearch/projects/iphone-usb-
tethering-in-linux

[5] Wikipedia, “Picture Transfer Protocol,” 2013, archived:
http://www.webcitation.org/6KrVm7OtC. [Online]. Available:
http://en.wikipedia.org/wiki/Picture Transfer Protocol

[6] L. Gomez-Miralles and J. Arnedo-Moreno, “Universal, fast method for
ipad forensics imaging via usb adapter,” in Innovative Mobile and
Internet Services in Ubiquitous Computing (IMIS), 2011 Fifth
International Conference on, 2011, pp. 200–207.

[7] D. Giagio, “ipheth/ipheth-driver/ipheth.c at master dgiagio/ipheth
GitHub,” 2013, archived: http://www.webcitation.org/6Krc6sSsF.
[Online]. Available:
https://github.com/dgiagio/ipheth/blob/master/ipheth-
driver/ipheth.c

[8] iPhone Wiki, “AFC - The iPhone Wiki,” 2012, archived:
http://www.webcitation.org/6KrnKK1Yz. [Online]. Available:
http://theiphonewiki.com/wiki/AFC

42

[9] B. Reid, “iPhone Found To Be More Vulnerable Than Windows
Phone, BlackBerry And Android Smartphones, According To New
Report — Redmond Pie,” 2013, archived:
http://www.webcitation.org/6Kv6PS8rG. [Online]. Available:
http://www.redmondpie.com/iphone-found-to-be-more-vulnerable-
than-windows-phone-blackberry-and-android-smartphones-according-
to-new-report/

[10] P. Bright, “Trusting iPhones plugged into bogus chargers get a dose of
malware — Ars Technica,” 2013, archived:
http://www.webcitation.org/6KvAfFfAT. [Online]. Available:
http://arstechnica.com/security/2013/07/trusting-iphones-plugged-
into-bogus-chargers-get-a-dose-of-malware/

[11] D. Damopoulos, G. Kambourakis, and S. Gritzalis, “iSAM: An iphone
stealth airborne malware,” in Future Challenges in Security and
Privacy for Academia and Industry, ser. IFIP Advances in Information
and Communication Technology, J. Camenisch, S. Fischer-Hbner,
Y. Murayama, A. Portmann, and C. Rieder, Eds. Springer Berlin
Heidelberg, 2011, vol. 354, pp. 17–28. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-21424-0 2

[12] iPhone Wiki, “Cydia.app - The iPhone Wiki,” 2013, archived:
http://www.webcitation.org/6KwDlzbck. [Online]. Available:
http://theiphonewiki.com/wiki/Cydia.app

[13] iPhone Development Wiki, “SSH Over USB - iPhone Development
Wiki,” 2013, archived: http://www.webcitation.org/6KwEAQJ42.
[Online]. Available:
http://iphonedevwiki.net/index.php/SSH Over USB

[14] S. Perez, “How to Secure Your Jailbroken iPhone ReadWrite,” 2009,
archived: http://www.webcitation.org/6KwEfmpDh. [Online].
Available:
http://readwrite.com/2009/11/12/how to secure your jailbroken iphone

[15] iPhone Wiki, “Ikee-virus - The iPhone Wiki,” 2009, archived:
http://www.webcitation.org/6KwEpRJFv. [Online]. Available:
http://theiphonewiki.com/wiki/Ikee-virus

[16] G. Duncan, “Intego Claims Malware Targeting Jailbroken iPhones —
Digital Trends,” 2009, archived:
http://www.webcitation.org/6KwEwwTDV. [Online]. Available:
http://www.digitaltrends.com/mobile/intego-claims-malware-
targeting-jailbroken-iphones/

43

[17] K. Rogers, “Jailbroken: Examining the policy and legal implications of
iPhone jailbreaking,” Pittsburgh Journal of Technology Law and
Policy, vol. 13, no. 2, 2013.

[18] Trend Micro, “Stuxnet Malware Targeting SCADA Systems,” 2010,
archived: http://www.webcitation.org/6KwJKMeus. [Online].
Available:
http://threatinfo.trendmicro.com/vinfo/web attacks/Stuxnet Malware
Targeting SCADA Systems.html

[19] P. Marquardt, A. Verma, H. Carter, and P. Traynor, “(sp) iPhone:
decoding vibrations from nearby keyboards using mobile phone
accelerometers,” in Proceedings of the 18th ACM conference on
Computer and communications security. ACM, 2011, pp. 551–562.

[20] R. Templeman, Z. Rahman, D. J. Crandall, and A. Kapadia,
“Placeraider: Virtual theft in physical spaces with smartphones,”
CoRR, vol. abs/1209.5982, 2012.

[21] D. Damopoulos, G. Kambourakis, and S. Gritzalis, “From keyloggers
to touchloggers: Take the rough with the smooth,” Computers &
Security, vol. 32, no. 0, pp. 102 – 114, 2013. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167404812001654

[22] Z. Epstein, “iOS Market Share, September 2013: Apple lost ground to
Android — BGR,” 2013, archived:
http://www.webcitation.org/6L1BovBg7. [Online]. Available:
http://bgr.com/2013/10/01/ios-market-share-september-2013/

[23] CyanogenMod Team, “CyanogenMod — Android Community Rom
based on Jelly Bean,” 2013, archived:
http://www.webcitation.org/6L1C0X9pI. [Online]. Available:
http://www.cyanogenmod.org/

[24] D. Franc, “Major Custom ROM comparison database,” 2013, archived:
http://www.webcitation.org/6L1CDO5TP. [Online]. Available:
https://docs.google.com/spreadsheet/lv?key=0Auzhy7U8YwLodEtnZ-
G9GMzdvLXI0N2RfWlV2NHNWNVE&toomany=true#gid=1

[25] Android Developers, “Android Debug Bridge — Android Developers,”
2013, archived: http://www.webcitation.org/6L1CUMjdE. [Online].
Available: http://developer.android.com/tools/help/adb.html

[26] Android Developers, “USB Host and Accessory — Android
Developers,” 2013, archived: http://www.webcitation.org/6L1Cfv6bq.
[Online]. Available:
http://developer.android.com/guide/topics/connectivity/usb/index.html

44

[27] Google, “Android Git repositories - Git at Google,” 2013, archived:
http://www.webcitation.org/6L1D34Zrx. [Online]. Available:
https://android.googlesource.com/?format=HTML

[28] Stack Overflow, “USB - Mass storage replaced with MTP from
Android HoneyComb - Stack Overflow,” 2013, archived:
http://www.webcitation.org/6L1DH5482. [Online]. Available:
http://stackoverflow.com/questions/14392022/mass-storage-replaced-
with-mtp-from-android-honeycomb

[29] R. Shukla, “How to Enable Developer Options on Android Devices
with Android 4.2/4.3 JB and Android 4.4 KitKat,” 2013, archived:
http://www.webcitation.org/6L3cdjxZ3. [Online]. Available:
http://www.droidviews.com/how-to-enable-developer-optionsusb-
debugging-mode-on-devices-with-android-4-2-jelly-bean/

[30] United States Department of Homeland Security, “Threats to Mobile
Devices Using the Android Operating System,” 2013, archived:
http://www.webcitation.org/6L1DrnLSr. [Online]. Available:
http://info.publicintelligence.net/DHS-FBI-AndroidThreats.pdf

[31] Z. Wang and A. Stavrou, “Exploiting smart-phone usb connectivity for
fun and profit,” in Proceedings of the 26th Annual Computer Security
Applications Conference. ACM, 2010, pp. 357–366.

[32] Device Recovery, “How to connect Android to PC with USB Mass
Storage Mode,” 2012, archived:
http://www.webcitation.org/6KzOrigDN. [Online]. Available:
http://www.device-recovery.com/how-to-connect-android-devices-to-
pc-with-usb-mass-storage-mode

[33] B. Reid, “How To Boot Your PC Directly From Any Android Device,”
2013, archived: http://www.webcitation.org/6KzNylz5M. [Online].
Available: http://www.redmondpie.com/how-to-boot-your-pc-directly-
from-any-android-device/

[34] Android Developers, “Signing Your Applications — Android
Developers,” 2013, archived: http://www.webcitation.org/6KzPcAc0d.
[Online]. Available:
http://developer.android.com/tools/publishing/app-signing.html

[35] Wikipedia, “Ksplice,” 2013, archived:
http://www.webcitation.org/6L1EO9sKZ. [Online]. Available:
http://en.wikipedia.org/wiki/Ksplice

[36] D. Fages, “AndroVM blog — Running Android in a Virtual Machine,”
2013, archived: http://www.webcitation.org/6L1EsPGDC. [Online].
Available: http://androvm.org/blog/

45

[37] D. Sunnebo, “News - Record share for Windows phone - Kantar
Worldpanel,” 2013, archived: http://www.webcitation.org/6L2IX1cco.
[Online]. Available:
http://www.kantarworldpanel.com/Global/News/Record-share-for-
Windows-phone

[38] T. Worstall, “Apple’s Siri Says Nokia Windows Phone is Best Cell
Phone Ever - Forbes,” 2012, archived:
http://www.webcitation.org/6L2Ix3pBb. [Online]. Available:
http://www.forbes.com/sites/timworstall/2012/05/15/apples-siri-says-
nokia-windows-phone-is-best-cell-phone-ever/

[39] D. Barrall and D. Dewey, “Plug and root, the USB key to the
kingdom,” Presentation at Black Hat Briefings, 2005.

[40] Tech Inspiration, “How to soft/hard reset Windows Phone 8 like
Lumia 920, HTC 8x to factory settings,” 2013, archived:
http://www.webcitation.org/6L2Po2JZH. [Online]. Available:
http://www.ekoob.com/reset-to-factory-settings-windows-phone-8-soft-
hard-reset-12142/

[41] L. Seltzer, “Android antivirus products compared,” 2013, archived:
http://www.webcitation.org/6L5NTsCjr. [Online]. Available:
http://www.zdnet.com/android-antivirus-comparison-review-malware-
symantec-mcafee-kaspersky-sophos-norton-7000019189/

[42] R. Whitwam, “Android antivirus apps are useless, heres what to do
instead,” 2011, archived: http://www.webcitation.org/6L5NdYRdD.
[Online]. Available: http://www.extremetech.com/computing/104827-
android-antivirus-apps-are-useless-heres-what-to-do-instead

[43] S. Colaner, “Wrap that Rascal with a USB Condom,” 2013, archived:
http://www.webcitation.org/6L5O9klRs. [Online]. Available:
http://hothardware.com/News/Wrap-That-Rascal-With-A-USB-
Condom/

46

