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ABSTRACT

The rising interest in immersive entertainment and enhanced image and video

content, along with the development of stereo cameras for mobile platforms,

motivates the presented evaluation of stereo matching algorithms for mobile

devices. This work investigates this potential for stereo matching on a mobile

device for real-time applications, in terms of computation time and quality of

depth inference. Several algorithms are tested on an Android tablet housing

a Tegra 3 processor using images captured from the on-board consumer-

grade cameras. Despite distortions incurred by the lower quality cameras and

the computational constraints of a tablet, results show that a simple block

matching approach can perform reasonable inference at a rate of 10 frames-

per-second. Other methods are shown to be too computationally demanding

for real-time applications, as even the fastest alternative local method, using

adaptive support weights, requires up to 20 seconds per frame on a 320x360

image. Results also show the impact of lower quality “real-world” images on

inference performance on algorithms.

Additionally, real-time stereo matching on a mobile device is applied to a

novel application of assisting the visually impaired with navigation. A system

is proposed using a simple block matching algorithm that infers the depth

of the scene and communicates the presence of obstacles via sound to the

user. The system is housed entirely within the mobile device, overcoming

a primary hindrance of many users of assistive technology. The use of a

mobile device also allows for an intuitive, interactive experience for the user

with the depth information directly via the touch screen of the device. This

system demonstrates the added functionality of real-time depth estimation

on a mobile device and the potential for aiding the visually impaired with

navigation.
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Nevertheless, I am continually with you;

you hold my right hand.

You guide me with your counsel,

and afterward you will receive me to glory.

Whom have I in heaven but you?

And there is nothing on earth that I desire besides you.

My flesh and my heart may fail,

but God is the strength of my heart and my portion forever.

- Psalm 73:23-26

——————————————————————–

To my mom and dad.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Stereo matching is a well researched problem within the computer vision

community, as it long stood as the primary method of inferring the structure

of a scene from captured images. Recently, there has been a growing interest

in depth information for entertainment and image processing purposes, as

the desire for more immersive entertainment and communication experiences

grows. For example, depth cameras are becoming popular enhancements to

gaming systems and video content, such as movies and TV shows [1, 2, 3, 4].

There is significant interest surrounding the exploration of enhancing the ex-

perience of cameras, webcams, gaming devices, and other devices with depth

information. In particular, the potential of depth information to enhance the

experience of a mobile device is yet to be seen.

Until recently, mobile devices lacked the computational power to be a vi-

able platform for computer vision tools, such as depth inference via stereo

matching, but Pulli et al. [5] demonstrated that this limitation no longer ex-

ists. Additionally, depth inference requires the presence of multiple cameras

on the mobile device, which has only recently been pursued in response to

the current growing interest in the enhancement of depth information. Sev-

eral companies, such as LG, have recently released 3D phones, which house a

pair of stereo cameras. NVIDIA has also developed prototype tablets, which

house stereo cameras, to investigate the added value that such camera rigs

can provide.

As mobile devices are becoming increasingly smaller, more portable, and

more powerful, the consumer demand for these devices is growing signifi-

cantly, and the evaluation of the potential for depth information on mobile

devices is becoming increasingly more relevant. It is expected that tablets
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will continue to grow as the dominant share of the computing market, and

smart phones are now the standard for phones.

For many of the future developments of mobile devices, fast stereo match-

ing algorithms would be a vital component. There are several reasons that

motivate this. Firstly, in the effort to make devices smaller, industry and

academic research are currently working to develop imaging systems com-

prised of arrays of cameras. Creating a high resolution image from a single

camera requires that the focal length of the camera be prohibitively long for

mobile devices, as the focal length is a determining factor of the thickness

of the device. With an array of cameras, each individual camera can have

a small focal length, allowing the device to be thinner, and a high resolu-

tion image can be constructed from a fusion of the data of the camera array.

However, the images captured from each camera need to be aligned, which

can be accomplished via stereo matching. The fast-rising start-up company,

Pelican Imaging, was formed to solve this exact problem, and it has received

a great amount of industry interest. Mobile devices with such camera arrays

would have great potential as tools for depth inference via stereo matching.

Secondly, depth information extracted through stereo matching can be

used for image enhancement, such as artistic effects like depth-of-field, or

immersive experiences, such as view interpolation and 3D video. Computa-

tional photography, a recently growing area of research within computer vi-

sion and graphics, has many applications that could be brought to widespread

consumer usage on a mobile device with the addition of depth information.

Recently, there has been much interest in depth cameras to provide depth

information, but they are currently too large to conform to a thin, mobile

device. Depth cameras also function only in indoor environments, limiting

possible applications.

Beyond adding value to consumer devices, depth inference on mobile de-

vices also has a practical application as an assistive tool for navigation for

the visually impaired. According to a recent study on navigation assistive

devices [6], though many technological devices have been proposed, much of

the modern technology has not made a significant impact on the visually im-

paired community, and many of these devices have either not matured beyond

the prototype and development phase or have left the market. The primary

undesirable qualities of such devices are that they are inconvenient, socially

embarrassing, or not useful enough to warrant adoption by users [7, 8]. Since
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a mobile device is likely already owned by a visually impaired user and could

be used inconspicuously, it offers great potential as an assistive tool for navi-

gation, which motivates the development of such a tool using depth inference

via stereo matching.

A challenge with an assistive device is communicating spatial information

to the user in a way that is not overly intrusive to other sensory inputs, such

as touch or sound, while being useful and intuitive to understand. Currently,

it is not well understood which sense is best to use in this communication [9].

However, a system on a mobile device could be interfaced into tactile sensors

for touch signals or any kind of speakers for sound, depending upon which

sense is more effective.

1.2 Related Work

The work of Pulli et al. [5] is the most closely related study for mobile de-

vices; however, it addressed computer vision tasks generally, and did not

thoroughly examine the timings and performance of the many stereo match-

ing algorithms that exist. Vu et al. [10] proposed an application of depth on

mobile devices to render a synthetic depth-of-field effect, but the application

has not yet been ported to the mobile device to test timings. To the author’s

knowledge, no other work exists that considers stereo matching on mobile

devices.

There is a great amount of prior work that considers the application of

technology and even computer vision to assisting the visually impaired. Many

of these systems require additional mounted hardware and do not infer depth

inference from the on-board cameras of a mobile device, such as the stereo

vision system developed by the University of Southern California [11], which

uses a bumblebee camera system mounted to the head of the user. Also,

estimating depth inference in these systems is done on a laptop and not on

a smart phone or tablet.

The “Listen2dRoom” system [8], developed at Georgia Tech’s Sonification

Lab, is related, in that it is a stand-alone mobile app, requiring no additional

hardware. However, this system does not attempt to infer depth information,

rather, it detects objects in the room and informs the user of their presence

and position relative to one-another.
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Another well-known visual assistance system that resembles the proposed

system in this thesis is “The vOICe,” which was created by Peter Meijer. This

system translates visual information of every pixel into sound by modulating

a complex pattern of audible sine waves, in which the visual information is

conveyed in the frequency and amplitude of the waves. This system differs

from the one proposed primarily in that it uses only the color information

captured from the camera and does not infer the depth.

Some systems have been proposed that use small tactile sensors to en-

code visual information, such as the BrainPort [12], which encodes spatial

information via an electrode array placed on the tongue. However, some

users have voiced a dislike for such stimulators [7], and they can require an

extensive amount of training. The proposed system does not use touch stim-

ulators, such as the BrianPort or the system developed by USC, as they may

be unpleasant for the user and may hinder adoption.

1.3 Contribution

The primary contribution of this thesis is to provide a thorough analysis of

the current potential of stereo matching on mobile devices. In previous work

on stereo matching, proposed algorithms have been analyzed on data sets

of high resolution and high quality images, such as the well-known Middle-

bury data set [13], using the computational power of desktop PCs, whereas

the evaluation of this thesis considers real-world images captured from inex-

pensive cameras on a tablet and the constraint of mobile computing power.

The platform for this evaluation will be the previously mentioned NVIDIA

developer tablet, which houses an NVIDIA Tegra 3 processor, the standard

processor on current Android devices.

Secondly, this thesis will demonstrate the potential for depth information

on mobile devices to aid the visually impaired in navigation. It will be

shown that reliable depth can be estimated in real-time on a mobile device

and relayed to the user to help with obstacle detection and avoidance. To

keep the system nonintrusive and intuitive, a novel depth-to-sound interface

is proposed that allows the user to interact with several parameters of the

mapping.
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1.4 Outline of Thesis

This thesis is outlined as follows. First, in Chapter 2, the various stereo

matching methods and algorithms that have been proposed in the literature

are grouped and described, taking note of their computational complexity

and estimation accuracy. Chapter 3 describes the method used for evaluating

several of these algorithms and reports their performance on a mobile device.

Chapter 4 describes the integration of stereo matching into a proposed system

on a mobile device for assisting the visually impaired in navigation. Chapter

5 concludes the thesis.
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CHAPTER 2

STEREO MATCHING REVIEW

Before considering the use of stereo matching on mobile devices and its use-

fulness for navigation for the visually impaired, it is necessary to review the

stereo matching problem and the approaches that have been proposed to

solve it.

2.1 Stereo Matching Problem and Method

A stereo system requires a pair of calibrated stereo cameras. Given a stereo

pair of images captured by the imaging system, the objective of stereo match-

ing is to infer the disparity between pixels in the left and right images. Let

IL and IR denote the images from the left and right viewing perspectives,

respectively. To restrict the search complexity of stereo matching, the images

are aligned, according to a rotation and translation, so that corresponding

points lie along the same scanline. This process is known as rectification.

Once the stereo image pair is rectified, the depth of each point in the scene

can be inferred from the disparity between its location in the two image

planes. This disparity exists because of parallax, as objects in the scene that

are close to the camera will shift in location from one image to the other.

Objects that are closer to the camera will experience a greater shift between

images than objects that are further in the background. Since the images

are rectified, this disparity will only be horizontal, and for a point in the left

image, its corresponding point in the right image will be shifted toward the

left.

For a given pixel ~p = (px, py) in the left image IL, with intensity IL(~p), its

corresponding location in the right image IR will be ~p− ~d, where ~d = (d, 0) is

the disparity induced by the parallax. Based on the baseline distance between

the two cameras and the camera focal length, the depth is related to the

6



Figure 2.1: Relation of depth, focal length, baseline, and disparity in
stereo-based depth inference.

disparity as shown in Fig. 2.1. To limit computation, a reasonable maximum

resolvable depth is determined, which corresponds to a maximum disparity

D, restricting the disparity search space for the disparity {0, 1, ..., D}. It

should be noted that the disparity search space could include fractional shifts

for subpixel accuracy. After the disparity at each pixel is inferred, these

disparities comprise a disparity map, D.

To determine the disparity for a given pixel between the two images, we

must match the pixel ~p in the left image with its corresponding pixel in the

right image. The method to determine this matching is what differentiates

the many approaches of stereo matching. In the taxonomy by Scharstein and

Szeliski [14], these approaches are categorized into local and global methods.

Despite the differences of these two classes of approach, nearly all methods

are comprised of the following four stages, also described by Scharstein and

Szeliski:

1. matching cost computation

2. cost aggregation

3. optimization or cost minimization

4. disparity refinement

Generally, local methods are more suited for real-time performance, but

they do not produce as accurate disparity maps as global methods, which

are more computationally expensive. The following sections elaborate upon
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the various methods within the local and global classes and consider the

benefits and disadvantages of each, particularly within the context of mobile

computing.

In this discussion, computational complexity will be a critical element for

the evaluation of algorithms. For the purpose of notation, let N be the

number of pixels in an image, W the window size, and D the number of

possible disparity values.

2.2 Local Methods

Methods that infer the disparity at each pixel independently and do not in-

voke any global regularization or constraints are called local methods. Con-

sequentially, these methods require the least computation and have the most

potential for operating in real-time. Gong et al. [15] published a thorough

study in 2007 on the variety of local methods that have been proposed. Even

within this category, there exists a trade-off between computational cost and

inference quality that must be assessed for the target platform of mobile

devices.

In local methods, pixel correspondences are determined by optimizing a

similarity metric between windows surrounding the pixel and candidate pix-

els. Two of the computationally simplest similarity metrics are (SAD) or

sum of squared differences (SSD) which are defined as follows:

SSD(p, d) =
∑

q∈ωp

(IL(q)− IR(q − d))2 ,

SAD(p, d) =
∑

q∈ωp

|IL(q)− IR(q − d)| .

For these metrics, the matching cost is the absolute difference or squared

difference, respectively, and the cost aggregation step is the summation of

the matching cost of pixels within the windowed neighborhood of the ref-

erence pixel p. Another standard similarity metric is the normalized cross-

correlation (NCC). Using this metric, the matching cost computation and
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cost aggregation steps are merged. The NCC metric is defined as:

NCC(p, d) =

∑

q∈ωp
IL(q)IR(q − d)

√

∑

q∈ωp
(IL(q))

2∑

q∈ωp
(IR(q − d))2

.

Although NCC is more computationally expensive than SSD or SAD, it is

more robust to illumination variation between images. Since changes in light-

ing can be a common issue in stereo matching, still more advanced metrics

have been proposed, including mutual information [16] and the rank or cen-

sus transform. The census transform represents each pixel as a bit string

based on the intensity structure of the surrounding region and the similarity

between two pixels is the Hamming distance, which can be computed effi-

ciently and has made this method popular for its trade-off of computation

and disparity map quality. For subpixel accuracy, Birchfield and Tomasi [17]

proposed a similarity metric based on linear interpolation, which is also com-

putationally efficient, although it is still more expensive than SSD or SAD.

For rectangular windows, the cost aggregation step is performed efficiently

using the integral image technique [18] in O(N) time, which is crucial for

real-time performance.

These window-based matching methods struggle due to several primary

reasons. (1) Finding correspondences is inherently ambiguous, as occlusion

makes matching ill-defined. Additionally, when aggregating the cost within

windows, occluding pixels may contribute to the aggregated cost, causing

mismatches. (2) Pixels corresponding to different objects will experience

different shifts between the two stereo images, as objects in the foreground

will shift more than objects in the background, whereas window matching

works well only under the assumption that pixels within a window shift by

the same amount. (3) An additional challenge is “textureless regions,” which

are image regions of mostly uniform intensity. For such reasons, it is difficult

to distinguish between different shift amounts because the content of the

window does not change significantly throughout the uniform region. The

first two of these challenges are addressed using what can be categorized as

adaptive support weights. The latter challenge will be addressed by global

methods.
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2.2.1 Adaptive Support Weights

To address the first two challenges, local methods have been modified based

upon the general intuition that pixels of similar intensity are likely to be of

the same object, and therefore the same disparity, within a local window.

Removing the contribution of objects of a different disparity than that of the

current correspondence pixel candidate would overcome this issue. In 2006,

Yoon and Kweon [19] prosed one of the most successful local methods in terms

of disparity accuracy according to the results of their algorithm on the Mid-

dlebury benchmark [13]. Their method introduced adaptive support weights

for windows based on spatial and intensity similarity. Since this method

has produced significant disparity map quality, most recent local methods

have been based on some form of this same intuition. However, adaptive

support weights can be considered a form of linear translation-variant filter-

ing, which generally requires O(WN) computation. The following methods

have attempted to lower the computational complexity by approximations

to achieve real-time performance.

Bilateral Filter

The bilateral filter is a popular image processing technique used often for

edge-preserving filtering and denoising. In the context of stereo matching, it

is used to aggregate contributions of pixel differences within a window that

belong to the same object. Given a pixel location p ∈ R
2 in the left image

IL, the matching cost for a pixel in the right image IR for a given disparity

d is given by

ep(d) = min {|IL(p)− IR(p− d)|, σ} .

The absolute difference could be replaced by another metric, such as squared

difference or the census transform. This formulation also introduces trunca-

tion, which is used in most algorithms during the matching cost computation

to reduce the effect of outliers [15]. The resulting 3D matrix is commonly

referred to as the disparity space image (DSI). The elements of the DSI that

lie within the window of p are weighted according to the weight kernel wp,
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and the aggregated cost is calculated as

Cp(d) =
∑

q∈Np

wp(q)eq(d). (2.1)

In the standard SAD method, these weights would be set to 1. Cp(d) is also a

3D matrix and is often referred to as the cost volume. Based on the intuition

mentioned previously, it is desirable to give more weight to pixels that have

similar intensity to p, along with pixels that are more spatially similar to p.

The weights for each pixel are defined by the joint bilateral filter, given by

wp(q) =
1

Kp

exp

(

−
|p− q|2

σ2
s

)

exp

(

−
|Ip − Iq|

2

σ2
I

)

, (2.2)

where the constant Kp is a normalizing constant such that
∑

q∈Np
wp(q) = 1

and the parameters σ2
s and σ2

I determine the variance of the kernel in the

spatial and intensity dimensions, respectively.

An exact implementation of the joint bilateral filter is too computationally

expensive for real-time applications, as it requires translation-variant filtering

on the DSI. Some methods have proposed a more efficient implementation

using a histogram approximation of the filter. In another approach, from

2011, Min et al. [20] proposed several computation reductions to the cost

aggregation step, including spatial sampling of the matching window and a

compact representation of the DSI.

Guided Filter

Another attempt at real-time performance was proposed by Rhemann et al.

[21] in 2011 based on the recently published Guided Filter [22], which is also

an edge-preserving filter, similar to the joint bilateral filter but with O(N)

computation complexity. The key assumption used in this approach is that,

within a local window, the cost volume for each disparity is approximately

a linear function of the reference image. This assumption stems from the

intuition that edges in the reference image should also correspond to edges

in the disparity map. The linear model for the cost volume is given as

C ′

d(q) = apI(q) + bp, ∀q ∈ ωp. (2.3)
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The optimal value of the parameters {ap, bp} are those which minimize the

squared error between the pre-filtered cost volume Cd(q) and the filtered cost

volume C ′

d(q). The energy function for the regularized squared error is given

as

E(ap, bp) =
∑

q∈ωp

(

(apI(q) + bp − Cd(q))
2 + ǫa2p

)

, (2.4)

where ǫ is a regularization parameter on the size of ap. The model in Equation

(2.3) can indeed be written in the form of linear filtering as in Equation (2.1),

where the weights corresponding to the optimal parameters are given by

wp(q) =
1

|ω|

∑

ωk

(

1 +
(I(p)− µk)(I(q)− µk)

σ2
k + ǫ

)

.

The key to the Guided Filter is that the filtering operation can be written in

terms of box filtering operations, which can be computed efficiently via the

integral image technique in O(N) time.

2.2.2 Adaptive Support Regions

The same intuition that is used in adaptive support weights, that neighboring

pixels of similar similarity likely have the same depth, has led to another

approach proposed by Lu et al. [23]. In their approach, the matching window

is constructed based on intensity similarity, but weighted filtering is not used,

which avoids this additional computational complexity. For each pixel p,

a cross is defined
{

h−

p , h
+
p , v

−

p , v
+
p

}

, where these elements are the minimum

distances horizontally and vertically from p to a pixel of significantly different

intensity. The computational complexity of this method is O(N), and with

the aid of GPU optimization, it can achieve real-time performance for small

images with a small baseline.

2.3 Global Methods

Global methods generate a disparity map by minimizing a global energy func-

tion instead of minimizing window matching costs as in local methods. The

intuition behind global methods is that, since scenes are generally comprised

of objects of nearly constant disparity, the disparity map should be piece-
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wise smooth. To enforce this piece-wise smooth criterion, the global energy

function includes a penalty on the gradient of the disparity map in addition

to the penalty for pixel intensity dissimilarity.

In general, the energy function can be written as:

E(D) = Edata(D) + λEsmooth(D). (2.5)

The data term Edata(D) should be relatively smaller for pixels that are more

similar in intensity. The smoothness term Esmooth(D) measures the amount

of variation of the disparity map within small neighborhoods of pixels and

penalizes for high variation.

Although such truly global approaches result in the best quality disparity

maps, according to the Middlebury benchmark [13], they are computationally

expensive, since solving for the optimal disparity map to minimize the total

energy is NP-hard. Even solving for the approximate minimizer using a

method such as loopy belief propagation or graph cut requires significantly

more computation then local methods [24]. Therefore, such methods are not

generally considered for real-time applications, though, for applications on a

mobile device that are not processing video data, global methods could still

be a viable option.

To make solving the global energy function in (2.5) computationally feasi-

ble, semi-global methods have been proposed that relax the global assump-

tion by reducing the problem to a 1D optimization problem, enforcing the

smoothness constraint only along horizontal scanlines [14]. This relaxed for-

mulation of the energy minimization problem can be solved efficiently using

dynamic programming.

2.3.1 Dynamic Programming

Dynamic programming (DP) has become one of the classic methods for stereo

correspondence, with the earliest work dating back to 1985 by Ohta and

Kanade [25]. In the DP approach, each horizontal scanline is represented by

a sequence of features {m}Mi=1, which could be line segments [26], edges, or

simply the pixels themselves [27]. These features are then matched between

the left and right images to minimize a 1D optimization function to form

the disparity map. The key to the efficiency of DP methods is the recursive

13



nature of the energy function. The general form for the energy function is

given as:

Ei+1(di) = min
di+1∈D

(m(di+1) + s(di+1, di) + Ei+2(di+1)) , (2.6)

wherem(di+1) is the matching cost for disparity assignment di+1 and s(di+1, di)

is the penalty for the similarity between the consecutive disparities di+1 and

di. The matching cost could be based on absolute difference, squared dif-

ference, or any other similarity function. The disparity similarity term is

usually of the form

s(di+1, di) =

{

0 if di+1 = di,

λi,i+1 otherwise,
(2.7)

though a unique lower penalty is assigned in some algorithms for the case of

|di+1 − di| = 1 to allow for planar surfaces.

Though the reduction of the global smoothness constraint to 1D scanlines

reduces the computational complexity involved, these 1D DP methods of-

ten suffer from poorer quality disparity maps. Particularly, the generated

maps can contain what are commonly known as “streaking artifacts,” since

information between scanlines is ignored and interscanline disparity consis-

tency is not enforced. These streaks are commonly long, isolated, horizontal

segments of constant disparity.

Other DP methods have been proposed that optimize a closer approxima-

tion to the global energy function while maintaining a low computational

complexity. These methods are reviewed in the following sections.

Tree Dynamic Programming

In 2005, Veksler [27] proposed an approach using DP on a tree, and it is

illustrative of the DP method. Considering the 4-connected grid of pixels,

each pixel p is represented as a node in the tree, and the potential edges

are the directions in the 4-connected grid. Formally, let G(V,E) be a tree

graph, where V is the set of vertices and E is the set of edges. Let v be the

current vertex, dv the disparity at vertex v, and p(v) the parent node of v.
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The energy equation for a node v that is not the root node is given by

Ev(dp(v)) = min
dv∈D

(

m(dv) + s(dv, dp(v)) +
∑

u∈Cv

Eu(dv)

)

, (2.8)

where Cv is the set of children of v. The only difference between Equation

(2.6) and Equation (2.8) is that in Equation (2.6), |Cv| = 1. The optimal

disparity of the root node r evaluates to

D∗

r = arg min
dr∈D

{

m(dr) +
∑

u∈Cr

Eu(dr)

}

. (2.9)

To solve for the optimal disparity map D, Dv is evaluated for each node of

the tree, beginning at the lowest level of the tree and working upward. Since

for leaf nodes, the set Cv is empty, and the energy can be evaluated directly,

they can be evaluated independently of all other nodes in the tree. Dv is

then evaluated at the next highest level of the tree, since all of the children

of nodes at this level will have already been evaluated, and the evaluation

of the optimal disparity depends only on the child nodes. When the root

node is reached, its optimal disparity Dr can be solved by Equation (2.9).

The disparity chosen at the root is then propagated to the second level, and

this propagation continues for each level until the lowest level of the tree is

reached, at which point the optimal disparity map has been found.

A minimum spanning tree (MST) representation of the image meets the

DP assumptions of Equation (2.8). To construct MST from the graph G,

each edge is assigned a weight vpq = |I(p)− I(q)|, so that weights are related

to the pixel intensity similarity of the corresponding connected pixels. If we

consider the similarity function in (2.9) of adjacent disparities, connected

pixels with small intensities differences will have the largest weight pq . The

MST is constructed to retain the edges with the largest weights, as these

edges will contribute the most to the overall energy of the graph. This also

enforces the intuition that connected pixels of similar color will likely have

the same disparity, and their disparity values should therefore inform one

another. Computing the MST can be done in almost linear time, keeping

the computation in the algorithm low.

In general, the computational complexity of solving the tree-based DP

method is O(ND2), since the number of nodes in the graph is N and for
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each node v, for each disparity dp(v), all disparities dv must be considered.

However, Veksler [27] proposed the use of the disparity similarity metric in

Equation (2.7) to reduce the computational complexity. With this similarity

function, for each disparity dp(v), only dv = dp(v) and d∗v which minimizes

m(dv) +
∑

u∈Cv
Eu(dv) need to be considered among disparities, and this

search can be done in constant time. Therefore, the computation time is

only O(ND), which is of the same order as the faster local stereo methods.

Tree Dynamic Programming with Line Segments

Although the proposed approach of Veksler [27] is efficient and an improve-

ment over the 1D relaxation of the global energy function, still much of the

information between neighboring pixels is lost in creating the MST. In 2006,

Deng et al. [26] proposed a similar tree approach using line segments as

nodes, instead of individual pixels. An efficient preprocessing step segments

each horizontal scanline into regions of constant intensity. An MST is also

created, based on the intuition that nodes with similar pixel intensity should

be kept in the tree and the additional intuition for line segments that edges

between segments with many neighboring pixels should also be kept. To

account for planar surfaces in the disparity map, a 3-parameter linear trans-

form space is used to represent the disparity of each segment. This method

produces quality disparity maps at near real-time speeds.

Semi-Global Matching

In 2008, Hirschmüller [16] proposed a semiglobal matching approach that

simultaneously considers 1D paths in every direction through the image, in

order to maintain the reduced computational complexity of the 1D relax-

ation while enforcing more global consistency. This method helps to reduce

significantly the streaking effect that plagues 1D relaxations.

2.4 Disparity Refinement

Independent of the stereo matching algorithm that is chosen, the estimated

disparity map can be further refined during and after estimation by subject-
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ing it in other ways to certain a priori assumptions, such as an assumption

that the disparity map should generally be piece-wise smooth. Most of these

methods are employed after inference has been completed, and generally, they

do not add significant computation time to the overall process of disparity

estimation.

One of the most common and intuitive refinement methods is called the

left-and-right consistency check. Stereo matching requires the designation of

a reference and target image, and outputs only one disparity map for this

pairing. However, the roles of reference and target can be changed, which

produces a disparity map for each view of stereo pair. This check enforces

the assumption that the generated maps for both views should be consistent

by setting the disparity to be zero at any matched points that do not share

the same disparity in the two maps.

Since we know a priori that the disparity map is likely to be generally

homogenous with edges at object boundaries, a common method to remove

stray disparities is to apply a filter, such as a speckle filter or median filter.

The median filter is more robust than local averaging to the presence of a

small number of outlier pixels because it replaces pixel intensities with the

median of a windowed region, which is unaffected by the presence of a small

number of outliers, and not the average.

Another common technique is to enforce a confidence interval for matching

scores. The motivation behind this technique is that if the algorithm cannot

confidently assert what disparity is correct for a given pixel, then it is more

robust to assign a disparity value of zero than to risk assigning an incorrect

disparity. Furthermore, this situation is often encountered along large regions

of uniform texture, such as the sky or a wall in a scene, in which case the

region is likely in the background, so a disparity of zero is an intelligent

estimate.
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CHAPTER 3

STEREO MATCHING ON MOBILE

DEVICES

Having reviewed the various methods that have been proposed for stereo

matching, these methods will now be investigated for translation onto a mo-

bile device. Since the interest of this evaluation is methods that have the

potential to perform in near-real-time on a mobile device, any methods that

are known to be prohibitively slow on modern desktops are not considered.

Except for some semi-global methods, this set of candidate methods consists

mostly of local methods.

A major advantage of running stereo matching on the mobile devices de-

scribed in this thesis is the small baseline between the stereo cameras. While

most of the literature reports on the Middlebury dataset or applications that

require a large baseline, the mobile devices that are currently developed or

envisioned have a small baseline, which is in some cases, such as a smart

phone, defined by the physical limitations of the size of the device. For in-

stance, the NVIDIA tablet that is used in the experiments in this thesis has

a baseline of 65 mm. For the camera array developed by Pelican imaging,

the baseline may only be a few millimeters. Although a small baseline limits

the maximum disparity that can be inferred, even a baseline of a few mil-

limeters still allows for inference of up to several meters. Table 3.1 shows

the relationship between disparity and depth for the NVIDIA tablet and the

maximum inferable depth. This small baseline is crucial to giving hope to

achieving real-time computation on the mobile platform.

A disadvantage of the mobile platform is the consumer-grade quality of the

cameras housed in these devices, which generate significantly more noise and

less sharpness than the cameras that are often used in the stereo matching

literature. Since most all algorithms are tested on the Middlebury dataset,

which is of significantly higher quality than the images that will be generated

for the experiments in this thesis, they are able to achieve highly accurate

disparity maps. However, on mobile devices, such accuracy will be more
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Table 3.1: Conversion of disparity to depth for the NVIDIA tablet with a
baseline of 65 mm.

Disparity (pixels) Depth (meters)
1 38.15
2 19.08
5 7.63
10 3.82
30 1.27
50 0.76

Figure 3.1: NVIDIA developer tablet with Tegra 3 processor and stereo
cameras.

difficult to achieve.

3.1 Tegra 3 Specifications

Until just this year, the Tegra 3 processor was the standard processor across

Android-based tablets, which makes it the primary candidate for a testbed.

It is a quad-core processor with a maximum frequency of 1.6 Hz when using

all four cores, and it is capable of holding up to 2 GB of RAM. It also houses

a GPU, which could be used to further enhance performance of computer

vision algorithms, such as the cross-based adaptive region method of Lu et

al. [23]. In addition, the Tegra 3 processor also supports ARM’s advanced

SIMD extension called NEON, which allows for faster computation and was

not available on the Tegra 2 processor of the previous generation. Figure 3.1

shows the NVIDIA tablet, which houses the Tegra 3 processor, that is used

in this evaluation.
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3.2 Rectification

To rectify the stereo cameras on the NVIDIA tablet, a set of 16 images

of a checkerboard were captured for both the left and right views. Since

consumer-grade cameras on a mobile device likely incur more distortion, the

rectification process may not be able to estimate the camera parameters

as accurately as on the Middlebury dataset. For the NVIDIA tablet, the

resulting rectification produced an average pixel error of less than one pixel,

which is acceptable for stereo matching. Figure 3.2 shows a rectified pair of

stereo images of the checkerboard.

Figure 3.2: A rectified image of a checkerboard captured by the NVIDIA
tablet and used for calibration. The horizontal lines allow for a visual check
that the disparity between the left and right images is only horizontal.

3.3 Pre-Processing

In any stereo rig of cameras, each sensor will have its own color response

or characteristics, and these differences have the potential to disrupt the

matching process. To handle this, the images can be processed prior to

performing stereo matching using a color-balancing algorithm, which should

equalize the red, green, and blue content of both sensors. If a colorchecker

is not available, a simple and effective color-balancing algorithm is the Grey

World algorithm, described as follows:
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Ḡ = (r̄ + ḡ + b̄)/3, (3.1)

r′ = r(Ḡ/r̄), (3.2)

g′ = g(Ḡ/ḡ), (3.3)

b′ = b(Ḡ/b̄), (3.4)

where r̄, ḡ, and b̄ are the average pixel intensities of the red, green, and blue

channels, respectively.

3.4 Experiment Set-Up on the Tegra 3 Tablet

The performance, in terms of computation time and estimation accuracy, of

stereo matching was tested on the NVIDIA Tegra 3 tablet using rectified

and white-balanced images. All processing, including rectification, white-

balancing, and stereo matching, was conducted on the tablet and is including

in the timing results. Some algorithms did not have an implementation

available, and checking for correct implementation can be difficult, which

limited the set of candidate algorithms. However, the following algorithms,

which provide the most hope for achieving real-time performance on the

tablet, are representative of the many stereo matching algorithms and provide

an effective comparison for other algorithms:

• Semi-Global Block Matching (SGBM)

• SAD-based Block Matching (SBM)

• NCC-based Block Matching (NCC)

• Cost-Volume Filtering (CVF)

The SGBM algorithm is based upon the method of Hirschmüller [16] and uses

the implementation of OpenCV. It is also the fastest global or semi-global

method available for testing. The SBM algorithm also uses the implementa-

tion of OpenCV, which is highly optimized, making use of the NEON library

for ARM processors, and is the fastest and simplest stereo matching method.

The NCC algorithm was tested to investigate the effectiveness of NCC in
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comparison to SAD on real-world images as a matching cost. Although NCC

incurs more computational complexity, NCC has been reported to handle

more robustly the color variation between cameras that often arises in real-

world experiments. The CVF method is an implementation of the algorithm

proposed by Rhemann et al. [21], which is the one of the fastest and most

accurate algorithms that employs adaptive weights.

Several parameters of stereo matching are considered in this evaluation,

which trade off speed and disparity accuracy: downsampling, disparity re-

finement, and window size. Disparity refinement of left-and-right consistency

check, uniqueness ratio, and speckle filtering are considered for the SBM and

SGBM methods. The maximum disparity is set based on the baseline of the

stereo pair of cameras, which is 64 pixels for an image of width 640 pixels

and 32 pixels for an image of width 320 pixels. Downsampling is performed

only in the horizontal direction. The image height of both full-scale and

downsampled images is 360 pixels. A testset of 22 images, captured from the

NVIDIA tablet, were used in the evaluation. Timings that are reported are

the run-times of the algorithm, averaged across these 22 images.

3.5 Results

The first question of interest in the evaluation is the computation time of

the algorithms. Figures 3.3, 3.4, and 3.5 are plots of the average run-times

for the four tested algorithms for different parameter settings. SBM is sur-

prisingly efficient, and when operating on the downsampled version of the

image (a resolution of 320x360), it is able to obtain average speeds of near

or below 100 ms, which could equate to 10 frames-per-second while stream-

ing, an acceptable rate for real-time processing. Since this method uses the

integral image technique to efficiently compute matching costs of windows,

its computational complexity does not depend on the window size, which is

consistent with the plot. It is also worth noting that the disparity refinement

does not incur a significant penalty in terms of computation time.

The next closest method in computation time is SGBM, which obtained

average run-times of between 700 and 750 ms on the downsampled images

and is therefore not a competitor for real-time processing. Therefore, the only

candidate method for real-time processing is the simple and highly optimized
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SBM method. NCC and CVF fare significantly worse, obtaining average run-

times of between 4 and 5 seconds on the downsampled images and between

17 and 20 seconds on the full resolution images.

Figure 3.3: Run-times of SBM averaged across the dataset of 22 images.
The parameters of window size, image resolution, and disparity refinement
were considered. The suffix “320” indicates that the image width was 320
pixels.

The second aspect of the evaluation is the quality of inference of the tested

algorithms. Since SBM was the only method to process frames in real-time,

more attention is given to its produced disparity maps. Figure 3.6 shows

the resulting disparity maps under a variety of different parameter settings,

including downsampling, window size, and disparity refinement, for the mo-

torbike image of the dataset, which has a balance of near and far objects and

intricate object boundaries. As expected, the algorithm struggles along the

large textureless regions of the structure in the left half of the image. For-

tunately, with the assistance of the uniqueness ratio, the algorithm is able

to avoid possibly erroneous estimates in this region by setting the estimates

to zero disparity. Block matching methods are also notorious for widening

the edges of foreground objects, which can be seen in the resulting disparity

maps. However, overall, the disparity map is impressive given the less sophis-

ticated algorithm of SBM. The consistency check handles occlusion at object

boundaries, as seen along the right side of the person in the background.
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Figure 3.4: Run-times of SGBM averaged across the dataset of 22 images.
The parameters of window size, image resolution, and disparity refinement
were considered. The suffix “320” indicates that the image width was 320
pixels.

The algorithm also performs surprisingly well on the downsampled images,

and the discrepancy of the performance on the full resolution images may

not be significant for some applications. Note that the disparity maps that

are shown have been rescaled to the full resolution of 640x360.

Results of disparity estimation of all four algorithms on several different

test images are shown in Figures 3.7, 3.8, 3.9, and 3.10. With the help of

a spatial smoothness penalty, SGBM is able to produce more contiguous

estimates of objects than SBM, as seen in the truck and road of the truck

image and the boxes of the shelf image. The NCC and CVF methods do

not use a uniqueness ratio or left-and-right consistency check, which could

both help in removing erroneous estimates. As seen in Figure 3.9, these

methods both struggle with the background wall, although NCC does well

in estimating the depth of the people. In Figure 3.8, CVF struggles with

the road, another large region of uniform texture. In many of the images,

only SBM is able to remove the erroneous large disparity estimates of the

background and walls. For certain applications, the accurate results of NCC

along object boundaries or the estimate of other more sophisticated methods

may be needed, for instance applications that use the depth to guide image
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Figure 3.5: Run-times of NCC and CVF averaged across the dataset of 22
images. The algorithms were run both on the full resolution images and
downsampled images. The suffix “320” indicates that the image width was
320 pixels.

filtering, but for the navigation assistance application to be described in

Chapter 4, the results of SBM, which lack erroneous large disparity estimates,

are favorable.
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(a) Motorbike image (b) SBM - 27

(c) SBM - 17 (d) SBM - 9

(e) SBM - no consistency check, 27 (f) SBM - no consistency check, 17

(g) SBM - downsampled, 17 (h) SBM - downsampled, 9

Figure 3.6: Disparity estimation results of the SBM algorithm on the
motorbike image for a variety of different parameter settings. The number
in the caption indicates the window size, in pixels, that was used for
matching. Images (e) and (f) show the result without using the
left-and-right consistency check. Images (g) and (h) show the result on the
downsampled (320x340) image.
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(a) Motorbike image (b) SBM

(c) SGBM (d) NCC

(e) CVF

Figure 3.7: Disparity estimation results on the full resolution (640x360)
motorbike image with a window size of 17 pixels.
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(a) Truck image (b) SBM

(c) SGBM (d) NCC

(e) CVF

Figure 3.8: Disparity estimation results on the full resolution (640x360)
truck image with a window size of 17 pixels.

28



(a) Standing image (b) SBM

(c) SGBM (d) NCC

(e) CVF

Figure 3.9: Disparity estimation results on the full resolution (640x360)
standing image with a window size of 17 pixels.

29



(a) Shelf image (b) SBM

(c) SGBM (d) NCC

(e) CVF

Figure 3.10: Disparity estimation results on the full resolution (640x360)
standing image with a window size of 17 pixels.
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CHAPTER 4

A SYSTEM FOR ASSISTING THE

VISUALLY IMPAIRED

Having established the potential of stereo matching for real-time applications

on a mobile platform, through use of the SBM method, this chapter examines

its potential impact for assisting the visually impaired by proposing a novel

system using stereo-matching.

4.1 System Overview

The proposed system is an entirely self-contained application on a mobile

device. A flow-chart of the system is shown in Figure 4.1. Using the stereo

cameras on-board the device, stereo images are captured and rectified and

given as input to a stereo matching algorithm, which infers the depth of the

scene. The depth is then converted to sound to be communicated to the

user, though mappings to touch could also be used. The mapping of depth-

to-sound relates the average depth in a region of interest in the inferred

disparity map to the frequency of a sinusoidal sound wave that is output by

the device. A novel aspect of this system is an interface based around the

touch screen that allows the user to interact with the mapping by adjusting

the scale of the region over which averaging is performed and the location

of the region. The system is developed on the NVIDIA tablet, as shown in

Figure 4.2, though it could be ported to any stereo-equipped tablet or smart

phone.

The depth estimation is performed via stereo matching as evaluated in

Chapter 3. The depth-to-sound transformation and user interface are de-

scribed in the following sections.
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Figure 4.1: Flowchart of the proposed assistance system.

Figure 4.2: Use of the NVIDIA developer tablet for navigation assistance.

4.2 Depth-To-Sound Transformation

Once the depth of the scene has been estimated, it must be mapped to

another sensory input to be communicated to the user. Both sound and touch

have been studied as channels to communicate information to the blind, but

neither sense has been deemed more well-suited for the task [9].

The advantage of touch as a channel is that it does not interfere with the

user’s ability to listen to the surroundings, which is known to be a crucial

component of navigation for the visually impaired. Disadvantages of com-

munication via touch are the lack of resolution of a human’s touch sensory

inputs and the possible physical or social discomfort caused by devices that

communicate via touch. Touch is commonly transmitted through a tactile

sensor or a vibrating motor that can be worn around the torso, which is the

approach of the system of USC [11], or even on the tongue, which is the

approach of the BrainPort [12]. Exotic sensors, such as the BrainPort, that

encode visual information through complex spatial patterns can require ex-

tensive training and their effectiveness is still in question, which is another

possible pitfall of depth-to-touch.
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The transformation from data to sound is more straightforward if creating

a low-fidelity signal of the visual information. However, richer descriptions

are also challenging to capture in sound, and the research area known as

sonification has developed to study such transformations. Although sound is

a vital sense for the visually impaired user, the proposed system uses sound as

a channel for communicating visual information and the presence of obstacles

because the mapping is more straightforward for simple signals and requires

no additional hardware, which allows the system to be contained entirely to

the mobile device, making it more comfortable for use.

Inherently, the depth information that is inferred must be compressed be-

fore it is communicated to the user, as it is not possible to convey it in

its fullness through sound. Though systems such as “The vOICe” have at-

tempted to accomplish this, such systems have not been widely adopted,

likely due to the difficulty of learning to interpret the generated sounds. A

mapping to sound must also avoid over-interpreting the data for the user

and be robust. For this proof-of-concept system, a simple transformation of

averaging a region of the image and mapping the average depth to frequency

is proposed. This mapping provides the user with a one-dimensional signal

that encodes the distance of the content in the scene that is before them or

in whatever direction the tablet is facing. To understand the surroundings

more fully, the user can sweep the tablet in various directions to discover

the depth of objects in those directions as well. This loss of dimensionality

in the transformation from depth to sound requires that the depth inference

of stereo matching on the mobile device need not be as precise as in other

applications that are often studied in the literature. Therefore, though the

resulting depth estimation of the evaluation on mobile devices is not as pre-

cise as those reported on the high-quality Middlebury dataset, especially at

object boundaries, such precision is not necessary for this application, and

estimation of the real-time SBM method will be sufficiently accurate.

To allow for greater scene understanding, the proposed depth averaging

scheme is also variable in scale. The user can adjust the scale of the aver-

aging window, which expands or restricts the field-of-view for which depth

information is communicated. The most straightforward output sound to

communicate the depth is a sine wave with frequency modulated by the

depth, or possibly a beeping pattern with beeping frequency modulated by

33



Figure 4.3: User interface on the tablet.

depth. The case of a sine wave can be described as follows:

s(t) = A sin ((1 + αd) f0t) , (4.1)

where αd is a monotonically increasing function of the disparity, d, ranging

from 0 to αmax, and f0 is a base frequency.

This mapping is also advantageous in that it is simple to compute, re-

ducing possible overhead that would limit the frame processing rate of the

application and it avoids any issues of robustness that a more intricate map-

ping would bring. Another advantage of deploying this system on a mobile

device without any additional hardware is that many users would have access

to the system without any barrier to entry and could test this mapping and

other mappings to provide feedback as to what mappings are most useful.

4.3 User Interface

Access to a touch screen allows for easy interaction between the user and

the system to adjust two key parameters of the depth-to-sound mapping.

The interface contains a toolbar that controls the scale of the region to be

averaged, which allows the user to quickly adjust the field-of-view of the

content that is being communicated while operating the device. Likely, a

small field-of-view would be most informative about the scene.

By touching the screen, the user can also change the location of the aver-

aging window, which allows the user to scan the depth of the scene without

having to change the perspective of the tablet. Figure 4.3 shows the proposed

user interface for the tablet.
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4.4 Discussion

A prototype system was created that uses the SBM algorithm for disparity

estimation. Separate threads for the camera and stereo matching were used,

enabling the system to operate at approximately 10 frames-per-second. The

disparity estimation from the SBM algorithm provides useful depth informa-

tion of the scene to the user, although, due to the matching ambiguity and

the constraint of the uniqueness ratio, the disparity estimation of some ob-

jects is sparse. A few images of common obstacles in an office environment

are shown in Figure 4.4. Some objects are difficult to detect, such as the

specular and homogeneous surface of the table, but much of the scene is still

inferred.

(a) Chair1 image (b) SBM

(c) Chair2 image (d) SBM

Figure 4.4: Disparity estimation results in an indoor environment.

In the future, user testing will provide feedback on the usefulness of the

proposed depth-to-sound mapping and possibly other mappings, the inferred

depth information, and the user interface. Further enhancements to the

mapping may be useful, such as removing the depth content of the floor

from the disparity map to decouple it from the depth information of objects.

Another technique that could be investigated is the use of a blob-detection

algorithm to look for near objects. These post-processing techniques can
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also be performed efficiently without significantly reducing the frame rate of

the system. Additionally, the mobile device platform offers the potential for

the generation of other sound signals, including the use of 3D sound, which

could convey richer descriptions of the depth of the scene without further

interfering with the sounds of the environment.
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CHAPTER 5

CONCLUSION

This thesis has evaluated the performance of various stereo matching algo-

rithms on a standard tablet and demonstrated that, with a frame rate of

10 frames-per-second, simple block matching is the primary candidate algo-

rithm for real-time applications. Although not all existing stereo matching

algorithms could be tested, any other algorithm would need to be highly opti-

mized for the ARM processor to compete with computation time of the block

matching and semi-global block matching methods that were tested. Algo-

rithms that are optimized for the GPU could also be used to possibly obtain

faster run-times. Additionally, the evaluation demonstrated that, although

stereo matching algorithms on real-world images captured from consumer-

grade cameras on mobile devices suffer degradation from noise and distortions

from the camera, the tested algorithms are still able to infer depth with

reasonable accuracy, though not as well as they would on the Middlebury

dataset. The more accurate local methods, such as Cost Volume Filtering,

could be used for applications that require higher quality disparity maps, but

operation times of several seconds must be acceptable. For applications of

enhanced and immersive multimedia experience, this thesis has shown that

stereo matching on mobile devices is a viable option for depth inference.

Additionally, the feasibility of providing a user with useful depth infor-

mation in real-time using only a mobile device has been shown using stereo

matching. The proposed novel system is able to provide the user with infor-

mation about the depth of obstacles in the navigated environment in real-

time. The widespread use of mobile devices offers an extensive user test-bed

to test the system and to further refine the communication of depth infor-

mation to the user. Additionally, mobile devices offer convenience, mobility,

and functionality, and they pose no physical or social discomfort to the user,

making the proposed system attractive for use by the visually impaired com-

munity.
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