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Abstract: A considerable fluid load can cause local damages on the offshore structures, which 

may be a risk in the field of ocean engineering. Therefore, an accurate fluid motion prediction 

is a crucial issue in predicting the offshore structure motion. In this study, a non-local 

Lagrangian model is developed for Newtonian fluid low Reynold’s number laminar flow. 

Based on the peridynamic theory, a peridynamic differential operator is recently proposed for 

directly converting the partial differential into its integral form. Therefore, the peridynamic 

differential operator is applied to convert the classical Navier-Stokes equations into their 

integral forms. The numerical algorithms are developed both in total and updated Lagrangian 

description. Finally, several benchmark fluid flow problems such as Couette flow, Poiseuille 

flow, Taylor Green vortex, shear-driven cavity problem and dam collapse problems are 

numerically solved. The simulation results are compared with the ones available in the 

published literature. The good agreements validate of the capability of the proposed non-local 

model for Newtonian fluid low Reynold’s number laminar flow simulation. 
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1. Introduction 

 The fluid and structure interaction are often encountered in ocean engineering, e.g. 

floating structures and water waves interactions (Faltinsen, 1993), sloshing in a water tank (Cao 

et al., 2014), green water impact (Gómez-Gesteira et al., 2005) etc. The fluid motion is a crucial 

issue because of the fluid induced movements such as heaving and rolling of the offshore 

structures. Sometimes the fluid may even also cause considerable pressure loadings on the 

offshore structure and make local damages of these structures (Faltinsen, 1993). Therefore, an 
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accurate fluid motion prediction is necessary for a fluid-structure interaction simulation in the 

field of ocean engineering. Peridynamics (Silling, 2000) has been applied on the numerical 

simulations of offshore structure damage in the ocean engineering field, e.g. the ship-ice 

interaction (Liu et al., 2018; Wang et al., 2018; Ye et al., 2017). It will be beneficial to simulate 

both the structure and fluid with the same methodology, e.g. peridynamics. Therefore, a 

peridynamic fluid model is provided in this paper which can be further incorporated into the 

peridynamic solid model to simulate the fluid and structure interactions.  

The Eulerian approach is adopted in most computational fluid dynamics (CFD) 

methodologies. Since CFD can solve fluid flow problems with any boundary and initial 

conditions, it has been widely used in academic research (Anderson and Wendt, 1995). There 

are two types of computational Lagrangian approaches: total Lagrangian approach and updated 

Lagrangian approach. The total Lagrangian approach uses the initial configuration as the 

reference configuration, while the updated Lagrangian approach adopts the current 

configuration as the reference configuration. Smoothed Particle Hydrodynamics (SPH), which 

is an updated Lagrangian approach, is another widely used method for fluid flow simulations 

(Gingold and Monaghan, 1977; Lucy, 1977). SPH is a mesh-free particle method, and it does 

not need a grid to calculate spatial derivatives (Monaghan, 1992). In addition, it is easy to work 

with and can give reasonable accuracy. Therefore, it draws a lot of attention in recent years. 

Peridynamics (PD) is another mesh-free particle method, which is initially formulated as 

a total Lagrangian description. It is introduced (Silling, 2000) for solid mechanics. The PD 

replaces the partial differential equations of the classical continuum mechanics by integral 

equations (Silling and Askari, 2005). Since integral equations remain valid even at 

discontinuities, singular stress generated by the classical continuum mechanics is avoided. 

Therefore, PD is well suited for solving the problems with discontinuities, e.g. crack 

propagation simulations. Since the PD is originally proposed for structural mechanical 

problems, it is generally applied to predict fracture in solids (Madenci and Oterkus, 2014; 

Oterkus and Madenci, 2012a; Oterkus and Madenci, 2012b). Hence the application of PD in 

fluid mechanics is still in its infant stage. Only a few PD fluid models are available in the 

published literature. A state-based peridynamic formulation is presented by Katiyar et al.  (2014) 

to simulate the fluid flow in porous media. Later on, the model is applied to simulate the growth 

of fluid driven cracks in porous and fracture media (Ouchi et al., 2015). A fully coupled 

poroelastic peridynamic formulation is introduced by Oterkus et al. (2017) to simulate fluid-

filled fractures. In their model, the coupling effect of porous fluid flow and deformation of 

porous media is considered to predict the behaviour of fluid-filled fractures. However, in these 
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PD models the fluid flow was limited to porous flow. Therefore, the developed PD fluid models 

cannot be utilized for general fluid flow simulations. An Eulerian form of peridynamic model 

is presented to by Silling et al. (2017) to simulate the shockwaves. In their model, the 

peridynamic forces are defined in the deformed configuration to simulate strong shock waves 

and fluid response for very large deformations. An updated lagrangian PD model based on the 

state-based peridynamics concept is applied as updated Lagrangian particle hydrodynamics 

(ULPH) to simulate Newtonian fluid flow (Tu and Li, 2017).  

The bond-based peridynamics (Silling, 2000), referred as an original PD theory, assumes 

the pairwise PD force densities being equal in magnitude and parallel in direction. The 

interaction of each PD bond is independent of the other PD bonds within the integration domain. 

Consequently, there is a limitation on the material properties for bond-based PD theory. Later 

on, the state-based PD theory is introduced which removes the aforementioned limitation of 

bond-based PD theory (Silling et al., 2007). If the pairwise PD force density vectors are not 

equal in magnitude but still parallel in direction, the theory is classified as ordinary state-based 

PD theory. However, the PD form of the material parameters is required for PD material 

modelling, which is calculated by comparing the strain energy density obtained from classical 

continuum mechanics and PD expressions. If there is no constraint on the pairwise PD force 

density vectors, it is classified as non-ordinary state-based PD theory. The non-ordinary 

peridynamics can be directly related to the classical continuum model in terms of deformation 

gradient tensor and stress tensor (Silling et al., 2007). The presence of the zero-energy mode is 

a challenging issue in the non-ordinary peridynamic material model (Luo and Sundararaghavan, 

2018; Silling, 2017). The displacement oscillations exist in the PD solutions especially for steep 

deformation gradients (Gu et al., 2018). One possible cause of the oscillations may arise from 

applying first order derivative approximation twice for approximating the second order 

derivatives (Gu et al., 2018).                             

Based on the PD concept, a peridynamic differential operator is recently proposed by 

Madenci et al. (Madenci et al., 2016). It is derived based on Taylor series expansion and 

orthogonal function properties. Being different from the bond-based PD theory, the 

peridynamic differential operator does not have any constraint on the material properties. 

Furthermore, it can be directly applied to reformulate the partial differential equations to their 

integral forms. The classical physical parameters can be directly used without converting into 

their PD expressions, which avoids the derivation process required by the bond based and 

ordinary state-based peridynamic theory. In addition, it does not have any limitation on the 

order of the partial derivatives both for time and space. For example, the second-order 
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derivatives can be directly approximated by one integration by using the PD differential 

operator which corresponds to the second order derivative. As a result, the error of the PD 

result is reduced by using less integrations, compared to non-ordinary state based PD. 

Furthermore, the PD differential operator functions are also forced to be orthogonal to each 

term in the Taylor series expansion (Madenci et al., 2016). Therefore, when determining the 

expressions of the PD differential operators, both lower and higher order terms are considered. 

In this study, peridynamic differential operator is used to simulate low Reynolds number flow 

problems. 

This paper is organized as follows. Section 2 describes the peridynamic differential 

operator including its properties. Section 3 describes the developed non-local velocity operator 

by using the peridynamic differential operator. Section 4 describes the non-local form of 

Navier-Stokes equations that are derived based on their local forms by using non-local velocity 

operator. Section 5 presents the numerical algorithms both in total and updated Lagrangian 

descriptions. In addition, the treatments regarding the numerical simulation are explained. 

Section 6 presents a set of classical fluid flow problems, i.e. Couette flow, Poiseuille flow, 

Taylor Green vortex, shear driven cavity, and dam collapse problems are numerically simulated 

with the developed model. Finally, the conclusions are given in Section 7.       

     

2. Peridynamic Differential Operator 

Peridynamics is a non-local theory which provides an alternative formulation for the 

continuum mechanics. PD is based on integral-differential equations as opposed to the partial 

differential equations of classical continuum mechanics (Silling, 2000). Here, the basic 

concepts of the PD theory are reviewed briefly (Madenci and Oterkus, 2014). As shown in Fig. 

1, the whole body, R , is discretized into a finite set of sub-regions for computer simulations. 

The sub-regions are represented by the PD nodes identified by their initial locations, e.g. 

 1 2 3, ,x x xx . Each PD node, x , interacts with all other PD nodes,  1 2 3, ,x x x   x , within a 

distance  . Here, x  is the point of interest and x  is called a family member of x . The 

interaction domain, H
x
, is the neighbourhood of x  and its radius   is named horizon. The 

length of the horizon is the measure of nonlocal behaviour. The initial relative position between 

x  and x  is denoted by ξ , i.e.   x x ξ . The acceleration of the central point is calculated by 

the force exerted from its family members, indicating a non-local behaviour. 
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Fig. 1 Interaction of the point of interest x  with its family member x   

In light of the PD concepts, a PD differential operator is proposed by Madenci et al. 

(Madenci et al., 2016) and is fully explained in this section. One advantage of the PD 

differential operator is that the classical material parameters can be directly applied in the non-

local integral equations (Madenci et al., 2016). Many physical fields, including the fluid flow 

field, involve up to second order partial derivatives with respect to spatial variables. Therefore, 

the PD differential operator corresponding to up to second order derivatives in a three-

dimensional space is adopted in this study. The PD differential operator property is constructed 

based on the Taylor series expansion and the orthogonal function properties, which will be 

explained in Section 2.1. The construction of the PD differential operator is presented in 

Section 2.2. 

Taylor series expansion in a three-dimensional space up to second order derivatives can 

be introduced for a multi-variable scalar field, as  

    1 2 3, ,f f x x xx   (1) 

then the difference value between  f x ξ  and  f x  can be approximated by using Taylor 

series expansion with ignoring the higher order terms as 
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or expressed in a compact form as 
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2.1 PD differential operator  
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where 1 2 30 2n n n    . The integer terms 1n , 2n , and 3n  represent the differential order of 

 f x  with respect to 1x , 2x , and 3x , respectively. The term  ,2Rx ξ  represents the remainder 

and it is assumed to be negligibly small. Therefore, the term    f f x ξ x  is an 

approximation whose error is proportional to 
3

ξ .The term ξ  represents the relative position 

vector between two material points as 

 1 1 2 2 3 3    ξ e e e   (3) 

with 

  1 1 1x x     (4a) 

  2 2 3x x     (4b) 

  3 3 3x x     (4c) 

The terms 1e , 2e , and 3e  represent the unit vectors in 1x , 2x , and 3x  directions. The scalar 

values 1 , 2 , and 3  represent the projections of the relative position vector on the 

corresponding unit vectors.  

As with a basis of vectors in a finite-dimensional space, orthogonal functions can form an 

infinite basis for a function space. Orthogonal functions can be treated in analogy with the 

approach of expressing a location of a node with a vector set  1 2 3,  ,  e e e  for a three-

dimensional space. 

The PD differential operators (Madenci et al., 2016) are used to represent the PD nonlocal 

expressions for the partial derivatives.  The derivative up to second derivative can be denoted 

as 

 
 1 2 3

31 2

1 2 3

p p p

pp p

f

x x x

 


  

x
  (5) 

where 1 2 30 2p p p    . The term ip  represents the order of differentiation with respect to 

ix , with 1,2,3i  . Therefore, function  1 2 3p p p
g ξ  is used to represent the PD nonlocal 

expressions up to the second derivative. For example,  101g ξ  represents the PD operator for 

derivative  1 0 1 1 0 1

1 2 3/f x x x    x . Furthermore, the set of the PD differential operator is 

considered to be a set of functions that are orthogonal to the exponent of relative positions, 
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31 2

1 2 3

nn n   . Therefore, the PD differential operator  1 2 3p p p
g ξ  possess the orthogonality 

property as (Madenci et al., 2016) 

  3 1 2 31 2

1 1 2 2 3 31 2 3

1 2 3

1
d

! ! !

n p p pn n

n p n p n p
H

g V
n n n

      
x

ξ  (6) 

where 
i in p  is the Kronecker delta with 1,2,3i  . 

Based on Taylor series expansion and orthogonal function properties, the property of the 

PD differential operator can be derived. Multiplying the PD differential operator  1 2 3p p p
g ξ  on 

both sides of Eq. (2b), and performing an integration over the horizon domain of central point 

x  results in (Madenci et al., 2016) 
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After applying the linear property of integration on the right-hand side of Eq. (7), it results in 
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By using the orthogonal property described in Eq. (6) , Eq. (8) becomes (Madenci et al., 2016) 
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or in an explicit form (Madenci et al., 2016)   
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In this way, the partial derivatives of the central point can be represented by an integration 

of function and the corresponding PD differential operator over the horizon as shown in Eq. 

(10). In other words, with the help of PD differential operator, partial derivatives can be 

converted to their integral forms (Madenci et al., 2016).  

 

The PD differential operator functions,  1 2 3p p p
g ξ , can be constructed as (Madenci et al., 

2016) 

    
1 1 2

1 2 3 1 2 3 31 2

1 2 3

1 2 3

2 22

1 2 3

0 0 0

q q q
p p p p p p qq q

q q q

q q q

g a w   
  

  

 ξ ξ  (11) 

where  w ξ  represents the weight function and 1 2 3

1 2 3

p p p

q q qa represents the unknown coefficient 

matrix with 1 2 30 2q q q    . In this study, a weighted function is defined as a Gaussian 

distribution which depends on the relative position and the horizon as (Madenci et al., 2016) 

    
2

2 /
w e




ξ
ξ   (12) 

2.2 Construction of PD differential operator  
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The derivation of the unknown coefficient 1 2 3

1 2 3

p p p

q q qa  in Eq. (11) can be derived by using 

orthogonality property provided in Eq. (6) (Madenci et al., 2016). 

By substituting Eq. (11) into Eq. (6), the following equation can be obtained as 
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x

ξ   (13) 

After applying the linear property of integration, Eq. (13) results in 
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Therefore, the unknown term, 1 2 3

1 2 3

p p p

q q qa , can be obtained by the following equation  
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with 

 
    3 31 1 2 2
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1 2 3 d
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A w V      

x

ξ   (15b) 

and 

  

 1 2 3

1 2 3 1 1 2 2 3 31 2 3! ! !
p p p

n n n n p n p n pb n n n      (15c) 

The peridynamic differential operator for two-dimensional space up to second order derivative 

is provided in an explicit form in Appendix A.  

3. Non-local Velocity Operator by Using PD Differential Operator 

In this section, the non-local form of velocity divergence, gradient, and second derivatives 

are developed to approximate their corresponding local operators. The non-local derivatives 

will be utilized in the derivation of the non-local form of Navier-Stokes equations in Section 4. 

PD differential operator tensors which are expressed in the matrix form are introduced as  

        100 010 001

1 g g g   g ξ ξ ξ ξ   (16a) 

and 
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where  1g ξ  and  2g ξ  represent the first order and second order PD differential operators up 

to second order derivatives, respectively. They can also be expressed as  
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where the term 
   1

i
g ξ  represents the elements in  1g ξ  vector, 

   ,

2

i j
g ξ  represents the  

elements in  2g ξ  matrix with , 1,2,3i j  . Therefore, the elements in Eq. (17b) represents the 

differential operators for second derivatives provided in Eq. (10). 

Three-dimensional velocity vector for point x  can be denoted as 

        1 1 2 2 3 3v v v  v x x e x e x e   (18) 

where the scalar values  1v x ,  2v x  and  3v x  represent the projections of the velocity 

vector on the corresponding unit vectors.   

 

The local form of velocity divergence is defined as  
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x x x
v x   (19) 

As described  by Eq. (10), by applying the first order PD differential operator,  1g ξ , the non-

local form of the first order derivatives can be evaluated as  
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Therefore, the non-local form of velocity divergence can be expressed by using PD differential 

operator as  
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3.1 Non-local form of velocity divergence 
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Eq. (21) can also be written as  
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Subsequently, by considering the vector form of PD differential operator in Eq. (17a), the non-

local form of velocity divergence can be expressed in compact form as   

 
          1 d
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H
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v
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or 

         1 d
H
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Fig. 2 presents the relative velocity vector,      v x v x , first order PD differential 

operator vector, 1g , and their dot products.   

 

Fig. 2 Illustration of  relative velocity vector     v v x x  , first order PD differential 

operator vector, 1g  and their dot products 

The local form of the velocity gradient is defined as 
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3.2 Non-local form of velocity gradient 
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where , 1,2,3i j  . The non-local expressions of the diagonal elements in the gradient matrix 

are already provided in Eq. (21). Similarly, the non-local form derivatives in Eq. (24) can be 

expressed as  
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As a result, the non-local form for the velocity gradient can be expressed by using PD 

differential operator as   
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Subsequently, the matrix form in Eq. (26) can be converted to a compact form as  

         1 d
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x

v x v x v x g ξ   (27) 

 

Based on the non-local form of the first order derivative provided in Section 3.1 and 3.2, 

the non-local form of the second derivatives is provided in this section.  

The local form of Laplacian operator is defined as  
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As described Eq. (10), by applying the second order PD differential operator,  2g ξ , the non-

local form of the second order derivatives can be evaluated as  

3.3 Non-local form for second derivatives of velocity 
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where , 1,2,3i j  . After substituting Eq.(29) into Eq. (28), the non-local form of Laplacian 

becomes  
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By considering the operator matrix provided in Eq. (17b), the non-local form of Laplacian 

operator in Eq. (30) can be expressed in compact form as   

          2tr d
H

V   
x

v x g ξ v x v x   (31) 

By using Eq. (24), the transpose of the velocity gradient is defined as 

  

1 2 3

1 1 1
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1 2 3

3 3 3

T

v v v

x x x

v v v

x x x
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v   (32) 

Therefore, the divergence of the transpose of the velocity gradient is  

  

2 2 2
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v   (33) 

Subsequently, the non-local form derivatives in Eq. (33) can be expressed as  

         
2

,

2 d
j ki

i i
H

j k

v
v v g V

x x


  

  
x

x x ξ   (34) 

where , , 1,2,3i j k  . Eq.(33) can  be converted into its non-local form as  
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Eq.(35) can be expressed in a compact form as  

          2 d
T

H
V     

x

v x g ξ v x v x   (36) 

In conclusion, the comparison of the local form and the non-local form of the velocity 

derivatives is summarized as  

 

Table 1 Comparison of local and non-local velocity derivatives 

Velocity derivatives Local Form Non-local form  
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In this study, non-local operators both for the first and the second order derivatives are 

provided. The non-local operators are derived by using second order Taylor series expansion. 

If only the first order derivative is considered and first order Taylor series expansion is used, 

the non-local operators for the first order derivatives, i.e. non-local gradient operator and non-

local divergence operator, have the similar form as the ones from (Tu and Li, 2017). However, 

in the present study, the second order Taylor series expansion is adopted and PD differential 

operator functions are directly determined by making them orthogonal to each term in the 

Taylor series expansion (Madenci et al., 2016). ). Therefore, the second order terms have 

effects on the first order operator due to the adoption of the orthogonal function properties. As 

a result, the formulations of the first order operators, i.e. non-local gradient operator and 

divergence operator, becomes different from the ones in (Tu and Li, 2017).            
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4. A Non-local form of Navier-Stokes equations  

In this section, the non-local form of Navier-Stokes equations which describe the 

Newtonian fluid laminar flow is derived by using the non-local operator developed in Section 

3.  

In classical fluid mechanics, the equation that describes the conservation of mass is  

 
D

Dt


  v  (37) 

where   is the fluid density. The non-local form of velocity divergence operator in Table 1 is 

adopted to convert Eq. (37) into its non-local form as 

       1

D
d

D H
V

t


     

x

g ξ v x v x   (38) 

The stress is defined as 

 2p   σ I ε   (39) 

where p  is the hydrostatic pressure, I  is the second order unit tensor,   is the dynamic 

viscosity, and ε  is the shear strain rate. For incompressible fluid and compressible fluid flow, 

the expressions for stress are different. Therefore, the constitutive equations are discussed 

separately.    

4.2.1 Incompressible fluid 

The shear strain rate of the incompressible fluid is defined as  

  
1

2

T    
 

ε v v   (40) 

By using the non-local operator in Table 1, the non-local form of the shear strain rate is  

              1 1

1
+ d

2

TT

H
V       

 
x

ε v x v x g ξ g ξ v x v x   (41) 

As a result, the stress definition in Eq. (39) can be expressed as 

              1 1+ d
TT

H
p V          

 
x

σ I v x v x g ξ g ξ v x v x    (42) 

Regarding the incompressible fluid flow, a prohibitively small time step size is required 

for stability in the pressure simulation (Morris et al., 1997). Therefore, artificial compressibility 

methods (Drikakis and Rider, 2005) are introduced which makes the incompressible fluid 

weakly compressible. The Tait equation of state is adopted to model such flows, in which the 

pressure is an explicit function of local fluid density as (Batchelor, 2000)   

4.1 Conservation of Mass 

4.2 Constitutive Equations 
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0

1tp B







  
      

  (43) 

where 
t  represents the current local density, 

0  represents the initial density and 

represents the material constant which is 7   for water. 

In Eq. (43) B  is a parameter which can be defined as (Monaghan, 1994)  

 
2

0cB



   (44) 

where c  represents the speed of sound. The speed of sound can be approximated as (Becker 

and Teschner, 2007) 

 /fc  v   (45) 

with fv  representing the maximum magnitude of fluid flow velocity. The term   represents 

the density variation with a typical value being 0.01, indicating that density varies at most 1%. 

 

4.2.2 Compressible fluid 

The shear strain rate for compressible fluid is defined as  

    
1 1

2 3

T      
 

ε v v v I   (46) 

By considering the non-local velocity operator in Table 1 and Eq. (41), the non-local form of 

the shear strain rate can be expressed as  

 

             

       

1 1

1

1
+ d
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1
d

3

TT

H

H

V

V

       
 

    
 





x

x

ε v x v x g ξ g ξ v x v x

g ξ v x v x I

 (47) 

 

As a result, the stress defined in Eq. (39) can be expressed as 

 

             

       

1 1

1

+ d

2
d

3

TT

H

H

p V

V





         
 

    
 





x

x

σ I v x v x g ξ g ξ v x v x

g ξ v x v x I

 (48) 

Regarding compressible fluid flow the material derivative of pressure is (Tu and Li, 2017)  

 
D

D
f

p
K

t
   v  (49) 

where fK  is the elastic bulk modulus of fluid.  
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The non-local velocity divergence operator in Table 1 is adopted to convert Eq.(49) into 

its non-local form as  

        1

D
d

D
f

H

p
K V

t
    

x

g ξ v x v x   (50) 

The local form of the equation of motion is  

 
D

Dt
  

v
σ b   (51) 

where b  represents the body force.  

By using the definitions in Eq. (39) into Eq. (51), the equation of motion can be expressed 

in terms of pressure and shear strain rate as  

  2
D

p
Dt

     
v

I ε b   (52) 

By applying the Leibniz rule Eq. (52) can be written as 

      2 2
D

p
Dt

         
v

I ε ε b   (53) 

In this study, the dynamic viscosity   is assumed to be constant, therefore Eq. (53) takes the 

form as  

    2
D

p
Dt

      
v

I ε b   (54) 

Similar to the non-local velocity operators in Table 1, the non-local form of the first term on 

the right-hand side of Eq. (54) can be expressed as  

         1 d
H

p p p V     
x

I x x g ξ   (55) 

 

 

 

4.3.1 Incompressible fluid 

By considering the shear strain rate expression provided in Eq.(40) for an incompressible 

fluid, the divergence of the shear strain rate can be expressed as  

  
1

2

T      
 

ε v v   (56) 

Eq. (56) can also be presented as  

   1

2

T
    ε v v   (57) 

4.3 Conservation of Momentum 
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By applying the non-local second order operators provided in Table 1, the non-local form of 

divergence of the shear strain rate can be obtained as  

               2 2

1
tr d

2 H
V         

x

ε g ξ v x v x g ξ v x v x   (58) 

By substituting Eq.(55) and Eq.(58) into Eq.(54), the non-local form of the equation of 

motion for an incompressible fluid can be obtained as  

 
               

       

2 2

1

tr d

d

H

H

D
V

Dt

p p V

 



        

   





x

x

v
g ξ v x v x g ξ v x v x

x x g ξ b

  (59) 

 

 

4.3.2 Compressible fluid 

By considering the shear strain rate expression provided in Eq.(46) for compressible fluid, 

the divergence of the shear strain rate can be expressed as 

      
1 1

2 3

T
       ε v v v I   (60) 

It can be proved that     
T

    v I v . By considering  Eq. (58) and Table 1, the 

non-local form of the divergence of shear strain rate for compressible fluids can be obtained as 
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1
tr d

2

1
d

3

H
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V

V

 
           

 

 
    

 





x

x

ε g ξ v x v x g ξ v x v x

g ξ v x v x

  (61) 

By substituting Eq.(55) and Eq. (61) into Eq. (54), the non-local form of the equation of 

motion for a compressible fluid can be obtained as  

 

              

             

2 2

2 1

tr

d2

3

H

D
V

Dt p p



 


        
  

         


x

g ξ v x v x g ξ v x v x
v

b
g ξ v x v x x x g ξ

   (62) 

As provided in Eq.(59) and (62), the conservation equation of momentum is directly 

expressed in terms of velocity and pressure, leading to the existence of the second order 

derivatives. Due to the adoption of the corresponding PD differential operator for the second 

order derivatives provided in Table 1, the acceleration can be directly calculated with one 

integration with second order accuracy. The error introduced by the integration can be reduced 

compared to first order approximations where the integration needs to be performed twice to 
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calculate the acceleration. In addition, the computational time can also be reduced by using 

integration only once.      

 

 

5. Numerical Implementation 

In this section, the numerical implementation for fluid flow simulation is provided. There 

are two types of Lagrangian descriptions, i.e. total Lagrangian description and updated 

Lagrangian description. Both Lagrangian approaches have been discussed in state-based 

peridynamics (Bergel and Li, 2016). Therefore, non-local Navier-Stokes equations are 

numerically implemented both in total and updated Lagrangian approaches.   

 The related kinematic quantities for numerical implementations are explained as follows. 

As shown in Fig. 3,  point i  represents the point of interest and point j  represents one of its 

family members.  

The definitions of relative kinematic quantities are shown in Fig. 3. The terms x  , u , and 

v  represent position, displacement, and velocity vectors, respectively. The subscript (0)  

represents the initial configuration. On the other hand the subscript ( )n  represents the current 

configuration. For example, 0

i
x  and 0

i
v  represent the position and the velocity vector for point 

i  in the initial configuration, respectively. Here, 0ξ , nξ , 1nξ  represent the relative position 

vectors in the initial, current, and updated configurations, respectively. 

 

Fig. 3  Initial, current, and updated configurations in the fluid domain, R   

0R

nR

1nR 

0

Initial

t t

1

Updated

nt t 

Current

nt t

0

i
x

0

j
x

0ξ

nξ

1nξ

0

i
v

i

nv

1

i

nv

0

j
v

j

nv
1

j

nvi

nx

j

nx

1

j

nx

1

i

nx

i

nu

1

i

nu

iu

1x

2x

3x

5.1 Kinematic Quantities      



20 

 

For numerical implementation, the integration is performed by using the discrete particles. 

Based on the derivations in Section 4, the algorithm in a total Lagrangian description is 

presented. 

 

5.2.1 Governing equations in total Lagrangian description 

 In the total Lagrangian description, the governing equations in discretized form for 

incompressible fluid flows and compressible fluid flows are summarized as follows.  

Conservation of Mass: 

The  discretized form of Eq. (38) can be evaluated as  

     1 1 0 0

1

iN
i i i j i j

n n n n n

j

t V  



     g ξ v v  (63) 

where n  represents the time step number, t  represents the time step size , iN  represents the 

total number of family members of point i  and 0

jV  represents the initial volume of point j  . 

It should be noted that the density remains constant for incompressible fluid flow that is 

1 0

i i

n   .  

Constitutive Equations for Pressure: 

For incompressible fluid flow, the discretized form of Eq. (43) can be evaluated as  

 1
1

0

1
i

i n
n i

p B










  
      

  (64) 

For compressible fluid flow, the discretized form of Eq. (50) can be evaluated as  

     1 1 0 0

1

iN
i i j i j

n n f n n

j

p p K t V



     g ξ v v   (65) 

Conservation of Momentum: 

For incompressible fluid flow, the discretized form of Eq. (59) can be evaluated as  

 
            1 2 0 2 0 1 0 0

11

1

1 iN
i j i j i j i j

n n n n n n ni
jn

i

n

tr p p V








       
 



a g ξ v v g ξ v v g ξ

b

  (66) 

where i
a  represents the acceleration of point i .   

For compressible fluid flow, the discretized form of Eq. (62) can be evaluated as  

5.2  Total Lagrangian Method 
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  (67) 

The Velocity Verlet algorithm (Swope et al., 1982) is used for updating the velocity and 

displacement fields as  

  1 1

1

2

i i i i

n n n n t    v v a a   (68) 

 
2

1

1

2

i i i i

n n n nt t     x x v a   (69) 

 

5.2.2 Numerical algorithm for total Lagrangian description 

The numerical algorithm for total Lagrangian approach is provided in Fig. 4. Fig. 5(a) 

represents the PD differential operator construction, and Fig. 5(b) represents the boundary 

implementation. Since the total Lagrangian approach is adopted, the family members of each 

point remain the same during the time integration. The PD differential operator is constructed 

based on the initial configuration, i.e. peridynamic operator, g  is a function of initial relative 

positions  0g ξ . Therefore, the PD differential operator is constructed prior to the time 

integration, as shown in Fig. 4. Therefore, during the numerical simulations, the PD differential 

operator associated with each PD bond is stored in a time-independent array. In addition, for 

PD differential operator construction, Math Kernel Library (MKL) (Intel, 2011) is utilized. The 

function ‘DGESV’ (Anderson et al., 1990) which uses LU decomposition with partial pivoting 

and row interchanges is utilized for solving the coefficient matrix ,a , in Eq.(A.11). 
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Fig. 4 Flowchart of the numerical algorithm for total Lagrangian approach 
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(a)                                                                       (b) 

Fig. 5 Flowchart for: (a) PD differential operator construction, and (b) boundary 

implementation    

 

In this section, the numerical algorithm for an updated Lagrangian description is 

developed for fluid flow simulations using the PD differential operator. 

5.3.1 Updated Lagrangian equations 

The non-local fluid flow governing equations in the total Lagrangian description is already 

provided in Section 5.2.1.  In the updated Lagrangian approach, the initial volume of point j , 

0

jV , will be updated by using the current volume, 
j

nV  as  

 0

j j

n nV J V  (70) 

where nJ  is the determinant of Jacobian which is defined as  

  detn nJ  F   (71) 

In Eq.(71), nF  is the deformation gradients with respect to initial configuration, which is 

defined as  
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  (72) 

Similarly, the volume in the updated configuration 1

j

nV   can be expressed in terms of initial 

volume as 1 1 0d dj j

n nV J V   with  1 1detn nJ   F  and 1 1 0/n n   F x x . 

The volume in the updated configuration is related to the current configuration as  

  1

1 1d d det dj j j

n n n n nV J J V V

   F   (73) 

where the relative deformation gradient F  is defined as  

 11 1
1/n n n

n n

n

 


  
   

  

x x x
F F F

x x x
  (74) 

On the other hand, the non-local form of the deformation gradient tensor is defined in 

(Madenci, 2017) by using the PD differential operator as 

 
 

   
tr

dF
H

w V
m

     
x

I
F y y x x   (75) 

with  
2

/Fw   x x . The parameter I  is the identity matrix with its trace  tr I  being 2 or 

3 depending on the dimensions of the analysis. The parameter m  is evaluated as (Madenci, 

2017) 

 
2

Hm V    (76) 

where HV  represents the volume of a sphere, 
34 /3HV   for 3D and volume of a disk, 

2

HV h  for 2D  with h  being the thickness of a disk (Madenci, 2017). Therefore, the non-

local form of deformation gradient of point i  for current and updated configurations are 

defined as (Madenci, 2017; Silling et al., 2007; Tu and Li, 2017)     

    
tr( )

d
i
n

j

n F n n n
H

w V
m

 
I

F ξ ξ   (77) 

and 

    1 1

tr( )
d

i
n

j

n F n n n
H

w V
m

  
I

F ξ ξ   (78) 

By using the definition in Eq. (74), the non-local form of relative deformation gradient can be 

defined as  

        
1

1 d d
i i
n n

j j

F n n n F n n n
H H

w V w V



      
       F ξ ξ ξ ξ  (79) 

Based on the developed non-local relative deformation gradient in Eq. (79), the volume 

for each material point is calculated by using Eq. (73).  
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5.3.2 Numerical algorithm for updated Lagrangian description  

The numerical algorithm for the updated Lagrangian approach is provided in Fig. 6. And 

Fig. 7 represents the calculation of relative deformation gradient. Within each time integration 

step, the coordinate of each node is updated as 0n n x x u . Therefore, the family members of 

each point are updated in each time step. The PD differential operator construction process is 

the same as Fig. 5(a) except that the PD differential operator and the weighted function are 

constructed based on the current configuration, i.e. g  and w  are functions of the relative 

position in the current configuration  ng ξ  and  nw ξ . Consequently, the PD differential 

operator associated with each bond is updated simultaneously for each time step. Therefore, in 

terms of computational time, it could be inferred that the updated Lagrangian program is more 

time consuming than the total Lagrangian program.  
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Fig. 6 Flowchart of the numerical algorithm for updated Lagrangian approach 

 

Start

Initialize geometry and material 

parameters

Spatial discretization: Generate PD 

nodes

Apply initial conditions

PD differential operator construction

Loop 1: Time 

integration

n<=Nt

Apply boundary conditions

Loop 2: over PD 

node, i<=Nnode

End

.True.

.True.

i+1

n+1

.False.

.False.

Update the family member array and 

volume correction array for each node

Update the configuration

Update displacement according to 

Eq.(69) with respect to R0

Update velocity according to Eq.(68) 

Update acceleration according to Eq.(66) 

or Eq.(67)

Update pressure according to Eq.(64) or 

Eq.(65)

Update density according to Eq.(63)

Calculate relative deformation gradient

Update volume according to Eq.(73)

MLS algorithm 

and

Mod(n,nmls)=0 ?

.False.

MLS procedure as Fig. 9

.True.



27 

 

 

Fig. 7 Flowchart for relative deformation gradient calculation  

 

5.4 Numerical Treatments 

5.4.1 Boundary treatment 

The implementation of a solid wall is a crucial issue in flow simulations. Fictitious layers 

(Madenci and Oterkus, 2014; Oterkus and Madenci, 2015, 2017; Oterkus et al., 2014) can be 

used to implement the boundary conditions. As illustrated in Fig. 8, the fictitious layers (shown 

by red spheres) are located outside the boundary to simulate the solid wall. The thickness of 

the fictitious layers is chosen as the size of the horizon (Macek and Silling, 2007). The positions 

of fictitious particles remain the same during the time integration (Adami et al., 2012; Cao et 

al., 2014). In Fig. 8, particle i  represents the fictitious particles. Particle j  represents one of 

its family member which belongs to fluid particles. The acceleration, velocity, and 

displacement of the fictitious particle i  are defined as the same as the solid wall , i.e.  

 i solid walla a   (80a) 

  i solid wallv v   (80b) 

 i solid wallu u   (80c) 

For the pressure evaluation of particle i , the formulation proposed by Adami et al. (Adami 

et al., 2012) is utilized. The viscous interaction between particle i  and j  is simply omitted 

(Adami et al., 2012). In order to eliminate the penetration of fluid particles into the wall surface, 

the force balance at the wall interface is enforced as (Adami et al., 2012) 
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where ia  represents the acceleration of the solid particle i  in the fictitious domain. The term 

jp  is the pressure of the fluid particle and j  is the density of the fluid particle. According to 

(Adami et al., 2012), Eq. (81) can be further calculated as   

  j ip l l     d b a d   (82) 

where ld  is a vectorial length element between fluid and fictitious particles (Adami et al., 

2012).  For a single bond between the fluid and the fictitious particle, Eq.(82) takes the form 

as   

  i j j i ijp p    b a ξ   (83) 

where ijξ  represents the relative position from the fluid particle to the dummy particle which 

can be expressed as ij i j ξ x x , shown in Fig. 8. Consequently, the pressure of the fictitious 

particle i , ip  can be obtained by summation of all contributions of neighbouring fluid particles 

using the weighted function as (Adami et al., 2012) 
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  (84) 

where ,i fluidN  represents the total number of the family member of particle i  which belongs to 

fluid particles. The weighted function  ijw ξ  is defined as in Eq.(12).  

Then the density of the fictitious particle i  can be calculated by using Eq. (43) as  
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p

B



 
 

  
 

  (85) 
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Fig. 8 Illustration of solid boundary implementation 

 

Similarly, the free surface boundary conditions are implemented by using dummy 

particles. Fictitious layer with its thickness being equal to the size of the horizon is added on 

the free surfaces. The material properties of the dummy particles are chosen the same as the 

fluid particles. The acceleration, velocity, displacement, and density are calculated for both 

fluid and dummy particles in free surface. The only difference is that free surface pressure is 

applied to the fictitious layer as 

     0fictitious particles free surfacep p    (86) 

 

5.4.2 Free surface flow treatments  

In order to improve the numerical stability of free surface flow simulation, such as dam 

collapse simulation, extra numerical implementations are used. First, a damping time dampt  is 

chosen during which the acceleration of each PD node is multiplied by a factor  t  as (Adami 

et al., 2012) 

  
   ,0.5 sin 0.5 / 1

,1

dampdamp

damp

t tt t
t

t t




        




  (87) 

Second, moving least squares (MLS) method (Colagrossi and Landrini, 2003) is adopted 

for every MLSn  time step to smooth the velocity and density profiles as  
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with massm  representing the initial mass of one PD particle, MLSw  is the smoothing weighted 

function which can be expressed as (Colagrossi and Landrini, 2003)  

            0 1 , 2 ,, ,i j i i i i j

MLS n n n n n x n n y s n nw w         
 

x x x x x x x   (90) 

with 

 , 1 , 2n n x n y  ξ e e   (91a) 

    
0

1

1

2

1

0

0

i i

n n









   
    
   
      

β x S x   (91b) 

      , ,i i j i j

n n n n n

B

wS x x x S x x   (91c) 

    

 

, ,

2

, , , ,

2

, , , ,

1

,

n x n y

i j

n n n x n x n x n y

n y n x n y n y

 

   

   

  
 
  
 
 
 

S x x   (91d) 
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ξ
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The flowchart for the MLS algorithm is provided in Fig. 9. If the remainder of the current time 

step number n  divided by MLSn  is equal to zero, an additional MLS part will be added to the 

algorithm provided in section 5.2 or 5.3. The density, velocity will be smoothed based on Eq. 

(89) and Eq.(88). As a result, the pressure and displacement will be recalculated according to 

the smoothed density and velocity.     
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Fig. 9 Flowchart for the MLS algorithm  

6. Numerical Simulations   

In this section, numerical examples of several classical fluid flow problems are presented 

by using the proposed non-local PD formulations. The validation of the PD formulations is 

conducted by the comparisons between the PD results and those from other solutions. In all the 

following simulation cases, the fluid is water with density 
3 310 kg/m   and dynamic 

viscosity  310 kg/ ms  . Furthermore, the March numbers in all cases are less than 0.3 

 0.3M  , leading to incompressible fluid flow. Therefore, the weakly compressible 

technique described in Section 4.2 is adopted for the pressure calculation.  

First, the classical Couette flow is considered which involves fluid flow between two 

infinite plates with a stationary initial condition. As illustrated in  Fig. 10(a), the two plates 

(shown in orange colour) are located at 0y   and y W  with dimensions of 
310 mL W   . 

Mod (n, nmls)=0

.True.

Loop1:PD node, 

i<=Nnode

Loop 2: family 

member of node 

i, j<=Ni

Initialize matrix b and S

Calculate matrix S associated according 

to Eq.(91c,d,e)

.True.

j+1

Utilize MKL to calculate matrix b

according to Eq.(91b)

.False.

Loop 3: family 

member of node 

i, j<=Ni

Calculate the smoothing weighted 

function wMLS according to Eq.(90)

.True.

.True.

Update velocity according to Eq.(88)

Update density according to Eq.(89)

Update pressure according to Eq.(64) 

j+1

.False.

Start

End

.False.

.False.

6.1 Couette Flow 
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The two vertical edges are free and the body force is zero. At time 0t  , the upper plate 

suddenly moves at a constant velocity 
5

0 2.5 10 m/sv    parallel to the x  direction. The 

corresponding Reynolds number is;  

 
20Re 2.5 10

v W



     (92) 

As shown in Fig. 10(b), the mesh size of the PD discretization is represented by x . The 

horizon is chosen as 3.015 x    (Madenci et al., 2016; Madenci and Oterkus, 2014). The 

time step size is chosen as 
610 s

 and the total simulation time is 0.6 s . Fictitious boundary 

layers (represented by red nodes) with their thickness being 3 x  (horizon) are added to 

implement the solid wall boundary conditions, i.e. 

    , 0, , 0, 0x yv x y t v x y t      (93a) 

    5, , 2.5 10 m/s, , , 0x yv x y W t v x y W t       (93b) 

where xv  and yv  represent the horizontal and vertical velocities, respectively. Regarding the 

implementation of the other two vertical edges, if a PD node flows out of the right/left edge, it 

will immediately re-enter the opposite edge (Tu and Li, 2017). Therefore, the displacement of 

the material point flowing out from the edges can be modified as 

 , if >modified

x xu u L x L    (94a) 

 , if <0modified

x xu u L x    (94b) 

where xu  represents the horizontal displacement. Finally, the total Lagrangian algorithm 

described in Section 5.2 is applied to this problem.   
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                                    (a)                                                                        (b) 

Fig. 10 Couette flow simulation illustration (a) geometry illustration and (b) PD discretization 

 

In order to validate the proposed non-local PD model, the PD predicted results are 

compared with the analytical series solution provided as (Morris et al., 1997) 
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   (95) 

First, in order to estimate the sensitivity of mesh size on accuracy, a mesh convergence 

study is performed by using a n n  mesh where 50,100,200,400n  . Fig. 11 shows the 

relative percentage error for steady state velocity at /2x L  for different mesh sizes. The 

relative percentage error is calculated as (Mao and Liu, 2018) 
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  (96) 

As it can be seen from the results, as the mesh size increases the velocity value converges. Even 

with coarse meshes, i.e. 50 50 , the relative percentage error is approximate 1.5% .  

Next, PD results are compared with analytical solutions provided in Eq.(95). Fig. 12 

shows the comparison between the velocity profiles obtained by using the PD model and the 

series solution at different times by using 400 400  mesh. The steady state solution is 

represented at time 0.6 s . It can be observed that the solutions from these two methods match 

very well, confirming the accuracy of the proposed non-local PD model. The horizontal 

L

W

x

y

5

0 2.5 10 m/sv   x

3 x

3 x
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velocity field for the steady state is shown in Fig. 13. Consequently, the robustness of the 

proposed non-local PD model in the total Lagrangian description is verified.  

 

Fig. 11 Convergence study for PD solutions for Couette flow for different grid sizes at 

0.6 st      

 

 

 Fig. 12 Comparison of PD and series solutions for Couette flow    
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Fig. 13 Contour plot of horizontal velocity  m/sxv  predicted by PD at 0.6 st    

The second simulation case is Poiseuille flow between two stationary infinite plates at 

0y =  and y W . The geometry is the same as the one from Couette flow, i.e. 
310 mL W  

as shown in Fig. 10. The other two vertical edges are free. The fluid is initially at rest. Then a 

body force 
4 22 10 m/sF    parallel to the x  direction is applied to drive the fluid to flow 

gradually, leading to a steady state flow distribution finally.  

In the numerical implementation, the same PD discretization model is adopted by using 

400 400  mesh in the flow region with the horizon chosen as 3.015 x   . The constant time 

step size is 
610 s

 and the total simulation time is 0.6 s . The solid wall boundary condition is 

implemented by using the fictitious layer as illustrated in Fig. 10 (b) is applied as 

    , 0, , 0, 0x yv x y t v x y t      (97a) 

    , , , , 0x yv x y W t v x y W t      (97b) 

Besides, the vertical boundary implementation approach provided in Eq. (97) is also utilized. 

The total Lagrangian method described in Section 5.2 is adopted. 

In order to validate the proposed PD model, the simulation results are compared with the 

time-dependent series solution provided as (Morris et al., 1997)  
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6.2 Poiseuille Flow 
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The horizontal velocity profiles obtained by the PD model are compared with the analytical 

solutions provided in Eq. (98), as shown in Fig. 14. Good agreements are also obtained in this 

case, validating the proposed non-local PD model. The horizontal velocity field is provided in 

Fig. 15 at time 0.6 s . As it can be seen from the results, the maximum velocity is obtained as 

5

0 2.5 10 m/sv   which corresponds to the Reynold number as 2Re 2.5 10  . 

 

Fig. 14 Comparison of PD and series solutions for Poiseuille flow   

 

Fig. 15 Contour plot of horizontal velocity  m/sxv   predicted by PD at 0.6 st   
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6.3 Taylor-Green Vortex 
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As a third simulation case, the two-dimensional Taylor-Green vortex at Re=1 is simulated 

by the proposed PD model in a total Lagrangian description. The geometry of the fluid field is 

set as    0,1 0,1 . The analytical solution of the velocity field is given as 

      1 0, , cos 2 sin 2btv x y t v e x y     (99a) 

      2 0, , sin 2 cos 2btv x y t v e x y    (99b) 

where the decay rate is 
28 / Reb    (Adami et al., 2013) and 0v  is the maximum initial 

velocity magnitude.     

As shown in Fig. 16, four fictitious layers with their thicknesses being horizon are added 

outside the fluid field. The fictitious particles (shown in grey colour) are assorted into eight 

regions (numbered by yellow colour). Their physical parameters such as velocity etc. are forced 

to be equal to the fluid particles (shown in orange colour) in the same corresponding numbered 

region (shown in red colour). Therefore, the periodic boundary conditions in both x  and y  

directions are implemented. As to the initial condition, the analytical velocity distribution at 

0t   is used with 0 0.04v   as  

      1 , ,0 0.04cos 2 sin 2v x y x y     (100a) 

      2 , ,0 0.04sin 2 cos 2v x y x y    (100b) 

The time step size is chosen as 
5d 1 10t    and the simulation time is 0.05t  . Three different 

mesh sizes are chosen as 1/x n   with 40, 50,100n   to conduct the convergence study.  

 

Fig. 16 Coordinate definition and boundary implementation for the Taylor Green vortex PD  

A comparison of the decay of the maximum velocity magnitude is provided in Fig. 17. 

The exact solution and the remeshed smoothed particle hydrodynamics (rSPH) solution 

L

1W 

x
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3 x
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(Chaniotis et al., 2002) are provided for comparison. It can be inferred that the PD predicted 

results agree well with the exact and rSPH solution. For the error analysis of the PD simulations, 

the relative error norm L  is calculated as (Adami et al., 2013; Chaniotis et al., 2002)  

 
  max 0

0
0

max
max

bt
T

i

btt

t v e
L

v e




 
 
 
 

v
  (101) 

with maxT  being the time where  0 0 /50btv e v  (Chaniotis et al., 2002). The relative errors 

obtained by 40 40 , 50 50 , and 100 100  particles are provided in Fig. 18. The PD 

predicted velocity magnitude distributions obtained by PD and exact solutions at 0.05t   with 

100 100  particles are shown in Fig. 19. 

 

Fig. 17 Comparison of the maximum velocity between exaction solutions, rSPH solutions 

(Chaniotis et al., 2002) and PD solutions. 
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Fig. 18 Relative error of maximum velocity for different mesh sizes as n=40, 50, 100  

    

 

                              (a)                                                                      (b) 

Fig. 19 The velocity magnitude distribution at 0.05t   with 100 100  particles for (a) PD 

solution and (b) exact solution.    

 

The fourth simulation is regarding the shear-driven cavity problem. The fluid is initially 

at rest within a closed square cavity. The fluid flow is generated by moving the top side of the 

square cavity at a constant velocity, 
3

0 10 m/sv   parallel to the x  direction. As illustrated in 

Fig. 20, the geometry dimension is set as 
310 mL W   . The PD mesh size is chosen as 

/x L n   with n represents the particle number in one direction as 40,100n   for PD 
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6.4 Shear-driven Cavity Problem 
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simulations. The horizon size 3.015 x    is adopted. The time step size is chosen as 
410 s

 

and the total simulation time is 0.3 s . The solid boundary conditions are implemented as 

described in Section 5.4 (Eq.(82), Eq.(84), Eq.(85)) by using fictitious layer, as shown in Fig. 

20. During the simulation, the updated Lagrangian method described in Section 5.3 is adopted.  

 

Fig. 20 Illustration of  PD discretization for the shear-driven cavity problem 

In order to validate the proposed PD model, the velocity profiles in steady state condition, 

at 0.3st   are compared with the previous literature. The reference data in (Liu, 2011) 

obtained by the finite difference method (FDM) and smoothed particle hydrodynamics (SPH) 

and in (Mao and Liu, 2018) obtained by a Lagrangian gradient smoothing method (L-GSM) is 

provided in Fig. 21. In addition, the PD solution by different mesh sizes as 40 40  and 

100 100  are also provided. It can be observed that the PD results are close to the ones obtained 

by these two methods, proving the accuracy of the proposed PD model for the shear driven 

cavity problem.  
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(a) 

 

     (b) 

Fig. 21 Comparison of non-dimensional steady state PD velocity profiles with FDM and SPH 

data (Liu, 2011), L-GSM data (Mao and Liu, 2018) (a) vertical velocity at / 2y W  (b) 

horizontal velocity at / 2x L   

The horizontal velocity distributions for each material point at time 0.05 st   and 

0.3st   are presented in Fig. 22. The vertical velocity vector field at time 0.05 st   and 

0.3st   are also provided in Fig. 23. It is observed that the fluid flow is in a recirculation 

pattern within the closed square finally reaches its steady state form.   
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(a) 

 

(b) 

Fig. 22 Horizontal velocity  m/sxv  distribution and the particle positions predicted by PD 

for 100 100  mesh size at (a) 0.05 st   and (b) at 0.3st   
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(a) 

 

(b) 

Fig. 23 Velocity vector field coloured by their vertical component magnitude predicted by PD 

for 100 100  mesh size at (a) 0.05 st    (b) 0.3st    

To demonstrate the capability of the proposed PD formulations for predicting free surface 

flows, the classical dam collapse problem which has been extensively investigated (Colagrossi 

and Landrini, 2003; Wang and Zhang, 2018) is considered in this section. The dam break 

experiment conducted by S. Koshizuka and Y. Oka (Koshizuka and Oka, 1996) is used for 

comparison. A two-dimensional flow generated after the breaking of a dam is simulated as 

6.5 Dam Collapse Problem 
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shown in Fig. 24(a). The geometry dimensions of the water column are 0.146 mL   for width 

and 2L  for height. The tank is open at the top with its width and height being 4L  and L  

respectively. The flow is driven by the gravity and it is constraint by an open rectangle square. 

The gravitational acceleration is set as 
29.8 m/sg  .  Regarding the PD implementation shown 

in Fig. 24(b), the mesh size is chosen as 
34.867 10 mx     ( 30 60  fluid particles) and the 

horizon is chosen as 4.015 x   . The time step size is 
5d 2.5 10 st    with the total 

simulation time 0.4 s . As shown in Fig. 24(b), fictitious layers (thickness being horizon) are 

added to implement the wall boundary conditions (shown in red colour). The acceleration, 

velocity, and displacements of the fictitious wall particles are set to be zero according to Eq. 

(82). The pressure and density of these fictitious wall particles are calculated according to Eq. 

(84) and Eq.(85). In this problem, B  parameter in Eq. (43) is calculated by approximating the 

maximum magnitude of fluid flow velocity as  2 2 2.39 m/sf g L v  (Monaghan, 1994), 

leading to 
48.16 10 PaB   . Also, zero pressure condition is applied for the free surface 

fictitious layers (shown in green colour) according to Eq.(86). The acceleration, velocity, 

displacement, and density of these free surface particles are calculated as real fluid particles. 

Besides, the updated Lagrangian description in section 5.3 is adopted. The damping time in 

Eq.(87) to avoid the initial sudden movement is chosen as 100ddampt t .  The MLS method 

described in Section 5.4.2 is applied with 60MLSn   for 0.3st   and 15MLSn   for 0.3st 

(when the water splashes the right vertical wall).  
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    (a)                                                                         (b) 

Fig. 24 Sketch of the dam collapse problem (a) geometry model and (b) PD discretization 

model 

Snapshots of vertical velocity profiles and the particle positions at different times are 

provided in Fig. 25-28 for both PD and experimental results. As shown in Fig. 29, the x position 

of the dame toe obtained by the PD simulation agrees well with the experiment results 

(Koshizuka, 1995; Martin et al., 1952).  It can be inferred that the proposed PD model is capable 

of predicting the classical dam collapse problem. It can be inferred from the numerical 

simulation results that there is void in the lower right corner of the fluid. The reason may be 

due to boundary pressure treatment for free surfaces. The pressures of the particles for free 

surfaces are directly set to be zero, while the pressure of the other fluid particles are calculated 

according to the equation of state. As a result, it may produce discontinuities in the pressure 

profiles and lead to the voids in the lower right corner of the water column. In addition, the 

utilization of the MLS method may also bring some error and discontinuities on the fluid 

motion. The boundary treatments can be further improved by using constrained conditions for 

the fictituous layers (Oterkus, 2015; Oterkus et al., 2014) or by incorporating the boundary 

conditions into the governing equations (Madenci et al., 2016).      
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                                        (a)                                                                    (b) 

Fig. 25 Comparison between (a) experimental result (Koshizuka and Oka, 1996) and (b) PD 

predictions coloured by vertical velocity (m/s) at 0.1st    

 

                                        (a)                                                                    (b) 

Fig. 26 Comparison between (a) experimental result (Koshizuka and Oka, 1996) and (b) PD 

predictions coloured by vertical velocity (m/s) at 0.2 st   

 

Fig. 27 Comparison between (a) experimental result (Koshizuka and Oka, 1996) and (b) PD 

predictions coloured by vertical velocity (m/s) at 0.3st   
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Fig. 28 Comparison between (a) experimental result (Koshizuka and Oka, 1996) and (b) PD 

predictions coloured by vertical velocity (m/s) at 0.4 st   

 
Fig. 29 Comparison of the X position of the dam toe for PD and experiment results 

(Koshizuka, 1995; Martin et al., 1952)  

 

7. Conclusion 

In this paper, the fluid flow governing equations, i.e. Navier-Stokes equations, are 

reformulated into an integral form by using the peridynamic differential operator. Subsequently, 

the numerical algorithm both in total and updated Lagrangian descriptions are provided. 

Several classical fluid flow problems, i.e. Couette flow, Poisuelle flow, Talyor-Green Vortex, 

shear-driven cavity problem, are simulated by the proposed PD model. Furthermore, the 

developed PD model is applied to solve problems of free-surface flow as presented in the dam 

collapse problem. The PD predicted results agree well with those obtained from other solutions, 

validating the capability of the proposed model for solving hydrodynamics including free 

surface flows problems. The present model can be further developed for other fluid flow 

problems such as multi-phase or multi-component fluid flow problems. Furthermore, since 

there are many existing PD models for solids, the fluid-structure interaction can be 
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straightforwardly implemented by using the non-local models both for the fluid and the solid. 

The interaction can be inherently implemented because of the models’ non-local behaviour.  
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Appendix A 

PD Differential Operator for 2D Problems 

In this study, two dimensional (2D) fluid flow is simulated. Therefore, peridynamic 

differential operator for two-dimensional space up to second order derivative is provided. 

PD differential operator up to second derivative 

Similar to Eq. (2a), Taylor series expansion up to second order derivatives for two-

dimensional space is expressed in an explicit form as  
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where  ,2Rx ξ  is the remainder for Taylor series as 
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Note that    3

,2R O
x

ξ ξ  and it is assumed to be negligible. The non-local form with the help 

of PD differential operator will be derived for following differentials.  

 
         2 2 2

2 2

1 2 1 2 1 2

, , , ,
f f f f f

x x x x x x

    

     

x x x x x
  (A.3) 

Since the derivatives are up to the second derivative, PD differential operator  1 2p pg ξ  will be 

used to represent the PD nonlocal expressions up to the second derivative. 

Multiplying  1 2p pg ξ  by Eq. (A.1) and integrating over the horizon results in 
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where 1 20 2p p   . By enforcing the orthogonality conditions in Eq. (6) for each PD 

differential operator with as 

for  10g ξ :  
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for  01g ξ :  
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for  20g ξ :  

 

     

   

20 20 2 20

1 2 1

2 20 20

2 1 2

1
d 0, d 0, d 1

2

1
d 0, d 0

2

H H H

H H

g V g V g V

g V g V

  

  

    

  

  

 

x x x

x x

ξ ξ ξ

ξ ξ

  (A.5c) 

for  02g ξ :  
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for  11g ξ : 
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  (A.5e) 

the following relations can be obtained from Eq. (A.4) as 
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for  10g ξ :       
 10

1

d
H

f
g f f V

x


  


x

x
ξ x ξ x   (A.6a) 
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In conclusion, the differentials in local form are reformulated into their non-local form as 
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where the term g  represents the PD differential operator for each derivative, such as  10g ξ  is 

the PD differential operator for   1f x x . 

 

Expressions for PD Differential Operators  

As provided in Eq. (11), differential operator functions,   1 2p pg ξ  are chosen as  

for  10g ξ :            10 10 10 10 2 10 2 10

10 1 01 2 20 1 02 2 11 1 2g a w a w a w a w a w         ξ   (A.8a) 

for  01g ξ :            01 01 01 01 2 01 2 01

10 1 01 2 20 1 02 2 11 1 2g a w a w a w a w a w         ξ   (A.8b) 

for  20g ξ :             20 20 20 20 2 20 2 20

10 1 01 2 20 1 02 2 11 1 2g a w a w a w a w a w         ξ   (A.8c) 

for  02g ξ :            02 02 02 02 2 02 2 02

10 1 01 2 20 1 02 2 11 1 2g a w a w a w a w a w         ξ   (A.8d) 

for  11g ξ :            11 11 11 11 2 11 2 11

10 1 01 2 20 1 02 2 11 1 2g a w a w a w a w a w         ξ   (A.8e) 



51 

 

or expressed in a compact form as 
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  (A.9) 

where 1 2

1 2

p p

q qa  represents the coefficients of the polynomials with 1 20 2q q   .  

By substituting Eq. (A.8a) into orthogonality conditions provided in Eq. (A.5a) the following 

equations for  10g ξ  can be obtained as  
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Similarly, by substituting Eq. (A.8b-e) into orthogonality conditions provided in Eq. (A.5b-e) 

following relations can be obtained 

 Aa b   (A.11) 

with 
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a   (A.12b) 

 

1 0 0 0 0

0 1 0 0 0

0 0 2 0 0

0 0 0 2 0

0 0 0 0 1

 
 
 
 
 
 
  

b   (A.12c) 

After solving for the unknown coefficient a , the non-local form of derivatives of function

f  can be found. 

Analytical Solution 

For 2D PD differential operator, the integration domain, H
x

, is set to be a disk with its 

radius being horizon   and thickness being h , analytical form of PD differential operator can 

also be calculated.  

By utilizing the weighted function 

    
2

2 /
w e

 



   (A.13) 

and by substituting   ξ ,  1 cos   , and  2 sin    with   being the bond direction 

with respect to the positive 1x  direction into Eq.(A.12a), the analytical form of shape matrix, 

A , can be obtained as  
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e h
   

    

    

      

    

    



 
 
 
 
 
 
  

 A   (A.14) 

where  c cos   and  s sin  . After performing the integrations, Eq.(A.14) results in  
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After substituting A  into Eq. (A.11), the expression of matrix a  can be obtained as 
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Consequently, by substituting Eq. (A.13) and Eq. (A.16) into Eq.(A.9), the analytical 

expression of the PD differential operator for the 2D problem is obtained as 
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Finally, the partial derivatives will be converted into their non-local forms as  
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It should be mentioned that for the numerical simulations, PD differential operator is 

computed numerically.  
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