
  

1 
 

DOI: 10.1002/ ((please add manuscript number))  
Article type: Full Paper 
 
 
Highly tunable polarized chromatic plasmonic films based on sub-
wavelength grating templates  
 
Jun Zheng*, Zhi-Cheng Ye, Cheng-Liang Wang, Yi-Fei Fu, Xin-Ran Huang, and Zheng-Ming 
Sheng  
 
Jun Zheng and Xin-Ran Huang 
Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and astronomy, 
and Collaborative Innovation Center of IFSA (CICIFSA),  Shanghai Jiao Tong University, 
Shanghai, 200240, China 
E-mail: jzheng@sjtu.edu.cn 
Zhi-Cheng Ye, Cheng-Liang Wang, and Yi-Fei Fu 
Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai, 200240, 
China 
Zheng-Ming Sheng 
SUPA and Department of Physics, University of Strathclyde, Glasgow G4 0NG, UK 
Key Laboratory for Laser Plasmas (Ministry of Education), School of Physics and astronomy, 
and Collaborative Innovation Center of IFSA (CICIFSA),  Shanghai Jiao Tong University, 
Shanghai, 200240, China 
 
 
Keywords: plasmonic structural colors, sub-wavelength grating, metallic nanowire gratings, 
polarizer, color filter 
 
 

A kind of polarized chromatic plasmonic film is proposed based on sub-wavelength grating 

structure, which enables ‘blue transmission’ for the transverse electric (TE) light and ‘red 

transmission’ for the transverse magnetic (TM) light. Metal-insulator-metal plasmonic 

waveguiding and metallic nanowire scattering are revealed to be responsible for the chromatic 

shift. Based upon the unique transmission spectrum characteristics of such films, polarized 

chromatic plasmonic tags (PCPTs) can be flexibly fabricated by patterning dielectric grating 

templates with designed figures and depositing appropriate thickness of metal. These PCPTs, 

simultaneously possessing directly visible unpolarized transmission colors and concealed 

distinct polarization-dependent color shift, can be widely used as anti-counterfeiting tags with 

higher security than the diffractive types of holograms. 
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1. Introduction 

 

Metallic nanoarray based plasmonic structutral color (PSC) has been widely investigated as 

colorfilters,[1-3] polarizers,[4-6] and highly sensitive surface plasmon resonance sensors.[7] The 

devices based on PSC have the advantages of longer lifetime, thinner dimension, better 

performance than the conventional types, which can be widely used in displays, anti-

counterfeiting,[8, 9] and image sensors.[10] Generally, the functions of metallic nanoarrays are 

realized by the following three mechanisms: (1) the localized surface plasmon resonance in 

metallic nano-units, which leads to absorption dips in the transmission or reflection;[11, 12] (2) 

the surface plasmon spoofed by the nanoarrays, which lead to extraordinary transmission 

through dielectric apertures below diffraction limits;[13, 14] (3) the plasmonic waveguiding of 

dielectric slits, which supports broadband polarized transmission of TM light, while prohibits 

the propagation of TE light.[15] Utilizing these mechanisms, the spectra of metallic nanoarray 

can be flexibly tuned to meet a variety of applications by engineering the metal thickness, 

profile of the unit cells, and the period. For example, by tailoring the profile of the nano unit 

cell to be asymmetric (linear, elliptical, or rectangular), polarization-dependent tunability can 

be imposed on the PSC to make integrated colorfilters and polarizers[16, 17] for more compact 

and lower-power-consumption liquid crystal displays (LCDs). Recently, actively tunable 

PSCs based on elastomeric substrates have been reported. By stretching the substrates, the 

pitch and therefore scattering colors of PSCs can be modified in a wide range, showing great 

promising as novel display devices.[18] Besides the structure, the permittivity of the metal 

materials also strongly affects the spectrum characteristics. For instance, with small damping 

factors, gold and silver metallic nanoarrays have sharp surface plasmon resonance dips that 

suitable for high figure of merit bio-sensing.[19]  While aluminium (Al) has a large absolute 

value of complex permittivity and a large plasmon frequency to maintain plasmonic 

characteristics at wavelength down to ultraviolet, thus it is suitable to make broadband 
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nanowire polarizers with high extinction ratio of TM over TE light in the transmission. In 

addition, Al has been widely used in the packaging, decoration, and laser hologram tags to 

enhance the reflection of diffraction gratings.[19-21]  

 

In this work, we propose a kind of transmission films of one-dimensional metallic nanowire 

gratings (MNGs), which show polarization-dependent PSC over broad spectrum. Such films 

can be used as a new type of high-security and more recognizable anti-counterfeiting tags: 

polarized chromatic plasmonic tags (PCPTs). The physical mechanisms responsible for the 

polarization-dependent chromaticity are revealed, which are used in the device design. In 

Section. 2, the fabrication of the films and tags is presented and their transmission spectra are 

described as a function of the MNG parameters and incident light parameters. In Section 3, a 

physical model is presented to decribe the polarization-dependent chromaticity. The paper 

concludes with a summary in Section 4.   

 
2. Device  fabrication and spectra measurements 

 

2.1. Device  fabrication and basic principle 

 
As shown in Figure 1, the fabrication procedure of MNG-based PCPT includes three steps. 

Firstly, dielectric grating templates are fabricated by using laser interference lithography 

(LIL)[22] or nano-imprinting lithography (NIL), which have shown the advantages in the mass 

production of MNGs. Then, the figures of tags are patterned on the templates by using 

flexible mask-free laser engraving or rapid mask-based UV printing. Finally, by depositing 

appropriate thickness of Al, the demanded colors of the plasmonic tags are obtained, where 

only gratings in the figures of interest are remained. The diffractive snapshots of the samples 

fabricated in each step are presented in Figure 1(a3), (b3), and (c3).  
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A schematic diagram of the MNG forming the PCPTs is illustrated in Figure 2(a). The device 

includes three layers of gratings: top Al-air, middle photoresist (PR) bar (coated with a thin 

layer of Al on the sidewalls)-air, and bottom PR-Al gratings. A collimated white light beam is 

incident to the device with angle of θ. The incident plane is perpendicular to the grating lines. 

The TE light with shorter wavelength and TM light with longer wavelength are transmitted 

through the film as shown by the colored arrows. The scanning electronic microscopy (SEM) 

images of the fabricated PCPT are shown in Figure 2(b), where the grating was fabricated by 

using NIL on a glass substrate with pitch T = 180 nm, width of the PR t1 = 120 nm, and 

thickness of PR h2 = 130 nm. After the patterning of the logo of Shanghai Jiao Tong 

Universtiy by using laser engraving, Al of 10 nm in thickness was conformally deposited on 

the dielectric grating.  

 

As displayed in Figure 2(c), the measured transmittance of TE and TM lights have a peak in 

the 'blue' region with wavelength of 420 nm (blue line) and 'red' region with wavelength of 

770 nm (red  line), respectively. More specifically, the measured TM transmittance TTM is 

1.2% at wavelength 420 nm and 29% at wavelength 770 nm, while the transmittance of TE 

light TTE at these two wavelengths are 32% and 3.8%, respectively. It means the extinction 

ratio TTE/TTM is about 27 at wavelength 420 nm, and the extinction ratio TTM/TTE is about 8 at 

wavelength 770 nm. Due to the high contrast ratios between the peaks and valleys of the two 

orthogonal polarizations, noticable polarization-dependent color shifts can be obtained. 

 

The measured polarization-dependent transmitted spectra are shown in Figure 2(c), which can 

be represented by T(λ, φ) =TTM(λ)cos2φ + TTE(λ)sin2φ, where λ is the wavelength of light in 

free space and φ is the cross angle between the electric vector with the incident plane. It is φ = 

0o for TM polarization and 90o for TE polarization. The corresponding chromaticity mapped 

as red points in the CIE 1931 xy chromaticity diagram in Figure 2(d) further illustrates the 
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distinct color shifts. The snapshots of the PCPT are shown in Figure 2(e), where the color 

shifts from golden to blue are vividly displayed as the polarization of the incident white light 

is rotated from TM (φ=0o) to TE (φ=90o). The video of the transmission can be found in the 

supplementary information of this paper. One may note that the color for the case of φ=45o is 

the same with that produced by unpolarized light, which means that decorative colorful 

pictures (purple in this case) can be directly observed without polarizers.   

 

2.2. Characterization of the transmission spectra 

 

As shown in Figure 2(c), there is a intersection point wavelength λc, where TTM(λc) = TTE(λc). 

This can be used to evaluate the color difference between TE and TM lights, i.e., TE 

transmittance is higher than that of TM for λ<λc, and TM transmittance is higher than TE for 

λ>λc. Thus the 'blue' component in the transmitted color is mainly determined by TE light, and 

the 'red' part is mainly decided by TM light. In Figure 3(a), λc is showed as a function of Al 

thickness h1 and grating pitch T, calculated by using RSOFT and DiffractMODTM. Generally, 

with the increase of h1 or decrease of T, λc moves to shorter wavelengths, leading to the blue 

shift of the peaks for TE light and the broadening of the spectra for TM light. Besides the shift 

of λc, as shown in Figure 3(b), the TE transmission is weakened and the TM transmission at 

the shorter wavelengths is enhanced when the thickness of the Al layer is increased. This is 

due to the increasing inhibition and enhancement effects to TE and TM light, respectively, via 

plasmonic waveguiding.[23] For Al thickness h1 of 80 nm, the transmission of TM light 

displays a white color with spectra entirely covering the visible lights, while the TE light 

exihibits black due to the weak transmittance of less than 0.01%. The giant change of the 

transmitted colors from chromtic to black and white with the increasing Al thickness well 

illustrates the high tunability of the MNG-based PSC. 
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The schematic diagram and experimental results for the grating with Al thickness of 60 nm 

are shown in Figure 4. The transmitted spectra conspicuously show broadband polarization 

features with extinction ratio of TTM/TTE reaching 40~140 in the whole visible lights. The 

images of the characters ‘SJTU’ composed of thick-Al MNG in Figure 4(b) further display 

bright and dark transmission for TM and TE light, respectively.   

 

A variety of 'blue' TE and 'red' TM transmission of PCPTs with different Al thickness and 

grating pitch are shown in Figure 5, which can display the high tunability of the chromatic 

characteristics of MNG-based PSC. At first, photoresist gratings with pitches of 350, 300 and 

260 nm are fabricated on BK7 glass substrates as templates by using LIL. Then the templates 

are patterned with figures by using UV-printing, where only gratings are remained in the 

logos. Finally, a layer of Al film is deposited on the logos to make PCPTs. In LIL, the 

corresponding cross angles between the two laser beams (He–Cd laser, wavelength 442 nm, 

KIMMON) are of 78o, 95o, and 116o, respectively.  

 

As shown by the measured spectra for T= 350 nm with h1 = 15 and 40 nm in Figures 5(a1) 

and 5(a2), respectively, λc is blue-shifted with increasing thickness of Al film. Moreover, their 

shifts of chromaticity with the incident light polarizations behave distinctly different, as 

mapped in Figure 2(d). The transmitted color and λc can also be adjusted by the grating pitch 

as shown in Figures 5(a2-a4) for T= 350, 300 and 260 nm. The shorter the pitch, the shorter 

the wavelength λc, in agreement with the simulation results in Figure 3(a). The corresponding 

simulated spectra and colors for TM and TE cases are presented with dashed lines in Figure 

5(a) and circle markers in Figure 2(d) for comparison. The simulated transmittance is about 

twice of the experimental results. A series of experimental snapshots in Figure 5(b) vividly 

show the variations of the logo colors under different Al thickness and grating pitch. The 

pictures in the dashed rectangle are the same with those observed under unpolarized white 
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light. Related with this figure, four videos showing the light transmission are given in the 

supplementary information.  In general, by changing the thickness of the metal layer and the 

grating pitch, preferable colors, as well as the color shift tendency with light polarization, are 

achievable. 

 

3. Analysis of the physical mechanisms 

 
Single nanowire resonant scattering,[24] mutual nano-gap coupling[25] and waveguiding of 

metal-insulator-metal nano-slits[26, 27] have been commonly known to be the main mechanisms 

determining the spectral characteristics of MNGs. However, the phenomena of 'blue' TE and 

'red' TM- polartized chromatic tranmission found in this work have not been investigated. To 

understand how the plasmonic effects lead to such a large optical anisotropy, we plot the 

dispersion curves of the slit modes of the three layers of the MNGs in Figure 6 based upon 

our previous model[26]. Here the blue stars and red dots represent the real (kzr) and imaginary 

(kzi) parts of the wave number kz, respectively. From these curves we can deduce: (1) Due to 

the negligible imaginary parts kzi of the wavenumber, TM light can pass through the top and 

bottom Al grating layer in plasmonic waveguide modes beyond diffraction limit. (2) The TE 

light in the top and bottom Al grating layers is lossy because kzi >> kzr. The larger the 

wavelength, the higher lossy the TE light, because of the increasing kzi with wavelength.  

 

Besides the plasmonic waveguiding effect, the inherent scattering of metallic nanowires 

cannot be ignored. The forward scattering cross-sections (Sf) of the MNGs with pitch of 180 

nm are shown in Figure 7, which is calculated by LUMERICAL, FDTD SolutionsTM. For h1= 

10 nm in Figure 7(a), Sf shows obvious wavelength dependence for both polarizations. Sf of 

TE light at wavelengths shorter than λc is larger than that of TM light.  Sf of TM light at 

wavelengths longer than λc is larger than that of TE light.  For h1= 60 nm in Figure 7(b), the 
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wavelength dependence of Sf for TM light fades. But the value of Sf is generally increased. 

The wavelength dependence of Sf for TE light is kept, while it is less than that of TM light in 

the whole range of visible lights, especially at the longer wavelengths. 

Combining both plasmonic waveguiding and scattering effects, we can conclude: (1) In the 

thin metal case, TE light with shorter wavelength can still penetrate into the top and bottom 

layer of metallic gratings in the form of evanescent wave, while TM light with the same 

wavelengths suffers from metallic nanowire scattering as shown in Figure 7(a). Thus TE light 

has higher transmittance than TM light at the shorter wavelength; (2) With the increase of Al 

thickness, the plasmonic waveguiding effect gradually dominates, thus TE light only with 

much shorter wavelength can penetrate into the metallic gratings, while the TM light can 

transmit efficiently. 

 

The transmittance can also be tuned by varying the thickness of the middle dielectric layer 

based on the well-known Fabri-Perrot (F-P) resonance effect, as shown by the transmission 

for wavelength 400 nm in Figure 8. The main inherent difference between the TM and TE 

polarizations caused by the waveguide effect is asssociated with the effective refractive index. 

The real part of effective refractive indexes neff in the three layers have the relations neff_top< 

neff_mid< neff_bot for TM light and neff_mid > neff_top, neff_bot for TE light, according to the 

dispersion relations shown in Figure 6. It means that there is a phase difference of π between 

TM and TE caused by the interface reflectance. Thus the resonant wavelengths of the peaks 

for both polarizations are different. Although F-P effect can effectively tune the transmitance, 

there is always TTE (dashed blue line) > TTM (dashed voilet line) for small h2 and TTE (solid 

blue line) < TTM (solid voilet line) for large h2. Obviously, the 'blue' TE and 'Red' TM 

polarized chromatic transmission is mainly decided by the metallic thickness h1 other than by 

the dielectric thickness h2. The different effects of metal thickness and dielectric grating 

height to the spectra properties of MNGs help to break through the restriction in designing 
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PCPTs where the transmittance and colors are shifted simultaneously by only tuning the metal 

thickness. 

 

4. Summary 

 

We have proposed a type of MNG films, which enables to show directly colors under the 

irradiation of unpolarized ambient white light. Moreover, it can display polarization-

dependent color shifts. Plasmonic waveguiding of the slits and scattering of the metallic 

nanowries are revealed to be responsible for the characteristics of 'blue' TE and 'red' TM 

polarized transmission. The MNG-based PCPT has the following characteristics: (1) The 

grating pitch is sub-wavelength-scale, which can efficiently prevent unauthorized duplicating 

by using laser writing technology that micrometer-scaled hologram tags suffer from; (2) The 

transmitted colors can be flexibly tuned by engineering the metal thickness or grating pitch. 

(3) The transmitted colors deduced by plasmonic effect is distinctly different from the angle-

dependent diffraction of holograms; (4) Even further, the concealed polarized chromaticity 

can significantly raise the security level of anti-counterfeiting tags.  

 

The massive fabrication of such MNG film based PCPTs has been achieved. The procedure 

includes: sub-wavelength grating templates fabrication by NIL and LIL, figure patterning by 

laser engraving or UV-printing, and PSC engineering by depositing appropriate thickness of 

Al. The MNG-PCPTs can also be produced flexibly with demanded colors. Possessing the 

advantages of dramatic polarized color shift, much finer structure and compatible technology 

with present industrial capabilities, MNG-PCPTs are deemed to be readily applicable in the 

market of commercial tags, which have much higher securiety than the current diffractive 

hologram tags. 
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Figure 1. The Fabrication procedure of the proposed MNG-based PCPT. Firstly, dielectric 
grating templates are fabricated by using LIL (a1) or NIL (a2). A diffractive snapshot of a 
nickel stamp is presented in (a2). Then, the figures of tags are patterned on the templates by 
using direct mask-free laser engraving (b1) or rapid mask-based UV printing (b2), where only 
gratings in the figures are kept. Finally, by depositing appropriate thickness of Al (c1), the 
demanded colors of the plasmonic tags are obtained. A reflective snapshot of the final PCPT 
is presented in (c2). Diffractive snapshots of the fabricated samples in each step are presented 
in (a3, b3, c3). A SEM image is presented in (c3) as well, which clearly displays that only 
gratings are remained in the figures. 
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Figure 2. The structure and measured transmission of the fabricated MNG-based PCPTs. (a) 
The schematic diagram of the MNG. (b) The top and side (inset) SEM images of the 
fabricated MNGs with pitch of 180 nm. (c) Polarization-dependent transmitted spectra with 
light incident angle θ= 0o and the polarization angle φ from 0o (TM, red line) to 90o (TE, blue 
line) at a step of 10o. (d) The spectra's corresponding points in the CIE 1931 xy chromaticity 
diagram. The measured (the color lines with solid dots) and simulated (the circles) color shifts 
of the devices with the variation of light polarizations under different grating pitch T and Al 
thickness h1. The red and other color points correspond to the spectra in (c) and Figure 5(a), 
respectively. (e) Snapshots of the fabricated PCPT illuminated by white light with different 
polarization state. represent 
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Figure 3. Dependence of λc on Al thickness h1 and grating pitch T. (a) Simulation results of λc 
varying with h1 and T, where dielectric thickness h2= 130 nm and width t1= T/2. (b) 
Calculated TM (solid lines) and TE (dashed lines) transmittance for the grating with h1=10, 
15, 20, 40, 60, and 80 nm. The circle markers indicate λc. Other parameters are the same with 
that in Figure 2. 
 
 
 
 
 

 
 

Figure 4. PCPT with a thick Al layer. (a) The schematic diagram of the MNG acting as a 
broadband polarizer. The blue wave curves in the PCPT represent the longitudinal plasmonic 
slit-waveguide mode, which is the primary physical component responsible for the 
polarization dependent transmission. (b) The measured TM (red line) and TE (blue line) 
transmissions for a grating with Al thickness h1= 60 nm, and the other parameters are the 
same with those in Figure 2(b). The snapshots illustrate the transmitted bright TM and dark 
TE polarized colors of the characters of "SJTU" composed of MNGs. 
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Figure 5. Polarization-dependent transmission measured experimentally with different Al 
thickness h1 and grating pitch T. (a) Transmission spectra with polarization angle φ varying 
from 0o to 90o at a step of 10o. The solid lines are experimental results. The blue and red 
dashed lines are the simulated results for φ=0o and 90o, respectively, whose intensity are 
divided by 2 for clear comparison with the experimental results. The insets are the side SEM 
images of the PCPTs. (b) The snapshots of PCPTs for different polarization states, where the 
pictures within the dashed rectangle are the same with those observed under unpolarized light. 
Following are the corresponding parameters for the PCPTs: (a1, b1) T= 350 nm, h1 = 15 nm; 
(a2, b2) T= 350 nm, h1= 40 nm; (a3, b3) T= 300 nm, h1= 40 nm. (a4, b4) T= 260 nm, h1= 40 
nm. The dielectric thickness h2= 150 nm and width t1= 0.5T. 
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Figure 6. Dispersion curves of the waveguides in three layers of the MNGs: (a1, b1) the air-
Al-air grating in the top layer, (a2, b2) the air-PR-air grating in the middle layer and (a3, b3) 
the Al-PR-Al grating in the bottom layer, where (a1-a3) are for TM light and (b1-b3) are for 
TE light. The black lines represent the PR and air lines. The gray regions highlight the visible 
light zone. Simulation parameters are the same as that in Figure 2. 

 
 
 

 
 

Figure 7. The forward scattering cross-section (Sf ) for pitch T=180 nm and Al thickness (a) 
h1=10 nm and (b) h1=60 nm. Other simulation parameters are the same as that in Figure 2. 
 

 
 

 
 

Figure 8. Transmittance varying with PR thickness obtained from simulaiton. The 
transmittance for TM (solid lines) and TE (dashed lines) light with wavelength of 400 nm in 
case of pitch T=180 nm and Al thickness h1= 10 nm (blue lines) and 60 nm (violet lines). The 
black vertical line represents the case in our fabricated device with the PR thickness h1=130 
nm. Other simulation parameters are same with that in Figure 2. 
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Highly tunable polarized chromatic plasmonic films based on sub-wavelength grating 
templates  
 
 
ToC figure ((Please choose one size: 55 mm broad × 50 mm high or 110 mm broad × 20 mm 
high.  Please do not use any other dimensions))  
 
 
A polarized chromatic plasmonic film is proposed based on sub-wavelength grating structure, 

which enables ‘blue transmission’ for the transverse electric (TE) light and ‘red transmission’ 

for the transverse magnetic (TM) light. Based upon the unique transmission spectrum 

characteristics of such films, polarized chromatic plasmonic tags (PCPTs) with demanded 

versatile polarized transmission colors can be fabricated in a large scale.  

 

 
 


