
Set propagation in dynamical systems with generalised

polynomial algebra and its computational complexity

Massimiliano Vasile1

Department of Mechanical and Aerospace Engineering, University of Strathclyde, 75

Montrose Street, G1 1XJ Glasgow, United Kingdom

Carlos Ortega Absil

Department of Mechanical and Aerospace Engineering, University of Strathclyde, 75

Montrose Street, G1 1XJ Glasgow, United Kingdom

Annalisa Riccardi

Department of Mechanical and Aerospace Engineering, University of Strathclyde, 75
Montrose Street, G1 1XJ Glasgow, United Kingdom

Abstract

This paper presents an approach to propagate sets of initial conditions
and model parameters through dynamical systems. It is assumed that the
dynamics is dependent on a number of model parameters and that the state
of the system evolves from some initial conditions. Both model parameters
and initial conditions vary within a set Ω. The paper presents an approach
to approximate the set Ω with a polynomial expansion and to propagate, un-
der some regularity assumptions, the polynomial representation through the
dynamical system. The approach is based on a generalised polynomial alge-
bra that replaces algebraic operators between real numbers with operators
between polynomials. The paper first introduces the concept of generalised
polynomial algebra and its use to propagate sets through dynamical systems.
Then it analyses, both theoretically and experimentally, its time complexity
and compares it against the time complexity of a non-intrusive counterpart.
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Finally, the paper provides an empirical convergence analysis on two illus-
trative examples of linear and non-linear dynamical systems.

Keywords: Uncertainty Propagation, Polynomial Algebra, Dynamical
Systems

1. Introduction

When studying dynamical systems it is often interesting to analyse the
evolution of extended regions of the state space or to evaluate the sensitivity
to the variation of some model parameters. In the specific case of orbital
mechanics the interest could be to study the evolution of a set of particles
(dust or debris), or a set of initial conditions for a single object. This problem
is of particular relevance in the assessment of conjunctions and collisions.

A common approach is to use massive Monte Carlo simulations but in
recent times alternative approaches based on Polynomial Chaos Expansion,
Jones et al. (2013), Chebyshev expansions, Tardioli et al. (2015), Gauss Mix-
ture Models, De Mars and Jah (2013), and High Dimensional Model Repre-
sentations Tardioli et al. (2015) have been proven to be a valid alternative to
Monte Carlo simulations. These methods can be collectively classified as non
intrusive because they do not require any access to the dynamic equations
and treat the problem as a black box.

Another class of approaches that has gained popularity as a valid alterna-
tive to direct Monte Carlo simulations is based on a Taylor series expansion
of the dynamics, see Park and Scheeres (2006). In this case the propagation
can be achieved by introducing an algebra, on the space of Taylor polynomi-
als, that replaces the standard computer algebra on real numbers. A wide
range of applications of Taylor polynomial algebra in orbital mechanics can
be found in the work of Di Lizia et al. (2008), Di Lizia et al. (2014) and
Armellin et al. (2010) and in the work of Jorba and Zou (2005). These tech-
niques are based on the so called Truncated Power Series Algebra (TPSA)
introduced by Berz (1986, 1987) for the computation of transfer maps in par-
ticle optics and extended to rigorous numerics in 1997 with the introduction
of Taylor Models, see Berz (1997).

In the case of Taylor series, the basis functions are monomials defining
the ith-order variation with respect to a reference point in the state space x0.
The residual error is proportional to the (i+ 1)th derivative and the (i+ 1)th-
order monomial. Numerical integration and evaluation of the dynamics are
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performed in the TPSA, hence at each integration step the full polynomial
representation of the current state is available.

The same idea can be generalised to a different set of basis functions
provided that the corresponding algebraic rules between their basis can be
defined. The idea of a more generic TPSA dates back to Epstein et al. (1982)
with the name of Ultra Arithmetic. However, in 2003 the possibility of us-
ing a TPSA alternative to the one built on Taylor basis was discarded by
Makino and Berz (2003) because of several drawbacks related to polynomial
multiplication and growth of the magnitude of the coefficients. It was with
the work of Brisebarre and Joldes (2010) that a comparison of TPSAs on
Taylor, Chebyshev and Newton bases was formalised in more general terms.
The results proved that, for the univariate case, the approximations derived
from algebrae defined on Chebyshev bases had smaller reminders than Tay-
lor models, albeit requiring more computational time for the same order of
expansion. One of the main advantages of using Chebyshev series expansions
is the uniform convergence over the interval of expansion for Lipschitz con-
tinuous functions. In fact, the series converges also when a finite number of
discontinuities in f and its derivatives are present J.C. Mason (2002); Am-
paro Gil (2008); Trefethen (2013). On the contrary, Taylor series require the
function f to be n+1 times differentiable in a neighborhood of the expansion
point and, even when they have a positive radius of convergence, convergence
pointwise to the function f and uniformly on every compact subset of the
convergence neighborhood. Furthermore, when Taylor series converge, they
might not converge to the correct function f except at the expansion point
George B. Arfken (2013).

This paper extends the work of Brisebarre and Joldes (2010) to the mul-
tivariate case and to generic polynomial expansions. The paper provides a
rigorous investigation of the time complexity of a TPSA based on polynomial
bases, other than Taylor, in comparison to its non-intrusive counterpart.

The extension to generic polynomial expansions is of particular interest
in the case in which the set Ω, over which initial conditions and model pa-
rameters take values, is not a hypercube and is not defined with respect to
a reference solution x0. The latter point is particularly important as a refer-
ence solution might not be available or might not be unique (for example in
the case of sets of particles).

The methodology proposed hereafter takes any generic polynomial rep-
resentation of a set, converts the polynomials in monomials and applies an
algebra on the resulting monomial basis expansion. In this paper, the ini-
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tial polynomial representation is based on Chebyshev expansions on finite
intervals. The complexity and accuracy of the proposed Generalised Polyno-
mial Algebra (GPA) are compared to a non-intrusive counterpart, based on
Chebyshev multivariate interpolation of a set of propagated states.

The next two sections present the details of the GPA and how it is used to
propagate sets in dynamical systems. A non-intrusive technique is then in-
troduced followed by a theoretical analysis of the computational complexity
of both the GPA and the non-intrusive counterpart. The methods considered
are then applied to the propagation of uncertainties in a scalable dynamical
system, in order to test their limits and compare their performance. Exper-
imental tests are used to derive an empirical convergence analysis. Finally,
application to space dynamics is illustrated by four instances of the two-
body problem in low-Earth orbit, considering uncertainties both on states
and model parameters. Some final remarks on the future development and
applications of GPA methodology are given in the conclusions.

Implementation by the authors of all methods discussed in the paper
can be accessed at https://github.com/strath-ace/smart-uq within the
C++ library SMART-UQ (the Strathclyde Mechanical and Aerospace Re-
search Toolbox for Uncertainty Quantification).

2. Set Propagation in Dynamical Systems

Consider the dynamical system:{
ẋ = f(x,b, t)
x(t0) = x0

, (1)

where b ∈ Υ ⊆ Rq is a vector of model parameters. t ∈ T ⊆ R and the
initial conditions have value x0 ∈ Σ0 ⊆ Rc so that d = q + c.

The goal is to propagate set Ω = Υ × Σ0 through dynamical system (1)
from time t = t0 to t = tf and obtain the set Σt, at time tf , defined as:

Σt =
{
xf |xf = x0 +

∫ tf

t0

f(x,b, τ)dτ, ∀b ∈ Υ ∧ x0 ∈ Σ0

}
(2)

under the assumption that the solution of system (1) exists and is unique.
Since an exact representation of Σt would require the propagation of an
infinite number of sample vectors (x0,b), if Σt is a compact set and xf is
continuous in x0 and b, we can approximate Σt with:

Σ̃t =
{
xf |xf = Pn,d(x0,b),∀b ∈ Υ ∧ x0 ∈ Σ0

}
(3)
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where Pn,d is a polynomial of degree (order) n in d dimensions (variables)
(see Eq.(7)).

The polynomial Pn,d can be constructed in a number of ways. In this
paper we present two computationally different approaches: a propagation of
a polynomials representation of Ω via generalised polynomial algebra, and an
interpolation of a limited number of propagate samples xf,k with Chebyshev
multivariate polynomials.

3. Generalised Polynomial Algebra

Given a continuous, piece-wise differentiable, function f(x) : Ω ⊂ Rd → R,
we consider the approximation

f(x) = P (x) + r(ε) =
∑
i,|i|≤n

piαi(x) + r(ε) , (4)

where, without loss of generality, Ω = [−1, 1]d, x ∈ Ω , i ∈ [0, n]d ⊂ Nd ,
|i| =

∑d
r=1 ir, r(ε) is a remainder (with ε ∈ Ω), and αi(x) is a polynomial

basis of choice, up to order n. The number of coefficients for a complete
expansion is given by

Nd,n =

(
n+ d

d

)
=

(n+ d)!

n!d!
, (5)

The polynomial P (x) belongs to the function space Pn,d(αi) of polynomials
of order n in d dimensions, in the αi basis. The definition of the polynomials
can be extended to a generic hyper-rectangle Ω = [a,b] ⊆ Rd ; being τ : Ω→
Ω the linear mapping between the two regions, the generalised expansions
are defined over Ω by

αi(x) = αi(τ(x′)) , (6)

where x′ ∈ Ω. So without loss of generality the domain Ω is considered
hereafter.

3.1. The monomial basis

A polynomial of degree n in d dimensions with coefficients ci in a field K
can be written as the sum of multi-degree monomials as:

Pn,d(x) =
∑
i,|i|≤n

cix
i (7)
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with the monomial xi defined as:

xi =
d∏
j

x
ij
j (8)

and i = (i1, i2, ..., ij, ..., id) a multi-index. When it is possible to represent
Pn,d(x) in monomial form, one can represent Ω in the preferred polynomial
basis and then rewrite the resulting Pn,d(x) with an equivalent monomial
expansion. Although, in the literature, the translation into monomials was
found to be a ill-conditioned operation, see Trefethen (2013), and can lead
to large coefficients, it has two main advantages: it significantly reduces the
computational cost and allows one to maintain the core algebraic operations
unchanged regardless of the polynomial representation of f . As it will be
explained in the remainder of the paper, since the expansion is truncated
after the transformation in monomials, one has to account for an additional
approximation error that derives from the truncation. Nonetheless we showed
that the resulting methods provides a fast and accurate propagation in the
cases investigated in this paper. Thus in the remainder of this paper all
polynomials are assumed to be written in monomial form and the resulting
algebra is defined on the space of the monomial basis. We define this change
of basis with the notation:

ν : αi −→ φi (9)

where φ is the monomial basis.
The idea is to expand in the desired polynomial basis, convert the resulting

polynomial in monomial basis and then use an algebra over the space of
monomial basis to propagate the polynomial through dynamical system (1).

3.2. Polynomial Algebra Over Pn,d(φi)
The function space Pn,d(φi) can be equipped with a set of elementary

arithmetic operations, generating an algebra on the space of polynomials
such that, given two functions fA and fB, and two polynomials A and B,
which approximate fA, and respectively fB,

fA(x)⊕ fB(x) ∼ A(x)⊗B(x) , (10)

where ⊕ ∈ {+,−, ·, /} and ⊗ is the corresponding operation in Pn,d(φi). This
allows one to define the algebra (Pn,d(φi),⊗), of dimension dim(Pn,d(φi),⊗) =
Nd,n, the elements of which belong to the polynomial ring in d indeterminates
R[x] and have degree up to n. Each element P (x) of the algebra, is uniquely
identified by the set of its coefficients c = {ci : |i| ≤ n} ∈ RNd,n .
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3.2.1. Addition and Subtraction

The operations of addition and subtraction are defined as follows: being
A(x) and B(x) two elements of (Pn,d(φi),⊗), identified by the set of coeffi-
cients a,b ∈ RNd,n , respectively, the result of their sum or difference is

C(x) = A(x)±B(x) , (11)

identified by the set of coefficients c ∈ RNd,n such that

c = a± b . (12)

Since the operations of addition and subtraction do not change the degree
of the polynomials if one applies a truncation to a given order the result is
Cn(α(x)) = Cn(φ(x)) = C(x), with Cn(α(·)) and Cn(φ(·)) the polynomials
in the original polynomial basis and in the monomial basis, respectively,
truncated to order n.

3.2.2. Multiplication

The product is defined as

A(x) ·B(x) =

∑
i,|i|≤n

aix
i

∑
i,|i|≤n

bix
i

 . (13)

where the product of two monomials is:

xi · xj =

{
xi+j if |i + j| ≤ n
0 otherwise

, (14)

so that the product polynomial is truncated to order n.

3.2.3. Composition

Any polynomial G(z) in the functional space Pν,δ(φi) can be interpreted
as a finite set of additions and multiplications. Hence, with these operators
as defined for (Pn,d(φi),⊗), it is straightforward to define a composition rule

◦ : Pν,δ(φi)× [Pn,d(φi)]δ −→ Pn,d(φi) (15)

such that, if G(z) approximates a δ−variate function g(y(x)) = g(z) in
Pν,δ(φi), then

g(y(x)) ∼ G(z) ◦Y(x) , (16)
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where y(x) is a δ−array of d−dimensional sets and Y(x) their polynomial
expansions in (Pn,d(φi),⊗).

Furthermore, the composition rule is used to define in (Pn,d(φi),⊗) a divi-
sion operator, as well as the counterpart of any elementary function, as fol-
lows: being h(z) any of the functions {1/z, sin(z), cos(z), exp(z), log(z), ...},
H(z) an univariate polynomial of degree ν approximating h(z), y(x) a multi-
variate set and Y (x) its polynomial expansion in the algebra, the h−mapping
of y is approximated by

h(y(x)) ∼ H(z) ◦ Y (x) . (17)

In this case
◦ : Pn,1(φi)× Pn,d(φi) −→ Pn,d(φi) . (18)

3.3. Range Estimation and Truncation Error

The means by which H(z) ∼ h(z) is computed will affect the capabil-
ity to propagate a set with given properties, leading to different polynomial
algebras. For instance, in Taylor Algebra, H(z) is the order-n Maclaurin
expansion of h(z − Y (x = 0)), so the h−mapping preserves the local ap-
proximation around the central point. If a polynomial algebra implements a
global approximation over an interval, or is based on finite-support polyno-
mials, the generation of H(z) requires information on h(z), not only in the
vicinity of a point, but on a set of values taken by Y (x) in Ω̄. In other words,
it is necessary to bound the range of Y (x) by computing

y ≤ min
x∈Ω̄

Y (x) , ȳ ≥ max
x∈Ω̄

Y (x) (19)

prior to approximating h(z) over the interval I =
[
y, ȳ
]
. To be noted that a

rigorous use of Taylor expansions would require the estimation of the radius
of convergence.

In the GPA approach implemented in this work, the authors approximated
the infinite Chebyshev series of h(z) with a Chebyshev interpolation HT (z)
of order 100 over I. In the rest of the discussion, this approximation will
be obviated for the sake of simplicity, as if HT (z) were precisely the infi-
nite series. Then H(z) ∈ Pn,1(φi) is obtained by truncation of HT (z), in
the Chebyshev basis, up to order n̄ ≥ n. The choice of n̄ depends on the
range-bounding method. Note that the order-n̄ Chebyshev interpolation and
the Chebyshev series truncated to order n̄ constitute distinct operators, and
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thus lead to different polynomial expansions of h(z) over I. Both are near-
minimax order-n̄ polynomial approximations, with an identical expression
for the upper bound on their remainder Rivlin (1974). However, the latter is
preferred for small values of n̄, since it has been experimentally found to lead
to smoother approximations in the applications considered in this paper.

Computing the range of a multivariate polynomial in a hyperrectangle is a
central problem in numerical analysis. If the polynomial is not linear, finding
tight bounds in (19) is an NP-hard problem because it requires finding the
global maximum and minimum of the polynomial over Ω̂, see Nesterov (2000).
Hence a range estimate is sought based on known upper (respectively lower)
bounds on the maximum (respectively minimum) value of the polynomial.
This implies that [

y∗, ȳ∗
]

= Range(Y (x)) ⊆ I =
[
y, ȳ
]

(20)

often with proper inclusion. This phenomenon is referred to as range over-
estimation, and can constitute an important source of approximation error
in the propagation, especially when (ȳ∗ − y∗)/(ȳ − y) � 1. Indeed H(z),
approximating h(z) over I, might account for values of the elementary func-
tion that are actually out of domain. These superfluous variations generate
noise, thus lowering the approximation quality within the true domain.

In the GPA approach proposed in this paper we employed the following
range estimation:

ȳ = c0 +
∑
i6=0

|ci| (21)

y = c0 −
∑
i/∈Q

|ci|

where Y (x) =
∑

i cix
i and Q = {i | ij ≡ 0 (mod 2) , j = 1, . . . , d}. More pre-

cise polynomial range-bounding methods exist, e.g. Garloff (1985) presents
two approaches for the multivariate case. These have not been explored
due to their higher computational complexity. The bounds in (21) are of
fast evaluation, but might lead to some range overestimation. In order to
mitigate this effect, the approximation H(z) is obtained by Chebyshev-basis
truncation of HT (z) up to an order of expansion

n̄ := b1.5n+ 1c . (22)
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The resulting approximation is then converted into monomial basis, and trun-
cated to order n for its expression in (Pn,1(φi),⊗). This choice of n̄ has been
found to yield a decrease in maximum absolute error of the final state ex-
pansions of up to one order of magnitude in the numerical experiments pre-
sented in Section 6 , with respect to direct usage of the order-n Chebyshev
expansion. This is counter-intuitive, as the order-n Chebyshev expansion is
a near-minimax approximation in Pn,1(φi) and is generally more precise over[
y∗, ȳ∗

]
than the approximation obtained as suggested above. Nonetheless,

it is shown in the subsequent of this section that this procedure can improve
the approximation over I and thus mitigate the error induced by range over-
estimation by (21), at a lower computational cost than more precise range
bounding. In consequence, A lower n̄ ≥ n is recommended if a more pre-
cise range-bounding approach is used, or small deviations from linearity are
expected. On the other hand, progressively increasing n̄ within the propa-
gation can enhance the approximation quality for long propagations through
non-linear systems.

It is now interesting to study the remainder of the expansion H(z) . Let
us assume H(z) ∈ Pn,1(φi) is an expansion truncated at order n in the
monomial basis. We call H(z; n̄ = n) ∈ Pn,1(φi) the near- minimax order-n
Chebyshev expansion, whereas H(z; n̄ > n) ∈ Pn,1(φi) is the monomial-basis
truncation, up to order n, of an order-n̄ Chebyshev expansion, obtained as
suggested above. The respective remainders in a point of the domain are
bounded by

rn = |h(z)−H(z; n̄ = n)| ≤ 1

2n(n+ 1)!
|h(n+1)(ξn)| (23)

rn̄ = |h(z)−H(z; n̄ > n)| ≤ 1

2n̄(n̄+ 1)!
|h(n̄+1)(ξn̄)|︸ ︷︷ ︸

rapprox.n̄

+ |ẑn+1||Ξ(ẑ)|︸ ︷︷ ︸
rtrunc.
n̄

where ẑ = 2(z−y)/(ȳ−y)−1 ; ξn, ξn̄ ∈ [y, ȳ] ; Ξ(ẑ) is a polynomial of degree
n̄−n−1; and bracketed superscripts indicate order of derivative with respect
to ẑ. Furthermore, the coefficients of Ξ(ẑ) are the coefficients that have been
truncated to express H(ẑ; n̄ > n) in (Pn,1(φi),⊗). Since ẑ ∈ [ẑ, ¯̂z] ⊆ [−1, 1],
one can in turn use these coefficients to bound |Ξ(ẑ)|, e.g. by (21), and obtain
an upper bound on the truncation-related term rtruncn̄ that is independent on
ẑ. With this in mind, it is possible to state that:

• In the vicinity of the midpoint z0 = (y+ ȳ)/2, the remainder rn̄ equals
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Figure 1: Range overestimation on Y (x) = 5π(1 + 0.1x+ 0.1x2− 0.1x3− 0.01x4 + 0.01x5).

the remainder of an order-n̄ Chebyshev approximation, rapprox.n̄ . With
n̄ > n, it is expected that rapproxn̄ ≤ rn.

• The bounds on rn̄ will grow towards the edges of the interval, as rtruncn̄

is affected by a factor |ẑn+1|.

These effects are exemplified in Figures 1 to 3 with elementary function
sin(z) as h(z), and a degree-5 polynomial as Y (x). The approximations
H(z; n̄ = 5) ◦ Y (x) and H(z; n̄ = 8) ◦ Y (x) are evaluated in (P5,1(φi),⊗).
Figure 1 shows the magnitude of the range overestimation by (21) in this
case. Figure 2 illustrates how the truncation order (22) affects the error
distribution in the approximation of h(z); the error increases at the extrema
of I, but decreases in the central region, notably within the true range of
Y (x). Figure 3 compares the final approximations. Note that H(z; n̄ = 5)
presents small error towards the extrema of I, whereas H(z; n̄ = 5) ◦ Y (x)
does not. This is due to the fact that yet an additional truncation error
is created during the composition, when evaluating the powers of Y (x) in
(P5,1(φi),⊗) by (14).
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Figure 2: Comparison of order-5 approximations of sin(z) over I = [y, ȳ].
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Figure 3: Comparison of order-5 approximations of sin(Y (x)) over I = [y, ȳ].
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3.4. Propagation Through Dynamical Systems

Consider now a numerical scheme ψ used to integrate system (1) and the
map:

xk ← ψ(xk−1,b) (24)

The idea is to represent xk−1 and b as elements of the algebra (Pn,d(φi),⊗)
and applying all algebraic operation defined in (Pn,d(φi),⊗) to the integration
scheme ψ. Thus we replace real numbers with polynomials of degree n,
replace all elementary functions in (1) with their polynomial representations
up to degree n and apply all algebraic operations in map (24) to the elements
of Pn,d(φi).

As an example, consider the simple Euler scheme:

xk = xk−1 + f(xk−1,b)∆t (25)

and represent x0 ' X0 := (X1(x), ..., Xc(x)) and b ' B := (B1(x), .., Bq(x))
as elements of the algebra (Pn,d(φi),⊗). With this scheme, at each integration
step one has:

Xk = Xk−1 + ∆t Fk−1, (26)

where Fk−1 is the polynomial approximation of f(xk−1,b), obtained by ex-
panding all elementary functions in f in Chebyshev series of xk−1 and b and
evaluating the resulting expansion by replacing xk−1 and b with Xk−1 and B
and applying all the algebraic operations defined in previous sections. Hence
Xk is the polynomial representation of the system flow at the kth time-step.

To be noted that the nature of the set to be propagate or the elementary
functions to be represented can suggest a different polynomial representation.
For example, for unbounded sets, Hermite or Taylor polynomials might be
more appropriate. Nonetheless, the scheme proposed in this paper remains
unchanged, as well as the main contributions to the associated computational
complexity. Hence the use of the term generalised polynomial algebra (or
GPA).

4. Interpolation via Multivariate Chebyshev Polynomials

The non-intrusive counterpart of a GPA is the approximation of a generic
multivariate function f(x) by means of interpolation or regression techniques
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in the chosen basis. Hence, as before, given a function f(x) : Ω ⊂ Rd → R,
its polynomial approximation on the functional space Pn,d(αi) is defined as

f(x) = P (x) + r(ε) =
∑
i,|i|≤n

piαi(x) + r(ε) , (27)

where Ω is a generic hypercube and r(ε) is the reminder (with ε ∈ Ω). The
coefficients pi are computed via interpolation or regression. This means that
the space Ω is sampled and the function f evaluated on each of the sample
points. The coefficients are then computed by solving the linear system

HP = F , (28)

where

H =

 α1(x1) . . . αNK
(x1)

...
. . .

...
α1(xNp) . . . αNK

(xNp)

 , P =

 p1
...

pNK

 , F =

 f1
...
fNp

 ,
Np = |S| is the cardinality of the set of sample points {x1, . . . ,xNp} and
the components of F are the evaluations of the model at the i-th sample
point, fi = f(xi). If a sample is used such that Np = NK and H is non-
singular, it is possible interpolate in the sample. A regression approach can
be used with Np > NK . In this paper we restricted to interpolation, using two
sampling schemes. One we called full basis, for it solves for the coefficients
of the full Chebyshev basis of order n and dimension d. As regards the
sampling, it takes NP = NK = Nd,n random samples in a Latin Hypersquare
pattern McKay et al. (1979) , Iman et al. (1980). The other, that we called
reduced basis, uses isotropic Smolyak sparse grids Smolyak (1963). The sparse
grids are generated following the Clenshaw-Curtis rule Gerstner and Griebel
(1998). The extrema of the univariate Chebyshev polynomials are used as
suggested and described in Judd et al. (2014). The sample consists of a subset
of the tensor product of these extrema. The grids are fully nested, i.e. the
grid of level l contains all points of the grid of level l− 1. The corresponding
reduced-basis polynomial is of degree 2l, but with NP = NK < Nd,2l . A
number of the coefficients is excluded from the basis and assumed equal to
zero. The reduced basis tends to exclude cross-product terms under the
assumption that higher-order correlations are negligible.

Consider now dynamical system (1), the approximation of the expansion at
time tN can be computed by means of non-intrusive technique by solving the
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linear system (28) where H is the evaluation of the multivariate polynomial
base at the points sampled in Ω = Υ × Σ0 and the right hand side of the
equation contains the values of the terminal states obtained integrating the
dynamics with initial conditions and model parameters taken from the set
of sample points. If the state vector to be approximated in the dynamical
system has dimension c = dim(Σ0), then the right hand side of equation (28)
is a matrix of dimension Np × c. Hence the approximation of the states is
equivalent to the solution of c linear systems. Note that it is not always
necessary to obtain polynomial approximations of and only of the states
in the state vector. Only a subset of the propagated states might be of
interest. Or it might be useful to approximate a quantity that is not a state
of (1), but a derived expression. The set of propagated quantities requiring
approximation by (28) is referred to as the quantities of interest.

5. Computational complexity analysis

The goal of this section is to derive an estimation of the computational
cost of both the intrusive and the non-intrusive approach to decide whether,
for a given accuracy, one is preferable to the other (assuming that both are
applicable). The computational cost measured in terms of floating-point op-
erations, will be estimated by means of complexity analysis of the subroutines
involved in each methodology.

The computational complexity of propagation with GPA depends on the
size of the algebra, Nd,n, the computational complexity of the operations
necessary for the evaluation of the right hand side of the dynamical system
and the computational complexity of the numerical integrator. On the other
hand, the complexity of the non-intrusive method is proportional to the
number of points in the sample, Np, the computational complexity of the
numerical integrator and the solution of a Np ×NK linear system whenever
a polynomial representation needs to be obtained.

A more complete and rigorous analysis of the computational complexity
of each method is given in the following subsections.

5.1. Computational Complexity of GPA

The computational complexity of the GPA can be derived as the com-
plexity of each elementary algebraic operation times the total number of
operations.
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5.1.1. Complexity of addition and multiplication

Addition or subtraction, of two polynomials, as well as multiplication or
division by a scalar value, require exactly Nd,n floating-point operations,
where Nd,n is given by the expression in Eq. (5). Their computational
complexity is, therefore, O(Nd,n). The multiplication of two polynomials is a
more expensive operation and an upper limit on the number of floating-point
operations is given by the following lemma.

Lemma 1. Given the multiplication defined in (13), the upper limit on the
number of floating-point operations is given by:

F ∗d,n = 2N2d,n, (29)

Proof. A constructive proof of this lemma can be obtained by considering
the order truncation rule applied during multiplication:

xi · xj =

{
xi+j if |i + j| ≤ n
0 otherwise

(30)

and rewriting the truncation condition |i + j| ≤ n as

i1 + i2 + ...+ id + j1 + j2 + ...+ jd ≤ n

which, introducing the variable n′ = n−|i+j| , 0 ≤ n′ ≤ n , can be expressed
without loss of generality as a Diophantine equation in 2d + 1 variables,
namely

n′ + i1 + i2 + ...+ id + j1 + j2 + ...+ jd = n

whose number of non-negative solutionsNc equals the number of n-multisubsets
of a set of cardinality 2d+ 1, i.e. Brualdi (1977)

Nc =

((
2d+ 1

n

))
=

(
n+ 2d

n

)
=

(
n+ 2d

2d

)
= N2d,n .

Each solution corresponds to a term of polynomial p1 being multiplied by a
term of polynomial p2 and actually contributing by addition to a term of the
product polynomial p1p2 , therefore

F ∗d,n = 2Nc = 2N2d,n (31)
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Figure 4: Contour plot of logNd,n
(F ∗d,n) for different combinations of d and n

Note this lemma is obtained assuming precomputed indices for the mul-
tiplication operations, i.e. omitting the cost of the operation i + j. A map
(i, j) → i + j is obtained and stored upon instantiation of the polynomial
algebra.

The result implies that it is not possible to obtain a generally-valid expres-
sion for the complexity as a function of Nd,n uniquely; due to the dependence
on N2d,n, equivalent-size algebras with different combinations of d and n will
present different multiplication cost, as is shown in Figure 4. It can be de-
rived from the result in Eq. (31) that best-case complexity, as measured
with respect to Nd,n, occurs for low degree and high dimension. In the ex-
treme case of n = 1 (linear algebra in Nd,n − 1 variables), the cost of the
multiplication is linear in Nd,n:

F ∗d,n=1 = F ∗Nd,n−1,1 = 4Nd,n − 2 = O(Nd,n) (32)

while worst-case complexity occurs when d = 1 (univariate algebra of degree

17



Nd,n − 1), yielding

F ∗d=1,n = F ∗1,Nd,n−1 = Nd,n(Nd,n + 1) = O(N 2
d,n) (33)

Hence we can say that the multiplication algorithm has overall complexity
F ∗d,n = O(N p

d,n) , 1 ≤ p ≤ 2 ..
Additionally the following result can be demonstrated.

Lemma 2. Given the multiplication defined in (13), an upper limit on the
number of floating-point operations is given by:

F ∗d,n ≤ 2n+1Nd,n , ∀d, n ∈ N , (34)

Proof. This lemma can be proven by induction on n. In fact, for n = 0 one
has:

F ∗d,0 = 2N2d,0 = 2
(2d+ 0)!

(2d)!0!
= 2 = 2

(d+ 0)!

d!0!
= 20+1Nd,0

While for a generic n one has that:

F ∗d,n+1 = 2
(2d+ n+ 1)!

(2d)!(n+ 1)!
= 2

2d+ n+ 1

n+ 1

(2d+ n)!

(2d)!n!
=

2d+ n+ 1

n+ 1
F ∗d,n ;

2n+2Nd,n+1 = 2n+2 (d+ n+ 1)!

d!(n+ 1)!
= 2

d+ n+ 1

n+ 1
·2n+1 (d+ n)!

d!n!
=

2d+ 2n+ 2

n+ 1
2n+1Nd,n ;

Since
2d+ n+ 1

n+ 1
≤ 2d+ 2n+ 2

n+ 1
∀d, n ∈ N

It follows that

F ∗d,n ≤ 2n+1Nd,n ⇒ F ∗d,n+1 ≤ 2(n+1)+1Nd,n+1

Which, together with the proof for n = 0, gives that

F ∗d,n ≤ 2n+1Nd,n , ∀d, n ∈ N .

Lemma 2 allows one to express the overall complexity alternatively as

F ∗d,n = O(2n+1Nd,n) ,
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a result that depicts very accurately the behaviour for low n and d � n ,
becoming more conservative as n grows.

As a final remark, one might wish to avoid precomputing the indices, for
low-memory applications, and perform the operation i+ j for each contribu-
tion to p1p2. In this case, the complexity of the multiplication is affected by
an additional factor O(d) , in exchange of a memory save of N2d,n integers.
Computing indices has a complexity of O(2dN2d,n) too, but is performed only
once per instantiation of the algebra.

5.1.2. Complexity of Composition and Elementary Functions

The composition H(z) ◦ p(x) of p ∈ (Pd,n(αi),⊗) with an unidimensional
expansion H(z) has complexity O(n · F ∗d,n) , where F ∗d,n is the complexity of
multiplying two polynomials p1, p2 ∈ (Pd,n(αi),⊗) .

Note that the application h(p(x)) of an elementary function h(z) to an
expansion p ∈ (Pd,n(αi),⊗) is a two-step process involving the approximation
H(z) ∼ h(z) and the composition H(z) ◦ p(x) . The complexity associated
to the approximation step depends on the approximation method of choice.
In the GPA implementation proposed hereby, where a Chebyshev expansion
of h(z) is obtained over the range of p(x), the approximation complexity is
O(Nd,n + n3). The main contribution O(Nd,n) corresponds to the estimation
of the range of p(x) by (21). The O(n3) contribution corresponds to the
change of basis applied to H(z) in order to manipulate in monomials; this
requires evaluating a monomial basis the expression

H(z) =
n∑
i=0

cHi · Ti(z) ,

where cHi are the coefficients of the Chebyshev expansion of H(z) and Ti(z) is
the univariate Chebyshev basis evaluated in z, i.e. over the range of p(x) .This
evaluation is linear in terms of polynomial multiplications. Thus the change
of basis can be done in complexity O(n·F1,n) = O(n3). In Taylor Algebra, the
approximation complexity is lower, in general O(n) for elementary functions.
Since all of these are dominated by the complexity of the composition, one can
state that the whole process h(p(x)) has asymptotic complexity O(n · F ∗d,n)
in both algebras. Nonetheless, the cost of approximation is found to cause a
small but perceptible difference in run-time in moderately high-dimensional
problems in Ortega et al. (2016). Note also that, should composition be
defined between Chebyshev and monomial expansions, using, for instance,
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Clenshaw’s algorithm Clenshaw (1955), it would not be necessary to apply
a change of basis to H(z), so the contribution O(n3) could be avoided. This
option has not been explored in this implementation. However, the expected
gain in performance is small in high-dimensional problems where Nd,n � n3.

Division of two polynomials is treated as the application of the elementary
function inv(z) = z−1 , followed by multiplication.

The composition of a polynomial p ∈ (Pd,n(αi),⊗) with an array of poly-
nomials q ∈ (Pd,n(αi),⊗)d has complexity O(dNd,nF ∗d,n) . It is, therefore, the
asymptotically most expensive operation in an algebra of size Nd,n.

5.1.3. Total Complexity of GPA

Consider η the propagation of a set of states of dimension d through a dy-
namical system and assume the use of a numerical integration scheme that
performs m integration steps. Every time the numerical integrator evaluates
the right hand side of the dynamical system it performs FRHS operations.
An estimation of the total computational complexity of GPA applied to the
propagation of a set of states is derived, assuming that all the FRHS opera-
tions are multiplications among elementary functions.

Theorem 3. Given the Truncated Polynomial Algebra defined in Section (3)
the total complexity for m steps of integration is:

F η
I ∼ (d+mFRHS)F ∗d,n = 2(d+mFRHS)N2d,n (35)

where, the additional d is the cost of the precomputation of indices.

Proof. Direct from the preceding results.

Note that a more accurate cost estimation for the intrusive approach is ob-
tained, if the operation count FRHS is conducted so that it ignores additions,
subtractions and multiplications by scalars, and accounts for n operations for
each division and elementary function application. Nevertheless, for the sake
of simplicity in the comparison with the non-intrusive approach, equation 35
will be considered an acceptable estimation hereafter.

5.2. Computational Complexity of Chebyshev Multivariate Interpolation

The non-intrusive Chebyshev multivariate interpolation is a polynomial
representation containing a subset of NK non-null coefficients of the trun-
cated Chebyshev series of order n in d variables. This representation is built
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taking Np = NK samples belonging to Ω, and the process of sampling has
complexity O(d ·NK). Each sample is then propagated forward in time, thus,
the total cost of the propagation of all the samples is

F prop. = mNKF
RHS

where FRHS, as for GPA, is the cost of the evaluation of the right hand side
of the dynamical system and m is the number of integration steps.

In order to obtain a polynomial representation of the propagated states,
s linear systems need to be solved, with s the number of states that need
representation, i.e. the quantities of interest. Each linear system has NK

equations in NK unknowns and is in the form:

Hcj,k = fj,k (36)

where cj,k is the vector of coefficients of the polynomial representation of state
fj at the kth time-step, fj,k is the vector containing all NK values propagated
for state fj at the kth time-step, and H is the NK×NK matrix obtained from
evaluation of the polynomial basis in the sample, not depending on j or k.
Assuming solution by LU decomposition, the total cost is that of:

• Computing H, with complexity O(N2
Kd).

• Decomposing H, with complexity O(2
3
N3
K).

• Solving all the equation systems using the LU decomposition of H, with
complexity O(N2

Ks).

Therefore, ignoring lesser contributions, the overall complexity of the non-
intrusive approach is given by:

FNI(d, n) ∼ mNKF
RHS +

2

3
N3
K (37)

Note that the computational complexity is not driven by the sampling method
or polynomial basis, but only by the cardinality of the sample and number of
coefficients of the basis, these being equal in the case of interpolation. The
choice of one or another sampling method and polynomial basis will however
impact the accuracy obtained for a given cost.
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5.3. Theoretical Comparison

This subsection will provide a theoretical comparison between the com-
putational cost of the intrusive and the non-intrusive approaches, in order to
decide when one approach has to be preferred to the other. The assumption
is that for the same size of the algebra, the two methods provide roughly the
same accuracy of the final polynomial representation. Hence this compari-
son will assume NNI

K ∼ N I
d,n, where NNI

K is the number of coefficients of the
non-intrusive interpolation, and N I

d,n is the size of the intrusive algebra. In
section 6 we will present empirical convergence analysis that will verify the
hypothesis on the accuracy for two examples of dynamical systems.
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Figure 5: Contour plots of log10(F ηI ) (left) and log10(F ηNI) (right) for an entire uncertainty
propagation application. The degree of the intrusive algebra is set to n = 4. For the non-
intrusive case, it is assumed that NK ∼ Nd,n=4 .

Under this assumption, the orders of magnitude of F η
I and F η

NI are shown
in Figure 5 for an intrusive algebra of degree n = 4. Note that in the non-
intrusive case the contour lines have a vertical trend, indicating that the
cost presents very fast growth with the number of uncertain variables, but is
barely sensitive to an increase in the cost of the simulation model, mFRHS.
This trend changes where mFRHS is large enough as to overcome the effect of
the term of complexity O(N3

K), associated with the solution of the equation
systems and independent of the simulation cost. On the other hand, with
GPA the sensitivity to an increase in d is remarkably smaller due to the lower
complexity with respect to the size of the algebra that derives from the lack
of model-training. Nevertheless, for a fixed number of variables, the overall
cost grows faster with the cost of the simulation model.
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Figure 6: Computational cost cross-over lines between intrusive and non-intrusive ap-
proaches discussed. Each line corresponds to a degree of the polynomial algebra n. Under
the line, the intrusive approach of degree n is less expensive than any non-intrusive ap-
proach with similar size of the algebra (NK ∼ Nd,n). Note that no information on absolute
cost is extracted from this figure.

Therefore, assuming that the same size of the algebra is required to both
approaches to reach the desired level of accuracy, it will always be less ex-
pensive to use the intrusive method on high-dimensional problems with low
simulation model cost. On the other hand, it will always be preferable to use
interpolation on a propagated sample for low-dimensional problems with high
simulation model cost, provided both methods are applicable. Figure 6 de-
picts the cross-over lines delimiting the regions of the plane < d, mFRHS >
where it is cheaper to use one or another approach, for degrees 1 to 8 of
the intrusive approach. For instance, the cross-over line of n = 3 intersects
d = 30 at mFRHS ∼ 106. This indicates that, if the cost of a single simulation
mFRHS is lower than 106 floating-point operations, then intrusive propaga-
tion in 30 variables and degree 3 will be less expensive than any non-intrusive
interpolation with equivalent size of the algebra, NNI

K ∼ N I
d=30,n=3 = 5456.
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Furthermore, this stands ∀d ≥ 30.

6. Numerical Experiments

In this section the intrusive and non-intrusive approaches are put to the
test on two problems: a multi-spring-mass system and an orbital dynamics
problem. These problems are used to test the scalability of both the intrusive
and the non-intrusive methods with the number of dimensions.

The goal is to test the ability of both methods to provide an accurate
representation of a given set propagate over a given length of time. In all
numerical tests, the initial set is defined as follows: given a generic parameter
vector p with nominal value p̄ and range of variability of its components
defined by up, p is assumed to take any value in the box [p̄− up, p̄ + up].

The metrics we use to compare the two methods are the CPU time and
the accuracy of the polynomial approximations. In all cases, the experiments
have been conducted with double precision on a 2.8GHz machine. Unless
stated otherwise, the following test conditions are used:

• For GPA, multiplication with precomputed indices has been used. Run-
time measured includes all precomputations necessary for instantiation
of the algebra, allocation of the polynomials, propagation and storage
of the expansions.

• For the non-intrusive method, a sample of size equal to the size of
the algebra, Np = NK , has been used for training. Runtime measured
includes sampling, construction and decomposition of the interpolation
matrix, propagation of the sample and interpolation of the expansions.
Sampling technique is detailed in the experiments section.

• Intrusive and non-intrusive methods are compared against direct prop-
agation of a validation sample. The Root Mean Square Error (RMSE)

RMSE =

√√√√ 1

Ns

Ns∑
i=1

(x̂i − xi)2 ,

is used as error metric to compare the overall accuracy of the polyno-
mial representations, where xi is the true value of a state obtained by
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forward integration of a sample point, x̂i is the approximate value com-
puted evaluating the polynomial expansion obtained with the approach
under discussion, and Ns is the cardinality of the validation sample V .

For both the GPA and Chebyshev interpolation, convergence will be
analysed empirically, as a function of the size of the algebra for a given
dimensionality of Ω. Besides RMSE, accuracy results regarding con-
vergence studies are also presented in terms of the maximum absolute
error,

Max. abs. err. = max
V

(|x̂i − xi|) .

The validation sample V is generated with a Latin Hypersquare. A
cardinality of Ns = 104 is used for all experiments, after confirming
stability of the error metric with respect to the sample.

The results are presented in the following subsections.

6.1. Linear Dynamical Systems

For this numerical experiment a non-damped spring-mass system with L
masses is considered. The L masses can move in a one-dimensional space
subject to the force of multiple springs. The second-order dynamical equa-
tions governing the motion of the L masses can be rewritten as a first-order
system with 2L states as follows:

M
dy

dt
+ Ky = 0 (38)

with initial conditions at time t0:

x1(t0) = x1,0

xi(t0) = xi,0
xL(t0) = xL,0
vi(t0) = vi,0

, (39)

for i = 1, ..., L and

y =



x1
...
xL
v1
...
vL


, M =



1
. . .

1
m1

. . .

mL


,
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K =



−1
. . .

−1
k0 + k1 −k1

−k1 k1 + k2
. . .

. . . . . . −kL−1

−kL−1 kL−1 + kL


,

where, for 1 ≤ i ≤ L , the mass, position and velocity of particle i are noted
mi, xi, and vi respectively, and ki−1, ki are the stiffness constants of the
springs before and after particle i.

This test case is selected to analyse how the performance of a method
scales with dimensionality, as isolated from other effects as possible. The
equations are linear with respect to the state vector y, but the test case
requires non-linear analysis as uncertainty in the model parameters is con-
sidered.

6.1.1. Experimental Setup

Simulations were run for multiple values of L, namely 1 ≤ L ≤ 13. In all
simulations, the following set of nominal parameters and initial conditions
were used:

p̄ = [x̄1,0, x̄L,0, x̄i,0, v̄i,0, m̄i, k̄i]
T = [−0.25, 0.25.0.0, 0.0, 1.0, 1.0]T

with the exception that for L = 1 , x̄1,0 = x̄L,0 = 0.25. Note that here and
in the following test case we use an overbar to indicate quantities within
the set Ω̂ around which one would expand the dynamics in Taylor series if
one was using a Taylor algebra. We call these values, nominal, because in
the context of uncertainty propagation one would consider these values as
not affected by any uncertainty. In order to consider nonlinearities in the
dynamics, the initial set includes the model parameter mi as well as in the
position component xi. As a consequence, the vector up has components:{ uxi,0 = 0.10 1 ≤ i ≤ L

umi
= 0.05 1 ≤ i ≤ L

, (40)

This yields 2L polynomial expansions to be propagated, for xi and vi , each
in d = 2L variables, xi,0 and mi . The initial set was propagated for m = 104

time-steps with ∆t = 5 · 10−3 using a forward Euler scheme.
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The intrusive propagation is conducted with an algebra of degree n = 4.
The non-intrusive interpolation is built on a fully-nested Clenshaw-Curtis
sparse grid of level 3 using a reduced polynomial basis of degree 8. These
parameters are chosen following precision and run-time criteria after an em-
pirical convergence analysis. Figure 7 shows the evolution of the size of the
polynomial representations with respect to the dimensionality.
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Figure 7: Size of the polynomial representations vs. dimensionality.

6.1.2. Empirical Convergence Analysis

This subsection empirically verifies the assumption on the accuracy of
intrusive and non-intrusive approaches for the case of the multi-spring prob-
lem. For Chebyshev interpolation we use a fully-nested Clenshaw-Curtis
sparse grid with reduced Chebyshev basis as described in Section 4. Both
the degree of the intrusive algebra and the level of the sparse grid are in-
creased. The accuracy results are shown in Figures 8, 9 (RMSE) and Figures
10, 11 (Max. abs. err.). The abscissa is the size of the polynomial expan-
sions obtained, N I

d,n and NNI
K for the intrusive and non-intrusive approaches

respectively. The experiment is repeated for several dimensionality values of
the uncertainty space d, namely 2, 4, 8 and 16. Note all results obtained are
in line with the assumption that imposing NNI

K ∼ N I
d,n leads to similar ac-

curacy of the final polynomial expansions for the intrusive and non-intrusive
approaches considered.
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Figure 8: Accuracy of the final polynomial expansions with respect to the size of the
algebra for the intrusive and non-intrusive approaches on a multi-DOF spring-mass system.
The maximum RMSE among all position (left) or velocity (right) expansions is displayed
for 2 (above) and 4 dimensions (below).

6.1.3. Runtime Analysis

Figure 12 shows the runtime necessary to propagate the initial set until
tend versus the dimensionality of the set. Only one snapshot of the final
set was generated. The result in Figure 12 is in line with the theory and
shows a crossing point at which the intrusive method is computationally
faster than its non-intrusive counterpart. In this case, the cross-over point
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Figure 9: Accuracy of the final polynomial expansions with respect to the size of the
algebra for the intrusive and non-intrusive approaches on a multi-DOF spring-mass system.
The maximum RMSE among all position (left) or velocity (right) state expansions is
displayed for 8 (above) and 16 dimensions (below).

is at d = 16. The problem presents, for d = 16, a simulation model cost of
mFRHS ≈ 105.6 (where m = 104 and FRHS ≈ 40). The cross-over point is
thus predicted with acceptable accuracy to be around 15 uncertain variables
by the corresponding theoretical cross-over line in Figure 6, reproduced in
Figure 14. In Figure 12 runtime has to be intended as the computational
time of F η floating-point operations. Figure 13 shows the cost breakdown of
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Figure 10: Accuracy of the final polynomial expansions with respect to the size of the
algebra for the intrusive and non-intrusive approaches on a multi-DOF spring-mass system.
The maximum absolute error in the sample and among all position (left) or velocity (right)
state expansions is displayed for 2 (above) and 4 dimensions (below).

the non-intrusive approach.
Figure 15 shows that, except for very low dimensions, the approximations

obtained with the intrusive approach are of comparable or superior accuracy
to those obtained by the non-intrusive approach. The differences in accuracy
in the lowest dimensionality cases are a consequence of the larger size of the
algebra of the non-intrusive approach – see Figure 7. These are in line with
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Figure 11: Accuracy of the final polynomial expansions with respect to the size of the
algebra for the intrusive and non-intrusive approaches on a multi-DOF spring-mass system.
The maximum absolute error in the sample and among all position (left) or velocity (right)
state expansions is displayed for 8 (above) and 16 dimensions (below). For the latter, some
points are omitted due to computational limitations.

the results in Figures 8 and 9.

6.2. Propagation of Sets in Space Dynamics

The suitability of the proposed methodology for space applications is
tested on a three-dimensional two-body dynamical system representing a
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Figure 13: Cost breakdown for the non-intrusive approach applied to the multi-DOF
spring-mass system.

spacecraft orbiting in Low Earth Orbit. A constant thrust T, the atmo-
spheric drag and a constant generic perturbing acceleration ε are included in
the dynamics in order to increase the number of uncertain variables and the
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Figure 14: Theoretical cross-over point for the multi-spring problem (mFRHS ≈ 105.6),
following the assumptions in Section 5.

33



2 4 6 8 10 12 14 16 18 20 22 24 26
Dimension of propagated set (d=dim(Ω))

1.0e-07

1.0e-06

1.0e-05

1.0e-04

1.0e-03

1.0e-02

1.0e-01

1.0e+00

1.0e+01

M
a
x
. 

R
M

S
E
 i
n
 p

o
si

ti
o
n

Non-Intrusive sparse level 3 (tend)

GPA degree 4 (tend)

Non-Intrusive sparse level 3 (0.25 ·tend)
GPA degree 4 (0.25 ·tend)
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complexity of the problem. In an Earth-centered inertial reference frame the
equation of motion, in vector form, governing the dynamics of the spacecraft
is:

ẍ = − µ

‖x‖3
x +

T

m
+

1

2
ρ
CDA

m
‖vrel‖vrel + ε (41)

where µ is the gravitational parameter of the Earth, T the thrust vector, ρ
the atmospheric density, CDA

m
the ballistic coefficient of the spacecraft and

vrel its velocity relative to the atmosphere. The mass of the spacecraft m is
considered as a seventh state with governing equation:

ṁ = −α‖T‖, (42)

The initial conditions at time t0 are:

x(t0) = x0

y(t0) = y0

z(t0) = z0

vx(t0) = vx,0
vy(t0) = vy,0
vz(t0) = vz,0
m(t0) = m0

, (43)
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All quantities are normalised with the following scale factors:

DU = 6378136 [m] , TU = 806.78 [s] , m̄0 = 2000 [kg] .

corresponding to the planetary canonical units of the Earth and to the nom-
inal initial mass of the spacecraft considered.

6.2.1. Experimental Setup

The non-dimensional set of nominal initial conditions selected is:

p̄ = [x̄0, ȳ0, z̄0, v̄x,0, v̄y,0, v̄z,0, m̄0]T = [1.1505, 0, 0, 0, 0.9297, 0, 1]T

Nominally the thrust magnitude is 2.5513 · 10−5 and the vector points
in the y direction, with ᾱ = 0.2635. The density ρ follows an exponential
atmospheric model

ρ = ρbexp

(
−r − rb

Hb

)
,

with ρ̄b = 680.451 , rb = 1.1411 and H̄b = 0.0284 corresponding to the initial
altitude Vallado (1997) , and C̄DA = 1.081610−13 . The nominal value of the
magnitude of the perturbation ε is set to zero.

Four instances of the problem have been investigated with identical nom-
inal dynamics and progressively increasing dimension of the propagated set.
Case 1 considers a set defined only by the initial conditions whereas cases 2
to 4 progressively include up to 10 model parameters. The definition of the
initial set for each of the four cases can be found in Table 1. In all cases
the degree of the algebra was set to n = 4 for GPA, whereas different non-
intrusive configurations were tested, namely Chebyshev interpolation on a
Latin Hypercube Sample with degree 4 and 5 and interpolation with reduced
Chebyshev basis on fully-nested Clenshaw-Curtis sparse grids of level 2 and
3. For the sake of a fair comparison, extended results are presented only for
those configurations whose the accuracy on the final states is comparable to
that provided by GPA. The equations are integrated until tend = 7.8175 with
a fixed-step-size Runge-Kutta 4th-order scheme with ∆t = 0.0124, resulting
in m = 630 time-steps.

6.2.2. Empirical Convergence Analysis

This subsection empirically verifies the assumption on the accuracy of
intrusive and non-intrusive approaches for the propagation in space dynam-
ics. Test case 4 of dimension 17 is used for the comparison. Cases 1 to 4
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Table 1: Initial set for the four cases of propagation in space dynamics.

Test case 1 2 3 4
ux(0) 1.5679 · 10−4 1.5679 · 10−4 1.5679 · 10−4 1.5679 · 10−4

uv(0) 6.3246 · 10−4 6.3246 · 10−4 6.3246 · 10−4 6.3246 · 10−4

um(0) 0.05 % 0.05 % 0.05 % 0.05 %
uT, uα – 5.00 % 5.00 % 5.00%

uρb , uH , uCD
– – 1.00 % 1.00 %

uε – – – 1.0205 · 10−5

d 7 11 14 17

present very similar overall accuracy results due to the propagation being
driven by the variability of the initial states, which are identical in all cases
and have much larger impact on the dynamics than the variability of model
parameters.

For Chebyshev interpolation we use a fully-nested Clenshaw-Curtis sparse
grid with reduced Chebyshev basis as in section 6.1. Besides, we include
in the comparison a non-intrusive interpolation with a full Chebyshev ba-
sis on a Latin Hypersquare Sample, which is a stochastic non-structured
sampling method. The degree of the intrusive algebra and the level of the
sparse grid are increased as well as the degree of the non-intrusive full basis.
The accuracy results are shown in Figure 16 (RMSE) and Figure 17 (maxi-
mum absolute error). The abscissa is the size of the polynomial expansions
obtained, N I

d,n and NNI
K for the intrusive and non-intrusive approaches re-

spectively. Error measures are presented for each of the final position and
velocity state expansions. Figures 16 and 17 show that, when comparing the
intrusive approach to interpolation on a sparse grid, imposing NNI

K ∼ N I
d,n

leads to similar accuracy of the final approximations. Both methods dom-
inate the non-intrusive approach with full basis. This difference in perfor-
mance between the non-intrusive approaches derives from the benefits of
using a structured sample such as in the fully-nested Clenshaw-Curtis sparse
grids, with respect to interpolation on a non-structured Latin Hypersquare
Sample. The GPA approach matches the accuracy of the better-performing
non-intrusive approach.
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Figure 16: Accuracy of the final polynomial expansions with respect to the size of the al-
gebra for the intrusive and non-intrusive approaches on the propagation of space dynamics
case 4. The final RMSE is displayed for each of the position and velocity state expansions.

6.2.3. Runtime Analysis

The degree of the algebra was set to n = 4 for GPA, whereas various non-
intrusive configurations have been tested. Figure 18 shows that interpolation
with a full basis of degree 4 and interpolation with reduced basis on a sparse
grid of level 2 present RMSE values that are completely dominated by those
of GPA degree 4. On the other hand, the results obtained with full basis of
degree 5 and sparse grid of level 3 are considered comparable in accuracy to
those of GPA degree 4 and will, therefore, be the only included in the rest
of this section.
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Figure 17: Accuracy of the final polynomial expansions with respect to the size of the
algebra for the intrusive and non-intrusive approaches on the propagation of space dy-
namics case 4. The final maximum absolute error in the sample is displayed for each of
the position and velocity state expansions.

Depictions of the uncertain regions and RMSE values in x and v are pre-
sented in Figures 19 to 21. All three methods provide very precise representa-
tion of the uncertain region, proving their worth for uncertainty propagation
in orbital mechanics. The mean final approximation errors obtained are in
the order of only 10−1 mm and 10−4 mm/s in the plane of nominal motion
< x, y >.

As hinted by the convergence analysis, it is necessary to increase the degree
of the non-intrusive method with full basis to 5 for its accuracy to match the
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Figure 18: RMSE in states at the final snapshot for several non-intrusive configurations,
propagation in space dynamics case 4. Each RMSE value is scaled with the corresponding
RMSE value of GPA degree 4.

one provided by GPA degree 4. Whereas for the sparse-grid version a level 3
was necessary, which approximately matches the size of the full-basis algebra
of degree 4 for this range of dimensions – see Figure 7.

Figure 22 shows the CPU time necessary for each case and method. The
reduced-basis method (sparse grids) is faster than the full-basis one for all
cases. However, cross-over points exist between the intrusive and each of the
non-intrusive methods due to the lower complexity of GPA to an increase
in dimensionality. GPA is thus the fastest approach among those with com-
parable accuracy for the cases with the propagated set with dimensions 14
and 17. The operation count of this case amounts to m · FRHS ≈ 105.2 ;
Figure 25 shows the cross-over points as predicted by the formulae in Section
5. Comparing it with Figure 22, one observes a slight underestimation in
the exact location of the experimental cross-over points, which derive from
all the simplifications made in the cost computation. Nonetheless, the devi-
ations are small and the theory predicts accurately which approach will be
most efficient for each case considered.

Figure 23 shows the cost breakdown of the non-intrusive method with full
basis, split between (by asymptotical cost): decomposition LU of matrix H,
sampling and evaluation of the matrix H, propagation of sample sets and
reconstruction of the final uncertainty region. Figure 24 shows the same
breakdown for the non-intrusive sparse method of level 3.
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Figure 19: Propagated sets and nominal orbit, propagation in space dynamics case 4.
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Figure 20: Detail of the final set, propagation in space dynamics case 4.
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Figure 21: RMSE in x and v states, propagation in space dynamics case 4.
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Figure 23: Cost breakdown of non-intrusive method, full basis degree 5
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Figure 24: Cost breakdown of non-intrusive sparse method, reduced basis level 3

7. Conclusions

The paper presented a Generalised Polynomial Algebra (GPA) approach
to propagate generic sets through dynamical systems and compared, theoreti-
cally and empirically, its time complexity against a non-intrusive counterpart.

The complexity analysis found that there is a well defined cross-over line
that predicts when the intrusive approach is computationally more efficient
than its non-intrusive counterpart for the same accuracy. The same crossing
point was found also in the numerical experiments suggesting that for low-
dimensional problems a non-intrusive approach is advantageous. Likewise
for long propagation times when the deformation of the propagated set is
limited a non-intrusive approach is advisable.

For higher-dimensional problems the computational cost associated to the
generation of the polynomial representation exceeds the cost of the sampling
process and renders the non-intrusive approach more expensive than the
intrusive one. This was shown to be true for both a full and a sparse basis.

It was also shown that in the cases considered in this paper the intru-
sive approach could achieve higher accuracy for a lower order of the poly-
nomials than non-intrusive interpolation with a full Chebyshev basis on a
Latin Hypersquare Sample, and not lower than interpolation on fully-nested
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Figure 25: Theoretical cross-over points for the propagation in space dynamics problem
(mFRHS ≈ 105.2). Above, tailored for the comparison with non-intrusive full basis of
degree 5. Below, following the assumptions in Section 5.
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Clenshaw-Curtis sparse grids with a reduced Chebyshev basis. Thus one can
argue that GPA presents overall good performance and scalability compared
to its non-intrusive counterpart.

Further research directions include the use of reduced-bases also in the
intrusive approach, as well as the adaptation of the expansion to maintain
the required level of accuracy. This is particularly relevant when one or more
singularities exist in the domain of interest. Future work will present a direct
comparison with other intrusive approaches.
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