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9 Abstract

10 Evidence from a various research suggests that buildings hold a vital role in climate change by 

11 significantly contributing to the global energy consumption and the emission of greenhouse 

12 gases. Considering the trend of higher energy consumption in the building sector, it is important 

13 to influence this sector by decreasing its energy demand. District generation and cogeneration 

14 systems integrated with the energy storage system have been suggested as a potential solution 

15 to achieve such planned goals. 

16 Unlike the older generation of the DHS, where the focus of the design was on minimizing the 

17 system heat loss, in 4th generation DHS, achieving higher system efficiency is made possible 

18 by picking the optimal equipment size as well as adopting the appropriate control strategy.

19 Designers have adopted different design methods for selecting the equipment size, however, 

20 finding the optimal size is a challenging task. This paper reports the development of a simplified 

21 methodology (dynamic optimization) for a hybrid community-district heating system (H-

22 CDHS) integrated with a thermal energy storage system by coupling the simulation and 

23 optimization tools together. Two, existing and newly built communities, have been considered 

24 and the results of the optimization on the equipment size of both communities have been 

25 studied. The results for the newly built community is later compared with the one obtained from 

26 the conventional equipment size methods whereas static optimization methods and potential 

27 size reduction with the conventional method has been obtained.
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34 Nomenclature

Variable Description Unit
A Thermal Storage Exterior Area m2

C Cost ₤
CapTS Capacity of Thermal Storage m3

CPwt. Specific Heat of the Fluid, Water kJ/kg.K
E CO2 Generation kg of Co2

En,m Equivalent Emission Generated by Boiler n at Year m per Unit of Energy Generated kg.CO2/kg.fuel
ExCapm Extra Capacity of Boiler m kW
FCn,m Fuel Cost of Boiler m at Year n ₤
i Annual Interest Rate %
IC Initial Cost ₤
ICm Base Cost of the Boiler m ₤

IEAux.
Equivalent Emission Generated by Imported Energy Year m per Unit  of Energy 
Generated kg.CO2/kg.fuel

IN Annual Income from Selling Energy to Off-Site ₤
LCm Linearized Cost of Boiler m ₤/kW
LCTS Linearized Cost of Thermal Storage ₤/m3

LoopDN Demand Side Loop kWh
M Boiler Number
N Year Number
ȠCh. Charging Efficiency = 0.98
ȠDis.Ch. Discharging Efficiency = 0.96
OCannual Annual Operational Cost ₤
PRFFn Primary Resource Factor of the Fuel
PRFIE Primary Resource Factor of the Imported Fuel
PWoc Present Worth of Operational Cost ₤
Q_BLDG(t) Energy Required by the Buildings, Users, at Time t kWh
Q_Gen(t,n) Energy Generated by Boiler n at Time t kWh
Q_Losses(t) Energy Lost Through Distribution Network at Time t kWh
Q_Net(t) Net Energy Required by the Network at Time t kWh
Q_TSCh(t) Energy Sent to Thermal Storage at Time t kWh
Q_TSDis.Ch(t) Energy Discharged From Thermal Storage at Time t kWh
QTS.loss(t) Energy Loss of the Thermal Storage at Time t kWh
T_OA(t) Outdoor Temp. at Time t °C
T_TS(t) Thermal Storage Temp. at Time t °C
U Overall Heat Transfer Coefficient of Thermal Storage W/(m2.K)
V Volume of the Thermal Storage m3

VAux. Amount of Imported Fuel Used to Generate a kWh of Energy kg.fuel/kWh
Vn,m Amount of Fuel Used to Generate a kWh of Energy kg.fuel/kWh
ρwt. Density of the Fluid, Water kg/ m3
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40 Abbreviation

Abbreviation Description
H-CDHS Hybrid Community District Heating System

DHS District Heating System
DHW Domestic Hot Water
NTHU Non-Typical High Usage
NTMU Non-Typical Medium Usage
NTLU Non-Typical Low Usage
TTCU Typical Thermostat Control Usage
TMY Typical Meteorological Year

MLCP Mixed Linear Complementarity Programing
LCC Life Cycle Cost
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43 Major TRNSYS Components

Type 
No. Name Representing

700 Simple Boiler with Efficiency Input (Modified) Biomass Boiler
659 Auxiliary Fluid Heater with Proportional Control (Proportional Boiler) Auxiliary Boiler

. Equa. 2 Boiler House Controller
Equa. 3 Network Controller

534 Vertically Cylindrical Storage Tank with Optional Immersed Heat Exchanger Thermal Storage
512 Sensible Heat Exchanger With Hot-Side Modulation
940 Tank-less Water Heater
977 Variable Speed Pump Circulation Pump
604a Bi-Directional, Noded Pipe with Wall & Insulation Mass

952 Buried Single Pipe Under Ground 
Distribution Network

682 Load Imposed on a Liquid Stream
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54 1. Introduction

55 As a major energy consumer, the building sector accounts for about 40% of the total 

56 energy consumption in North America and Europe, respectively [1]. Various countries 

57 prioritize the implementation of energy enhancement strategies in this sector to respect the Paris 

58 Climate Accord, COP21[2]. Such strategies have been applied at various levels, including 

59 energy production, conversion, and user-demand, but the most effective solution touches the 

60 higher level known as energy management [3].

61 A Hybrid1 Community-District Heating System (H-CDHS) is a unique type of energy 

62 management integrating thermal storage within its multi-source energy fed system. Two types 

63 of renewable sources exist in terms of availability a) intermittent sources such as wind and 

64 solar, and b) non-intermittent sources such as biomass and geothermal. For the intermittent 

65 sources, thermal storage can regulate the demand which could decrease the dependency on non-

66 renewable sources. However, for non-intermittent sources, thermal storage can appreciably 

67 improve the system performance and its efficiency in other ways such as peak demand shaving. 

68 [4]. 

69 The major design issue of the older district heating system (DHS) generations (1st to 3rd 

70 generation) was mainly high heat loss in the distribution network due to the high-temperature 

71 media (100°C and more) [5, 6]. In this regard, the optimization focus was on enhancing the 

72 system efficiency by controlling the heat loss from the system and subsequently, improving the 

73 system efficiency. As a result, most optimization studies have focused on minimizing the 

74 system heat loss. However, the new generation DHS (4th generation) operates at a lower 

75 temperature (50-60°C), and hence achieving higher system efficiency is possible by adopting 

1 The term hybrid, represent the use of multiple energy generation sources, renewable source (Biomass 
Boiler) and non-renewable source (Gas Boiler), used in the boiler house.



76 appropriate control strategies and also through optimization of the equipment size [7, 8].  Note 

77 that, designing the 4th generation DHS based on the conventional design method, sizing the 

78 equipment based on the peak demand load, could lead to oversizing of the equipment and low 

79 system efficiency. Therefore, the adoption of an optimal approach (for cost, energy and 

80 environmental impact) to enhance the efficiency of the DHS while designing the 4th generation 

81 DHS became a standard practice among designers. 

82 Different optimization methods have been developed to improve H-CDHS efficiency 

83 and to reduce the system’s emission footprint and the overall cost [4, 9]. Among the existing 

84 methods, mathematical methods based on continuous or discrete variables (Figure 1) [3, 10-

85 12], generic algorithms [3, 13-15] and neural networks systems are the most implemented 

86 techniques for optimizing the DHS efficiency. 

87 {𝐷𝑖𝑠𝑐𝑟𝑒𝑡𝑒{ 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 𝑃𝑟𝑜𝑔𝑟𝑎𝑚𝑖𝑛𝑔{𝑀𝑖𝑥𝑒𝑑 ‒ 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 𝐿𝑖𝑛𝑒𝑎𝑟 𝑃𝑟𝑜𝑔𝑟𝑎𝑚𝑖𝑛𝑔(𝑀𝐼𝐿𝑃)                 
𝑀𝑖𝑥𝑒𝑑 ‒ 𝐼𝑛𝑡𝑒𝑔𝑒𝑟 𝑁𝑜𝑛 ‒ 𝐿𝑖𝑛𝑒𝑎𝑟 𝑃𝑟𝑜𝑔𝑟𝑎𝑚𝑖𝑛𝑔(𝑀𝐼𝑁𝐿𝑃)

𝑆𝑡𝑜𝑐ℎ𝑎𝑠𝑡𝑖𝑐 𝑃𝑟𝑜𝑔𝑟𝑎𝑚𝑖𝑛𝑔                                                                                                       

𝐶𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠{𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑{ 𝑆𝑡𝑜𝑐ℎ𝑎𝑠𝑡𝑖𝑐 𝑃𝑟𝑜𝑔𝑟𝑎𝑚𝑖𝑛𝑔
𝑁𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟𝑙𝑦 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑

𝐵𝑜𝑢𝑛𝑑 𝐶𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑
𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝑃𝑟𝑜𝑔𝑟𝑎𝑚𝑖𝑛𝑔

𝐿𝑖𝑛𝑒𝑎𝑟 𝑃𝑟𝑜𝑔𝑟𝑎𝑚𝑖𝑛𝑔

                                                                 

𝑈𝑛𝑐𝑜𝑛𝑠𝑡𝑟𝑎𝑖𝑛𝑒𝑑{𝑁𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛𝑠                                                                    
𝑁𝑜𝑛𝑙𝑖𝑛𝑒𝑎𝑟 𝐿𝑒𝑠𝑡 𝑆𝑞𝑢𝑎𝑟𝑒                                                                 
𝐺𝑙𝑜𝑏𝑎𝑙 𝑂𝑝𝑡𝑖𝑚𝑖𝑎𝑡𝑖𝑜𝑛                                                                        
𝑁𝑜𝑛𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡𝑖𝑎𝑏𝑙 𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑎𝑡𝑖𝑜𝑛                                              

88 Figure 1: Summary of mathematical based optimization approaches

89 1.1. Static and Dynamic Optimization

90
91 Besides the mathematical approaches (as shown in Figure 1) adopted to formulate the 

92 optimization process, the optimization methods could be categorized either as static or dynamic 

93 optimization based on the dependency of the decision-making process with respect to time. In 



94 static optimization, the optimization time period remains the same for each iteration and the 

95 optimal solution is selected for a particular point of time within the given time period. In other 

96 words, in each iteration, regardless of any change in the optimization variables, the optimal 

97 solution is always at the same time. For example, static optimization obtains the optimal size 

98 of the equipment based only on the annual peak demand load. While in dynamic optimization, 

99 the optimization time horizon is split into a set of smaller time periods and the solution for each 

100 period affects the future solutions and possibilities. As a result, the optimizing agent takes into 

101 account this effect in the decision-making process.  

102 Even though there is a scientific consensus on the mathematical definition of the static 

103 and dynamic optimization processes, there are many ongoing debates as to which type of 

104 optimization method should be used when it comes to use of the commercial energy simulation 

105 and optimization tools. Since similar simulation output could be obtained from all these 

106 commercial methods (e.g. energy demand profile), the interaction between the simulation and 

107 optimization tools can be used to identify the optimization type (static or dynamic 

108 optimization). For instance, in static optimization, the district component and the interaction 

109 between them are modeled either using the user-defined code or commercial simulation 

110 software [19, 20] in order to find the optimal size of the DHSs’ equipment [11, 16-18]. 

111 Subsequently, the energy simulation is performed exclusively from the optimization process 

112 and a set of unique solution is obtained per simulation. In other words, the optimization 

113 population is generated by simulating the model over the simulation time period under different 

114 scenarios (optimizations variables) and the unique solution is obtained based on the objective 

115 function (i.e. cost and emission) under each scenario. Later on, the optimization tools use the 

116 unique solutions as an optimization population to find the optimized value of the objective 

117 function. It is worth mentioning that all unique solutions obtained from static optimization are 

118 for the same exact point of time (e.g. the peak demand time). By using the non-interactive 



119 model, i.e., separate simulation and optimization model (static model), there exists a higher 

120 probability of decreasing the effectiveness of the optimization tool towards predicting the 

121 optimal size of the equipment [16].

122 On the other hand, in dynamic optimization, instead of generating the optimization 

123 population by simulating the model for different scenarios, the optimization and simulation are 

124 carried out simultaneously. By simultaneously performing the optimization and simulation, not 

125 only a more comprehensive spectrum of the solution is generated as an optimization population, 

126 but also the generated off-spring population reflect the effects of previous hours. Due to the 

127 complexity of coupling the simulation and optimization tool in dynamic optimization, several 

128 research works focused on the dynamic optimization using user-defined codes for system 

129 modeling2 [12, 21-23]. 

130 Since the dynamic optimization of the system using the detailed user-defined codes is 

131 computationally expensive, and in many cases not feasible, different simplification approaches 

132 have been adopted to decrease the computational time. These approaches resulted in a 

133 simplification of the district energy model3, using the reduced input file and the representative 

134 weather or demand file for the design period instead of using the whole year profile, or the 

135 combination of two. Considering the above-said research gap, the main objective of this study 

136 is to develop a dynamic optimization platform that could explore the optimal equipment size 

137 using the detailed demand profile in a timely manner. The developed model predicts the detailed 

138 demand profile of the DHS and uses them along with detailed energy model of the DHS and 

139 the equipment, and the interaction between them to dynamically optimize the entire system. 

140 Subsequently, the optimal size of the equipment is obtained. The size of the equipment obtained 

2 Modeling the district components and the interaction between them.
3 Represent the components and the interaction between them with a simplified equation



141 from the model is later compared with the one obtained from the conventional method (design 

142 day method), as well as using a static optimization tool, (Biomass optimization tool).  In this 

143 regard, data from an existing H-CDHS with an integrated thermal energy storage system is used 

144 to optimize its boiler house to minimize its overall cost and CO2 emission. 

145

146 2. Methodology 

147 In this study, a mid-size H-CDHS considered earlier was used [24, 26]. The selected 

148 community is located in Cambuslang, Scotland and consists of 3 different types of residential 

149 buildings, newly renovated towers, newly built duplex detached houses and 4-story terrace 

150 buildings, with a total of 640+ units. Multiple energy sources such as gas and wood pellets were 

151 used to provide the required energy to meet the heating and DHW demands. A well-insulated 

152 underground pipe network with a total length of 6 km (supply and return) is used to distribute 

153 the energy between the generation and consumers. TRNSYS was used as the simulation 

154 platform to define the relationship between various system components and to couple the 

155 prediction and optimization tools. Also, a previously developed simplified load prediction 

156 model by the authors was used to dynamically predict the system demand load [24] . Results 

157 obtained from the prediction tool (User Code) demand profile of the system, were fed as input 

158 to the TRNSYS file in the text format. Adopting the predicted demand profile, TRNSYS model 

159 determines the load required to be generated by the boiler house or to be stored in the thermal 

160 storage by comparing the available stored energy and the predicted demand load.. Knowing the 

161 net demand profile and the partial efficiency profile of each boiler, TRNSYS determines the 

162 type and amount of the fuel required to offset the remaining demand. In the next step, the type 

163 and amount of fuel as well required size of boilers and thermal storage are sent to the 

164 optimization tool (GenOpt.) in form of an input file. Considering all the different possibilities, 



165 the optimization tool determines the optimal size of the equipment and overwrites the 

166 equipment size in the simulation tool, Figure 2.

167

168 Figure 2: Prediction, Simulation, and Optimization Process Flowchart

169 2.1. Load Prediction

170 To optimize an H-CDHS, the first step is to predict the hourly energy demand profile of 

171 the entire H-CDHS, which includes the energy consumption and its corresponding losses. In 

172 general, there are three different techniques to obtain a community’s energy demand profile: 

173 direct measurement, a comprehensive energy simulation tool used when data is not available, 

174 and simplified prediction methods in cases with high computational costs. 

175 In this study, a simplified four-step procedure developed was used to predict the 

176 communities’ energy demand profile [26]. The proposed model, by studying the energy 

177 behavior of the users, first, cluster the users into different groups, based on their energy 

178 consumption behavior. After segmenting the units among different clusters, the reference 

179 building for each cluster was obtained. In third step, using the energy consumption behavior of 

180 the reference building, the MLR model for each cluster was trained and used to predict the 

181 energy demand profile of the remaining unit within that cluster. The accuracy of the proposed 



182 procedure was validated using two different approaches, using both an inter-model comparison, 

183 and comparing with measured data [26]. Using the validated model, the community demand 

184 profile was predicted for two different scenarios:

185  Scenario I: Optimizing the district’s existing condition by considering users’ 

186 demographic distribution regarding energy consumption habits. 

187  Scenario II: Optimizing the community as a newly built district by using design 

188 criteria and thermostat control to simulate all users’ energy behavior. 

189 Before performing the above-said optimization scenarios, in the first step, the 

190 community demand profile was predicted. In order to predict the community demand profile, 

191 occupants were divided into four different groups based on their energy consumption habits4. 

192 The definition of each group and its contribution to the total population presented in more 

193 detailed in [26]. Once these groups’ energy consumption habits were available, the prediction 

194 model was trained using the proportion of each group within the community.

195 In the Scenario I, the proportion of the different occupants’ type within the community 

196 remained constant and the results served as a basis of comparison for the optimization process. 

197 Leaving occupants’ demographic distribution untouched, the district energy demand profile for 

198 Scenario I was predicted using the on-site weather data. Then using the on-site measured data 

199 the accuracy of the energy simulation tools’ (TRNSYS) was validated, as the all on-site 

200 measured data correspond with this scenario. As a result, Scenario I compares the effect of 

201 optimized equipment size and control strategy on energy consumption pattern of the existing 

202 community, its CO2 emission, and cost.  

4 (Non-Typical High Usage (NTHU), Non-Typical Medium Usage (NTMU)), Non-Typical 
Low Usage (NTLU) and Typical Thermostat Control Usage (TTCU)) [26]



203 Conversely, in Scenario II, due to non-availability of data regarding the real time 

204 weather and occupancy condition, both weather file and occupants’ demographic distribution 

205 were replaced by the design condition. Hence in this scenario, the TMY3 weather file was used 

206 as a weather input data and, Typical Thermostat Control Usage (TTCU) profile was used as an 

207 occupancy profile. Note that the main difference between two scenarios is the energy behavior 

208 of the users. In newly built communities, due to unknown energy consumption profile of the 

209 users, the energy demand profile of the community was obtained based on the predefined 

210 schedules and the minimum temperature mandated by codes. However, in existing 

211 communities, using the same procedure results in over estimating the energy consumption of 

212 the community. In order to compare the effect of difference in energy demand profile on the 

213 equipment size, boiler house under both scenarios has been sized and compared with each other. 

214 As a result, in the first scenario, the existing community was sized by clustering the users and 

215 adopting the actual energy behavior of them. However, in Scenario II, equipment has been sized 

216 using the energy behavioral schedules and temperature mandated by codes, and subsequently 

217 the obtained results were compared with the conventional method as well as static optimization 

218 methods. Comparing the TMY3 file with the onsite measured weather data file used for 

219 validating the model shows the average outdoor temperature of 9.3°C and 10.8°C, and the 

220 minimum outdoor temperature of -3.9°C and -3.3 °C for TMY3 and onsite measured data, 

221 respectively. Comparing the TMY3 average and minimum temperature, higher total load and 

222 peak demand load are expected for both scenarios.  

223 After obtaining both scenarios' typical usage behavior, a prediction model was trained 

224 based on the fraction of each community group’s data. Figure 3, shows the design weather 

225 data, TMY3, and onsite measured weather data, while Figure 4 shows the demand heating 

226 profile for these two scenarios. 
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228 Figure 3: Outdoor weather data (MD: Measured Data and DD: Design Data)
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231 Figure 4: Predicted Demand Profile for Scenario I (November) & Scenario II (February)

232

233 Figure 4 shows the heating demand profile of Scenario I & II for the month when the 

234 peak demand load occurred. The inference from the figure is that the peak-heating demand load 

235 is 977.3 kW (2.8 % higher compared to the onsite measured data) in the Scenario I, and 1189 

236 kW (25.1 % higher compared to the onsite measured data) for scenario II. Note that, in 

237 Scenario II, the entire community was simulated assuming all units were conditioned using the 

238 thermostat control (TTCU). It is also important to note that domestic hot water usage was 

239 constant for both scenarios. Therefore, the 25.1% increase in peak demand load was associated 

240 only with the community’s higher heating demand. 



241 2.2. Energy Modelling  

242 TRNSYS was used to predict the district energy demand profile and the interaction between its 

243 different components. To represent components, such as biomass boilers and building stock, 

244 existing types in TRNSYS were modified. In general, TRNSYS has three major loops:

245 2.2.1. Generation Loop

246 The first loop (generation loop) consists of the auxiliary gas, biomass boilers, a 

247 controller, and a heat exchanger, which feeds energy into the system, as shown in Figure 5 and 

248 Figure 6. Since no specific biomass boiler type exists in TRNSYS, Type 700 was modified to 

249 represent the biomass boiler by adjusting its efficiency, partial efficiency, and the control signal. 

250 After adjusting the boilers’ type, two controllers were assigned to the generation loop to adjust 

251 the flow pattern between the generation/consumption loops and the storage loop. The first 

252 controller compared the network’s predicted demand load with the total capacity of the boiler 

253 house and the need for the thermal energy storage system as a backup. The second controller 

254 decides which boiler (biomass or gas) should operate to provide the required energy. 

255 2.2.2. Consumption Loop

256  The consumption loop was constructed with Type 682, which represents the demand 

257 profile of all units, (Figure 4). This Type reads the predicted demand profile through an external 

258 link. The distribution network heat loss was modeled using Type 952. 

259 2.2.3. Storage Loop

260 The storage loop was formed with two different configurations. The first configuration 

261 was modeled by simultaneously charging and discharging the thermal storage as shown in 

262 Figure 5. 



263
264 Figure 5: Simultaneous charging and discharging configuration

265

266 In other words, both the boiler house and distribution network was connected to the 

267 thermal energy storage system. While the boiler house provided energy to the thermal storage 

268 system, the latter supplied the energy to the distribution network. The second configuration was 

269 modeled using a step-wise energy storing procedure (Figure 6). In this configuration, a controller 

270 monitored the direction to the thermal storage tank (either charged or discharged). 

271
272 Figure 6: Step-wise charging and discharging configuration



273 By comparing the preliminary results obtained from the total heat loss of the two 

274 configurations (simultaneous and stepwise), it is inferred that the step-wise charging and 

275 discharging configuration had the lower heat loss than simultaneous charging/discharging 

276 configuration due to thermal system storage size and flow direction. Also, the step-wise 

277 charging and discharging configuration has a higher overall energy efficiency compared with 

278 the simultaneous charging/discharging due to on/off frequency of the generation loop in this 

279 configuration (refer Figure 5 & Figure 6). More detailed explanations regarding the efficiency 

280 of the system are given in the following sections. As a result, the second configuration is used 

281 as a base for optimization.

282 2.3. Optimization Formulation

283

284 As mentioned earlier in literature review, the main focus of this study is to optimize the size of 

285 the equipment in a dynamic manner. Existing method, such as using TRNSYS type 56 or Energy plus 

286 optimization function (both using GenOpt.) result in static optimization of the model. In both cases, the 

287 energy simulation is performed exclusively from the optimization process. Subsequently, an 

288 optimization population is generated by simulating the model over the simulation time period under 

289 different scenarios (optimizations variables) and the unique solution is obtained based on the objective 

290 function (i.e. cost and emission) for each scenario. The existing method is effective for optimization of 

291 the component which is not sensitive to previous time steps, such as boilers and earlier generation of the 

292 district system which does not have a thermal storage system. However, for components such as thermal 

293 storage systems which are sensitive to the amount of excessive/lacking energy at previous time steps, 

294 this method cannot result in finding the optimized solution. In this aspect, the existing method has been 

295 modified to perform the dynamic optimization.

296 For the design stage, a dynamic multi-objective optimization method was chosen to size the 

297 main components of the district network boiler house for the two defined scenarios. The model 

298 was based on Mixed Linear Complementarity Problem (MLCP) to minimize the objective 



299 functions, life cycle cost (LCC) and CO2 emission. The optimization analysis focused on the 

300 on-site heat generation, but the option of purchasing auxiliary heating energy was also 

301 considered. This is because the primary goal of optimization is to size the main components of 

302 the boiler house to minimize the investment and operational costs over a thirty-year cycle. To 

303 account for the effects of short-term load fluctuations on the components’ optimal size, the 

304 optimization was conducted daily with an hourly temporal resolution. To improve model 

305 accuracy, other input data and model characteristics, including minimum and maximum output 

306 level constraints, and partial load efficiencies, were defined on an hourly basis. The system 

307 operational and fuel costs were also considered. 

308 A controller type (Equa.-3 in Figure 6) was developed to compare the energy generated 

309 at each time-step with that in the boiler house (Equa.-2 in Figure 6) in accordance with the 

310 network demand load (Type 24)5 and flow direction. By comparing the demand load and 

311 generation capacity, controller fed the network first and then it decides whether to use the 

312 disparity between generation and demand to charge or discharge the thermal storage system, 

313 Equation 1-4. This implies that the controller regulates flow direction based on the general heat 

314 balance equation, while other constraints (such as minimum operative temperature (T_TS(t))) 

315 were set for the thermal storage (Equation 9) to ensure a minimum required temperature for 

316 DHW usage:

317 (1)∑𝑁
𝑛 = 1𝑄_𝐺𝑒𝑛(𝑡,𝑛) + 𝑄_𝑇𝑆𝐶ℎ.(𝑡) ‒ 𝑄_𝑇𝑆𝐷𝑖𝑠.𝐶ℎ.(𝑡) ≥ 𝑄_𝑁𝑒𝑡(𝑡)

318 (2)𝑄_𝑁𝑒𝑡(𝑡) = 𝑄_𝐵𝐿𝐷𝐺(𝑡) + 𝑄_𝐿𝑜𝑠𝑠𝑒𝑠(𝑡)

319 If

320  (3)𝑄𝐺𝑒𝑛(𝑡,𝑛) ≥ 𝑄𝑁𝑒𝑡(𝑡)    →       { 𝑄𝑁𝑒𝑡(𝑡)   →    𝐿𝑜𝑜𝑝𝐷𝑁(𝑡) 
𝑄𝐺𝑒𝑛(𝑡) ‒ 𝑄𝑁𝑒𝑡(𝑡)   →    𝑄𝑇𝑆𝐶ℎ.(𝑡)

321

5 Type 24 is the sum of heat loss of underground pipes obtained from Type 952 and the predicted demand 
load of the buildings obtained from the simplified method and fed to the TRNSYS model as an external user file 
(Demand Load) 



322 (4)𝑄𝐺𝑒𝑛(𝑡,𝑛) < 𝑄𝑁𝑒𝑡(𝑡)    →       { 𝑄𝐺𝑒𝑛(𝑡)   →    𝐿𝑜𝑜𝑝𝐷𝑁(𝑡) 
𝑄_𝑇𝑆𝐷𝑖𝑠.𝐶ℎ.(𝑡)→ 𝑄𝑁𝑒𝑡(𝑡) ‒ 𝑄𝐺𝑒𝑛(𝑡)   →    𝐿𝑜𝑜𝑝𝐷𝑁(𝑡)

323

324 The equations used for modeling thermal storage, such as total energy at different time-steps 

325 and boundary conditions applied to it, are as follows:

326 (5)𝑄_𝑇𝑆(𝑡) = 𝑄_𝑇𝑆(𝑡 ‒ 1) + 𝑄_𝑇𝑆𝐶ℎ.(𝑡).ƞ𝐶ℎ. ‒ 𝑄𝑇𝑆𝑙𝑜𝑠𝑠(𝑡)𝑄𝑇𝑆𝑙𝑜𝑠𝑠 (𝑡) ‒ (𝑄𝑇𝑆𝐷𝑖𝑠.𝐶ℎ.(𝑡)

ƞ𝐷𝑖𝑠.𝐶ℎ. )
327 (6)𝑄_𝑇𝑆(𝑡) ≥ 0

328  (7)𝑄𝑇𝑆𝑙𝑜𝑠𝑠(𝑡) = (𝑇_𝑇𝑆(𝑡) ‒ 𝑇_𝑂𝐴(𝑡)).𝑈.𝐴

329   (8)𝑇_𝑇𝑆(𝑡) =  𝑇_𝑇𝑆(𝑡 ‒ 1) ‒ (
𝑄𝑇𝑆𝐷𝑖𝑠.𝐶ℎ.(𝑡)

ƞ𝐷𝑖𝑠.𝐶ℎ.
𝑉.𝐶𝑝𝑤𝑡..𝜌𝑤𝑡. ) + (𝑄_𝑇𝑆𝐶ℎ.(𝑡).ƞ𝐶ℎ.

𝑉.𝐶𝑝𝑤𝑡..𝜌𝑤𝑡. )
330 (9)𝑇_𝑇𝑆(𝑡) ≥ 70°𝐶

331 After setting up the controllers, the optimization objective function (Equation 10) was 

332 set up with the aim of optimizing the size of the biomass boiler(s) and thermal storage system, 

333 and minimizing the current net cost and CO2 emissions: 

334 (10)𝑀𝑖𝑛{𝑂𝑏𝑗(𝐶, 𝐸)}

335 where C and E are the cost and emission objectives. To make the objective function linear and 

336 to simplify it from 2D to 1D, the optimization of was performed using the equation below:

337  (11)𝑂𝑏𝑗(𝐶, 𝐸) =  𝛼.𝐶 𝐶0
+ 𝛽.𝐸 𝐸0

338 where α and β are the cost and emission importance factor in the final objective function. These 

339 factors were obtained based on the requirements/needs of the management board. Based on the 

340 discussion with the community management office, the value of α and β was considered as 0.75 

341 and 0.25, respectively.  The cost associated function considers the entire C-DHS initial cost in 

342 addition to the present worth of the life cycle operational cost. To define the initial cost 

343 (Equation 12), the main boiler house equipment was divided into two modular modifiable parts 

344 (boilers and thermal storage system) and fixed non-modifiable equipment (pumps and 



345 underground distribution pipelines). Note that, only the modular modifiable equipment cost was 

346 considered in the initial cost function and the initial cost of fixed non-modifiable equipment 

347 was excluded, as it remains constant regardless of the size of the modifiable equipment. For 

348 operational costs (Equation 13), the present fuel cost, the selling price of energy, and the buyout 

349 price of energy for surrounding houses for a 30-year period were considered using present 

350 worth method6. 

351 (12)𝐼𝐶 = (∑𝑁
𝑚 = 1(𝐼𝐶𝑚 + 𝐿𝐶𝑚.𝐸𝑥𝐶𝑎𝑝𝑚)) + 𝐿𝐶𝑇𝑆.𝐶𝑎𝑝𝑇𝑆

352 where IC is the linearized initial cost of the boiler house, ‘n’ is the number of years, FC is the 

353 fuel costs of different boilers; ‘m’ is the boiler number, IN is the annual income from selling 

354 heat to off-site users and Etax is the energy taxes. The initial investment cost includes the fixed 

355 and proportional variable expenses. The fixed component included the market value of the 

356 smallest size of the equipment available on the market, LCm, while the proportional cost was 

357 determined by linearizing the extra cost associated with the higher capacity of the equipment, 

358 . , Hereafter, in the text,  and are presented as A and BX, 𝐿𝐶𝑚.𝐸𝑥𝐶𝑎𝑝𝑚 𝐼𝐶𝑚 𝐿𝐶𝑚.𝐸𝑥𝐶𝑎𝑝𝑚 

359 respectively. 

360 7 (13)𝑂𝐶 = (∑𝑁
𝑛 = 1

∑𝑀
𝑚 = 1𝐹𝐶𝑛,𝑚.(1 + 𝑖) ‒ 𝑛) ‒ (∑𝑁

𝑛 = 1𝐼𝑁.(1 + 𝑖) ‒ 𝑛) + (∑𝑁
𝑛 = 1

∑𝑀
𝑚 = 1𝐸𝑡𝑎𝑥𝑛,𝑚.(1 + 𝑖) ‒ 𝑛)

361 The cost function (C) is the summation of the initial and operational cost, (Equation 14).

362  (14)𝐶 = 𝐼𝐶 + 𝑂𝐶

6  where i and n are the annual interest rate and year number, 𝑃𝑊𝑂𝐶 =  𝑂𝐶𝑎𝑛𝑛𝑢𝑎𝑙.((1 + 𝑖)𝑛 ‒ 1
𝑖.(1 + 𝑖)𝑛)

respectively, and OCannual is the annual operation cost.
7 The energy discount rate (i) for Scotland is 0.9% 



363 The second objective function is defined to minimize the total CO2 emission. The 

364 emission associated function was calculated using the following equation:

365 (15)𝐸 = ∑𝑁
𝑛 = 1

∑𝑀
𝑚 = 1(𝐸𝑛,𝑚.𝑉𝑛,𝑚.𝑃𝑅𝐹𝐸𝑛 + 𝐼𝐸𝐴𝑢𝑥.𝑉𝐴𝑢𝑥.𝑃𝑅𝐹𝐼𝐸)

366 where En.m represents the fuel emissions (kg.CO2/kg.fuel) used for each boiler (n) in a year (m) of 

367 the operation; IEAux is the emission of the imported energy fed to the system from outside in 

368 year, (m,) of the operation (kg CO2/kg fuel); PRFEn is the primary resource factor of the fuel; and 

369 Vn,m is the fuel volume used in each month ‘m’ by the boiler ‘n’ . While calculating the costs, 

370 the wood price was discounted in order to take into account the government incentive on the 

371 price of wood pellets to encourage the small community to use biomass boilers. Note that values 

372 of the primary energy factor for the wood pellets (PRFE) is 1.26 and for the natural gas (PRFIE) 

373 is 1.2. [27]

374 To optimize the equipment size and to further minimize the overall costs, CO2 emissions 

375 over the life cycle, the first step is to define the price and emissions level for the different type 

376 of fuel. Table 1 represents the cost and CO2 values for wood pellets and natural gas as the main 

377 fuel type for the chosen district. Table 2 gives the initial cost of the major equipment. 

378 Table 1: Energy cost & emission for different fuel types

 Emission [kg CO2/kWh] ₤/kWh

Wood Pellets 0.039 0.061

Natural Gas 0.203 0.046

Buyout NA 0.12
379
380 Table 2: Investment costs

 Fixed ₤ [A] ₤/kW [BX] ₤/m3

Wood Pellets Boiler 125,000 362* NA

Gas Fired Boiler 132,000 180** NA

Wood Pellets Storage NA NA 670

Thermal Storage NA NA 1,100



All costs are presented in A+BX; (refer Equation.12)

Installation and other costs were added separately 

* The linearized part was added after first 250 kW

** The linearized part was added after first 200 kW

381 3. Results 

382 As mentioned in Section 2.1, two different load scenarios were defined and served as a 

383 basis of comparison within existing communities (Scenario I) or newly built communities 

384 (Scenario II). Using the load demand profile for each scenario, the optimization process was 

385 applied separately, and the equipment’s optimal size was determined.

386 3.1. Scenario I (Existing Community):

387 The Scenario I was defined based on the current situation of the H-CDHS regarding 

388 occupants’ behavior. By keeping a similar occupancy distribution to that of a real case one, the 

389 potential annual cost saving and CO2 emission of the district over its life cycle was determined 

390 using the optimal equipment size and flow control (Table 3).

391

392 Table 3: Scenario I:  Optimization results

Parameters Existing Situation Scenario I

Peak Heating Load (kW) 1100 978

Biomass Boiler (kW) 870 477

Auxiliary Boiler (kW) 1300 609

Thermal Storage (m3) 50 16.3

Biomass Boiler Size Compared to the Peak Load (%) 79.1 49

Coverage Percentage by Biomass and Thermal Storage (%) -- 95

393

394 The optimization results for this scenario shows a significant reduction in boiler 

395 capacities (45% for Biomass boiler and 53% for the auxiliary boiler) compared to the existing 



396 situation. Considering that only one boiler operates at a time, this fact only achieved by utilizing 

397 a thermal storage system, which balances the demand and supply heat between the generation 

398 and consumption loops. 

399 Comparing the optimized model results with field measurements show a dramatic drop 

400 in CO2 emission (171.9 tons of CO2 /year or 23%), as well as a considerable reduction in the 

401 total cost of the system (79,056 ₤/year or 17.6%). The cost and CO2 reductions are partially due 

402 to the lower efficiency of the oversized equipment working at a partial load while other parts 

403 can be associated to the non-optimal control strategy of the system and missing thermal storage. 

404 Since specific weather data and occupants’ behavior was considered in the Scenario I 

405 (2016-17), the demand energy load of the community could change anytime based on the 

406 number of tenants or weather conditions. Consequently, after optimizing the system and 

407 determining the optimal equipment size, the sensitivity of the design to any change in 

408 community demand load due to change in the users’ demographic distribution was determined. 

409 To do that, two new cases (High and Low Usage) were defined. These newly defined cases 

410 included a change in the fraction of occupants’ types8 in the community compared with the 

411 existing condition obtained from clustering results. In the High Usage Case, the fraction of 

412 NTLU and NTMU users dropped, were added to the NTHU and TTCU users to represent a 

413 higher demand load, see Table 4. In the Low Usage Case, the number of NTHU users dropped, 

414 was added to the lower energy consumers such as NTLU and NTMU, see Table 4. 

415 Table 4: Fraction of the occupants’ types in different scenarios

 Low Usage Scenario I High Usage
NTLU 23% 16% 10%
NTMU 39% 24% 15%
NTHU 33% 53% 65%
TTCU 5% 5% 10%
Peak Load (kW) 884 978 1,086 

8 NTLU, NTMU, NTHU, TTCU



416

417 By changing the fraction of occupants, the energy demand profile for newly defined 

418 cases was predicted and provided as input to the energy model (see Figure 6). The boiler house 

419 equipment size remained similar to the Scenario I. After modeling these newly defined cases, 

420 the system performance under new conditions was determined. Comparing the percentage of 

421 the biomass boiler and thermal storage, which can cover the demand load of the community 

422 between the Scenario I and High Usage Case (see Table 5), shows that in the High Usage 

423 Case with 11% higher peak, the percentage coverage time by biomass boiler dropped by 1.1%. 

424 Table 5: Performance of the optimized system under new demand profile load
Sensitivity Results

Parameters Low Usage Scenario I High Usage

Peak Heating Load (kW) 884 978 1086

Biomass Boiler (kW) 477 477 477

Auxiliary Boiler (kW) 609 609 609

Thermal Storage (m3) 16.3 16.3 16.3

Biomass Boiler Size Compared to the Peak Load (%) 54 49 44

Coverage Percentage by Biomass and Thermal Storage (%) 97.8 95.0 93.9

425 3.2. Scenario II (Newly Built Community):

426 In the Scenario II, the weather file was changed, and the occupants’ distribution was 

427 altered to the TTCU to represent the design criteria for newly built buildings. Table 6 presents 

428 the optimal equipment sizes, resulting from the optimization of the boiler house for the 

429 Scenario II.  

430 Table 6: Scenario II:  Optimization results

Parameters Existing Situation Scenario II

Peak Heating Load (kW) 1100 1189

Biomass Boiler (kW) 870 661

Auxiliary Boiler (kW) 1300 738



Thermal Storage (m3) 50 32.8

Biomass Boiler Size Compared to the Peak Load (%) 79.1 56

Coverage Percentage by Biomass and Thermal Storage (%) -- 98.8

431

432
433 Figure 7: Optimal Equipment Size, Size of the biomass boiler as a percentage of a peak load for 
434 different annual % of energy from a biomass boiler

435

436 Similar to the Scenario I, the capacity of the boiler optimal size, biomass and auxiliary 

437 boiler, used less than 60% of their capacity to respond to the peak demand load. In order to find 

438 the optimal size of the equipment using the static optimized sizing tools such as Biomass Boiler 

439 Sizing Tool (version 6.8.2), primarily the same annual biomass energy coverage (98.8%) was 

440 determined. Using the same coverage percentage, the sizing tool suggests the biomass boiler 

441 with the capacity size of 62% of the peak load and 40.5 m3 thermal storage tank (refer to Figure 

442 7). 

443



444 Table 7 presents the equipment size and cost associated with each design method. 

445



446 Table 7: Comparison of the equipment size, cost for different design strategies

Static Optimization Tool Proposed Dynamic 
Optimization ProcessTechnology Conventional

Size Size Reduction * 
[%] Size Size Reduction * 

[%] 
Biomass Boiler [kW] 870 737 15.3 661 24.0%
Auxiliary Boiler [kW] 1300 891 31.5 738 43.2%
Thermal Storage [m3] 50 40.5 19.0 32.5 35.0%

Cost [£] 734,440 602,224 18.0 538,372 26.7%
447 * Reductions calculated comparing with conventional method

448 Considering that only one boiler operates at a time, 98.8% coverage by biomass boiler 

449 was achieved using only thermal storage to balance between the generation and consumption 

450 loop. As shown in Table 7, this solution can reduce the size of both auxiliary and main biomass 

451 boilers into a fraction of their original size and, as a result, decrease the system heat loss while 

452 improving the district energy efficiency. The reduction in major equipment size of the district 

453 using the proposed dynamic optimization method caused a 196,068 ₤ or 26.7% drop only in the 

454 system initial investment cost. Also, knowing the fact that the efficiency of the biomass boiler 

455 is lower when operated partially, two scenarios could be assumed for a non-optimal size 

456 equipment: 1) the biomass boiler works at its full capacity all the time while keeping the 

457 generation efficiency at maximum value; this can result in generation of an excessive amount 

458 of heat, which eventually is accounted as loss, and 2) the boiler works at partial load only to 

459 meet the network demand. This decreases generation efficiency due to the boilers lower partial 

460 capacity efficiency [25]. In both scenarios, the overall efficiency of the system drops. 

461 3.3. Impact of dynamic optimization in determining the operation period of the system
462
463 As mentioned earlier in Section 1.1, the main difference between the static and dynamic 

464 optimization is in dependency of the decision-making process with respect to time. In other 

465 words, dynamic optimization, by breaking the demand profile into smaller periods and 

466 determining a solution for each period, considers the effects of demand at the previous hour on 

467 the optimal solution. Figure 8 (a), presents the charging/discharging profile of the thermal 



468 storage over the 10 days period in November, obtained from the Scenario I and Figure 8 (b) 

469 represents the thermal energy storage mean temperature and the district demand load.

470
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472 Figure 8: (a) Thermal storage energy level for a 10-day period in November; (b) Thermal storage 
473 temperature and district demand load for the same 10-days (Bottom)

474

475 In static optimization by only considering the peak demand in finding the optimal 

476 solution, the effects of the energy demand at previous hours on determining the optimal solution 

477 is neglected. On the other hand, in dynamic optimization, by considering the effects of the 

478 demand profile at a previous hour in determining the optimal solution can result in better 

479 utilizing of the thermal storage and lower size of the equipment.  For instance, as presented in 

480 Figure 8, the response of the system to an identical demand varied based on the energy demand 

481 of the previous hours. In case of the first peak (shown in Figure 8 (b)), due to the high demand 

482 of the system prior to the peak, the thermal storage has been partially discharged, and as a result, 

483 the axillary energy is required to respond to the energy demand of the system. On the other 



484 hand, due to lower demand of the network prior to the second and third peak, the thermal storage 

485 is fully charged, and no auxiliary energy is required.   

486 Apart from determining the optimal size of the equipment, the optimal performance of 

487 the system could be determined from the proposed dynamic optimization method. As shown in 

488 Figure 8 (b), since the biomass boiler works constantly, the district demand load can be met 

489 by a nominal size of the biomass boiler. However, when the demand load of the DHS is higher 

490 than the capacity of the biomass boiler, the deficit energy is met from the thermal energy 

491 storage. On the other hand, when the demand load drops, the surplus energy is stored in the 

492 thermal energy storage and the energy storage level swiftly increases. In peak demand period, 

493 the instantaneous auxiliary system (gas boiler in this case), along with thermal storage, provide 

494 required energy demanded by the district network since the biomass boiler cannot provide 

495 enough energy for the system. Using this strategy while running the biomass boiler constantly 

496 at full capacity for the optimized sized system, step-wise charging/discharging the thermal 

497 storage can eliminate the need for the auxiliary energy 98.8% of the time while maintaining the 

498 system’s maximum overall efficiency.

499 4. Conclusion

500 This study proposes a novel optimization process called dynamic optimization for 

501 existing and newly built communities by coupling optimization and prediction using a 

502 TRNSYS based energy simulation platform. Optimization performed to calculate the overall 

503 size of major energy generation and storing equipment, and operational control strategy for the 

504 community under different scenarios. In case of the existing community, Scenario I, comparing 

505 the optimal equipment size with the existing non-optimal equipment sizes there exists a 

506 considerable difference. The difference in equipment sizes (45% smaller biomass boiler, 53% 

507 smaller auxiliary boiler and finally 67% smaller thermal storage size) between the existing 

508 situation and the Scenario I is mainly due to the fact that the existing boiler house has been 



509 designed based on the conventional methods. Beside from the drop in the initial cost of the 

510 system (267,716 ₤ or 38.1%), the annual life cycle cost and CO2 footprint of the district also 

511 dropped by 79,056 ₤/year or 17.6% and 171.9 tons of CO2 /year or 23% respectively. These 

512 drops are due to the higher efficiency of the system operated at full capacity. 

513 In case of a newly built district, Scenario II, three different design methods have been 

514 used to size the equipment, conventional, static commercial optimization tool, and the 

515 developed dynamic optimization process, and the respective results were compared. The results 

516 indicate that initial cost of the system using the proposed dynamic optimization method could 

517 drop by 26.7% compared with the conventional method while using the static optimization tool 

518 could only result in 18% drop in the initial cost of the system.  These facts emphasized the 

519 importance of dynamic optimization of the system in order to achieve the real optimal solution. 
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