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Abstract 

Binder free TiO2 paste is prepared using tert-butyl alcohol in dilute acidic conditions at room 

temperature for flexible polymer dye sensitized solar cells (DSSC). The present paper reports the 

detailed studies carried out to elucidate the importance of stirring times during the paste 

preparation on the final device performance.  The maximum conversion efficiency of 4.2 % was 

obtained for flexible DSSCs fabricated on ITO/PEN substrates using TiO2 paste prepared from 

an optimum stirring time of 8 hours. The effect of optimum stirring times on the device 

characteristics has been understood in terms of the detailed morphology and surface area 

measurements.  
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1. Introduction 

Dye sensitized solar cells (DSSC) have attracted both academic and industrial interests 

following the invention of O’Regan and Gratzel in 1991.1 The key features involved in the 

development of DSSC are low cost and high photoconversion efficiency. Efficiency of state of 

the art of DSSC fabricated on a FTO glass substrate is 14.3 % which is comparable to amorphous 

silicon cells.2 The architecture of the DSSC comprises of three components, namely dye coated 

mesoporous semiconducting metal oxide,3 deposited on a transparent conductive oxide (TCO) 

substrate,4 a sensitizer dye,5 platinum coated TCO,6 and iodine/triiodide redox electrolyte.7,8 

Usually TiO2 paste is deposited on a TCO glass substrate and subjected to annealing above 500 

°C in order to facilitate inter particle necking and removal of binders present in the paste.9 

On comparison with rigid substrates, panels made from flexible substrates have an 

advantage during the installation process of panels over the roofs with flat or curved surfaces 

because of light weight,10 and roll-to-roll method.11 These flexible polymer substrates could be 

moulded into different shapes and portable panels as power sources for electronic devices such 

as mobile phones, cameras and etc. Till date, the highest efficiency 9.3 % is achieved using PET 

(polyethylene terephthalate) nonwoven fabric and polyvinylidene fluoride as composite porous 

membrane as separator in the polymer DSSC.12 Previous best efficiency photoconversion 

efficiency of 9.1 % has been reported using trilayered TiO2 film on a titanium (Ti) foil.13 

Whereas, the photoconversion efficiency of 8.1 % and 7.6 % were achieved with cells of active area 

of 0.25 cm2 and  1.111 cm2 respectively,  with TiO2 nanoparticles on flexible ITO/PEN (tin doped 

indium oxide/polyethylene naphthalate) substrates reported with water based TiO2 paste.14 

Fabrication of nano TiO2 thin films on the flexible substrates is a major challenge due to the 

limitation of high temperature treatment. This inhibits the use of organic binders in the paste 



preparation. The high temperature treatment removes organics binders, improves the necking 

between the TiO2 nanoparticles and in turn improves the performance of the device.  

Cracks have been observed among the TiO2 films which are prepared by the binder free 

paste which in turn increases the electrical resistivity.15  Moreover, the absence of organic 

binders results in poor inter-particle necking due to the limitation of thermal treatment and poor 

adhesion due to the hydrophobic nature of polymer flexible substrates. The adhesion of the films 

are also decreased which results in poor electrical contact between the TiO2 film and substrate. 

Apart from the TiO2 films, due to the permeable nature of these plastic substrates, leads to the 

absorption of moisture and oxygen hinder the efficiency of devices.16 These limitations could be 

overcome by adopting techniques like mechanical compression,17 hot compression,18 microwave 

irradiation,19 chemical sintering,20 and etc. in the preparation of TiO2 films and paste preparation. 

The formation of cracks could be avoided by proper dispersion of TiO2 nanoparticles. 

Ball-milling is one of the important techniques adopted by many researchers for the making of 

well dispersed TiO2 paste.21  Highly viscous paste is mandatory for the screen printing but they 

need organic binders whereas, low viscous TiO2 pastes are prepared using either ethanol or water 

based for polymer flexible substrate. The viscosity of these paste could be increased by the 

addition of ammonia or hydrochloric acid.22,23 The addition of titanium monomers in small 

quantities during paste preparation increases the viscosity of the paste and also helps in the TiO2 

particle connectivity.24,25,26 

Doctor blade method is the most common method employed for the film preparation 

using binder free TiO2 paste.27 Direct deposition methods such as spray deposition,28 chemical 

vapour deposition,29 pulse laser deposition,30 electrodeposition,31 and electrophoretic 



deposition,32 are used for the TiO2 film deposition on polymer flexible substrates. Additional 

steps are needed to improve the inter-particle necking between the TiO2 nanoparticles with good 

mechanical stability and adhesion of films without damaging the conductive layer of the polymer 

flexible substrates.33 Low temperature TiO2 paste is prepared by mixing TiO2 nanoparticles with 

absolute ethanol or de-ionized water or tert-butanol or all three components mixed together.34,35 

Among the flexible polymer substrates, polyethylene naphthalate (PEN) can withstand heat 

resistance up to 200 °C and has more advantages than polyethylene terephthalate (PET).36 But 

the efficiencies of the flexible DSSC are low when compared with DSSC fabricated on glass 

substrates.  In the Table 1, the details of the polymer flexible substrates prepared by different 

pre- and post- treatments are mentioned with photoconversion efficiencies. 

Table 1: Details of states of the art of polymer flexible DSSC prepared by different types of low 

temperature TiO2 pastes and processing of TiO2 films. 

 

S.No Components of 

paste 

Pre 

treatment 

Deposition 

technique 

Post 

treatment 

Efficiency

% 

Ref 

1 TiO2 + water None Doctor blade Mechanical 

compression 

8.1 14 

2 TiO2 beads TiCl4 

treatment 

Doctor blade CIC pressing 7.5 37 

3 P25 TiO2 + 

EtOH 

None Doctor blade CIC pressing 6.3 38 

4 P25 TiO2 + 

EtOH + Iodine + 

acetylacetone + 

acetone + water 

None Electrophoretic 

deposition 

compression 6.2 39 

5 P25 TiO2 +  

EtOH 

Acid, base 

treatment 

Doctor blade None 5 22 

6 P25 TiO2 +  

EtOH + Water 

None  None 4.9 23 

7 P25 TiO2 + 

EtOH 

Ball 

milling 

 None 4.2 27 

 



In literature, many reports are available for the fabrication of flexible polymer DSSC 

using low temperature TiO2 paste. To the best of our knowledge, no studies are available on the 

effect of stirring times. In this work, we report the importance of stirring times during the paste 

preparation on the device performance of the flexible DSSCs fabricated on flexible ITO/ PEN 

substrates using binder free TiO2 paste preparation. An interesting and industrially important 

optimisation of stirring times in the paste preparation steps has been observed and has been 

reported in this study.  

2. Experimental section 

2.1. Binder free TiO2 paste preparation 

The paste was prepared in 10 mL glass vial using PTFE magnetic beed of dimensions 3 

x 7mm on a magnetic stirrer. In the preparation of binder free TiO2 paste, 0.2 g of P25 

nanoparticles (AEROXIDE® TiO2 P25, Evonik) were added to the mixture of 1.4 mL of tert-

butanol (Sigma-Aldrich), 0.5 mL DI water and 0.2 mL of 0.05 M HNO3 (Fisher) solution as 

reported in previous literature.40  

The contents were stirred at 120 rpm at room temperature until a uniform homogenous paste was 

formed. The glass vial was sealed till the completion of paste making by the stirring process. In 

order to elucidate the stirring times for the optimal performance for the photoconversion 

parameters, the paste preparation stirring times are varied from 6h, 8h, 10h, 12h, 15h and 24 h. 

The schematic representation of the paste preparation was shown in Fig. 1. 



 

Fig. 1: Schematic representation of the room temperature TiO2 paste preparation. 

2.2. Fabrication of dye sensitized solar cells 

The TiO2 films were prepared by spreading binder free TiO2 paste on flexible ITO/PEN 

substrates (Peccells, Japan) by the doctor blade method using Scotch tape as a mask to delineate 

the active area of the TiO2 film. The TiO2 films were dried in air for 10 min after each coating. 

Another set of TiO2 films are prepared by the same manner but after drying subjected to flash 

annealing at 175 °C for 2 min after each coating. The TiO2 films obtained from air drying were 

labelled as RT-S6, RT-S8, RT-S10, RT-S12, RT-S15, and  RT-S24 and TiO2 films obtained 

from flash annealing are labelled as 175-S6, 175-S8, 175-S10, 175-S12, 175-S15, and 175-S24, 

for stirring times 6 h,10 h, 12 h, 15 h and 24 h respectively. All films were soaked in the freshly 

prepared 0.1mM ethanolic N719 dye (Dyesol) solution for 20 h. The fabrication of the cell was 

completed by sealing with platinum coated ITO/PEN (Peccells, Japan) as counter electrode with 



25 µm Surlyn sealant (Solaronix, SA) as spacer between the electrodes. A hole was punched on 

the counter electrode to facilitate the injection of electrolyte. The cell was subjected to vacuum to 

remove the trapped air from the TiO2 film which helps to spread the electrolyte into the pores of 

the dye sensitized TiO2 films. The electrolyte consisted of 0.4 M lithium iodide, 0.4 M 

tetrabutylammoniumiodide, 0.04 M iodine, and 0.3 M methyl benzimidazole in a mixture of 

acetonitrile and 3-methoxy propionitrile (MPN) of ratio of 1:1 (v/v). 

2.3. Characterization techniques 

To understand the effects of longer stirring times of TiO2 pastes on the device 

performance detailed Brunauer, Emmett and Teller (BET) measurements were carried out. The 

TiO2 powder obtained from the dried paste is used for the BET measurements. First a known 

weight of the TiO2 powder was transferred into a quartz reactor and subjected to degassing at 

200 °C in helium gas environment. After cooling, the reactor was connected with gas mixture of 

30 % nitrogen and 70 % helium and immersed into a liquid nitrogen container until the 

completion of adsorption process. Later the liquid nitrogen container was removed and the 

sample was tested for gas desorption process. After the completion of adsorption and desorption, 

the amount of nitrogen adsorption on the surface of TiO2 was calibrated by injecting a known 

amount of nitrogen gas into the reactor. 

Field emission gun scanning electron microscopy (FEG-SEM; FEI Quanta 3D FEG) was 

used to characterize the microstructure and morphology of TiO2 films. The photovoltaic 

performances of the DSSCs were measured by computer-controlled digital source meter 

(Keithley 2400) under simulated AM1.5G irradiation from a solar simulator (92250 A, Newport, 

USA). The incident to photoconversion efficiency (IPCE) was recorded with Spectral response 



SR300/150C (Optosolar, Germany). Electrochemical impedance spectroscopy (EIS) 

measurements were carried out using potentiostat (Metrohm Autolab PGSTAT30) equipped with 

FRA2 module in the faraday cage. The frequency range explored was from 106 Hz to 10-1 Hz 

with amplitude of 50 mV under a dark condition. 

3. Results and Discussions 

3.1. Brunauer, Emmett and Teller (BET) measurements. 

The surface area of all TiO2 powders obtained from the BET measurements is tabulated 

in Table. 2. It is evident from, tabulated BET measurements, stirring times doesn’t make 

appreciable changes in the surface area. 

Table 2: Results of BET measurements of TiO2 paste. 

Sample 

 Stirring time 

(hrs) BET surface area (m2/g) 

S6 6 63.4 

S8 8 70.8 

S10 10 59.5 

S12 12 61.1 

S15 15 69.5 

S24 24 64.5 

 

3.2. Morphology studies by FEG-SEM,  

FEG-SEM studies were carried out to evaluate the impact of stirring times on the microstructure 

of the TiO2 films coated on ITO/PEN substrates with binder free paste. The thickness of the TiO2 

film is calculated from the SEM micrographs and found to be about 10.80 μm. Cracks have been 

observed on the TiO2 films and they are marked with red circles on the micrographs of 2.1(b) 

and 2.1(d). When compared with 8 h paste, cracks have been found on the TiO2 film made from 



15 h paste. The cross-section images of the TiO2 films are recorded as shown in 2.1(a) and 

2.1(c). A close observation on cross-sectional micrographs, owing to flocculation of particles, 

lumps have been noticed, which are shown in Fig. 2.1(a) and 2.1(c). More lumps have been 

observed in 15h stirring paste.   

Fig. 2: Cross sectional SEM micrographs of TiO2 films prepared using a) 8 h paste and c) 15 h 

paste and plain view SEM micrograph of TiO2 films prepared using b) 8 h paste and d) 15 h 

paste. 

3.3. J-V characteristics. 

To study of effect of stirring times on the performance of photoconversion efficiencies, 

the stirring times of the paste preparation are varied from 6 h to 24 h. Fig. 3 shows the J-V 



characteristics of the cells fabricated where the TiO2 films are dried in air. The cells fabricated 

with TiO2 films using binder free TiO2 paste (stirring 6 h) are dried at room temperature 

exhibited showed photoconversion efficiency of 2.88 % where as  photoconversion efficiency of 

2.4 % is reported using same binder free paste as previously.40  From the J-V characteristics 

shown in Fig. 3, it is found that after increased stirring times, the performance of the solar cell 

begin to decrease.  

 

Fig. 3: J-V characteristics of cells fabricated by TiO2 films dried at room temperature. 

The Fig. 4 shows the J-V characteristics of the cells fabricated after flash annealing of 2 min. A 

significant improvement has been observed in terms of photoconversion efficiencies for the 



DSSC devices made with the TiO2 films, which are subjected to flash annealing for 2 min at 175 

°C. A trend is observed from 6 h paste to 24 h paste. Initially the photoconversion efficiency 

increased where the stirring times are increases from 6 h to 8 h and later decreases as the stirring 

time increases from 10 h to 24 h. The photovoltaic parameters of the flexible DSSC fabricated 

using TiO2 films dried at room temperature and flash annealing at 175 °C for 2 min are tabulated 

in table. 3. 

 

Fig. 4: J-V characteristics of cells fabricated after flash annealing of TiO2 films at 175 °C for 2 

min. 



The J-V graphs were showing inconsistent behaviour in Fig. 4. One the possible reason for such 

behaviour can be attributed to flash annealing of TiO2 films at 175 °C. When PEN/ITO 

substrates are subjected to heat treatment, there is no change in the sheet resistance up to 240 °C 

but these polymer substrates undergoes thermal deformation above 150 °C. The difference in the 

linear thermal expansion and internal stress between the ITO and polymer leads ITO films 

bending convexly.  This effect is seen in the I-V curves, the curve goes up and down.41 The 

champion cell exhibits an efficiency of 4.2 % for 8 h stirring paste. The photovoltaic parameters 

of the champion cell were open circuit voltage (Voc) of 0.682 V, short circuit current (Jsc) of 

10.67 mA/cm2 and fill factor of 57.6 %. The maximum quantum efficiency observed from IPCE 

at 550 nm (corresponding to the absorption maxima of the N719 dye) is 53 %. The IPCE 

spectrum is shown in Fig. 5.  

Table 3: Photovoltaic parameters of cells prepared from TiO2 films dried at room temperature 

and annealed at 175 °C for 2 minutes. 

Sample Voc(V) Jsc (mA/cm2)  FF (%) η (%) Time (h) 

RT-S6 0.71 6.17 60.3 2.88 6 

RT-S8 0.7 5.55 57.8 2.47 8 

RT-S10 0.7 9.45 53.7 3.78 10 

RT-S12 0.72 4.4 49.2 1.64 12 

RT-S15 0.7 6.31 42.1 1.99 15 

RT-S24 0.73 4.38 54.1 1.72 24 

175-S6 0.73 8.68 57.2 3.62 6 

175-S8 0.68 10.67 57.6 4.20 8 

175-S10 0.69 9.93 59.7 4.09 10 

175-S12 0.68 9.74 60.5 4.01 12 

175-S15 0.7 7.06 56.8 2.95 15 

175-S24 0.7 7.61 58.5 3.13 24 



 

Fig. 5: represents the Incident to photon conversion efficiency of champion cell made from 8h 

paste. 

The trend of the photoconversion efficiencies of the DSSCs fabricated with TiO2 layers annealed 

at 175 C as a function of the stirring times is shown in Fig. 6. It is observed that the efficiency 

initially increases upon increasing the stirring times from 6 h to 8 h and later decreases as stirring 

time is increased to 24 h. 



 

Fig 6: Photoconversion efficiencies () of DSSCs fabricated from TiO2 layers annealed at 175 C as a 

function of stirring times of paste preparation 

 

3.4. Memory effects studies 

The DSSCs prepared with flash annealed TiO2 films, exhibit photoconversion efficiencies of 8 h 

and10 h pastes were almost the same and similarly, the photoconversion efficiencies of 15 h and 

24 h paste were also same. Hence, in this case study 8 h and 15 h pastes were used to study the 

memory effects. The pastes prepared fifty days prior were used to fabricate the cells. The J-V 

measurements were shown in Fig. 7 and photoconversion parameters were shown in table. 4. The 

results were promising and indicate that the paste is durable and stable, an industrially important 

aspect. 



 

Fig. 7: J-V characteristics of 8 h and 15 h pastes (paste is prepared 50 days prior to cells 

fabrications). 

Table 4: Photovoltaic parameters of cells prepared from old TiO2 paste annealed at 175 °C. 

Sample Voc (V) Jsc (mA/cm2) FF (%) η (%) % 

change 

in η 

Ti

me 

(h) 

day1 day50 day1 day50 day1 day50 day1 day50 

175-S8 0.68 0.7 10.7 8.84 57.6 51.6 4.2 3.4 20% 8 

175-S15 0.7 0.69 7.1 6.56 56.8 53.8 2.95 2.55 14% 15 

 

From the Table 4, it is evident that decrease in efficiency of 50 days old samples is less for 175-

S15 (14 % of efficiency decrease in 50 days). Whereas, 175-S8 sample shows more decrease in 



efficiency (20 % of efficiency decrease in 50 days). The observed decay could be due to aging 

effect, which resulted in the paste started sticking to the walls of the container. This in turn 

attributed to the agglomeration of the particles in the colloidal solution of the paste. 

3.5. Impedance spectroscopy. 

Electrochemical Impedance spectroscopy (EIS) is a powerful technique for the analysis 

of charge transport and recombination of electrons in all electrical devices. In order to 

investigate, the interfacial charge transfer processes within the DSSC devices, EIS measurements 

were recorded in the dark with an applied open circuit voltage of -0.7 V. Since, the 

photoconversion efficiencies of 8 h and 10 h paste were almost the same and similarly, the 

photoconversion efficiencies of 15 h and 24 h paste were also same, hence EIS measurements 

were done for 8 h and 15 h pastes. The results were shown in Fig. 8. The transport properties of 

the electron in various interfaces can be investigated using Nyquist plots in DSSC. From Nyquist 

plots, the first semicircle at high frequencies was related to the redox reaction of electrons at the 

counter electrode (commonly platinum), second semicircle was related to the electron transfer 

between the interface of metal oxide/electrolyte and third semicircle at lower frequencies was 

comprised of electron diffusion in the electrolyte.42  

From the Fig. 8, it is evident that 8 h paste accelerated the interfacial charge transfer and 

reduced the recombination of electron-hole pair when compared with 15 h paste. These results 

resembles in terms of improved efficiency. A Bode plot recorded in dark with respective to open 

circuit voltage of device fabricated with 8 h and 15 h pastes, from which the electron life time is 

calculated using the expression τ = 1/2πfmax. The electron life time of 8 h and 15 h pastes are 

43.1 ms and 124.8 ms.  



 

 

 

 

 

 

 

 

 

Fig. 8: a) Nyquist plot and b) Bode phase plot of 8 h and 15 h paste. 

 

From the results, it is evident that cells prepared from the TiO2 paste stirred for 8 - 10 h 

showed better efficiencies when compared with the longer durations of stirring. From the BET 

measurements, it is evident that longer stirring time is leading to a decrease in surface area 

indicating flocculation of nanoparticles leading to formation of agglomerations.43 The presence 

of agglomerates in the TiO2 films results influences dye loading which in turn results in low 

current generation and hence reduced efficiencies. The cracks observed in the SEM micrographs 

of the films prepared from TiO2 pastes stirred for longer durations support the presence of 

agglomerated particles leading to stresses. It implies that stirring for long hours doesn’t help in 

the device performance. One of the possible reasons might be coagulation of nanoparticles which 

in turn leads to formation of agglomerates which is evident from cross sectional SEM 

micrographs. Agglomerates causes to less dye loading and results in poor current generations and 

thus low efficiencies.  

4. Conclusions 

a
) 

b

) 



In summary, we investigated the role of stirring times for the preparation of binder free 

TiO2 pastes successfully. From the J-V measurements, it is evident that 8 h stirring time showed 

good photoconversion efficiency of 4.2 %. Memory effect studies indicate that paste is durable 

and stable for longer time. Impedance measurements reveal that recombination rates of 8 h paste 

is less when compared with 15 h paste. In other words, this result helps in the development of 

industrial prospects of flexible DSSC. 
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Fig. 1: Schematic representation of the room temperature TiO2 paste preparation. 

 

Fig. 2: Cross sectional SEM micrographs of TiO2 films prepared using a) 8 h paste and c) 15 h 

paste and plain view SEM micrograph of TiO2 films prepared using b) 8 h paste and d) 15 h 

paste. 

 

Fig. 3: J-V characteristics of cells fabricated by TiO2 films dried at room temperature. 

 

Fig. 4: J-V characteristics of cells fabricated after flash annealing of TiO2 films at 175 °C for 2 

min. 

 

Fig. 5: represents the Incident to photon conversion efficiency of champion cell made from 8h 

paste. 

 

Fig 6: Photoconversion efficiencies () of DSSCs fabricated from TiO2 layers annealed at 175 

C as a function of stirring times of paste preparation. 

 

Fig. 7: J-V characteristics of 8 h and 15 h pastes (paste is prepared 50 days prior to cell 

fabrication). 

 

Fig. 8: a) Nyquist plot and b) Bode phase plot of 8 h and 15 h paste. 
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Table 1: Details of states of the art of polymer flexible DSSC prepared by different types of low 

temperature TiO2 pastes and processing of TiO2 films. 

 

Table 2: Results of BET measurements of TiO2 paste. 

 

Table 3: Photovoltaic parameters of cells prepared from TiO2 films dried at room temperature 
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Table 4: Photovoltaic parameters of cells prepared from old TiO2 paste annealed at 175 °C. 

 

 


