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Abstract— Partial discharge (PD) is regarded as a precursor to 

plant failure and therefore an effective indication of plant 

condition. Locating the source of PD before failure is key to 

efficient maintenance and improving reliability of power systems. 

This paper presents a low cost, autonomous partial discharge 

radiolocation mechanism to improve PD localization precision. 

The proposed radio frequency based technique uses the Wavelet 

Packet Transform (WPT) and machine learning ensemble 

methods to locate PDs. More specifically, the received signals are 

decomposed by the WPT and analyzed in order to identify 

localized PD signal patterns in the presence of noise. The 

Regression Tree algorithm, Bootstrap Aggregating method and 

Regression Random Forest (RRF) are used to develop PD 

localization models based on the WPT-based PD features. The 

proposed PD localization scheme has been found to successfully 

locate PD with negligible error. Additionally, the principle of the 

PD location scheme has been validated using a separate test 

dataset. Numerical results demonstrate that the WPT-Random 

Forest PD localization scheme produced superior performance as 

a result of its robustness against noise. 

 

Index Terms— Partial discharge, Localization, Wavelet 

packet transform, Bootstrap aggregating, Random forest, 

Regression tree.  

 

I. INTRODUCTION 

The presence of partial discharge in electrical assets is 

indicative of some defect in the insulation system of the device. 

These discharges can harm the insulation and might lead to total 

breakdown of the asset over time with social and economic 

consequences. The uninterrupted monitoring of these assets is 

therefore paramount in the operation of the electric power 

system. One of the leading candidates for effective condition 

monitoring of electrical assets is partial discharge [1] [2] PDs 

are ionization processes that occur in void filled gases or liquids 

inside insulation, in dielectric surfaces, and in the proximity of 

sharp metallic objects [3] [4] [5] . PDs emit part of the energy 

they produce as electromagnetic waves [6] and this has 

motivated the use of radio sensors for detection and localization 
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of the discharge sources. Early detection of PD reduces the risks 

of harm to insulation and can prevent sudden breakdown. Once 

the occurrence of PD has been established, it is a matter of 

urgency to locate the discharge source as quickly and accurately 

as possible to enable corrective maintenance operation when 

the maintenance activity is most cost effective and before the 

equipment loses performance or suffers catastrophic failure.  

RF-based PD location has been widely studied [7] [8] [9] 

[10] [11]. Given a model of radio signal propagation in a 

particular environment, the TDoA, AoA and/or RSS [5] [12] 

[13] [14] [15] algorithm can be used to estimate the distance 

from a source to a receiver and thereby trilaterate the location 

of the PD. UHF antenna arrays [8] have also been used to locate 

impulsive PDs in a substation. In cables, time-domain 

reflectometry (TDR) [16] which is based on the time difference 

of arrival is used to locate the source of PD along a cable. The 

time-difference-of-arrival (TDoA) of the received signals is 

established by cross-correlation and the location of PD is found 

by multi-lateration [17].  Unfortunately, this technique is 

uneconomical and complex requiring accurate synchronization, 

and Line-of-Sight (LOS) propagation for accurate location 

estimation. It also requires a detailed RF propagation model for 

every environment in which this system is deployed and this is 

not trivial to obtain. The environment in which PD is expected 

is characterized by interference, multipath propagation and 

presence of metallic obstacles leading to a complex spatial radio 

environment, which is difficult to describe by ready-made 

models.  

In previous work, we have adopted a pattern matching 

technique which uses features of the received radio signals to 

infer PD location [14]. The pattern matching technique can be 

regarded as a low cost technique compared to those based on 

time estimation [18]. It turns the frequency-selective multipath 

phenomenon to surprisingly good use: by combining the 

multipath pattern with other PD pulse characteristics, it creates 

unique RF signatures representing different locations.  

In this study, we propose to deploy a spatial array of low 

cost off-the-shelf commercial radio sensors in form of wireless 
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sensor network in an electricity substation. The proposed 

solution allows a PD monitoring system to be permanently 

deployed and thus monitor the substation uninterrupted in real-

time and at low cost. In this approach, the network 

autonomously creates a spatial map of the RF characteristics of 

the radio signals and uses sophisticated machine learning 

techniques to estimate the location of PD sources.  In previous 

work we have used machine learning algorithms to build a 

bespoke propagation model for the radio environment from the 

perspective of each node [13]. Based on the relative received 

signal strength of a PD pulse at each node, a multilateration 

approach can be deployed to infer PD location. In this work, we 

go further by investigating the temporal signatures of the 

received pulses to determine if they able to provide a more 

accurate estimation of location than raw energies alone. 

One approach, we have considered, in engineering PD 

features for source localization is direct extraction from 

measured time domain PD signals. These features infer the 

location where PD originate and are referred to as location 

dependent parameters. Features extracted from time domain 

signals for PD location assume a single PD type scenario. 

However, localization of PD using such features may not be 

sufficient in real electricity substations where different types of 

PD occur. Therefore, we adopt a modified version of this 

approach by examining the time-domain signatures from each 

pulse, but in multiple distinct frequency bands. This technique 

adds another discriminatory dimension to the problem and 

yields superior results. In the frequency domain, PDs of 

different types can be effectively characterized for localization. 

Most of the frequency domain methods used in PD signal 

analysis and localization are based on the well-known Fast 

Fourier transform (FFT) techniques [16] [19]. However, PD 

signals are stochastic and often demonstrate a nonstationary and 

transient nature, carrying small yet informative components 

embedded in larger repetitive signals [1]. This limits the 

application of FFT based techniques for PD localization.  

In this work, a low cost approach, which uses the Wavelet 

Transform [20] to decompose RF PD signals into different 

frequency bands and extract PD location dependent parameters 

for robust PD localization is presented and evaluated in this 

paper. A machine learning ensemble technique is employed for 

improved PD localization. 

  

II. FEATURE EXTRACTION 

Feature extraction is one of the necessary preprocessing 

steps of machine learning and pattern matching [21]. Its aim is 

to extract the most informative inputs (features) from raw PD 

signals. Good features are highly correlated with the expected 

outputs but have low correlation with each other. The extracted 

features facilitate the subsequent learning and generalization 

steps, and in some cases, lead to better interpretations.  

Partial discharge (PD) RF pulses collected during the 

measurement campaign are corrupted by noise due to external 

disturbances. Extracting PD pulses from such noisy 

measurements is therefore crucial. It is also important that this 

is done in such a way that the features of the PD pulse are 

preserved as much as possible. In this work, a multivariate de-

noising method [22] [23] [24] that combines wavelets and 

Principal Component Analysis (PCA) is applied to the PD data 

in order to isolate the PD signals from noise without assuming 

any a priori knowledge of the PD features. This technique 

combines the decomposition of information given by the 

wavelet transform with the ability to orthogonalize variables 

provided by PCA. The objective is to obtain de-noised PD data 

so as to extract meaningful information for PD location. 

Samples of noise corrupted PD signals recorded are as shown 

in Fig. 1.  PCA here is not used to discover new variables which 

could be of interest, but to take advantage of the deterministic 

links among the signals, offering an additional de-noising layer 

by omitting insignificant principal components. In parallel, 

PCA is performed on the wavelet approximation coefficients to 

keep the most important features of the PD signals. Kaiser's rule 

[25] is used to automatically select the minimum numbers of 

retained principal components (components associated with 

eigenvalues exceeding the mean of all eigenvalues). The 

Daubechies wavelet db14 with a 5th level decomposition which 

has been used for PD de-noising [26] is adopted in this work. 

Owing to the fact that only a few of the wavelet coefficients 

describing PD waveform carry significant information, hard-

thresholding is employed. The PD de-noised signal samples are 

shown in Fig. 2.  

 

    
(a) Pulse 1 – Position 1 

 

    
(b) Pulse 2 – Position 1 
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(c) Pulse 3 – Position 2 

   
(d) Pulse 4 – Position 2 

 

Fig. 1. Emulated PD pulse with noise  

 

A. Wavelet Transform 

The application of wavelet transformation in PD signal 

analysis is a well-known technique which overcomes the 

problems of other signal processing techniques such as the 

Fourier Transform which can describe the frequency 

components contained within a complex signal, but cannot 

indicate where in time those frequencies reside. A wavelet-

based approach permits isolation and extraction of energies in 

both time and frequency. In any complex radio environment, 

such as a substation, multipath propagation will occur as a result 

of reflection and diffraction from various obstacles and 

structures; this gives rise to many delayed and attenuated 

versions of the emitted PD pulse. The superposition of these 

received pulses produces a temporal signature (energy versus 

time) from which higher order features can be extracted. The 

shape of the pulse in the time-domain will be dependent on the 

location of the source. Multipath effects are also known to be 

frequency-selective in that the shape of the signature will 

change based on the frequency of the pulse. Thus, the 

aggregated PD pulse as seen by the receiver can be effectively 

band-pass filtered to produce distinct time-energy signatures in 

each band. In doing so, we can exploit the frequency-selective 

nature of multipath propagation to generate more distinct 

features to aid the localization algorithm. This filtering process 

is achieved via a wavelet-based approach as follows.  

 

  
(a) Pulse 1 – Position 1 

 
(b) Pulse 2 – Position 1 

 
(c) Pulse 3 – Position 2 

 
(d) Pulse 4 – Position 2 

 

Fig. 2. De-noised PD pulses 

Unlike spectral analysis that represents a signal as a sum of 

sinusoidal functions, the wavelet transform decomposes the 

signal into wavelets of various scales in the time-domain with 

variable window sizes thus revealing the local structure in the 

time-frequency domain. The continuous wavelet transform [27] 

of a signal 嫌岫建岻, is given as:  

 激鎚岫欠┸ 決岻 噺 怠ヂ銚 完 嫌岫建岻閤茅盤禰貼尼弐 匪穴建袋著貸著 ,                   (1) 
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where 閤岫建岻 is the mother wavelet, 欠 and 決 are the scale and 

shift parameters respectively. The computational burden 

involved in computing the many coefficients generated by 

continuous wavelet transform for every scale and time is 

overwhelming. An efficient alternative is to discretize 欠 and 決  

by replacing 欠 噺  に貸珍 and 決 噺 倦に貸珍, where 倦 and 倹 are 

integers. This forms the discrete version of wavelet transform. 

This is expressed as: 

 激鎚岫倹┸ 倦岻 噺 完 嫌岫建岻に珍 態エ 閤珍┸賃茅 岫に珍建 伐 倦岻穴建袋著貸著 ,                  (2) 

 

The Discrete Wavelet Transform (DWT), which is one of 

the popular methods in the wavelet transformation family has 

been widely used in PD signal processing, classification and de-

noising [20] [28] [29] [30] [31]. The DWT uses a cascade of 

low and high pass filters to decompose the PD signal into two 

components: detail coefficients (DCs), which contain the high 

frequency, low scale information of the PD signal and 

approximation coefficients (ACs), which capture the low 

frequency, high scale information of the PD signal. While the 

DCs remain unchanged at each level of decomposition, the ACs 

are further decomposed into DC and AC subsets. This process 

continues until the final decomposition level [32]. In this way, 

DWT decomposes PD signals into different scales, generating 

multi-scale features which reveal the local features of the PD 

signals. However, with DWT some intrinsic characteristics of 

the signals in the high frequency region are still buried in the 

DCs since only ACs are decomposed in each level. 

 

B. Wavelet Packet Transform 

The Wavelet Packet Transform (WPT) [33] [34] [35] is 

viewed as an extension of the DWT providing a level by level 

transformation of a signal from the time domain to the 

frequency domain. The top or first level of the WPT is the time 

representation of the PD signal. At every other level down the 

WP decomposition tree, there is a decrease in temporal 

resolution and a corresponding increase in frequency 

resolution. This helps capture the high frequency information 

in the PD signals which are not normally represented in DWT. 

 

 
Fig. 3. General architecture of the WPT 

 

In other words, unlike the DWT, the WPT decomposes both the 

DCs and the ACs simultaneously at every level. Therefore, the 

WPT has the same frequency bandwidth in each resolution. 

This enables the WPT to preserve the information in the 

original PD signals, resulting in robust features. The general 

architecture of the WPT decomposition is shown in Fig. 3. The 

tree is typically a binary tree, where each node has both DCs 

(right sub-node) and ACs (left sub-node).  In practice, WPT 

decomposition is achieved via a quadrature mirror filter pair 

(low-pass and high-pass). Let the wavelet packet function be 

given by: 

 

       撃珍┸賃津 岫t岻 噺 に棚【態V樽岫に棚t 伐 k岻                                     (3) 

 

where 倹 is a scaling parameter, 倦 and 券 are a translation and 

oscillation parameters respectively. And the scaling and 

wavelet function represented by剛岫建岻  and 閤岫建岻 respectively, 

then the wavelet filters can be constructed using the following 

expression [36]: 

 

        剛岫建岻 噺 ヂに デ 訣鎮剛岫に建 伐 倦岻賃                                 (4) 

 

        閤岫建岻 噺 ヂに デ 訣朕剛岫に建 伐 倦岻賃                                (5) 

 

where 訣鎮 and 訣朕 are the low-pass and the high-pass filters 

respectively. The scaling and wavelet functions are equivalent 

to the first two wavelet packet functions given as:  

 

                                    撃待┸待 待 岫建岻 噺 剛岫建岻                             (6) 

 

               撃待┸待 怠 岫建岻 噺 閤岫建岻                             (7) 

  

This implies that for 券 噺 ど┸な┸に┸ ┼┻, the wavelet packet functions 

can be expressed as: 

  

             撃珍┸賃態津岫建岻 噺 ヂに デ 訣鎮撃珍貸怠┸賃津 岫に建 伐 倦岻賃                        (8) 

 

             撃珍┸賃態津袋怠岫建岻 噺 ヂに デ 訣朕撃珍貸怠┸賃津 岫に建 伐 倦岻賃                    (9) 

 

Therefore, features can be extracted from both DCs and ACs 

at different levels to obtain valuable information. In [37], the 

WPT was used to decompose PD signals into multiple scales, 

and extract PD features for PD classification. In this work, WPT 

is used for locating PD sources. 

 

C. Feature Extraction of PD Signals using WPT 

The Wavelet Packet Transform is introduced as an 

alternative method of extracting the desired location dependent 

features from PD signals. First, the PD data is decomposed via 

the WPT to extract the time-frequency-dependent information. 

Thus sequenced-ordered wavelet packet coefficients for the 

wavelet packet transform nodes at each level of decomposition 

are obtained. The standard choice for depth of decomposition 

level is specified as a positive integer: 4 or floor (log2 (length 

(signal))), whichever is smaller [37]. In our case, the transform 
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level is set to 4 since the signal is long. The 4-level WPT 

decomposition generates a tree with 16 terminal nodes, 

corresponding to the frequency sub-bands. Features are defined 

based on the wavelet packet node coefficients. For any function 血, the wavelet packet coefficient is given by: 

 

       懸珍┸津┸賃岫建岻 噺 極血┸ 撃珍┸賃津 玉 噺 極血┸ に珍 態エ 撃津岫に珍岻玉                     (10) 

Each 懸珍┸津┸賃  coefficient measures a specific sub-band frequency 

content, controlled by the scaling parameter j and the oscillation 

parameter 券, of a signal around the time instant に珍建. Unlike 

discrete wavelet transform, the filtering operations in wavelet 

packet transform, are also applied to the wavelet, or detail 

coefficients. The frequency-localised filter; Fejer-Korovkin 

wavelet has been shown to be a good approximation [38].  The 

result is that wavelet packets provide a sub-band filtering of the 

input signal into progressively finer equal-width intervals. At 

each level 倹, the frequency axis is divided into に珍 sub-bands.  

The sub-bands in Hertz at level 倹 are approximately 

           岷 津捗濡態乳甜迭 ┸ 岫津袋怠岻捗濡態乳甜迭 岻                                     (11)  

where 券 噺 ど┸な┸ ┼ ┸ に珍 伐 な and 血鎚 is the sampling frequency.  

 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Fig. 4. PD wavelet packet node energy distribution for the 4 

de-noised pulses in Fig. 2 (a) pulse 1-position 1 (b) pulse 2-

position 1 (c) pulse 3-position 2 (d) pulse 4-position 2 

 
(a) 

 
(b) 

Fig. 5. Normalized signal energy by node for (a) signals in 

Fig. 4a/b, and (b) signals in Fig. 4c/d. 

 

The wavelet packets have the added benefit of being an 

orthogonal transform, which means the energy in the signal is 

preserved and partitioned among the sub-bands as mentioned 

earlier. Therefore, the wavelet packet node energy can represent 

the characteristics of PD signals, and it is defined as  

 

             結珍┸津 噺 デ 懸珍┸津┸賃態賃                                      (12) 

This measures the PD signal energy contained in each sub-band 

indexed by parameters 倹 and 券. Here, we refer to each (倹┸ 券) as 

a wavelet packet node. The sum of the energy over all the 

packets nodes equals the total energy of the signal. 結珍┸津 can be 

normalized over the total energy, representing the energy of 

each packet. However, in this work, our interest is in the sub-

band energy. As an illustration, Fig. 4 depicts the energy 

distribution computed based on all coefficients in each wavelet 

packet node for four de-noised PD signals represented in Fig. 2.  

Fig. 2 shows the temporal signature of four distinct PD pulses 

at two different locations. And will be explained more fully in 
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Section III. Specifically, Fig. 4 a/b depicts the energy profile of 

two distinct pulses transmitted from the same location (location 

1), and Fig. 4 c/d depicts the energy profile of another two 

pulses transmitted from a second location (location 2). By 

examination of packet nodes 1 to 3 (first three bars in Fig. 4), it 

is evident that subplots a and b are very similar, these are 

distinct signals from the same location. Likewise, subplots c 

and d are very similar, these represent two distinct pulses from 

a second location. However, the signals from a or b are distinct 

from those of c or d. Thus, the wavelet packet node energy 

distribution represents an excellent set of features for PD 

localization because it is (i) time invariant, and (ii) location 

dependent. It is important to identify the frequency bands that 

contain most of the PD pulse energy. PD signals are known to 

have a very short duration (nanosecond), which implies a high 

frequency content. However, there are always dominant 

frequency bands that contain greater pulse energy in the entire 

spectrum. The relative energy by node shown in Fig. 5  reveals 

the nodes with higher percentage of pulse energy, indicating 3 

frequency passbands of interest. The resulting passbands 

emphasize frequencies between 62.5 – 250 MHz, which 

contains large portions of the PD signal energy. The lower and 

upper frequencies of each wavelet packet frequency band are 

presented in Table 1. In the presence of noise the PD energy 

will be buried in noise in some frequency bands making it a 

challenge to find where PDs lie. The significant advantage of 

the proposed WPT technique lies in its ability to identify these 

frequency bands even in noisy PD signals. Given noisy PD 

signals as shown in Fig. 1, it has been demonstrated that the 

wavelet packet transform identifies the frequency bands with 

most of the PD pulse energy as wavelet packet nodes at the 

terminal level using (12).  The energy distribution of these noisy 

signals in the frequency bands after transformation is as shown 

in Fig. 6. This demonstrates the robustness of the proposed 

technique in the presence of noise. In this work, each node 

energy equivalent to energy in a frequency passband, represents 

an individual PD feature component.  
 

Table 1.WPT-based extracted PD frequency bands  

 Lower frequency Upper frequency 

BAND 1 62.5 MHz 125 MHz 

BAND 2 125 MHz 187.5 MHz 

BAND 3 187.5 MHz 250 MHz 

 

This work is based on the assumption that all PD features 

extracted using the WPT provide meaningful information for 

inferring the PD location. To demonstrate that this is a 

reasonable assumption, Fig. 7 (a-c) shows how the maps of the 

PD features at each of the 3 antennas vary with location. The 

effect of multipath and signal distortions add to the unique 

signature created at different locations. 

 

            
(a) 

 
(b) 

 

(C) 

 
(d) 

Fig. 6. PD wavelet packet node energy distribution for the 4 

noisy pulses in Fig. 1 (a) pulse 1-position1 (b) pulse 2-

position1 (c) pulse 3-position 2 (d) pulse 4-position 2. 

    

(a) 
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(b) 

   

(c) 

Fig. 7.Spatial representation of WPT-based PD energy in band 

1. 

III. EXPERIMENTAL PROCEDURE 

In order to evaluate the feasibility of using the WPT-based 

frequency domain PD features in conjunction with machine 

learning ensembles to locate a PD source, an experiment was 

conducted in the laboratory at the University of Strathclyde 

with approximate dimensions of 19.2m x 8.4m. This 

environment is characterized by multipath propagation which is 

a result of cluttered objects including metallic ones. Although 

the radio environment within the laboratory cannot be expected 

to approximate that within an electrical substation, it is 

sufficiently complex to enable evaluation of the PD localisation 

techniques being investigated. The floor map is shown in Fig. 

8. On the map, three receiver sensors indicated by antennas are 

positioned at random with considerable distance between them 

whereas reference (training) and test locations represented as 

(blue) circles and (red) diamond marks respectively are defined 

on a grid. These training and test locations simulate PD sources 

and are so called given that they represent different sets of data 

to be used in this work. At every training and test location, PD 

emulated signals are generated and recorded. A pulse signal 

generator was used to emulate PD signals in this experiment. 

The pulse generator is capable of generating sub-nanosecond 

current pulse which was fed to a monopole antenna. The 

radiating monopole antenna therefore represents an artificial 

PD source. Commercial-off-the-shelf Omni-directional 

antennas operating at 173MHz were used to capture the 

generated PD signals.  The frequency response of the antennas 

is depicted in Fig. 9.  

 

 
 

Fig. 8. PD measurement grid 

 
Fig. 9. Antenna frequency response 

 

These sensors were connected to a multichannel digital 

oscilloscope where the PD pulse traces were recorded for 

further analysis. 20 samples of PD signals were generated and 

collected for each of the 144 reference (training) locations (blue 

circles) to build a training database. The training points were 

separated by 1m on a uniform grid. For testing the PD 

localization scheme developed in this paper, 20 PD signal 

measurements were collected at each of the 32 distinct test 

locations (red diamonds) on the same grid in Fig. 8. The spacing 

between the test points is 2.5m. This setup ensures that the 

20x144 training and 20x32 testing samples are disjoint enough 

to provide realistic results. A sample of the PD emulated pulse 

and the received pulse captured by the sensors is as shown in 

Fig. 10.  

 

 
Fig. 10. Response of the receiver sensor and the emulated PD 

pulse 
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IV. MACHINE LEARNING-BASED PD LOCALIZATION 

METHODS 

A. Regression Tree-Based PD Localization Method 

The Regression Tree is one of the most efficient machine 

learning algorithms used for predictions [39] [40] [41]. It is 

considered a variant of a binary decision tree model composed 

of linear regression functions at the leaf nodes. In this work, it 

is designed to learn and approximate the nonlinear function (PD 

locations/WPT-based PD features) by piecewise linear 

functions at the leaf nodes. In other words, the nonlinear 

mapping of PD features to PD location coordinates is handled 

by splitting the problem into a set of smaller problems 

addressed with simple linear predictors. Fig. 11 shows the 

architecture of a regression tree. Each node in the tree is 

designed to split the data so as to form clusters where accurate 

predictions can be performed with simple models. During 

training, a PD regression tree model is built top-down from the 

root node through binary recursive partitioning, which is an 

iterative process that splits the PD training data (PD 

features/location) into subsets that contain features with similar 

values. The parameters of the tree such as number of splits are 

optimized during training. A sum of squares reduction criterion 

is used in partitioning the data.  

 

 

 

 
 

Fig. 11. General architecture of a regression tree. 

 

The algorithm selects the split at each node that minimizes; 

 鯨鯨 噺 デ 岫岫捲┸ 検岻沈 伐 岫捲┸ 検岻眺岻態眺 髪 デ 岫岫捲┸ 検岻沈 伐 岫捲┸ 検岻挑岻態挑    (13) 

where 岫捲┸ 検岻琢  and 岫捲┸ 検岻宅 are the estimated values for the right 

and left nodes respectively. This process continues until it 

reaches the terminal (leaf) node. The terminal nodes of the tree 

which represents a cell of the partition, store the models that 

approximate the best desired output. Suppose the training points 

at the terminal node are 岫堅沈 ┸ 岫捲┸ 検岻沈岻┸ 岫堅態┸ 岫捲┸ 検岻沈岻┸┻ ┻ ┻ 岫堅津 ┸ 岫捲┸ 検岻津岻┸ then the local model for the terminal node is 

 岫捲賦┸ 検賦岻 噺 怠津 デ 岫捲┸ 検岻沈津沈退怠                          (14)  

                 

 In the localization phase, the location coordinate of any PD 

sample (features) can be estimated by following through the 

branches of the obtained tree model. Despite the simplicity that 

comes with the implementation of regression trees, the issue of 

overfitting affects its performance. When fully grown, it may 

lose some generalization capability.  

 

B. Bootstrap Aggregating Method for PD Localization 

Bootstrap aggregating [42] [43] [44], also known as bagging 

is a machine learning ensemble algorithm that combines a 

multitude of decision trees in order to improve performance. 

For PD localization, bagging is used to model the non-linear 

relationship between WPT-PD features and PD location. 

Instead of growing a single tree from the complete data set 

during training, bagging grows many trees using bootstrap 

(equiprobable sampling with replacement) samples of the PD 

data. Each sample is different from the original data set, yet 

resembles it in distribution and variability as a result of random 

sampling. Different tree models are grown for each bootstrap 

sample. Mathematically, given a training input set 迎 噺 堅怠┸┼ ┸堅津  
and corresponding  training  output set  岫隙┸ 桁岻 噺岫捲┸ 検岻沈 ┸┼ ┸岫捲┸ 検岻津, bagging repeatedly (M times) selects subsets 

(randomly sample with replacement) of these training set  and 

builds trees with each subset. For 兼 噺 な┸ ┼ ┻ ┸ 警┺ bagging builds 建陳 models.  After training, the location estimate for unseen 

sample 堅嫗 can be taken as the average estimates of all the 

individual tree models on  堅嫗 given as; 

 

            建┏ 噺 怠暢 デ 建陳岫堅嫗岻暢陳退怠                                 (15)  

The performance of bagging is affected by the particular 

bootstrap sample size used. Therefore, Bayesian optimization is 

used to tune the model parameters.  PD location is then 

determined by taking the average of the outputs from all the 

trees. Random sampling helps overcome the problem of 

overfitting in regression trees and improves predictions. 

However, there exist high correlations in prediction among 

some of the PD localization subtrees, limiting the performance 

of the bagging regression trees. This motivates the use of a 

robust PD localization algorithm: random forest.                                           

 

C. Random Regression Forest PD Localization Method 

Random Regression Forest (RRF) is an ensemble of 

different regression trees widely used in prediction [45] [46] 

[47]. The main idea of RRF is to grow many regression trees 

based on some randomly selected features (sub-spacing) from 

randomly selected samples with bootstrap strategy.  In the 

context of PD localization, each tree is regarded as a function 

approximation problem consisting of a non-linear mapping of 

the PD input features onto the x-y coordinates representing PD 

location. The nonlinearity is achieved by dividing up the 

original PD localization problem into smaller ones, solvable 

with simple models. A multivariate RRF model is developed to 

locate PD source to its x and y coordinate. 
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Fig. 12. Flowchart for Random Forest PD Localization 

The RRF-PD localization technique consists of two phases: 

a training phase and a location estimation phase. In the training 

phase, RRF grows multiple regression trees from bootstrap 

samples of the training data. Each sample subset comprises PD 

features and associated ground-truth locations. At each split or 

node, only a random subset of the PD features is considered. 

The size of the forest is fixed and all the trees are trained in 

parallel. During training, the parameters of the model are 

optimized. 

In the location estimation phase, each previously unseen PD 

features sample is given as an input to each tree in the forest 

starting at the root and the corresponding sequence of tests 

applied. Each tree gives an estimate of the location coordinate 

and the final prediction is taken as the average of the trees 

predictions. The flowchart of the RRF framework is as shown 

in Fig. 12. The selection of random samples of features at each 

split produces uncorrelated subtree predictions. Combining 

multiple decorrelated PD-tree models increases robustness to 

variance and reduces overall sensitivity to noise. This is 

demonstrated by the results obtained. 

V. LOCALIZATION RESULTS AND DISCUSSION 

This section provides empirical evaluation of the 

performance of the PD localization methods described in 

section 3. The PD data used for testing is taken from a set of 32 

different grid locations, independent of the training set, but 

obtained with the same procedure. 

 

A. Evaluating Localization Accuracy 

Localization errors for each PD location model developed 

are shown in Table 2. The x and y coordinate error columns 

represent the error in the x and y direction respectively, 

however, these columns may not correspond to the same 

physical location. For example, for RT-best the x-error is 0 for 

one location but has a non-zero y value. Similarly, for a 

different location y is 0 but has a non-zero error. Errors in x and 

y coordinates are defined as absolute differences between 

predicted and true locations. Column 3 represents the overall 

localization error (Euclidean distance between the predicted 

and true locations). Despite the data variability and the area 

covered, a mean error of 1.9 m obtained is sufficient for PD 

location. The models are trained on 2880 PD data 

measurements and tested on 640 PD data measurements. The 

normalized WPT-based features extracted from the 2880 

measurements with corresponding locations are used as input to 

the models for training. The maximum number of PD features 

used at each split is 1/3 of the total number of features. In this 

work, 1000 trees are grown. This optimal number is estimated 

internally during the computations.  

 

Table 2. Statistics of PD location error for each method  

PD Location Method X-

coordinate 

error (m) 

Y-

coordinate 

error (m) 

Location 

Error 

(m) 

Reg. Tree (best) 0.0000 0.0000 0.5000 

Reg. Tree (worst) 8.5000 6.5000 8.9253 

Reg. Tree (mean) 1.3712 1.9808 2.7017 

Reg. Tree (variance) 2.0257 2.8912 3.4191 

    

Bootstrap (best) 0.0020 0.0029 0.0829 

Bootstrap (worst) 5.6550 6.0736 6.2197 

Bootstrap (mean) 0.9452 1.5213 1.9839 

Bootstrap (variance) 0.5786 1.7839 1.6330 

    

RRF (best) 0.0031 0.0021 0.0789 

RRF (worst) 5.1260 5.7435 6.0531 

RRF (mean) 1.0019 1.4296 1.9152 

RRF (variance) 0.5512 1.4633 1.3930 

 

Fig. 13 shows the estimated PD source location (red 

diamond) with the lowest localization error for each model 

using WPT-based features. The blue dot represents the actual 

PD source position. The black squares represent emulated 

sensor node positions. The results show that the minimum 

location error is superior when ensemble methods are applied 

on the WPT-based features. Regression tree can locate the exact 

x or y coordinates with zero error in some instances as shown 

in Table 2 but fails to provide a robust model, with worst 

location error as high as 8.9 m.  This is shown in Fig. 14. 

Fig. 15 further illustrates the difference in accuracy among 

the three models by comparing the cumulative density functions 

(CDFs) of location errors. It can be observed that random forest 

increased the overall confidence probability of errors within 3 

m to 91 % which is significantly larger than the probability of 

70 % achieved by regression tree. This is however unsurprising 

as the regression tree is a weak learner. Random forest has also 

reduced the mean of location errors by 29% compared to 
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regression tree. Given that the spacing between test locations is 

2.5m, the proportion of test data with a localization error below 

this value is also evaluated. For the regression tree method, 68% 

of test points were below 2.5m. For the bagging algorithm, 75% 

are below, and for the random forest 78% are below. 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 13. PD best location estimates: (a) Random Forest, (b) 

Bagging, (c) Regression Tree  

 

 
Fig. 14. Regression Tree PD worst location estimate  

 

 
(a) 

 

 
(b) 

 

 
(c) 

 

Fig. 15. CDF of location errors in (a) x-coordinate (b) –
coordinate (c) overall  

B. Evaluating model Robustness 

Another key aspect of the proposed PD location scheme is 

its robustness. By comparing the location accuracy in x and y 

coordinates and the overall precision, the ensemble methods 

provide more robust models for PD localization. Furthermore, 

Fig. 16 shows the variance in location error of the models using 

training and testing datasets. Random forest, in particular, 

showed a much lower variance between training and testing 

predictions, making it more robust compared to regression tree 

and bootstrap aggregating models. Fig. 17 shows PD 

localization results from 3 random locations. Each discrete 

point corresponds to a single location estimate of a radio 

measurement. Also shown for the three PD localization models 

is the confidence ellipse that contains 95% of the estimates for 

each location. For point (2.5, 1.5) the regression tree estimates 

fall on a straight line. This means that the covariance in the y-

direction is zero. Therefore, the width of the ellipse is zero in 

that direction. The size of the ellipse is an indication of the 

precision of the estimate.  Random forest shows a more precise 

estimate with a smaller confidence ellipse. The large ellipses of 
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Regression Tree indicates a less precise location estimate. This 

further demonstrates the robustness of the proposed WPT-based 

Random Forest PD localization scheme.  

 

 
 

Fig. 16. Variance of location error 

 

 
 

Fig. 17. PD location results for 3 different points 

 

C. Comparison with Related Works 

There are other substation-wide PD localization schemes in 

literature that are worth comparing with our proposed solution. 

In [48], the authors developed a Software Defined Radio (SDR) 

PD localization system based on received signal strength to 

infer PD location. However, they presented results for a single 

location estimate which we assumed to be the best location 

estimate; this approach yielded a location error of 1.3 m. 

Another RSS-based PD localization system was proposed in 

[49]. Here, the system involves estimating the path loss 

exponent and converting the RSS into distance. Two scenarios 

were created in terms of the number of receiving sensors used 

for capturing PD signals; seven sensors for scenario 1 and eight 

sensors for scenario 2. The test site was an 18m X 18m empty 

room. For the nine test locations, the best estimated location 

error for scenario 1 and scenario 2 are 0.78 and 1.06 m 

respectively. In another work [50], a PD localization scheme 

based on RSS fingerprint was proposed for a 24m2 test bed with 

grid spacing of 1m X 1m. The localization phase includes two 

stages of processing: a preliminary localization stage where 

particle swarm optimization and back propagation neural 

network are used, and a more accurate localization stage where 

compressive sensing is employed for accurate localization. 

Their result shows an average localization error of 0.89m with 

maximum error 3.61m. However, this result comes at an extra 

cost of two stages of computation in the localization phase. A 

probability based technique for PD source localization was 

proposed in [51]. Time difference of arrival (TDoA) was used 

as PD feature. A test of three PD sources was carried out and 

the result indicates localization errors of 0.56m, 1.59m and 

0.18m for the three sources.  In [52], an automated system for 

PD detection and localization based on Gaussian mixture model 

was presented. Time delay of arrival was used to locate PD 

sources. This work presented result for eight location estimate 

with minimum error of 0.5m and an average location error of 

1.4m. Authors in [53] proposed an RSS-based PD localization 

method to locate power equipment in substation with potential 

insulation defect. This involves two stages of localization: a 

preliminary localization by cluster recognition and compressed 

sensing algorithm. The test site used for this experiment 

measured 24m X 24m with 625 grid points (1m X 1m). Their 

result indicates that the proportion of estimated location errors 

within 3m is ぱひ┻は ガ. Our proposed solution, WPT-based RRF 

PD localization scheme is a simple and low-cost solution for 

PD localization with best estimated location error of 0.31 m. 

Our result also indicates that ひなガ of the PD sources were 

located with error less than 3 m. 

 

VI. CONCLUSION 

A robust PD localization scheme based on the wavelet 

packet transform and the ensemble learning method has been 

considered. The scheme utilizes the PD measurements captured 

with sensors placed in the vicinity of the discharge source, as 

follows.  

(1) The measured PD signals are first decomposed using WPT 

decomposition to extract PD location dependent features. The 

WPT selects the frequency bands with equal bandwidth where 

the energy of the noisy PD signal is concentrated through a 

transformation such that the retained signal information is 

maximized in order to ensure high accuracy.  

(2) The WPT-based PD features are then used to build the 

ensemble models.  

(3) PD location is obtained via a multivariate regression forest 

algorithm which provides a more robust and accurate approach 

compared to regression tree and bootstrap aggregating methods.  

In this study, regression forest increased the overall 

confidence probability of errors within 3 m to 91% compared 

to 70% achieved by regression tree; an improved accuracy of 

29%. The results suggest that the proposed PD localization 

method described in this paper represents a practical approach 

to PD localization. The simplicity and robustness of the 

technique makes it worth considering in future implementations 

of the smart grid.      
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