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Abstract: We report an external cavity diamond Raman laser operating at 2.52 ȝm, pumped 

by a 1.89 ȝm Tm:LiYF4 (YLF) laser. The maximum pulse energy at 2.52 ȝm is 1.67 mJ for 

4.4 mJ of pump, yielding a conversion efficiency of 38%. The best slope efficiency is ~60% 

and the Raman pulse duration is between 11 and 15 ns for ~33 ns pump pulse duration. The 

peak power at 2.52 ȝm is >100 kW. This demonstration of a Thulium laser pumped diamond 

Raman laser paves the way for accessing the industrially important wavelength region of ~2.5 

ȝm. 

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further 

distribution of this work must maintain attribution to the author(s) and the published article�s title, journal citation, 

and DOI. 

1. Introduction 

Lasers operating in the short-wave infrared (SWIR or IR-B: 1.4-3 ȝm [1]) region of the 

electromagnetic spectrum are important for applications including sensing [2], free space 

communications [3] and materials processing [4]. However, SWIR solid-state laser 

technology, especially in the region of 2-3 ȝm, has yet to fully mature, relying on a limited 

range of doped-crystalline [2,5,6], Raman [7�11], and fiber lasers [12,13]. As a result, there is 

a continuing interest in new means to access this important wavelength region, either directly 

or by wavelength conversion. 

A major driver for this is that the absorption of many clear (transparent in visible) plastics 

used in medicine and aerospace is significant at wavelengths longer than ~2.45 ȝm [4,14]. A 

high power laser operating in this region would enable processing of such plastics without 

prior modification (e.g. Butt welding [4]). Diamond Raman lasers (DRL) pumped by Thulium 

lasers (~1.9 ȝm) are an appealing solution to this problem, producing a 1st Stokes output at 

~2.55 ȝm based on wavelength conversion of a mature laser technology. 

Moreover, the high Raman gain coefficient [15,16], unrivalled thermal conductivity [17], 

and high damage threshold [18,19] of diamond make it an excellent candidate for high power 

applications. This crystal also has a very broad transmission range extending from ultraviolet 

to THz [20]. There is, however, a reduction in transmission between ~2.5 and ~6.5 ȝm caused 

by multiphonon absorption [20]. This feature limited the efficiency of a diamond Raman laser 

operating in the 3.38-3.80 ȝm wavelength region to 15% [21]. 

In this work, a Tm:YLF laser operating at ~1.89 ȝm was used to pump a DRL at ~2.52 

ȝm. This wavelength is located at the edge of multiphonon absorption in diamond and the 

results reported here demonstrate the feasibility of efficient Raman oscillation in this spectral 

region with a longer term view of power scaling for implementation in industrial applications, 

particularly clear plastics processing. As a next step in power scaling the DRL, it is planned to 

use a high power Tm fiber laser as a pump source. The majority of Tm fiber lasers tend to 

operate more efficiently at wavelengths longer than ~1.91 µm due to the more efficient cross-

relaxation processes at these wavelengths [22]. This increases the Tm fiber laser wall plug 

efficiency. Pump wavelengths longer than ~1.91 µm would result in the DRL oscillating at 

wavelengths > 2.56 µm. However, multiphonon absorption in diamond increases sharply 

above ~2.55 µm and therefore efficient Raman oscillation in this region would be 
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compromised. As a result, the choice of output wavelength for a Tm fiber pumped DRL will 

be a compromise between the efficient operation of the Tm fiber pump laser and the 

multiphonon absorption in diamond at the Raman wavelength, which is crucial for the 

efficiency of the Raman laser. In addition to being a feasibility study for future fiber laser 

pumping, this work also investigates the effect multiphonon absorption has on the DRL 

performance, which will subsequently define the long wavelength limit for the Tm fiber pump 

laser and the overall wall plug efficiency of the �Tm pumped-DRL� system. 

2. Experimental setup 

The Tm:YLF pump laser (Fig. 1) consisted of a 24 mm long, 2 at.% Tm:YLF crystal (with no 

anti-reflection (AR) coatings) held in a water-cooled brass mount and placed in a 145 mm 

long laser cavity. The Tm:YLF was pumped by a 795 nm diode laser and q-switched using a 

water-cooled acousto-optic modulator (AOM). A 1 mm thick birefringent filter (BRF) was 

inserted at Brewster�s angle to control the output wavelength. No reasonable tunability was 

achieved due to the large thickness of the BRF [23]. The output wavelength was centered at 

~1888 nm; however, it drifted over ~5 nm (from 1886 to 1891 nm), we believe due to the 

unstablized temperature and humidity of the lab. Without the BRF in the cavity, the output 

wavelength shifted to ~1.91 µm. The linewidth of the Tm:YLF laser, after inserting a 1 mm 

thick quartz etalon in the cavity, was between 0.37 and 0.66 nm. The maximum pulse energy 

was ~5.5 mJ at 5 Hz repetition rate and the pulse duration, measured with a 10 GHz InGaAs 

detector, was ~33 ns. This equates to a peak power of ~0.17 MW. The output was 

horizontally polarized. 

 

Fig. 1. Layout of the experimental setup, including both the Tm:YLF pump laser and diamond 

Raman laser. 

The Tm:YLF laser was used to pump a DRL at ~2.52 ȝm (Fig. 1). Two Brewster-cut 

diamonds with lengths of 4- and 5.6 mm were used, giving an overall diamond length of 9.6 

mm. The diamonds had low-nitrogen content, low birefringence and where grown via 

chemical vapor deposition by Element Six (UK) Ltd. Both crystals were cut for pump 

propagation along a <110> direction. The pump polarization was parallel to a <110> axis of 

the 5.6 mm crystal and a <111> axis of the 4 mm long diamond. Here it should be noted that 

due to the unavailability of a longer crystal, two different diamond crystals needed to be used 

in order to reach Raman threshold and the two crystals described above were the only two 

available. 

These diamonds were separated by a small air-gap and placed within a 12.5 mm long 

cavity. A curved mirror (50 mm radius of curvature, highly transmissive (HT) for ~1.9 µm 

and highly reflective (HR) for ~2.55 µm) was used as input coupler, whereas two different 

plane mirrors were used as output couplers (OC). The 1st OC had 90% reflectivity at the 

pump wavelength and 93.5% reflectivity (i.e. 6.5% output coupling) at the Stokes 

wavelength, whereas the 2nd OC had 80% reflectivity (20% output coupling) at both pump 

and Stokes wavelengths. 
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The output of the Tm:YLF laser was focused into the diamonds (Fig. 1) using two 

different CaF2 lenses, both AR-coated for ~1.9 µm, with focal lengths of 75- and 100 mm, 

yielding beam radii at focus of 52.5- and 70 µm, in free space, respectively. The beam quality 

of the pump was measured with the knife-edge method to be 1.2. The corresponding confocal 

parameters were ~7.8 mm and ~13.8 mm respectively. The change in the beam dimensions 

due to the Brewster-cut nature of the diamonds was taken into account in all the subsequent 

calculations in this work. The intracavity Raman mode radii were calculated with the ABCD 

matrix method to be ~137x304 µm, varying within ± 5 µm along the length of the diamonds. 

3. Results and discussion 

The energy transfer characteristics of the DRL for both focusing lenses and both OCs are 

presented in Fig. 2. The best slope efficiency was 60 ± 4% for the 75 mm lens with 20% 

output coupling, whereas the worst slope efficiency was 36 ± 3%, for the case of the 75 mm 

lens and 6.5% output coupling. The slope efficiencies in the case of the 100 mm lens were 44 

± 4% and 46 ± 4% for 6.5% and 20% output coupling respectively. The maximum output 

pulse energy was 1.67 mJ for 4.4 mJ of pump, for the case of the 100 mm lens and 20% 

output coupling, yielding a maximum conversion efficiency of 38%. It should be noted that 

with a 6.5 mm long AR-coated cuboid diamond being placed in the cavity instead of the pair 

of Brewster-cut diamonds, damage of the coatings was observed at a pump pulse energy of 

~0.5 mJ with no Raman oscillation. 

Raman laser operation is achieved at lower incident peak intensities (top axes of Figs. 

2(a), 2(b) and Fig. 2(c)) with the 100 mm lens. The DRL operates from ~0.17 to ~0.37 

GW/cm2, whereas for the 75 mm lens it operates from ~0.28 to ~0.68 GW/cm2. This is 

attributed to the pump confocal parameter of the 75 mm lens (7.8 mm) being smaller than the 

overall diamond length (9.6 mm). This limits the extent to which tighter focusing can be used 

to increase DRL efficiency. 

 

Fig. 2. Energy transfer characteristics for both output coupling levels used for the DRL with 

(a) 75 mm lens and (b) 100 mm lens. (c) � the conversion efficiency from pump to Raman 

energy as a function of the incident peak intensity for both lenses and output coupling levels 

used. Solid and dashed lines in (a) and (b) are the results of linear fits to the experimental data 

for the 20% (solid line) and 6.5% (dashed line) output mirrors. 

The large error bars and data spread on Fig. 2 are indicative of a lack of pulse-to-pulse 

stability. The Raman and pump pulse energies were not measured simultaneously, therefore 

the instabilities in the pump pulse energies (horizontal error bars in Figs. 2(a) and 2(b)) may 

have resulted in significant jitter in the Raman pulse energies. Additional factors that are 

likely to play a role in the DRL output pulse energy instabilities are threefold. First, the 

longitudinal mode-beating in the Tm:YLF pump laser. This was observed (with a fast detector 

� oscilloscope combination, 10 and 13 GHz bandwidth respectively) in parallel to the DRL 

operation. The mode-beating in the pump laser resulted in more unstable performance of the 

DRL. Second, the DRL is operating relatively close to threshold with the highest pump pulse 
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energies being less than two times the threshold energies. This will exacerbate the effect of 

variations in pump pulse energy. Third, the Raman linewidth of CVD diamond was measured 

to be 1.5 cm−1 [24,25] (0.54 nm at a wavelength of 1888 nm). Therefore, the pump laser 

linewidth, which varies between 0.37 and 0.66 nm, will lead to pulse-to-pulse variation in 

Raman gain since pump linewidths larger than the Raman linewidth lead to a concomitant 

reduction in gain [16,26]. 

Due to this high jitter in the Raman pulse energies, it was challenging to measure the M2 

factor of the Raman laser beam quality with sufficient precision using the knife-edge method 

(the only method available to us at the time of experiments). It is likely, however, that the 

Raman beam quality was no worse than that of the pump (M2 = 1.2), similar to what was 

observed in [21]. 

Temporal pulse profiles for DRL output pulse energies of ~0.3 and ~1 mJ, are shown in 

Fig. 3. These include traces of the incident pump, the depleted pump after one pass and the 

Stokes oscillation. In all cases, the 75 mm lens and 20% output coupling were used. Pulse 

traces from other focusing lens - output coupling combinations were similar. For a ~33 ns 

pump pulse duration, the Stokes pulse durations were always in the range of 11-15 ns. This 

resulted in peak powers greater than 100 kW. The residual pump traces were calibrated 

against the leading edge of the incident pump pulse profile and they show a reduction in 

instantaneous power once Raman threshold has been reached, before maintaining a relatively 

stable power for the rest of the Stokes pulse duration. At DRL output pulse energies above 1 

mJ, very strong depletion of the pump is observed (Fig. 3(b)), indicating efficient conversion 

to Stokes radiation. 

 

Fig. 3. Temporal pulse profiles for incident pump, single-pass depleted pump and Stokes 

oscillation for (a) ~0.3 mJ DRL output pulse energy and (b) ~1 mJ DRL output pulse energy. 

The spectra for the Tm:YLF pump and diamond Raman lasers collected at Raman output 

pulse energy of ~0.5 mJ are presented in Fig. 4. These were collected with a Spectral Products 

CM110 monochromator with a 600 Grv/mm grating and 20 µm slits (resolution of 0.11 nm at 

1890 nm and 0.14 nm at 2525 nm). For each laser (Tm:YLF pump and DRL), two cases are 

presented to illustrate the effect the changes in the pump spectrum have on the Raman output. 

Here it should be noted that the spectra for the Tm:YLF laser and the DRL were collected in 

two separate experimental runs. As a result, the spectrum labelled �Tm:YLF 1� is not directly 

correlated to the spectrum labeled �DRL 1�, and similarly for �Tm:YLF 2� and �DRL 2�. 

Rather, two spectra were selected for each laser to illustrate that the wavelength drift in the 

Tm:YLF laser results in a proportional drift in the DRL wavelength. The FWHM linewidths 

of the pump spectra were measured to be between 0.37 and 0.66 nm. An accurate 

measurement of the DRL linewidth was difficult due to the �tail� feature on the short-

wavelength side. It takes several minutes to collect a Raman spectrum at the laser pulse 

repetition rate of 5 Hz. Therefore, this tail might just represent statistics of the spectral 

distribution of the output DRL wavelength due to instabilities in the output spectral 

characteristics. 
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The multiphonon absorption spectrum in similar low-loss diamond was measured with an 

FTIR spectrometer (Cary 630) and is presented in Fig. 5. The output wavelength of the DRL 

presented in this work (~2.52 µm) lies at the onset of this multiphonon absorption. The 

absorption coefficient of diamond at this wavelength was ~0.11 cm−1. This yields ~19% round 

trip intracavity losses for our diamonds (total length of 9.6 mm). These high intrinsic losses 

limit the conversion efficiency of the DRL. 

 

Fig. 4. Time averaged spectra of Tm:YLF pump and DRL collected with a monochromator. 

Pumping at longer wavelengths, which would shift the output of the DRL deeper into the 

multiphonon absorption region, was investigated by rotating the BRF in the Tm:YLF cavity 

from Brewster�s angle to normal incidence. This shifted the pump wavelength to ~1.91 µm 

(from ~1.89 µm) which would correspond to a 1st Stokes Raman wavelength in diamond of 

~2.56 µm. Both the output wavelength of the DRL presented in this work (2.52 µm) and the 

expected wavelength of 2.56 µm when pumping at 1.91 µm are illustrated in the inset of Fig. 

5. 

 

Fig. 5. Absorption coefficient of diamond from 2.5 to 15 µm measured by FTIR. Inset shows 

zoomed in view of the absorption coefficient in the vicinity of 2.5 to 3 µm. 

The DRL was pumped at 1.91 µm with all the other parameters of the Tm:YLF laser kept 

the same as before except for the pulse duration which was ~40 ns rather than ~33 ns (pulse 

duration at 1.89 µm). Even at the highest available pump pulse energies (~4.5 mJ), which 
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correspond to peak intensities of ~0.54- and ~0.31 GW/cm2 for the 75- and 100 mm lens 

respectively, no lasing action was observed in the DRL at this pump wavelength. This is 

attributed to the higher multiphonon absorption coefficient of diamond at 2.56 µm, which is 

0.26 cm−1. This value is more than double the absorption coefficient at 2.52 µm (0.11 cm−1) 

and yields round trip losses of ~39% for the DRL. 

The Raman laser threshold is reached when the round-trip steady-state Raman gain 

exceeds the round-trip resonator losses [27]: 

 ( )1 2 exp 2 2 1R PR R g I l lα− ≥  (1) 

where R1 and R2 are the reflectivities of the input and output mirrors at the Stokes wavelength, 

gR is the effective Raman gain coefficient at the pump wavelength, IP is the pump peak 

intensity at the threshold, Į is the diamond absorption coefficient at the Raman laser 

wavelength, and l is the length of the Raman crystal. 

Using Eq. (1), an effective Raman gain coefficient [28,29] (geff in Table 1) was calculated, 

for the case of 1.89 µm pumping, for all focusing lens � output coupling combinations using 

the experimental threshold peak intensities from Figs. 2(a) and 2(b) (Ith�1.89µm in Table 1), and 

an absorption coefficient in diamond of 0.11 cm−1 at 2.52 µm. 

Effective Raman gain coefficients [28,29] are associated with the specific laser system 

and are lower in value than material Raman gain coefficients, due to a Raman gain reduction 

factor, which is a product of spatial (or transverse) and spectral overlap factors of the pump 

and Raman emission [28,29]. Differences in spatial overlap can explain variations in the 

effective Raman gain coefficients for different pump focusing lenses: this Raman gain 

reduction factor is lower in the case of the 100 mm lens (since for this lens the pump Rayleigh 

range is longer than the length of the crystals and therefore allows for better mode-matching 

between the pump and Raman beams in the diamonds) in comparison with the 75 mm lens 

(where the pump Rayleigh range is shorter than the length of the crystals). This explains why 

the calculated effective Raman gain was systematically higher in the case of a 100 mm lens in 

comparison with a 75 mm lens (see Table 1). At the same time, effective Raman gain 

coefficients for each focusing lens calculated for two different reflectivities of the output 

couplers (93.5 and 80%), are, within the experimental errors, roughly the same, indicating 

that spatial overlap functions are similar for different output couplers. 

The Raman gain coefficient for diamond of 3.80 ± 0.35 cm/GW at a pump wavelength of 

1.864 µm was measured in [30]. This is higher than the estimated effective Raman gain, 

mainly due to already mentioned spatial and spectral overlap factors. Spectral overlap factor 

takes into account reduction in the Raman gain due to broad linewidth of the pump emission 

in comparison with the Raman linewidth [28]. 

Table 1. Effective Raman gain coefficient and threshold peak intensity 

Lens, 

mm 

OC, 

% 

R1 R2 Ith - 1.89 µm, 

GW/cm2
 

geff, 

cm/GW 

Ith - 1.91 µm, 

GW/cm2 

75 6.5 

20 

1 

1 

0.935 

0.8 

0.32 ± 0.04 

0.40 ± 0.04 

0.45 ± 0.06 

0.56 ± 0.05 

0.65 ± 0.09 

0.67 ± 0.06 

100 6.5 

20 

1 

1 

0.935 

0.8 

0.20 ± 0.03 

0.22 ± 0.03 

0.72 ± 0.10 

1.04 ± 0.14 

0.41 ± 0.06 

0.36 ± 0.05 

Assuming the same effective Raman gain coefficient at the pump wavelength of 1.91 µm 

and an absorption coefficient of 0.26 cm−1 at the corresponding Raman wavelength of ~2.56 

µm (as discussed above, see Fig. 5), the threshold peak intensities at this pump wavelength, 

for all focusing lens � output coupling combinations, were calculated (Ith�1.91µm in Table 1). 

These are higher than the maximum available peak intensities from the Tm:YLF laser (up to 
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~0.54- and ~0.31 GW/cm2 for the 75- and 100 mm lens respectively). Thus, the DRL in its 

current configuration is not expected to oscillate under 1.91 µm pumping. 

As discussed in the introduction, Tm fiber laser pumps offer the potential to power scale 

this DRL. In order to achieve this, the pump wavelength that optimizes the wall plug 

efficiency of the Tm fiber laser / DRL system needs to be identified. By using etalons of 

different thickness in the cavity, we aim to increase the tunability of the Tm:YLF laser in 

order to access more wavelengths in the vicinity of 1.9 µm and so identify the longest 

wavelength at which the DRL can operate efficiently. This information will subsequently 

determine the long wavelength limit for the Tm fiber pump laser. 

4. Conclusions 

In conclusion, the feasibility of infrared external cavity diamond Raman lasers operating in 

the wavelength region of ~2.5 µm has been experimentally demonstrated. The maximum 

output pulse energy was 1.67 mJ for 4.4 mJ of pump, which yielded a maximum conversion 

efficiency of 38%. The Raman pulse duration was between 11 and 15 ns (for ~33 ns pump 

pulse duration) giving peak powers in excess of 100 kW. This represents the first step in 

identifying the optimum wavelength for Tm fibre laser pumped diamond Raman lasers, 

paving the way for power scaling in the industrially important ~2.5 µm region, which has 

considerable implications for the processing of clear plastics. 
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