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Abstract 
 
Decommissioning of offshore platforms is becoming increasingly popular. The removal of these heavy steel structures 

is characterised by high risks that may compromise personnel safety and loss of assets.  The removal operation relies 

on dedicated barges and heavy lift vessels that may descent or capsize because of mechanical or structural failure. The 

knowledge of associated hazards is driven by experience and failure data are often obtained empirically through 

analogous operations, which further introduces uncertainty to the risk analysis. This paper proposes an integrated safety 

analysis approach for conducting decommissioning risk analysis of offshore installations. The approach incorporates 

hierarchical Bayesian analysis (HBA) with Bayesian network (BN) to assess the accident causations leading to futile 

decommissioning operation. First, the overall system failure of a lifting vessel was reviewed with emphasis on where 

safety issues arise. In addition, the failure data obtained from expert judgements were aggregated through statistical 

distribution based on HBA.  The aggregated failure data are then used to conduct dynamic safety analysis using BN, 

to assess and evaluate the risks of offshore jacket removal operations. The accident model is illustrated with a case 

study from Brent Alpha decommissioning technical document to demonstrate the capability of incorporating HBA 

with BN to conduct risk analysis. 

 
 

Keywords: Bayesian networks; decommissioning; safety analysis; offshore jacket structures; hierarchical 

Bayesian analysis. 
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1. Introduction 
 

The decommissioning of offshore oil and gas facility is attracting attention around the world 

resulting in demands for increased lifting vessels’ performance. As a result, heavy lift vessels 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/195295214?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


(HLVs) or dedicated lifting barges are often required. These HLVs and lifting barges may descent 

or capsize if all inherent and external hazards are not fully captured or during unplanned severe 

weather conditions leading to accidents such as collision or loss of stability. 

Some notable lifting operational accidents have been recorded in recent times. For example, 

On 20th August 1990, the West Gamma accommodation jack-up rig also capsized while being 

transported from the Norwegian continental shelf to the German sector. Severe weather caused the 

rig to drift towards the German coast and descent eventually. While lives were not lost, structural 

failure, loss of towline and flooding were identified as the main causes of the accident (Vinnem, 

2007).  

More recently, a typhoon experienced during the CNOOC Offshore Oil 298 project during 

transportation resulted to 68 fatalities in 2006 (Fang and Duan, 2014). Due to these technical and 

environmental challenges associated with heavy lifting operations, it is important to ensure high-

level of safety during decommissioning. However, one major issue is the sparsity of failure data 

on near misses, incidents and accidents related to offshore decommissioning operations. Where 

there are such data, their usage is limited due to vagueness caused by irregular inspection records 

while operational and management of change.  

Many of the risk analysis conducted on already completed decommissioning activities are 

experience-driven and failure data used for such analysis are often obtained from expert 

judgements or from analogous activities such as mining, nuclear and aerospace decommissioning 

domain. The data collected from these sources can only yield desirable outcomes when aggregated. 

In addition, the complete hazard identification and operability analysis on lifting operation 

incorporating offshore jacket removal and HLVs/barges have not been given much attention. 

Although Abdussamie et al. (2018) studied the offshore barges transportation problem with focus 

on hazard identification and fuzzy set theory, the work focused on semi-quantitative risk 

assessment. However, quantitative risk assessment capable of quantifying the risks of 

decommission in its entirety is necessary (Wang and Pedersen, 2007).  

Offshore lifting operation performance measures include collision (or drifting), loss of 

stability (or buoyancy) and ascent (or descent). This performance measures represent important 

inputs during decommissioning planning phase and the ability to predict the risk tolerance level for 

which a futile decommissioning operation is imminent have continue to be desirable, especially for 

HLVs and barges (Van Hoorn, 2008). While the safety of conventional offshore lifting operations 

has been addressed in literature, those relating to decommissioning have not been explored thus 

far. For instance, the Joint Industrial Projects (JIP) studies conducted on safety cultural assessment 

of decommissioning offshore installations in the UK continental shelf between 2005 and 2015 (Fig. 



1), indicated that there have been no fatalities recorded in the North Sea decommissioning projects 

till date but most of the recorded incidents identified structural damage as the predominant cause. 

Therefore, it is necessary to develop a systematic safety approach based on realistic data collection 

and analysis to conduct quantitative risk assessment for this challenging activity.  

 

Figure 1: Decommissioning incidents from 2005-2015 (OGUK 2015). 

 

 

The safety of decommissioning operation is relative, and the context can vary between 

regions due to different weather conditions and associated hazards, making it one of accident-prone 

rare events. The lifting barge and the aged jacket structure to be lifted both present unique hazards. 

For example, the remaining useful life (RUL) of the jacket structure cannot be ascertained and its 

lifting nodes, hidden flaws, flooded members and accumulated hazardous materials inside the 

columns and bracings are all variables of uncertainties. Due to these potential unknowns, the 

probability of futile decommissioning failure would require statistical distribution of data obtained 

from different sources including expert opinions. To achieve this, Hierarchical Bayesian analysis 

(HBA) where all failure data can be aggregated and presented as a mean of a distribution is required 

to successfully predict and mitigate overall failure. Many authors have studied the safety challenges 

of decommissioning offshore oil and gas installations and assessed the associated risks using 

variants of quantitative risk analysis (QRA) techniques such as fuzzy reliability theory within fault 

tree analysis to address subjectivity of failure data (Lavasani et al., 2015; Purba, 2014; Deshpande, 

2011); event tree analysis and its bow-tie extension (Ferdous et al., 2013); Safety critical task 

approach (Bradbeer et al., 2009; Kierans et al., 2004). 

While the conventional QRA techniques have been extensively used in the installation, 

production, drilling and operational risk assessments, their capability to handle systems with 

uncertain failure data have limited their applicability. Moreover, the results obtained from such 

techniques cannot be flexibly adapted or updated when new evidence becomes available as the 

decommissioning operation progresses. To address these limitations, an integrated hierarchical 

Bayesian analysis (HBA) with Bayesian Network (BN) model of the failure analysis is proposed. 

The HBA can aggregate the data obtained from different sources (called, source-to-source 

variability) and expert judgements in the form of a mean value over a distribution (El-Gheriani et 

al, 2017a). Recently, Mishra et al (2018) applied HBA model to predict the remaining useful life 

of Lithium-ion batteries through prognosis. El-Gheriani et al (2017b) developed an HBA model to 

assess the risks of rare events with focus on process systems safety and found that the application 

of HBA is, especially, suitable for handling uncertainties associated with source-to-source 



variability of data. The main justification for adopting HBA in this study is due to its potential to 

account for both component- and system-level variations in data. In addition, HBA can work with 

sparse failure data to produce reasonable probability estimates up to 95% credible interval 

(Kruschke, 2014; Gelman and Hill, 2007; Gelman et al., 2004). 

BN can provide an up-to-date assessment of the decommissioning operation, making the 

proposed methodology robust for conducting probabilistic risk analysis. The BN is capable of 

assessing and reassessing risk through updating prior failure probabilities of primary (causation) 

events whenever one or more uncertainties have been mitigated, or when new knowledge of the 

risk becomes available (Faber et al., 2002). Recently, Babaleye et al. (2018) tested accident 

precursor data within BN to investigate the most probable cause of a futile decommissioning 

operation using experiential learning methodology. More discussions on the advantages, 

capabilities and applications of dynamic quantitative risk analysis including methodologies to 

obtain and validate probabilistic data can be found in (Golam et al., 2016; Rathnayaka et al., 2013; 

Khakzad et al., 2011; Rathnayaka et al., 2011; Bearfield and Marsh, 2005). It is worth mentioning 

that none of the above-mentioned studies examined the risks of offshore decommissioning such as 

jacket structures removal. 

The present paper aims to analyse the hazards inherent in a complete offshore jacket 

removal operational sequence using hierarchical Bayesian analysis (HBA) incorporated with 

Bayesian networks to conduct probabilistic risk assessment. The data consists of key failure 

frequencies obtained from similar operations such as mining, aerospace and nuclear 

decommissioning and experts judgements based on their field experience. The case study presented 

in this paper illustrates the application of the HBA model for aggregating the failure data to provide 

reasonable estimates of the occurrence probability for each accident causation leading to a futile 

decommissioning operation.  

This paper is organised as follows: Section 2 emphasises the critical nature of 

decommissioning aged offshore platforms while Section 3 introduces the case study used in this 

study based on Brent Alpha technical documentation. The safety assessment methodology which 

incorporates the HBA to aggregate failure data with BN to conduct risk analysis is presented in 

Section 4. Section 5 presents the model safety analysis and Section 6 reviews the summary of the 

study. 

 

2. Critical nature of aged platforms 
 

The uncertainties associated with all aged offshore structures vary depending on a number 

of factors such as location, weather conditions, and technicalities of the design, among others. 

However, these structures share many other safety issues such as unknown material strength, 



technical background and experience level of the decommissioning personnel. Therefore, a safety 

framework must be developed that would be able to capture all uncertainties and reasonably 

estimate their failure probabilities from small data size. A typical example used as a case study in 

this paper is the Brent Alpha jacket (BAJ). Redpath Dorman Long built BAJ in Scotland and 

installed in the Brent Field within the UK continental shelf, by Heerema Limited in May 1976. At 

the time of removal, knowledge of its current condition was limited. Like many of the old structures 

built in the 1970s and 1980s, its future removal from the seabed was not considered and this, 

especially, contributed to the variables of uncertainty during decommissioning phase. For instance, 

during the jackets operating life, many of the conductors have been repaired, including, some that 

have undergone modifications. These modifications added to the safety challenges during the end-

of-life planning phase. In addition, there were 28 self-supporting and laterally restrained 

conductors driven approximately 100m into the seabed, which further contributed to the increase 

in jacket weight over time. The design life was 30 years, but the jacket was in service for 41 years, 

until removal in 2017. Therefore, the remaining useful life (RUL) of the jacket structure was not 

known due to accumulated fatigue loads and corrosion. In addition, a number of caissons, clamps 

and other appurtenances have been incorporated or dismembered during its service life (Shell, 

2017).  

The main processes of the complete removal operation of a steel jacket structure from the 

fixed position offshore to a recycling yard onshore using lifting barges or HLVs is as shown in Fig. 

2. More information about the safety issues on the lifting barges and HLVs can be found in the 

works of Abdussamie et al. (2018) and Tan et al. (2018). It is worth mentioning that only the 

decommissioning hazards relating to the steel jacket structure is considered in this paper.  

 

Figure 2. Main process of steel jacket decommissioning operation. 

At each stage of this process, several hazards are identified and experts’ opinion on the failure 

frequencies are obtained from source-to-source and recorded.  

 
 

3. Safety Model Description 

 

The safety analysis of decommissioning steel piled jacket (SPJ) structures for complete 

removal operations is identified and analysed according to literature reviews (Kierans et al., 2004; 

Bradbeer et al., 2009; BP,2011; OGUK, 2015) and hazard identification conducted on the 

operational sequence from decommissioning professionals based on their field experience. To 

determine the risk of decommissioning offshore jacket structures, all the potential accident 



scenarios have to be captured, analysed and assessed in an integrated manner. Therefore, fault tree 

(FT) is developed to represent the accident causations of complete removal of SPJs.  

3.1 Operational steps involved in decommissioning 

Step 1. A route survey is first conducted to determine the locations to position and sever 

the jacket sections including the transportation route. The survey also identifies uncharted things 

underwater such as ship wreck, oyster beds etc. 

Step 2.  The topside is removed, and piles and conductors severed. The SPJ is the cut and 

removed in sections that the dedicated HLV can sustain. The SPJ may be made buoyant or de-

ballasted to reduce the bottom weight. A suitable severance method is selected based on the 

technical capabilities available and carried out underwater by divers or remotely operated vehicles. 

Step 3. The HLV is then rigged to individual module previously severed, removes each SPJ 

module and loads it to the barge until the SPJ is completely removed. It is worth mentioning that 

these steps can vary depending on factors such as platform age, location and water depth, platform 

type and configuration, weight of the lifts and soil strength, among others. 

3.2 Model hazards identification 

Collision or drift. The collision or drift between the jacket and lifting barge can lead to a 

futile jacket decommissioning operation as it may result in fire and explosion. Typically, the risk 

increases when either the lifting barge moves farther from the payload or, both the lifting barge 

and the payload collide. The lack of decommissioning historic data has necessitated the adoption 

of hierarchical Bayesian analysis integrated with Bayesian network, which is a proven risk analysis 

tool for estimating the failure probabilities of abnormal events under uncertainty. 

Loss of stability. The overall effect of this collision alone is independent of whether the 

lifting vessel capsize due to the misalignment of the jacket’s center of gravity (CoG) and its center 

of buoyancy (CoB). Improper cutting of the pile in the footings can lead to the differential sticking 

of pile or stuck-pipe and consequently results to capsize.  

Ascent or descent. A cut performed in accordance with recommended practice may help to 

prevent descent or capsize of the lifting vessel; hence, it is situated beside the CoB and CoG in the 

fault tree in Figure 3, which considers the complete jacket removal activity including footings and 

pile severance. The exact calculation of CoG can be difficult due to the presence of marine growth, 

unknown residual anode thickness and corrosion thinning. The residual anode may be replaced 

prior to jacket removal to reduce the number of uncertain variables. Internal and external corrosion 

thinning are independent events, and the presence of either of them can pose a technical challenge. 

Grouting prevents the occurrence of flooding in the inner walls of the jacket and pontoon legs. It 

is, therefore, an important requirement to ascertain the grout’s integrity against deterioration and 



consequently, prevents internal corrosion thinning. Cathodic protection and coating of such an aged 

jacket structure are expected to have deteriorated or fail at the instant of removal. They both prevent 

external corrosion thinning by absorbing soil corrosion effect on the external surface. 

Structural damage. The structural failure caused by accumulated cyclic load, lifting point 

failure, bulk explosion and structural loading on the jacket is capable of initiating collision even in 

the absence of overloading of the lifting crane or barge operational failure (Zhao et al., 2015; 

Gerwick, 2002). This is particularly due to the breakage of a lifting node on the structure during 

lifting. The lifting node breakage is imminent if its residual strength is unknown or calculated 

incorrectly. 

To overcome the occurrence of crane overload, the rigging and initial lift-off force due to 

soil adhesion calculations must be accurate. 

 

Figure 3. Fault tree representation of accident model. 
 

 

4. Proposed QRA Methodology 

4.1 Hazard Identification and Modelling 

The system failure during the steel jacket removal operation is analysed through hazard 

identification (HAZID) procedure described in section 3.2. HAZID is conducted with industry 

experts from mid- to senior engineers and academic professionals with considerable 

decommissioning operational knowledge. The process involves subdividing the removal and lifting 

operation as shown in Table 1. In this paper, emphasis is placed on the lifting safety issues 

associated with collision (or drifting), loss of stability (or buoyancy) and ascent (or descent). These 

failures and their causes are used to construct the Bayesian networks used for the risk assessment. 

 

Table 1. Hazard identification during offshore jacket removal. 

 

4.2 Data Collection and Processing 

Pursuant to the system failure identification and the relationships between the primary events and 

their child event(s), failure data are then collected from source-to-source as shown in Table 2. As 

these data are sparse, the distribution is assumed to follow the Gaussian formalism with known 

mean and variance (Kelly and Smith, 2011). The distribution represents what is known about the 

failure event and is called informative prior. The aggregated failure probability can be obtained as 

follow: 

 𝑝(𝑥𝑖) = 𝑏𝑖𝑛 (𝑝𝑖 , 𝑛𝑖)  



𝑝𝑎𝑣𝑔(𝑝𝑖) =  𝑏𝑒𝑡𝑎 (𝛼, 𝛽) 

𝛼 =  𝑔𝑎𝑚𝑝𝑑𝑓 (μ, σ) 

𝛽 =  𝑔𝑎𝑚𝑝𝑑𝑓 (μ, σ) 

 

 

(1) 

where 𝑥𝑖 = number of failures 

𝑝𝑖 = parameter of interest e.g. failure rate or failure probability 

𝑛𝑖 = number of trials or demands 

𝛼 = shape parameter 

𝛽 = scale parameter 

μ, σ = mean and standard deviation, both assumed to equal 1.00e-4. 

 

4.3 Analysing overall probability within BN 

Bayesian network (BN) is a very important probabilistic tool broadly used where uncertainty in 

accident modelling exists. It utilises a robust computation engine to handle risks in both qualitative 

and quantitative manner. The BN is capable of handling insufficient failure data as it can be updated 

when new knowledge or evidence become available (Khakzad et al, 2013). Bobbio et al (2001) 

proposed a comprehensive method, which can be used for converting accident causes in form of a 

fault tree (FT) into BN. This conversion algorithm maps all primary, intermediate and top events 

into corresponding root, intermediate and pivot (or leaf) nodes, respectively. The computation in a 

BN is based on Bayes’ theorem and the d-separation norm (Jensen and Nielsen, 2007). The 

dependency between the nodes is defined by the conditional probability table (CPT). Consider Fig. 

4 with the conditional dependency of discrete variables, the BN represents the joint probability 

distribution 𝑃(𝑈) of variables 𝑈 =  {𝑌1, . . . , 𝑌𝑛}, given by:  

 

 
𝑃(𝑈) =  ∏ 𝑃(𝑌𝑖|𝑃𝑎(𝑌𝑖))

𝑛

𝑖=1

 
 

(2) 

where 𝑃𝑎(𝑌𝑖) = parents of variable 𝑌𝑖 

 𝑌𝑖 = nodes of the network,  

𝑃(𝑈) = Joint failure probability of the network 

Figure 4. A typical BN with 5 nodes. 

 

4.4 Updating belief with new evidence 

A BN can be used to execute a forward (or predictive) and backward (or diagnostic) analysis. In 

the predictive analysis, the prior probabilities of intermediate and leaf nodes are computed from 



the marginal prior probabilities of root nodes (causations) and the conditional probabilities of 

intermediate nodes obtained based on leaky noisy-OR logic within the CPT. The probability 

distribution obtained through HBA will be assigned as the marginal prior probability distribution 

for each root node in the BN and updating is performed to obtain the posterior probability. When 

new data become available for selected nodes, the nodes will be updated, and the overall failure 

probability can be reassessed. For the diagnostic analysis, the futile decommissioning operation, 

modelled as the top event must be set to either safe or fail state to update the probability of the root 

nodes. In both cases of forward or backward propagation, Eq. (3) is used to compute the probability 

updating. 

 
𝑃(𝑈|𝐸) =  

P(𝑈, 𝐸)

P(𝐸)
=  

P(𝑈, 𝐸)

∑ 𝑃(𝑈, 𝐸)𝑈
 

 

(3) 

 

where 𝑃(𝑈|𝐸) = probability of accident given new evidence 𝐸 

P(𝐸) = probability of new evidence 

∑ 𝑃(𝑈, 𝐸)𝑈 = normalising factor 

 

One way to obtain new evidence for the accident causations is through Eq. (4) and the updated 

probability is computed using Eq. (5). 

𝑥𝑖
+ =  𝑁𝑖 ∙ 𝑝(𝑥𝑖) 

 

(4) 

𝑝(𝑥𝑖
+) =

𝛼𝜇 + 𝑥𝑖+

𝛼𝜇 + 𝛽𝜇 + 𝑁𝑖
 (5) 

 

where 𝑥𝑖
+ = expected number of accident causation occurrence 

𝑁𝑖 = Number of demands (e.g. number of lifting operation) 

𝑝(𝑥𝑖) = obtained predictive posterior probability from distribution 

𝛼𝜇, 𝛽𝜇 = mean values of the shape and scale hyper parameters, respectively 

 

5. Model Safety Analysis 

Figure 3 presents the FT model for the complete decommissioning operation of SPJs, while 

Figure 6 depicts the corresponding BN based on similitude mapping techniques discussed in 

section 4.3. In this study, the BN is developed and analysed using GeNIe 2.1 

(http://genie.sis.pitt.edu).  

 

file://///ds.strath.ac.uk/hdrive/57/npb15157/Conference%20Papers/ICSSE%20London%202018/(http:/genie.sis.pitt.edu)


5.1 Obtaining failure probabilities hierarchically 

 Data sparsity for quantifying risk is a major concern in the offshore decommissioning 

industry and risk analysis has been driven by experience. Therefore, the prior failure probabilities 

assigned to the root nodes described in this model are obtained from 10 data points assumed to 

have been obtained from analogous operations and distributed over a gamma function with 95% 

confidence level, as presented in Table 2. The prior failure probabilities represent the mean value 

of the distribution, making the estimated values credible. The number of occurrences for each 

primary event is modelled hierarchically as described in Eq. (1) to provide a distribution for the 

occurrence probability. The HBA formulation is coded in MATLAB as shown in Fig. 5 and Fig. 6 

represents the estimated occurrence probabilities of each causation events. 

Table 2. Primary events source-to-source failure data. 

Figure 5. MATLAB algorithm for estimating occurrence probabilities. 

Figure 6. Estimated occurrence probabilities for individual causations. 

 

5.2 Calculating overall failure probability 

One of the benefits of estimating uncertainties using BN in terms of CPTs is because the 

dependencies among interacting events can be represented. In addition, the weak links and the 

safety critical events contributing to the overall failure can be identified. The occurrence 

probability of each primary event is assigned to the BN (Fig. 7) taking into consideration the 

dependencies based on leaky noisy-OR logic (Adedigba et al., 2016), as shown in Fig. 8.  

Figure 7. BN model for futile decommissioning operation. 

Figure 8. Conditional dependency table for node 22. 

Running the analysis yields an overall occurrence probability of a futile decommissioning 

operation of 0.6333, caused by 27.2% occurrence probability of capsize/descent of the lifting 

barge and 19.2% occurrence probability of the collision/drift. 

 

5.3 Probability updating Analysis 

The updating analysis is performed by feeding the causation events with new evidence 

obtained through the predictive posteriors discussed in section 4.4, Eq. (4). Assuming an observed 

evidence of 𝑋4 (equipment failure), 𝑋5 (human error), 𝑋19 (installation flooding) and 𝑋26 (marine 

growth effect) events occurrences over 18 number of lifting operations during the 

decommissioning activity. Eq. (5) will be used to obtain the mean distribution of these events and 

feed into BN to recalculate the top event occurrence probability. The top event (futile 

decommissioning operation failure probability) occurrence probability is updated in the BN to be 



0.0820. For example, given 𝛼𝜇 = 𝛽𝜇 = 1, the new occurrence probability of equipment failure 

would be 𝑝+(𝑥4) = (0.0412 ∗ 18) ∗ 1 (1 + 1 + 18)⁄ = 0.0371. The updated probability (Table 

3) is attributed to the potential of the HBA technique to provide valuable information with credible 

level where measurable failure data are not available during the decommissioning planning phase. 

 

Table 3. Updated probability of causations with new evidence. 

 

5.4 Diagnostic Safety Analysis 

The diagnostic analysis (backward propagation) is performed by setting the top event occurrence 

probability node to a “failed” state to obtain posterior probability for each root node i.e. 

𝑝(𝑟𝑜𝑜𝑡 𝑒𝑣𝑒𝑛𝑡𝑠|𝑡𝑜𝑝 𝑒𝑣𝑒𝑛𝑡 = {𝑓𝑎𝑖𝑙}). The backward analysis provides a comprehensive way for 

estimating real-time information of causations when one or more of the uncertainties have been 

reduced or a new evidence is known. The posterior probabilities obtained for the primary events 

are the most probable values at the instance the observed accident occurs. In Table 3, it can be 

observed that flooded members and uneven flooding are the causations with the highest ratios, 

contributing to the overall failure by 12% and 15%, respectively. For the human error contributions, 

jammed cutter, cutting procedure, drill cutting debris and cutting time error all contributed similar 

amount (4%). To a lesser degree, external cutting problem and misalignment of the CoB have 

increased risk levels of 2% and 1% respectively. 

 Re-running the analysis with barge capsize (𝐼𝐸23) set to failed state, a backward analysis 

is performed within the BN to assess the most probable cause (MPC) of barge capsize, as shown 

in Fig. 9. The MPCs are the primary events with the highest posterior to prior failure probability 

ratios. The intermediate events associated with the capsize/descent of the jacket structure and/or 

lifting barge are the stuck-pipe (𝐼𝐸18) , center of gravity miscalculation (𝐼𝐸21) and center of 

buoyancy misalignment (𝐼𝐸22). The MPCs are the flooded members, residual anode weight, the 

uneven flooding and the improper cutting procedure of the jacket legs. The posterior probabilities 

of these primary events leading to capsize are found to be significantly larger than their prior failure 

probabilities by varying multiple factors (Table 3, column 6).  

 

Figure 9. Diagnostic analysis of capsize/descent scenario. 

 

The diagnosis of the capsize likelihood further showed that approximately 84% of the 

failure is due to the corrosion thinning effect on the walls of the jacket legs, caused by the effects 



of internal (52%) and external thinning (16%). This makes internal thinning a critical event in the 

safe estimation of the appropriate center of gravity. 

The higher the probability ratios, the more critical the components or events is to cause the 

lifting barge to capsize or descent. Therefore, it is required that these safety-critical events are 

prioritised and properly managed to prevent the occurrence of capsizing.  

 

 

5. Conclusion 

 

This study introduces an integrated safety analysis technique to assess the most probable 

causes of a futile decommissioning operation. The risk model developed is based on combining 

the capabilities of hierarchical Bayesian analysis with Bayesian networks to conduct probabilistic 

risk analysis. This work addresses the major challenge of failure data sparsity in the offshore 

decommissioning industry. The operation is presently driven by experience, and data used in the 

risk assessment has been based on expert judgements and source-to-source data collection from 

analogous activities. The hazards associated with steel piled jackets removal from severance to 

lifting were analysed through hazard identification technique, data were collected and aggregated 

through HBA to provide predictive posterior distributions of the probabilities. The following 

conclusions were made from the results obtained: 

 

Hazard identification.  HAZID is conducted to assess the operational challenges of the jacket 

removal sequence and to identify where safety issues arise. The sequence of operation is analysed 

with 11 industry experts from mid- to senior engineers and academic professionals having 

considerable decommissioning operational knowledge. The process involves subdividing the 

removal and lifting operation. While the number of experts’ opinions collected for this study is 

limited to 11, practical application would require large samples of opinions to capture enough 

hazards and data. For instance, this paper identifies collision, loss of stability and descent as the 

safety issues associated with lifting operation. In practice, the decommissioning hazards can be 

more depending on location and weather conditions.  

 

Hierarchical Bayesian analysis. The HBA model used its non-informative priors and likelihood 

function to provide a reasonable estimate of failure probability over a distribution. HBA adopts 

statistical functions such as normal (Gaussian), Beta and Gamma distributions. The Gamma 

distribution was especially useful in this study due to its conjugate pair properties. In addition, the 



HBA can account for both component and systems-level variations and obtain better estimate from 

sparse failure data. 

 

Bayesian networks. The BNs is suitable for estimating probabilities under uncertainty. Based on 

the occurrence probability obtained from HBA, the BN results showed that overall occurrence 

probability of a futile decommissioning operation of 0.6333 is caused by 27.2% occurrence 

probability of capsize/descent of the lifting barge and 19.2% occurrence probability of the 

collision/drift. In addition, the BN used the Bayes’ theorem to update the failure probability of 

causations through predictive analysis using the predictive posteriors obtained from the HBA 

model. A diagnostic analysis of the top event showed that In Table 3, it can be observed that flooded 

members and uneven flooding are the causations with the highest ratios, contributing to the overall 

failure by 12% and 15%, respectively. For the human error contributions, jammed cutter, cutting 

procedure, drill cutting debris and cutting time error all contributed similar amount (4%). To a 

lesser degree, external cutting problem and misalignment of the CoB have increased risk levels of 

2% and 1% respectively. 

 

Detailed diagnosis. Based on the detail diagnosis analysis conducted on barge capsize, the most 

probable causes of failure were found to be flooded members, residual anode weight, the uneven 

flooding and the improper cutting procedure of the jacket legs. The results showed that 84% of the 

failure is due to the corrosion thinning effect on the walls of the jacket legs, caused by the effects 

of internal (52%) and external thinning (16%). Therefore, it is recommended that internal thinning 

likelihoods be thoroughly assessed prior to the jacket removal operation. 

 

Going forward. This study identifies the need for further research in investigating the uncertainties 

associated with the data source and the assumptions built into the HBA model; conducting 

sensitivity analysis to investigate the contribution of each causations to the overall failure and 

finally; incorporating the HBA with time-dependencies to account for the changes that can 

significantly increase the hazards over time. 
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Tables with caption 

 

Table 1. Hazard identification during offshore jacket removal. 
 

Hazards Taxonomy Deviation Potential Causes Potential Effects 
 

 Station keeping 

 

 

Collision 

 

 

Loss of rig; Damage to 

barge and jacket 

E.g. Incorrect rigging; 

Environmental 

condition; Human 

error; Welding integrity 

of lifting aid; Soil 

erosion effect on lift; 

Incorrect load analysis. 

Uncontrollable heeling or 

trimming of Barge; wreckage 

 

 

 

 

Drifting 
 

Loss of station keeping 

 

E.g. Broken mooring 

line; Soil adhesion on 

initial lift-off force; 

Failure of flooded 

member(s); Soil 

erosion effect on lift; 

Uneven flooding effect. 

Loss of barge and jacket 

structure altogether; Snapping 

of mooring line could lead to 

injuries. 
 
 

 

Loss of 

stability 

 

 

Buoyancy 

 

 

 

CoG/CoB 

misalignment 

 

Calculation error; 

lifting node failure; 

Marine growth. 

Prevents barge from operating 

safely. Loss of barge. 
 

 

Sinking 

 

 
 
Ascent/Descent 
 
 

 

Loss of station keeping. 
 

Grouted or ungrouted 

conditions; tug impact; 

human error. 

 

Capsize of lifting barge; Injuries 

or loss of fatalities. 
 

 

Incorrect 

Standard 

operation 

procedure 

 

Noncompliance 

 

High safety risks 

Incorrect operation; 

Improper cutting 

procedure; Incorrect 

estimation of cutting 

time. 

Cascading of failures due to 

chain of events; Increase 

downtime. 
 

 

Miscellaneous 

 

 

 

Trapped flammable gases 

 

 

 

Fire/explosion 

 

 

 

 

Trapped gas due to 

subsea hot work; 

Trapped gas in drill 

cutting debris; Human 

error 

Severe damage to barge, jacket 

structure and the environment. 

Injury or fatalities. 
 
 

 



 
Table 2. Primary events source-to-source failure data. 

 Causation 
Failure 

Description 

Source 1 2 3 4 5 6 7 8 9 10 
 Demand 

[𝑁𝑖] 
14 21 13 14 15 26 17 11 19 20 

 𝑥1 
Unknown residual 

stress  0 1 2 2 3 4 5 5 5 7  

 𝑥2 
Unknown residual 

fatigue life 
 0 0 0 3 3 1 6 7 7 5  

 𝑥3 Fatigue failure  0 2 3 3 3 4 4 0 0 8  

 𝑥4 Lifting node failure  5 2 0 0 0 4 2 5 3 1  

 𝑥5 Bulk explosion  2 3 1 2 2 5 5 1 4 4  

 𝑥6 Uneven loading  3 7 4 6 0 4 0 5 0 3  

 𝑥7 Structural failure  7 6 6 0 4 2 0 4 3 6  

 𝑥8 Incorrect operation  7 1 2 1 0 0 4 3 2 2  

 𝑥9 
Barge operational 

failure 
 4 0 4 0 0 1 5 3 3 5  

 𝑥10 Crane/barge overload  7 1 0 0 6 0 5 3 0 1  

 𝑥11 Barge collision/drift  0 1 0 0 6 1 2 6 1 3  

 𝑥12 External thinning  0 0 0 0 1 1 2 3 2 5  

 𝑥13 Hidden flaws/crack 
defects 

 2 2 1 2 1 3 1 1 2 7  

 𝑥14 Flooding  8 5 8 1 3 3 1 0 4 9  

 𝑥15 Grouting impact on lift  6 1 5 3 1 0 3 1 1 7  

 𝑥16 Internal thinning  0 2 4 4 2 4 5 0 2 5  

 𝑥17 Corrosion thinning  1 2 2 3 4 5 1 0 1 6  

 𝑥18 Miscalculation of CoG  4 3 4 2 0 3 2 5 1 6  

 𝑥19 External cut  1 0 0 5 0 1 2 2 3 3  

 𝑥20 Internal cut  5 2 4 1 1 2 2 2 0 5  

 𝑥21 Stuck-pipe  1 5 2 0 3 3 4 1 6 5  

 𝑥22 misalignment of CoB  2 1 3 1 1 2 0 3 6 8  

 𝑥23 Ungrouted condition  2 1 0 0 3 1 4 1 2 6  

 𝑥24 Grout deteriorates  3 3 1 4 2 5 1 1 0 4  

 𝑥25 Residual anode wt.  0 0 3 3 1 7 4 2 1 6  

 𝑥26 Marine growth  4 3 1 5 2 5 0 1 3 1  

 𝑥27 Jammed cutter  0 2 2 1 2 3 2 3 1 1  

 𝑥28 Cutting procedure  3 2 4 4 2 4 5 0 2 2  

 𝑥29 Drill cutting debris  0 2 1 0 3 1 4 3 4 5  

 𝑥30 Cutting time error  0 1 0 2 3 4 2 1 0 7  

 𝑥31 Flooded member(s)  1 1 4 1 5 3 6 1 1 6  

 𝑥32 Uneven flooding  2 3 3 1 4 2 5 1 1 9  



Table 3. Updated probability of causations with new evidence. 

 

Causation 

Current knowledge New evidence 
Probability 

Ratio 
 

Prior 

Probability 

Posterior 

Probability 
Prior Probability 

Posterior 
Probability 

 𝑥1 0.0682 0.0649 0.0590 0.0587 0.99 

 𝑥2 0.0804 0.0766 0.0708 0.0693 0.98 

 𝑥3 0.0889 0.0889 0.0803 0.0805 1.00 

 𝑥4 0.0412 0.0411 0.0371 0.0370 1.00 

 𝑥5 0.0517 0.0521 0.0512 0.0511 1.00 

 𝑥6 0.0807 0.0805 0.0725 0.0724 1.00 

 𝑥7 0.0659 0.0657 0.0592 0.0594 1.00 

 𝑥8 0.0317 0.0319 0.0286 0.0287 1.00 

 𝑥9 0.0436 0.0432 0.0391 0.0389 1.00 

 𝑥10 0.0570 0.0548 0.0503 0.0493 0.98 

 𝑥11 0.0335 0.0322 0.0296 0.0290 0.98 

 𝑥12 0.0328 0.0315 0.0289 0.0283 0.98 

 𝑥13 0.0556 0.0534 0.0490 0.0481 0.98 

 𝑥14 0.1066 0.1030 0.0943 0.0926 0.98 

 𝑥15 0.0628 0.0606 0.0555 0.0545 0.98 

 𝑥16 0.0472 0.0472 0.0425 0.0425 1.00 

 𝑥17 0.0687 0.0687 0.0619 0.0620 1.00 

 𝑥18 0.0389 0.0391 0.0350 0.0351 1.00 

 𝑥19 0.0240 0.0239 0.0216 0.0220 1.02 

 𝑥20 0.0310 0.0310 0.0279 0.0279 1.00 

 𝑥21 0.0626 0.0626 0.0563 0.0563 1.00 

 𝑥22 0.0880 0.0897 0.0792 0.0799 1.01 

 𝑥23 0.0453 0.0455 0.0408 0.0410 1.00 

 𝑥24 0.0543 0.0543 0.0489 0.0490 1.00 

 𝑥25 0.1184 0.1185 0.1069 0.1071 1.00 

 𝑥26 0.0519 0.0520 0.0468 0.0469 1.00 

 𝑥27 0.0149 0.0160 0.0140 0.0145 1.04 

 𝑥28 0.0434 0.0464 0.0406 0.0421 1.04 

 𝑥29 0.0380 0.0408 0.0356 0.0370 1.04 

 𝑥30 0.0779 0.0834 0.0729 0.0756 1.04 

 𝑥31 0.0574 0.0585 0.0524 0.1111 2.12 

 
𝑥32 0.0866 0.0882 0.0790 0.1699 2.05 
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Figure 4 
 



Objective function 𝑓(𝑥), 𝑥 = (𝑥1, … , 𝑥𝑘)𝑇 

Initialise a population of causations 𝑥𝑖(𝑖 = 1,2, … , 𝑛) 

for 𝑖 = 1: 𝑛 all 𝑛 source-to-source data points 

     for 𝑗 = 1: 𝑘 all 𝑘 primary events 

   List the number of removal operations 𝑁𝑖  recorded  

   𝜇 = 𝑚𝑒𝑎𝑛(𝑥𝑖 . 𝑁𝑖 𝑠𝑢𝑚(𝑁𝑖)⁄ )    %Estimate the mean parametrically 

   𝜎 = 𝑠𝑡𝑑(𝑥𝑖 . 𝑁𝑖 𝑠𝑢𝑚(𝑁𝑖)2⁄ )      %Estimate the standard parametrically 

   (𝛼, 𝛽) = 𝑔𝑎𝑚𝑝𝑑𝑓(𝜇, 𝜎)           %Estimate the shape & scale parameters 

end 

Obtain the mean probability from the distribution 

end 

Post-process results and visualisation 

Figure 5  
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