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Three-dimensional arrays of silicon transistors increase the density of bits1. Solid-state 

qubits are much larger so could benefit even more from using the third dimension given 

that useful fault-tolerant quantum computing will require at least 100,000 physical qubits 

and perhaps one billion2. Here we use laser writing to create 3D arrays of nitrogen-vacancy 

centre (NVC) qubits in diamond. This would allow 5 million qubits inside a commercially 

available 4.5x4.5x0.5 mm diamond based on five nuclear qubits per NVC3,4 and allowing 

(10 µm)3 per NVC to leave room for our laser-written electrical control. The spin coherence 

times we measure are an order of magnitude longer than previous laser-written qubits5 and 

at least as long as non-laser-written NVC6. As well as NVC quantum computing3,4,6-8, 

quantum communication7,9,10 and nanoscale sensing11-14 could benefit from the same 

platform. Our approach could also be extended to other qubits in diamond15-18 and silicon 

carbide19,20. 

Demonstrated qubit fidelities8 for a single negatively-charged nitrogen vacancy centre (NVC) 

and its nearby nuclear spins are above the required thresholds for quantum computing2. 

Two NVCs in different diamonds, in separate cryostats, have been optically entangled faster 

than the decoherence of this entanglement7, but it will not be practical to have 106 cryostats 

for 106 NVCs. In the transparent lattice of wide-band-gap diamond, individual optically-

addressable qubits can fill a volume rather than be restricted to the surface. For 

computation, a 3D array spanning the upper 50 µm of a commercially-available electronic 

(EL) grade 4.5×4.5×0.5 mm diamond could contain 106 NVCs with (10 µm)3 for each NVC. 

Each NVC has, on average, five individually-addressable 13C nuclear spin qubits3,4. For 

communications, having an array of NVCs will provide many spin-photon interfaces within 

one cryostat10, increasing data rates and allowing multiplexing. Sensing with 2D arrays of 

NVCs will combine the high resolution of single NVC sensing11 with the simultaneous 

imaging achieved with wide-field microscopy13. Stacking two of these 2D arrays will then 

permit gradiometry which will increase the sensitivity by subtracting the background noise 

measured by the array that is further from the sample of interest.  
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For all these technologies, we envision a fibre bundle or a spatial light modulator (SLM) that 

sends and receives optical photons to and from a 2D array of NVCs simultaneously, through 

a common lens. Moving the diamond closer to the lens would allow 2D arrays at different 

depths to be probed sequentially. A bullseye grating array would be used to collect more of 

the fluorescence21. Time would not be wasted even for 50 2D layers, as optical 

initialisation/readout of each NVC only lasts 3 µs, followed by a delay that is on the order of 

the NVC electron spin coherence time, T2, which should be at least 500 µs at room 

temperature and longer in a cryostat. For sensing, delta-doping with nitrogen would be used 

to control the depth of NVCs with a precision of 4 nm22. 

The creation of 2D NVC arrays has been demonstrated previously5,22-24. With ion 

implantation through a mask, high-precision placement of 10 nm23 has been shown, and 

electron spin T2 times of up to 50 µs. Longer T2 times of up to 530 µs were achieved by using 

isotopically pure 12C diamond but with less precise placement and again requiring ion 

implantation through a mask24. For quantum computing it is important to use diamond with 

natural isotopic abundance because the 1.1% 13C nuclear spins provide a valuable register of 

around five qubits that can be used to store quantum information for longer than the 

electron spin. Localised electron irradiation into a diamond provided a 2D array with T2 of 

up to 1.3 ms due to the use of 12C diamond, and no need for a mask22. This used delta 

doping to reach a depth precision of 4 nm, with in-plane precision of 450 nm. It has been 

shown that 2D arrays of NVCs can be laser written with no mask, but the T2 time measured 

was typically only 30 to 80 µs5. A new preprint demonstrates preferential orientation and 

near-100% yield for 5x5 2D arrays of laser-written NVC in diamond25.  

 

 

Fig. 1. Confocal imaging of a three dimensional array of defects in diamond (array M). Top 

row: a, b, c and d are in the XY plane at depths of 6, 9, 12 and 15 µm respectively before 

annealing: each spot is an ensemble of vacancies. e is a vertical section in the XZ plane. 

Bottom row: The same volume after annealing out the vacancies: the spots are nitrogen 

vacancy centres (NVCs). In 9% of the target sites NVCs were created, almost all as single 

NVCs. 
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Our 3D arrays were created by laser-writing over 2000 NVCs into a diamond with natural 

isotopic abundance of 13C as shown in Fig. 1. We measured the spin echo coherence time for 

23 of the single NVC and found that 16 of them had T2 >500 µs at room temperature. All our 

measurements are at room temperature where the electron spin coherence time is limited 

by the natural isotopic abundance of 13C. We used dynamic decoupling to probe the 

electron spin coherence without 13C limitations, finding a coherence time limited by the 

electron spin T1 as has been reported for naturally occurring NVCs. 

To create the arrays, an EL grade diamond was bought from Element 6, and plasma etching 

was used to remove 20 µm of sub-surface polishing damage14. Arrays of ensembles of 

vacancies were generated in the diamond lattice by single 250 fs pulses from a 790 nm laser 

focused tightly beneath the surface of the diamond using a high numerical aperture (NA) oil 

objective. The light matter interaction is highly non-linear, limiting any material modification 

to the centre of the focal volume and giving an inherent three-dimensional resolution to the 

fabrication26. The refractive index mismatch at the oil-diamond interface causes refraction 

leading to a depth dependent spherical aberration of the laser focus, which can limit three-

dimensional fabrication resolution. Adaptive optics using a liquid crystal SLM were used to 

correct for the aberration27, ensuring that the fabrication was the same at each depth. The 

full-width-half-maxima of the intensity distribution of the laser focus inside the diamond are 

theoretically estimated to be 350 nm radially and 1.7 µm longitudinally. However, the 

expected dimensions over which the light matter interaction is appreciable are likely to be 

much lower28. The diamond sample was mounted on a three axis precision translation stage 

and moved relative to the laser focus to fabricate arrays of vacancy ensembles.  

In order to find the fine range of pulse energies to use in these experiments, an initial 

calibration study was carried out on the same fabrication run inside a nominally identical 

diamond by writing arrays of points across a coarse range of pulse energies. This sample was 

subsequently characterised using a scanning confocal microscope, to find the pulse energy 

that produced just-visible vacancy ensembles using an air objective. Previous work has 

shown that write-pulse energies slightly lower than this are optimal for NVC creation5. 

Twenty-one 3D arrays labelled A to V were laser written with different energies from 14 to 

19 nJ and with different pitches from 2 to 5 µm, with each 3D array having 21×20 2D arrays 

stacked with up to five depths for a total of over 44,000 writing sites. 

Figure 1 contains images from our scanning confocal microscope of one of the 3D arrays 

(array M) before and after annealing. Before annealing, laser-written spots are visible due to 

the fluorescence of neutrally charged vacancies V0: lattice sites in the diamond with missing 

carbon atoms. This is shown in the top row of Fig. 1. The characteristic V0 fluorescence 

spectrum confirms the identity of these vacancies as shown in the Supplementary 

Information. None of these pre-anneal spots were visible with our air objective5 but these 

images were collected with our oil objective ;NAсϭ͘ϰͿ͘ WĞ ĂŶŶĞĂůĞĚ ƚŚĞ ĚŝĂŵŽŶĚ Ăƚ ϭϬϬϬȗC 
for 3 hours in a nitrogen environment5 and repeated the imaging, as shown in the bottom 

row of Fig. 1. The spots that can be seen are NVCs as confirmed by the characteristic 

fluorescence spectrum shown in the Supplementary Information. We have analysed the 

precision of the position for 167 single NVCs by three-dimensional fitting of the point spread 
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function as shown in Fig. 2. This reveals that the NVCs are in the desired locations to within 

±200 nm in the transverse (XY) plane and ±250 nm in the vertical (Z) direction. The high 

precision in the Z direction is due to the non-linearity of the writing. The precision is 

probably limited by the concentration of nitrogen in this material which is in the range from 

1 to 5 ppb corresponding to an average spacing between nitrogen atoms of 180 to 100 nm. 

This implies that the vacancies generally bond to one of their nearest nitrogen dopants.  

 

 

Fig. 2. Positioning precision of single nitrogen vacancy centres in array M. a in the XY plane 

of the array. b in the vertical Z direction. 

 

To check if the NVCs are single centres we used automated Hanbury-Brown Twiss (HBT) 

experiments on over 600 sites to measure the photon arrival autocorrelation function g2(ʏ) 
as shown in Fig. 3. We classify a site as a single emitter where g2(0) < 0.5, a double for 

0.5 ч g2(0) < 0.66 and a triple for 0.66 ч g2(0) < 0.75. For array M, 87% of the NVCs are single 

centres, with 11% being doubles and 2% triples. The sites with no NVCs could be repeatedly 

re-written with another laser pulse and re-annealed until no sites are empty. The other 

paper to report single NVC creation with laser writing 5 used higher pulse energies and 

reported a higher yield of single NVCs but there were similarly more of the unwanted 

double and triple NVCs which would lead to a lower yield of single NVCs in a repeat-until-

success strategy. The Supplementary Information contains confocal imaging and HBT 

statistics for some of the other arrays. Of the 2050 sites written in array M, 8% developed 

into a single NVC, almost 1% produced a double NVC and <0.1% produced a triple NVC. This 

is consistent with Poissonian statistics (as 0.01 у 0.082 and 0.001 у 0.083) suggesting that 

NVC creation is limited by the nitrogen density rather than by the highly non-linear laser 

writing.  
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Fig. 3. Fraction of single nitrogen vacancy centres compared to doubles and triples. a 

Hanbury-Brown Twiss (HBT) measurement of the photon arrival time for NV1. b HBT 

measurements reveal the fraction of single, double and triple NVCs produced in three of the 

3 µm pitch arrays with different laser-write pulse energies. c The frequency of the measured 

g2(0) for array M with no background subtraction.  

 

Figure 4 shows measurements of the spin coherence from 23 of the single NVCs in the 3 µm 

pitch arrays M and I. The longest room-temperature spin-echo coherence times without 12C 

enrichment we have found in the literature are T2 = 687 µs6 and T2 = 650 µs29, which are 

slightly below (but within the error of) our five longest times. The long times we measure 

demonstrate that our laser-writing technique does not introduce excess damage or 

impurities to the environment of the NVCs. Our calibration step to ensure we used the 

optimum write-pulse energy may be needed to achieve this5.  

Previous NVC optical entanglement work has applied electric fields to Stark shift the optical 

florescence frequency so that that the two NVCs have indistinguishable emission6,7. Fig. 4c 

shows an NVC between two electrically-conducting wires that we laser-wrote in 3D at the 

same time as the arrays. It is known that these laser-written wires in diamond are graphitic 

and that they conduct with a DC resistivity of around 0.1 ɏĐŵ Ăƚ ƌŽŽŵ ƚĞŵƉĞƌĂƚƵƌĞ30.  
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Fig. 4. Nitrogen vacancy centre electron spin coherence times. a Spin-echo decays for 

adjacent, aligned NVCs (labelled NV1 and NV2, as shown in Fig. 4b and Fig. 1g) fitted with 

2

n

t

T

Ae

 
 
  . NV1 has T2 = 690±80 µs with n = 2.0±0.8, while NV2 has T2 = 710±40 µs with 

n = 2.4±0.4. b Zoomed confocal image of NV1 and NV2. c Confocal image of an NVC between 

two laser written electrical wires from another region of the same diamond. d Histogram of 

spin echo times measured for sites in arrays M (17.5 nJ) and I (17 nJ) which had a 3 µm 

pitch, as a function of NVC depth. e Using XY8-4 dynamic decoupling achieved T2 = 

2.4±0.6 ms with n = 1.1±0.4 on NV2. For comparison, the longitudinal lifetime, T1, of this site 

was 3.0±0.7 ms.  

Methods: All data presented were collected with a home-built scanning confocal microscope at 

room temperature. 532 nm light was used to excite the sample and the 637-800 nm florescence was 

collected with single photon counting modules. The electron spins were coherently controlled with 

microwaves at 2.8-3 GHz. A 25 mT magnetic field was applied along the [111] direction for the spin 

coherence measurements, suppressing the periodic revivals. Each spin coherence measurement 

takes 2 to 12 hours, depending on the desired signal to noise. The equipment is controlled using 

Qudi software31  with some of our modifications. Once set up, laser writing of a 2000 point array 

typically takes 5 minutes. 
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