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ABSTRACT 

Swellable elastomeric seal is a type of specifically engineered packer that swell upon 

contact with wellbore fluids. Assessment of leakage tightness is a fundamental aspect in 

the design of swellable packers, since they should guarantee a reliable sealing under 

extreme pressures of the downhole fluids. Numerical capability of the leakage pressure 

prediction would facilitate improvement in the packer design methodology. Previous work 

was focused on investigation of the non-parametric optimisation capability seeking for an 

optimal external shape with a goal to maximise the grip of a packer with a borehole. The 

verification of an optimised design was done with a dynamic FE-simulation of packer’s 

failure by extrusion under an excessive pressure. The downside of that verification analysis 

was that Abaqus/Explicit solver couldn’t implement a realistic adaptive pressure 

application due to changing packer disposition and contact conditions. This simulation 

challenge is addressed in this paper by application of the Coupled Eulerian-Lagrangian 

(CEL) approach in Abaqus/Explicit, which provides the ability to simulate a class of 

problems where the fluid-structure interaction (FSI) is important. 

1. INTRODUCTION 

Swellable elastomeric seal is a type of specifically engineered packer that swell upon 

contact with wellbore fluids. Such packers have been widely employed in various oil-&-

gas applications including slimming of well design, zonal isolation, water shut-off, and 

multi-stage fracturing. Assessment of leakage tightness is a fundamental aspect in the 

design of swellable packers, since they should guarantee a reliable sealing under extreme 

pressures of the downhole fluids up to 10000 psi (69 MPa). Downhole conditions are 

difficult to be reproduced using physical testing environment, but feasible to be simulated 

[1] in virtual environment using FE-codes. Numerical capability of the leakage pressure 

prediction under different downhole conditions (type of downhole fluid, pressure build-up 

rate, diameter of the borehole, etc.) would facilitate improvement in the packer design 

methodology and would allow efficient optimisation of a packer design. Previous work [2, 

3] was focused on investigation of the non-parametric optimisation capability seeking for 

an optimal external shape with a goal to maximise the grip of a packer with a borehole by 

maximising the contact pressure between them. For this purpose, Tosca/Structure 



 

optimisation suite was used within the Abaqus/CAE environment for maximum 

computational performance. The verification of an optimised design was done through the 

dynamic FE-simulation of packer’s failure by extrusion under an excessive pressure. The 

downside of that verification analysis was that Abaqus/Explicit solver couldn’t implement 

a realistic adaptive pressure application due to changing packer disposition and contact 

conditions. This simulation challenge is addressed in this work by application of the 

Coupled Eulerian-Lagrangian (CEL) approach in Abaqus/Explicit, which provides 

engineers with the ability to simulate a class of problems where the fluid-structure 

interaction (FSI) is important, like seals. This capability does not rely on the coupling of 

multiple software products, but instead solves the FSI simultaneously within single Abaqus 

environment. The most relevant example of the CEL application to investigation of leakage 

tightness is the study [4], where the CEL approach predicts not only the pressure at which 

the seal blows off, but also how the fluid behaves when leakage starts. Apart from the 

technology demonstration [4], there is a very limited availability of literature sources 

focused on FSI modelling, that combines extremely large deformations of hyperelastic 

structures with CEL to address changing contact conditions between fluid and structure.  

The idea similar to the one implemented in [4] lies beneath the given numerical study – to 

investigate a feasibility of FSI simulation with CEL in application to failure analysis of 

swellable packers. The feasibility assessment would ideally include the computational 

costs and robustness level of this type of analysis considering the specific conditions 

including incompressible nature of the material, high pressure applied as a loading and 

extremely large deformations as a result of excessive pressure application. 

In general, the objective of this research project is to develop a design tool integrated into 

Abaqus/CAE environment to implement the parametric numerical studies using advanced 

FE-simulation to provide an improved design of packers for various downhole conditions. 

However, the implementation of the packer’s swelling and failure simulations is associated 

with a number of technical/numerical challenges specific to this particular class of 

multiphysics problems, which are illustrated in Fig.1 and listed below: 

1. Material model. The key component is an advanced material model comprising both 

hyperelasticity and moisture swelling. It has to consider two-way interaction between 

mechanical response and swelling capacity. Implementation of such a material model 

requires using COMSOL Multiphysics [5] or programming of a Fortran subroutine for the 

user defined material using the Flory & Rehner (1943) theoretical background [6], which 

is presented in the first instance by Flory-Rehner equation in the following form: 
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where 2  is the volume fraction of polymer in the swollen mass, 1V  is the molar volume 

of the solvent, n  is the number of network chain segments bounded on both ends by cross-

links, and 1  is the Flory solvent-polymer interaction term. 

In polymer science Eq.(1) describes the mixing of polymer and liquid molecules as 

predicted by the equilibrium swelling theory of Flory & Rehner [6]. It describes the 

equilibrium swelling of a lightly cross-linked polymer in terms of cross-link density and 

the quality of the solvent. The theory considers forces arising from three sources: 



 

� the entropy change caused by mixing of polymer and solvent; 

� the entropy change caused by reduction in number of possible chain conformations 

via swelling; 

� the heat of mixing of polymer and solvent, which may be positive, negative, or zero. 

2. Fluid-structure interaction. The moisture swelling process is not uniform and starts 

on the surfaces which are subject to fluid. Adsorption, which governs the progress of 

swelling can occur only at free surfaces. Therefore, the fluid pressure penetration needs to 

be incorporated into the simulation [7] and directly linked to swelling. Distributed pressure 

penetration load allows for the simulation of fluid penetrating into the surface between two 

contacting bodies, penetration of fluid from multiple locations on the surface, and 

application of the fluid pressure normal to the surfaces. It automatically adjusts the 

application of a fluid pressure depending on changes of contact conditions. 

3. Large deformation convergence.  Non-uniform swelling is associated with a localised 

increase of material volume. It may cause a significant distortion of FE mesh and arouse 

FEA convergence problems. To overcome this, there are a few options available in the 

setup of the FE-model [8] including a mesh-to-mesh solution mapping (Abaqus/Standard), 

adaptive remeshing (Abaqus/Explicit) and element distortion control. Convergence issue 

is crucial to the successful solution of elastomeric structures FE-simulation, because in 

most cases the FE-analysis fails because of excessive distortion or collapse of elements. 

4. Parametric analysis automation. Parametric study assumes considering a large 

number of different geometric configurations, looking at material properties variation and 

different downhole conditions. Basically this means a search for an optimal geometry 

through a sensitivity study, which would result in specific design recommendations for the 

geometry of a packer. Therefore, it would be reasonable to automate the analysis procedure 

through an Abaqus plug-in [9] with a convenient graphical user interface (GUI), which 

provides access to the parameters of geometry, material properties and service conditions. 

 

Figure 1: Diagram of technical requirements for a robust FE-simulation of 

swellable packers for progressive failure and leakage 



 

2. VALIDATION OF SHAPE OPTIMISATION 

In previous works [2, 3] the feasibility of non-parametric optimisation [10] in application 

to swellable packers was investigated following the successful outcomes of [11] that 

revealed a great potential of the topology and shape optimization under contact conditions. 

For that purpose, Simulia Tosca Structure was used – a software system for non-parametric 

structural optimisation with interfaces to the most of industry standard FE-solvers. Using 

optimisation techniques, contact pressure in contact zones could be either minimised [12] 

or maximised as needed in this research. Therefore, the shape optimisation was used [2, 3] 

to improve the grip of a packer with the surface of a borehole. The normal shape 

optimization stimulated the surface growth in contact zones, which resulted in a higher 

contact pressure and shrinkage in a lower. For a trial shape optimisation study, the trimmed 

version of a packer geometry [1] was used as benchmark problem with L reduced from 16” 

to 2”. The optimisation analysis resulted in a rippled external surface of a packer as shown 

in Fig.2a with comparison to the original rectangular profile. The distribution of contact 

pressure became very non-uniform as shown in Fig.2b with four maximums, which are 

about 5 times higher than the original smooth contact pressure. 

 

Figure 2: Shape optimisation of the packer profile with Tosca Structure: a) change 

of profile geometry and b) corresponding change of contact pressure 

An important part of optimisation analysis is a validation of the obtained design, which in 

this study is expressed in terms of comparative sealing capability. The basic qualitative 

validation analysis was performed using the general static simulation procedure with 

implicit solver in Abaqus/Standard [2]. For a more comprehensive and quantitative 

validation of the packer design, the simulation capabilities of Abaqus/Standard solver were 

found insufficient. The advantage of Abaqus/Standard implicit solver was a fast solution 

and the availability of PPL interaction [7]. This functionality replaces the computationally 

expensive fluid-structure interaction, when the structural analysis has a priority. On other 

hand, the disadvantage of implicit solver is that the automatic adaptive remeshing is not 

available as a standard functionality, so the extrusion problems with extreme deformation 

can’t be effectively solved using this product. Therefore, the subsequent work [3] was 

implemented with the dynamic solver in Abaqus/Explicit, which is recognised as a more 

robust solver when it comes to very non-linear problems and extremely large deformations.  

Abaqus/Explicit was computationally more expensive compared to Abaqus/Standard, but 

this obstacle was overcome by running simulations on HPC facility. This solver 

significantly expands the progressive failure analysis capabilities, and actually eliminates 

any limitations related to non-linearities, large deformations and transient / dynamic 

effects. The best prove of its efficiency is a solution of a so-called press-fit problem [13], 

when a cylindrical rubber block compressed from the tube of bigger diameter into the tube 

with a smaller diameter. In previous work [14] an attempt to develop a robust approach to 



 

simulation has failed. A simple and stable solution for such a benchmark problem using 

standard implicit solvers in Ansys and Abaqus couldn’t be obtained. It should be noted that 

the successful simulation of press-fit problem [13] became possible only after the 

modification of a friction model used in analysis from the linear Coulomb to the bi-linear 

Coulomb-Orowan law [15] expressed in terms of friction force as 

 min | |, ,f nF F F     (2) 

where   is a coefficient of friction, nF  is a normal force, and F  is a critical share force, 

which corresponds to a critical shear stress c  in the FEA setup. The Coulomb term | |nF  

is linear and describes the partial slip. When the critical value of c  is reached, the total 

slip occurs, which plays a key role in simulation convergence, because it prevents the 

rubber material from sticking to the relatively rigid walls. 

So the work [3] was focused on the development of a practical approach to simulations of 

packers with Abaqus/Explicit, since the setup of analyses in Standard and Explicit solvers 

is quite different. The biggest advantages attributed to Explicit solver are automatic 

adaptive remeshing (in application to large plastic deformations) or distortion control of 

elements (in application to large hyperelastic deformations) and stable solution of contact 

problems with large relative displacements. Considering a superior robustness of 

Abaqus/Explicit, it is a minor drawback that PPL functionality is unavailable for dynamic 

analysis. The robustness of extrusion failure simulations for swell packers were 

demonstrated in [3] with advanced validation analysis of the benchmark problem.  

Since PPL is unavailable, the pressure was applied to the bottom surface and ramped in 

the course of simulation for both benchmark packers – original and optimised. The stable 

and robust convergence has been achieved with the CAX3 element type – a 3-node linear 

axisymmetric triangle with the activated distortion control having length ratio 0.5. This 

means that the FE-model topology is adjusted when an element under uniaxial compression 

undergoes 50% of nominal strain. This FE-mesh adjustment technique [8] together with 

the bi-linear Coulomb-Orowan friction law provides a guaranteed convergence of a 

dynamic solution in Abaqus/Explicit. The absence of hourglass issues is provided 

automatically by the triangular shape of the elements. In should be also noted that in order 

to accelerate the analysis and facilitate the convergence the default Abaqus/Explicit 

compressibility ratio (initial bulk modulus to initial shear modulus) K0 / ȝ0 = 20 has been 

used [3], corresponding to Poisson's ratio Ȟ of 0.475. Since typical unfilled elastomers have 

K0 / ȝ0 ratios in the range of 1,000 to 10,000 (Ȟ = 0.4995 to Ȟ = 0.49995) and filled 

elastomers have K0 / ȝ0 ratios in the range of 50 to 200 (Ȟ = 0.490 to Ȟ = 0.497), this default 

provides much more compressibility than is available in most elastomers [16]. The forced 

incompressibility will become more feasible in the future version of ABAQUS (2018) with 

introduction of the hybrid formulation for elements used in Abaqus/Explicit solver. 

 

Figure 3: FE-meshes of (a) original and (b) optimised benchmark packer geometries 
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Figure 4: Validation simulation of the benchmark packer failure using original 

geometry with Abaqus/Standard and mesh distortion control 

Comparison of simulation results showed [3] that the optimised packer can bear about 10% 

of more pressure compared to the original packer with a smooth surface providing and 

additional validation of optimisation results. The validation simulation of a full-size real 

packer [1] demonstrated a complete extrusion of the packer [3]. It also showed that 

extrusion was not gradual, it was rather abrupt with a distinctive critical pressure when 

sticking to protective rings can’t stop progressive slipping, caused by friction and material 

compressibility. With the recent findings related to convergence facilitation techniques, it 

was decided to revisit the static implicit simulations with Abaqus/Standard [2] in a view 

of limited analysis functionality in terms of realistic incompressibility and load application. 

Figure 3 shows the FE-meshes of (a) original and (b) optimised benchmark packer 

geometries consisting of the CAX4R element type, 4-node bilinear axisymmetric 

quadrilateral with reduced integration and distortion control having length ratio 0.5. 

The material parameters for van der Waals hyperelastic model were taken from [17] with 

following values:  = 0.385, m = 10.35;  = 0.279,  = 0.95 and D = 0.001. They are 

based on Treloar’s experimental set of stress-strain data for vulcanised rubber [18]. Since 

not a triangular-shaped element type was used in analysis with incompressible material, it 

required an additional hourglass control to stabilise its behaviour at very large strains. The 

stiffness hourglassing control has been used with the stiffness coefficient of 50, which 

provided a robust convergence for the benchmark packers simulations with results shown 
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in Figs 4 and 5. In definition of general static step, the automatic adaptive solution 

stabilisation with specified dissipated energy fraction (0.0002) and maximum ratio of 

stabilisation to strain energy (0.05) were used. In this case, the combination of Coulomb-

Orowan friction law, element distortion control, stiffness hourglassing control and 

automatic adaptive solution stabilisation helped to achieve a stable simulation of 

elastomeric component in axisymmetric formulation. 

 

 

 

 

Figure 5: Validation simulation of the benchmark packer failure using optimised 

geometry with Abaqus/Standard and mesh distortion control 
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The failure modes of original and optimised packers are significantly different as can be 

seen from Figs 4c and 5d. The burst pressure in case of optimised packer is also 30% higher 

than for original one (2.12 MPa vs 3 MPa). The leakage for the original packer occurs in a 

trivial and predicted way with a fluid pressure burst through the opened contact between 

packer and borehole as illustrated step-by-step in Fig.4. When pressure builds up, the fluid 

propagates only in one direction parallel to axis Y. When reaching critical pressure, the 

packer gets partly extruded through the gap between the protective ring and borehole.  

Failure mode of the optimised packer is significantly different and occurs in non-trivial 

way as illustrated step-by-step in Fig.5. When pressure builds up, the fluid propagates in 

two directions as specified in Fig.5b – above the packer (through the opened contact 

between packer and borehole) and underneath the packer (the opened contact between 

packer and pipe). Contact opening above the packer lost its priority for fluid penetration 

because of the stronger grip between packer and borehole induced by the rippled packer 

surface. So it is easier for fluid to propagate in contact opening between packer and pipe, 

because of less contact pressure and less friction. This scenario results in complete 

separation of packer from pipe and almost it’s complete extrusion through the gap between 

the protective ring and borehole. The extrusion is progressive and happens quickly almost 

without increase of pressure, when packer collapses approximately in its middle location 

and folds. It should be noted that even following the extrusion of the packer, the start of 

leakage is not explicit. The fluid pressure penetration results in the formation of cavity 

filled with fluid in the location of packer folding. The cavity just goes on filling with fluid 

and growing without indication of pressure burst into outer space. The simulated scenario 

may seem unrealistic, because the packer should fail and rupture before filling with fluid. 

But this effect can be implemented only with inclusion of progressive material damage. 

This numerical simulation finding indicates an interesting structural behaviour effect, 

which is worth of further investigation, because it may result in a potential design 

improvement. Regarding the validation analysis of the full-size packer [1], unfortunately 

it is still not feasible even with recently discovered convergence improvement techniques. 

Moreover, current and previous studies [2, 3] showed that leakage is not static, it is a rather 

dynamic process accompanied by the formation of fluid cavities, their expansion and 

coalescence. Therefore, the dynamic analysis procedure supposed to be more adequate for 

realistic structural behaviour simulations of full-size packers. 

3. FLUID-STRUCTURE INTERACTION 

Since in previously conducted dynamic validation simulations with Abaqus/Explicit [3] 

interaction with fluid was not considered, they are lacking a realism, because the packer 

failure mode with a leakage through the contact surface can’t be modelled. This simulation 

challenge can be addressed by an application of the Coupled Eulerian-Lagrangian (CEL) 

approach in Abaqus/Explicit, which provides engineers with the ability to simulate a class 

of problems where the interaction between structures and fluids is important. This 

capability does not rely on the coupling of multiple software products, but instead solves 

the fluid-structure interaction (FSI) simultaneously within the single Abaqus environment 

[19]. The potential of CEL approach for packers’ leakage simulation is investigated below. 

The highest level of realism in simulation of leakage process is expected from engaging 

CEL in ABAQUS/Explicit. In order to develop a practical approach to the solution of this 

class of FSI problems and to understand corresponding capabilities and challenges, a 

leakage benchmark problem has been developed with the geometry shown in Fig.6 (all 



 

dimension in m). The assembly includes the following components: 1) computational fluid 

domain; 2) initial fluid volume; 3) rigid stationary walls (top, bottom, back); 4) rigid 

moving plunger; 5) deformable rubber seal constrained to the bottom wall. 

 

Figure 6: The dimensions of CEL benchmark problem (m) for simulation of leakage 

through a rubber seal and identification of the corresponding burst pressure 

  
Figure 7: FE-mesh of computational fluid domain and solid parts encapsulated in it 

The idea of this benchmark is to build up a fluid pressure by moving the plunger towards 

the seal in order to induce a progressive deformation of rubber and subsequent leakage 

through the gap between deformed seal and top wall. All the fluid should be gradually 

displaced from the left cavity into the right void during the course of simulation. The fluid 

pressure is monitored during this process, so that the value of a burst pressure is identified 

by associating it to the moment in time, when the leakage occurs for the first time. It should 

be noted that for a simplicity the right cavity is considered to be a void in this study. For 

more realism, a presence of air can be considered in future simulations using separate 

initial Eulerian volumes and properties definition for a fluid and for a gas. The FE-model 

shown in Fig.7 comprises the following type of elements: 

Eulerian mesh

Lagrangian mesh 



 

 24780 fluid Eulerian FEs (type EC3D8R) / 28080 nodes (water), 

 640 solid Lagrangian FEs (type C3D8R) / 945 nodes (rubber seal), 

 960 rigid shell FEs (type S4R) / 1116 nodes (rigid walls). 

Since the number of Eulerian FEs exceeds almost 40 times the number of Lagrangian FEs, 

it is Eulerian part of the model, that is the most computationally expensive. The fluid 

element type, EC3D8R – 8-node linear Eulerian brick with reduced integration and 

hourglass control, is the only available type of fluid FE for CEL. The seal is meshed with 

C3D8R – 8-node linear brick with reduced integration, distortion control (length ratio 0.1) 

and enhanced hourglass control, which is quite sufficient to model an incompressible 

hyperelastic material undergoing moderate deformations. Since the hyperelastic materials 

parameters are required to be in SI units to avoid compatibility issues with the fluid 

material model, a new parameters identification has been implemented using internal 

Abaqus curve fitting tool [20] using Treloar’s experimental set [18] with stress in Pa. In 

terms of strain energy potential, the 3rd order of Ogden form has been used resulting in the 

fit shown in Fig.8 and the following set of parameters: 1 = 371784.2 [Pa], 1 = 1.45175, 

2 = 1308.63 [Pa], 2 = 5.4886, 3 = 15445.055 [Pa], 3 = –1.87468, 1D = 5.1477E�10. 

The elastic strain observed in the seal is not rally high – just around 6%, when the leakage 

starts (see Fig.9a), and it goes up to 14% (see Fig.10a), when the fluid flow intensifies, and 

finally reaches 19% (see Fig.10b), when the relocation of the fluid is finished. 

The fluid material properties used in CEL simulation are based on the linear Us�Up 

Hugoniot form of Mie-Grüneisen equation of state model [21], which is used to model 

compressible viscous and inviscid laminar flow governed by the Navier-Stokes equation 

of motion. In general, the equation of state is assumed for the pressure as a function of the 

current density ȡ and the internal energy per unit mass mE  as  , mp f E , which 

defines all the equilibrium states that can exist in a material. The internal energy can be 

eliminated from the above equation to obtain a p versus V relationship (where V is the 

current volume) or, equivalently, a p versus 1/ȡ relationship that is unique to the material 

described by the equation of state model, and it is called the Hugoniot curve. The Hugoniot 

pressure Hp  is a function of density only and can be defined in general from fitting 

experimental data. An equation of state is linear in energy when it is written in the form: 

,mp f g E       (3) 

where  f   and  g   are functions of density only and depend on the particular 

equation of state model. A Mie-Grüneisen equation of state is linear in energy:  

 ,H m Hp p E E                (4) 

where Hp  and HE  are  the Hugoniot pressure and specific energy (per unit mass) and are 

functions of density only, and 0 0     is the Grüneisen ratio with 0  as a material 

constant and 0  as a reference density. 

The Hugoniot energy HE  is related to the Hugoniot pressure Hp  by 
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where 01 /     is the nominal volumetric compressive strain. Elimination of   and 

HE from the above equations (4)-(5) yields 
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A common fit to the Hugoniot data is given by 
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where the speed of sound in a medium 0c  and the dynamic viscosity s  define the linear 

relationship between the shock velocity sU  and the particle velocity pU  as follows: 

0 .s pU c s U       (8) 

With the above assumptions (6)-(8) the linear sU − pU  Hugoniot form is written as 
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where 2

0 0c  is equivalent to the elastic bulk modulus at small nominal strains. It should 

be noted that there is a limited amount of compression with a limiting compression given 

by the denominator of this form of the equation of state lim 1 s  or  lim 0 1s s   . 

The definition of a material using the material model (3)-(9) requires 0c  and s , which are 

in this case taken as a general case corresponding to water at room temperature – 0c = 1483 

[m/s] and s = 0.001 [Pa·s] with the density ȡ = 1000 [kg/m3] for dynamic FEA. 
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Figure 8: Rubber stress-strains curves fitted with the 3rd order Ogden model 



 

The obtained water pressure distribution is quite noisy spatially as seen from Fig.9b, but it 

has a random maximum, which can be traced during the simulation. The history of the 

water pressure maximum (kPa) vs displacement of plunger (mm) is shown in Fig.11, which 

also displays the real time of simulation (s) on the secondary axis to show the smooth 

history of displacement that gradually accelerates and stops to reduce the dynamic effects. 

  
Figure 9: The moment of time corresponding to the start of leakage corresponding 

to (a) maximum principal true strain in seal and (b) pressure distribution in water 

  
Figure 10: True strain in seal during the (a) progression of flow and (b) flow cut-off  

 
Figure 11: Fluid pressure (kPa) vs displacement of plunger (mm) vs time (s) 
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The observed volumetric (Fig.9b) and history fluctuations (Fig.11) of the liquid can be in 

the first instance associated with the dynamic type of simulation, then with some 

compressibility of liquid, and a non-smooth character of the slip of the seal after reaching 

the critical pressure and associated seal vibrations and waves in the adjacent liquid. Despite 

of the noisy character of the maximum pressure history in Fig.11, two distinctive global 

peaks can be recognised – first corresponding to the displacements 9-20 mm and second 

for 34-40 mm. The second peak is associated with the finishing of water displacement, 

when pressure goes up because the left cavity gets fully filled and resists to any further 

water intake. The purpose of this simulation is to obtain the first pressure peak, which 

indicates the start of leakage. With the displacement of plunger, the water moves in the 

same direction creating a pressure on the seal. In its turn, seal reacts to this loading by 

induction of internal stress and corresponding deformation (see Fig.9a). The contact 

between the seal and top wall is frictional with coefficient of friction of 0.3, that doesn’t 

let the top seal surface to slip easily under growing water pressure. The hyperelastic nature 

of seal and slipping in contact limits the maximum pressure that is achieved in simulation. 

A kind of plateau is observed in Fig.11 starting at 9 mm, that indicates the beginning of 

seal slipping, with the subsequent loss of contact at 15 mm. The noisy history of water 

pressure is smoothened using the moving average function with 8 periods producing a 

more clear history of the pressure pulsation illustrated with a solid line in Fig. 11. The 

averaged signal gives the value of 150 kPa as an indication of the burst pressure. This value 

is achieved at 9 mm of displacement, that corresponds to 0.33 s of simulation time. 

Similar approach is applied to the packers benchmark problems, which are extended from 

axial symmetry to full 3D considering 1° of rotation as shown in Fig.12 with two elements 

per thickness of the model and 1 mm of characteristic element dimension. Packer, initial 

fluid volume, moving plunger and stationary walls are all encapsulated into the global 

Eulerian computational fluid domain, which has to go beyond the Lagrangian components. 

The type of FE is exactly the same as was used for CEL benchmark above – C3D8R. But 

this time it was not sufficient for the converged simulations – both models failed when the 

fluid and seals got into hard contact and the pressure started to build up as shown in Fig.13. 

The failures were caused by excessive distortion of the corners elements when contacting 

with fluid – both distortion and enhanced hourglass control didn’t work as it was expected. 

The elements completely buckled resulting in unrealistic strains and termination of FEA. 

 

Figure 12: Geometries of the benchmark problems: a) original and b) optimised 

initial fluid volume
swellable packers

rigid boundary 

incorporating bore 

hole and pipe 

a 

b 
plungers computational 

fluid domain 



 

 

 
Figure 13: Partial solutions of the benchmark problems: a) original & b) optimised 

4. CONCLUSIONS 

The further work will focus on search of a robust FE-model setup, which would guarantee 

a stable convergence at high fluid pressure in the range from 1 to 100 MPa. It is worthwhile 

trying the C3D4 type of FE – 4-node linear tetrahedron in combination with distortion 

control, because in previous work [3] the stable convergence has been achieved with the 

3-node linear triangle (CAX3). It should be noted that Abaqus/Explicit simulations with 

CEL approach are very computationally expensive, e.g. the obtaining the results shown in 

Fig.13 required around 1000 CPU-hours, and they are still incomplete. Therefore, further 

work will also focus on improving the computational efficiency of the validation 

simulations. Static implicit analysis if fast, but not robust, on other hand dynamic explicit 

analysis is robust, but slow. Therefore, taking the best from both solvers, in the form of 

dynamic implicit analysis, may provide a needed balanced result. Moreover, a specific 

acoustic type of analysis as a form of FSI is available in dynamic solvers and can be applied 

to large-deformation enclosures (seals, etc.) with adaptive acoustic meshes for fluids [22]. 

5. ACKNOWLEDGEMENTS 

The authors appreciate the financial support of Weir Group PLC within the WARC project 

“Design Optimisation of Swell Packers” and University of Strathclyde for hosting during 

the course of this work. Results were obtained using the EPSRC funded ARCHIE-WeSt 

High Performance Computer (www.archie-west.ac.uk) EPSRC grant no. EP/K000586/1. 

6. REFERENCES 

[1] Lou, Y. and Chester, S. “Kinetics of swellable packers under downhole conditions”, 

Int. J. Appl. Mechanics, vol. 06: 1450073 [18 p], 2014. 

[2] Gorash, Y., Bickley, A. and Gozalo, F. “Design optimisation of swellable 

elastomeric seals using advanced material modelling and FEM simulations”, Poster 

� Int. Conf. on Innovations in Rubber Design, 7-8 Dec 2016, London: IOM3, 2016. 

Fluid  

(Eulerian mesh) 

Plunger 

mesh 

failure 

mesh 

failure 

Plunger 

Fluid  

(Eulerian mesh) 

Pressure ~ 1.3 MPa 

Pressure ~ 0.9 MPa 

b 

a 



 

[3] Gorash, Y., Bickley, A., and Gozalo, F. “Improvement of leak tightness for swellable 

elastomeric seals through the shape optimization”, Proc. 10th Euro. Conf. on 

Constitutive Models for Rubbers X � ECCMR X (28-31 August 2017, Munich, 

Germany), pp. 453-458, 2017. 

[4] Marks, L. “Simulation workshop #1: Multi-physics”, Develop3D, vol. April 2013, 

pp. 53-54, 2013. 

[5] Lorphelin, N. “How to Model Hygroscopic Swelling”, COMSOL Blog, 2015. 

https://www.comsol.com/blogs/how-to-model-hygroscopic-swelling/  

[6] Flory, P. J. and J. Rehner Jr. “Statistical mechanics of cross-linked polymer networks 

II. Swelling.”, The Journal of Chemical Physics, vol. 11(11), pp. 521-526, 1943. 

[7] SIMULIA “37.1.7 Pressure penetration loading”, ABAQUS Analysis User�s Guide, 

version 2016, Providence, RI, USA: Dassault Systèmes Simulia Corp., 2016. 

[8] SIMULIA “12.1.1 Adaptivity techniques”, ABAQUS Analysis User�s Guide, version 

2016, Providence, RI, USA: Dassault Systèmes Simulia Corp., 2016. 

[9] Puri, G. “Python Scripts for Abaqus: Learn by Example”, USA: Kan Sasana Printer, 

2011. 

[10] Brieger, S. “Non-parametric optimization”, Bionic Optimization in Structural 

Design (Eds: R. Steinbuch and S. Gekeler), Section 2.6, pp. 37-42. Berlin, 

Heidelberg: Springer, 2016. 

[11] Wagner, N. and Helfrich, R. “Topology and shape optimization of structures under 

contact conditions”, Proc. 1st Euro. Conf: Simulation-Based Optimisation (12-13 

Oct 2016, Manchester, UK), Hamilton: NAFEMS, pp. 127-130, 2016. 

[12] SIMULIA “Minimizing contact pressure”, Tosca Structure 2016 Documentation, 

version 2016, Karlsruhe, Germany: Dassault Systèmes Simulia Corp., 2016. 

[13] Wriggers, P. “Discretization, large deformation contact”, Computational Contact 

Mechanics, Berlin, Heidelberg: Springer, pp. 225-307, 2006. 

[14] Connolly, S., Gorash, Y. and Bickley, A. “A comparative study of simulated and 

experimental results for an extruding elastomeric component”, Proc. 23rd Int. Conf. 

on Fluid Sealing 2016 (2-3 Mar 2016), Manchester: BHR Group, pp. 31-41, 2016. 

[15] Raous, M. “Quasistatic signorini problem with Coulomb friction and coupling to 

adhesion”, New Developments in Contact Problems (Eds: Wriggers P. and 

Panatiotopoulos P.), Number 388 in CISM International Centre for Mechanical 

Sciences, Chapter 3, pp. 101-178. Vienna: Springer-Verlag, 1999. 

[16] SIMULIA “10.6.2 Compressibility”, Getting Started with ABAQUS, version 2016, 

Providence, RI, USA: Dassault Systèmes Simulia Corp., 2016. 

[17] Hossain, M. and Steinmann P. “More hyperelastic models for rubber-like materials: 

consistent tangent operators and comparative study”, J. Mech. Behav. Mater., vol. 

22(1-2), pp. 27-50, 2013. 

[18] Treloar L.R.G. “Stress-strain data for vulcanised rubber under various types of 

deformation”, Trans. Faraday Soc., vol. 40, pp. 59-70, 1944. 

[19] SIMULIA “Abaqus > Abaqus/CAE > Modeling techniques > Eulerian analyses”, 

SIMULIA User Assistance, version 2017, Providence, RI, USA: Dassault Systèmes 

Simulia Corp., 2017. 

[20] Mavrodontis, N. “Modelling hyperelastic behavior using test data in Abaqus”, 

Simuleon FEA Blog, 11th December 2017: https://info.simuleon.com/blog/modelling-

hyperelastic-behavior-using-test-data-in-abaqus  
[21] SIMULIA “Abaqus > Materials > Hydrodynamic Properties > Equation of state > 

Mie-Grüneisen equations of state”, SIMULIA User Assistance, version 2017, 

Providence, RI, USA: Dassault Systèmes Simulia Corp., 2017. 

[22] van Schalkwijk et al. “Simulation of noise penetration through car weather seals” 

Proc. of ABAQUS Users� Conference (4-6 June 1997), Milan, Italy, 1997. 


