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ARTICLE

The parasitic worm product ES-62 normalises the
gut microbiota bone marrow axis in inflammatory
arthritis
James Doonan1, Anuradha Tarafdar 2, Miguel A. Pineda2, Felicity E. Lumb1, Jenny Crowe 2,

Aneesah M. Khan2, Paul A. Hoskisson 1, Margaret M. Harnett2 & William Harnett1

The human immune system has evolved in the context of our colonisation by bacteria,

viruses, fungi and parasitic helminths. Reflecting this, the rapid eradication of pathogens

appears to have resulted in reduced microbiome diversity and generation of chronically

activated immune systems, presaging the recent rise of allergic, autoimmune and metabolic

disorders. Certainly, gastrointestinal helminths can protect against gut and lung mucosa

inflammatory conditions by modulating the microbiome and suppressing the chronic

inflammation associated with dysbiosis. Here, we employ ES-62, an immunomodulator

secreted by tissue-dwelling Acanthocheilonema viteae to show that helminth-modulation of

the gut microbiome does not require live infection with gastrointestinal-based worms nor is

protection restricted to mucosal diseases. Specifically, subcutaneous administration of this

defined immunomodulator affords protection against joint disease in collagen-induced

arthritis, a mouse model of rheumatoid arthritis, which is associated with normalisation of gut

microbiota and prevention of loss of intestinal barrier integrity.
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P
arasitic helminths (worms) have evolved to modulate host
immune and tissue repair responses to promote their
survival by limiting inflammation that would otherwise

drive their expulsion and cause pathology1. The recent eradica-
tion of helminths (and other pathogens) appears to have resulted
in over-activated immune systems and this provides a rationale
for the increasing prevalence of allergic and autoimmune
inflammatory disorders, as well as contributing to the rise in
obesity and associated comorbidities2–4 in developing and urba-
nised countries. Although genetic studies have identified gene
variants associated with various inflammatory diseases, these
alone do not appear to be strong risk factors, integration with
environmental factors being required to trigger disease. Recog-
nition of this has focused interest on the role of the microbiota3,5

and hence, on how helminths may regulate this in health
and disease6,7. Indeed, commensal bacteria and gastrointestinal
(GI) helminths appear to have evolved to reciprocally regulate
the gut microbiome8 to homeostatically maintain immune
system function2. Thus, GI helminths can induce regulatory
responses to limit inflammation and promote intestinal barrier
integrity, while intestinal bacteria play an essential role in training
the immune system by impacting on stem and progenitor cells3,5.
Certainly, there is increasing evidence from animal models
that protection afforded by GI helminth infection against
mucosal inflammatory disorders like asthma, inflammatory bowel
disease and coeliac disease, involves modulation of the gut
microbiota2,6,7.

Nevertheless, gut, lung or oral dysbiosis has also been impli-
cated in the aetiology of a wide range of autoimmune diseases,
including musculoskeletal pathologies like rheumatoid arthritis
(RA) and systemic lupus erythematosus (SLE)9,10. Whether
the protection afforded by GI helminths against these disorders
similarly involves interaction with the microbiome is not
clear but infection with Heligmosomoides polygyrus and Trichuris
muris can result in increases in Lactobacillaceae and decreases
in Prevotella species2,11,12, commensals reported to be dysregu-
lated in RA patients9,10. In any case, helminth-mediated protec-
tion against autoimmune disease is not limited to GI-tract
parasites, with particularly striking examples of this involving
filarial nematodes preventing development of RA13 and SLE14.
However, it is unclear whether tissue-resident or blood-borne
parasitic worms can mediate these effects via modulation of the
host microbiome and if so, which mechanisms they utilise.

That helminths can ameliorate chronic inflammatory
disorders has often been attributed to their capacity to excrete or
secrete molecules (ES) that exert immunoregulation2. Amongst
the best characterised ES products is ES-62, a phosphorylcholine
(PC)-containing glycoprotein secreted by the filarial nematode
Acanthocheilonema viteae that we have shown to prevent initia-
tion and progression of pathology in mouse models of certain
allergic (asthma, contact dermatitis) and autoimmune (RA, SLE)
inflammatory diseases1,2,15–20. Collectively, our studies have
identified a unifying mechanism of action that allows effective
protection irrespective of the inflammatory phenotype: thus, by
subverting TLR4 signalling to downregulate aberrant MyD88-
responses, ES-62 homeostatically resets the regulatory:effector
immune cell balance, primarily to restore levels of IL-10+

regulatory B cells and suppress pathological IL-17-driven
inflammation1,2,15–21. In both experimental models of RA and
human disease, perturbation of the microbiota has been shown
to disrupt the balance of pathogenic Th17 cells and the counter-
regulatory Bregs and Tregs that act to homeostatically resolve
inflammation9,10,22. Thus, our aim here was to investigate whe-
ther the anti-inflammatory actions of ES-62 reflected an ability
to impact on the microbiome. We now show that whilst joint
disease in the collagen-induced arthritis (CIA) mouse model

of RA is preceded by disturbance of the gut microbiome with
accompanying intestinal inflammation and loss of barrier integ-
rity, ES-62 acts to normalise the microbiome and maintain gut
health. Furthermore, we report that prophylactic depletion of the
gut microbiota with broad-spectrum antibiotics (ABX) reduces
the consequent severity of arthritis in mice undergoing CIA and
in addition, reduces the level of protection afforded by ES-62.
These data therefore indicate that a normalised microbiome is
required for the full induction of the immunoregulatory actions
of ES-62.

Results
ES-62 normalises the gut microbiome in protecting against
CIA. ES-62 ameliorates CIA in terms of articular score and
frailty, maintaining grip strength at a similar level to that of
healthy, Naive (not subjected to CIA) DBA/1 mice (Supplemen-
tary Figure 1). Commensal bacteria have increasingly been pro-
posed to contribute to RA pathogenesis9,10 and decline in grip
strength during ageing has been associated with changes in the
gut microbiome23. In addition to being an indicator of frailty, grip
strength is a predictor of a wide range of adverse health out-
comes24, e.g., cardiovascular disease, which RA patients are at
increased risk of developing25 and that are impacted by the
microbiome9,26. Thus, to address whether ES-62-mediated pro-
tection reflects modulation of the gut microbiota, a shotgun
metagenomic approach was used to profile bacteria populations
present in the intestines of CIA mice. Initiation of RA (and CIA)
pathogenesis is associated with disruption of the balance of
effector:regulatory immune cells and so we characterised the
bacterial changes pertaining during established arthritis in the
ileum and colon; intestinal sites where the microbiome and
the metabolic microenvironment play key roles in shaping Th17
and regulatory immune responses22,27,28. As there is well-
documented variation in the microbiome amongst individuals
due to a range of environmental factors, we adopted the strategy
of pooling samples from mice with representative disease scores
to minimise variation due to a factor we could control for, namely
disease severity: specifically, we focused on those samples asso-
ciated with a well-established severe level of disease in CIA mice
(articular score: 7.00 ± 0.91) and clear protection against arthritis
in ES-62-treated CIA mice (articular score: 0.50 ± 0.33) over three
independent experiments.

An overview of the microbiota at the phylum level shows
substantial changes between healthy Naive mice and those with
arthritis (PBS; Fig. 1a). Firmicutes and Bacteroidetes are the
predominant phyla in all groups, but CIA mice in particular,
exhibit outgrowths of Firmicutes and Proteobacteria in the ileum,
whereas they demonstrate decreased levels of Firmicutes with a
compensatory outgrowth of Bacteroidetes, in the colon (Fig. 1a).
ES-62 essentially helps maintain the healthy microbiome diversity
of Naive mice, which was reduced in CIA mice (Fig. 1a). Deeper
analysis illustrates the differential diversity signatures of healthy
and arthritic mice, as well as the impact of ES-62 on a global
scale (Fig. 1b; Supplementary Table 1). As a consequence of our
pooling strategy, we have refrained from discussion of species-
level changes as large-scale population studies would be required
to address this with complete confidence. Nevertheless, drilling
down on the modulation of the Gram-negative Bacteroidetes
phylum reveals differential signatures throughout each of the
predominant Bacteroides, Porphyromonas and Prevotella genera
and the Rikenellaceae family between the colon contents of Naive
and CIA mice, identifying those normalised by exposure to ES-62
(Fig. 1c). Similarly, in spite of the fact that differential profiles
amongst the groups were observed throughout major genera
(e.g., Bacillus, Staphyloccus, Streptococcus, Enterococcus and
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Clostridium) of Gram-positive Firmicutes (Fig. 1b; Supplemen-
tary Table 1), the most dramatic changes with established CIA
occurred within the Clostridiales order. In particular, decreases in
the Clostridiaceae and the Lachnospiraceae (Fig. 1d) families were
noted with ES-62 promoting maintenance of the Ruminococcus,
Faecalibacterium and Blauti genera and the family Erysipelo-
trichaceae in addition to the butyrate-producing genera Dorea
and Roseburia, the latter having been implicated in gut health and
inflammation homoeostasis29. In terms of the Proteobacteria,
CIA was associated with outgrowth of members of the
Helicobacter (Epsilonproteobacteria) and Escherichia (Gamma-
proteobacteria) genera and again this was normalised by ES-62
(Fig. 1e).

Perturbation of the microbiome was also observed in the ileum
of CIA mice and again, exposure to ES-62 normalised this
towards the healthy community (Fig. 1a). ES-62 clearly promoted
growth of the Clostridiales, again particularly the Clostridaceae
and Lachnospiraceae families, generally even beyond the levels
found in healthy mice (Fig. 1f ). In the context of the relative
paucity of bacteria in the ileum relative to the colon, this
outgrowth perhaps explains why ES-62 increases the overall
species diversity observed in the ileum but not the colon of CIA
mice (Supplementary Figure 2). In addition, reflecting that CIA
perturbs and ES-62 normalises gut bacteria, functional metage-
nomic analysis showed that ES-62 generally acted to normalise
the metabolic capacity of the colonic microbiome in CIA mice
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(Fig. 1g). Intriguingly, treatment of Naive, healthy mice with ES-
62 for the duration of the CIA model also promotes expansion of
members of the Clostridiales order, again particularly the
Lachnospiraceae, whilst decreasing abundance of Bacilli, the
Bacteroidaceae and Porphyromonadaceae families of Bacteroi-
detes and also, Proteobacteria in the ileum (Fig. 1h). Likewise, ES-
62 can also promote depletion of Bacteroidetes and expansion of
Ruminococcaceae and Clostridiaceae families and the Clostridia
class of Firmicutes in the colon of Naive mice (Fig. 1i).
Importantly, ES-62’s modulation of the gut microbiota in the
absence of the chronic inflammation associated with CIA suggests
that it can act directly, and that there is not an absolute
requirement for it to harness immunoregulatory mechanisms to
maintain and fine-tune microbiome homoeostasis.

Antibiotics both ameliorate CIA and impact on ES-62 pro-
tection. To address whether microbiome perturbation observed
in CIA plays a role in the initiation and progression of inflam-
matory arthritis, we investigated the effect of continuous exposure
of mice to a cocktail of broad-spectrum antibiotics (ABX)
administered from 1 week prior to initiation of CIA. Such ABX
treatment had no obvious effect on overall health as, after a
characteristic initial dip, there was no significant difference in
body weight amongst the CIA groups at cull (Supplementary
Figure 2). Nevertheless, this regimen essentially eliminated the
bacterial microbiota, irrespective of treatment group, whilst
metagenomic analysis showed the residual gut community to be
almost entirely comprising proteobacteria (Supplementary Fig-
ure 2). As predicted from previous studies in several inflamma-
tory arthritis models22,30,31, ABX treatment reduced the incidence
(PBS, 65.2%; PBS-ABX, 36.3%, as measured by articular score ≥1)
and severity of joint pathology in CIA mice, both in terms of
articular score (Fig. 2a) and histopathology (Fig. 2b, c). In addi-
tion, the protection afforded by ES-62 was reduced in ABX-
treated animals (Fig. 2a). Thus, prophylactic administration of
ABX resulted in an intermediate phenotype of CIA, irrespective
of whether the mice were treated with PBS or ES-62.

ES-62-mediated protection against CIA is associated with
restoration of the homoeostatic balance of regulatory:effector B-
cell responses via downregulation of aberrant MyD88 signalling2,21.
Typically, ES-62 reduces pathogenic anti-collagen type II (CII)
IgG2a, but not IgG1 antibody production32,33. Reflecting the ABX-
driven amelioration of CIA pathology, anti-CII Ig2a levels in PBS-
ABX mice are not significantly different from those in ES-62-CIA
mice, whilst those in ES-62-ABX mice are not significantly reduced
relative to those in PBS-CIA mice (Fig. 2d). No differences were
detected amongst any of the groups in terms of anti-CII IgG1

antibodies (Fig. 2e). Consistent with the effects of ABX on effector
B-cell responses, analysis of splenic IL-10+CD19+ Bregs showed
that both the decrease occurring during CIA (PBS-CIA) and also
the maintenance of healthy levels in ES-62-CIA mice2,21 were lost
in ABX-treated animals (Fig. 2f). Moreover, whilst ES-62 increases
serum IL-10 levels in CIA mice, this regulatory cytokine is found at
similarly low levels in PBS-CIA, PBS-ABX and ES-62-ABX mice
(Fig. 2g). At the same time, ES-62-mediated suppression of serum
levels of IL-6, a cytokine that promotes B-cell (auto)immunity34, is
lost following ABX treatment (Fig. 2h). Collectively, these ABX
studies indicate that depletion of the microbiota interferes with
generation of inflammatory mediators associated with CIA
pathogenesis as well as with the loss of immunoregulatory elements
(Bregs) normally contributing to resolution of chronic inflamma-
tion. Importantly, they also indicate that ES-62-resetting of the
effector:regulatory balance is dependent on an intact gut micro-
biome and hence suggest that its restoration is a consequence of ES-
62-mediated normalisation of the microbiome dysbiosis associated
with CIA.

ES-62 also acts in CIA mice to suppress the functional
maturation of osteoclasts (OC)20 that directly cause erosive joint
damage. Interestingly, changes in the intestinal microbiome have
been shown to impact on bone mass35,36 and we therefore
investigated whether the intermediate phenotype of joint
pathology occurring in ABX-treated CIA mice reflected modula-
tion of osteoclastogenesis resulting from perturbation of the gut
microbiota. Exposure of CIA mice to ES-62 restored the numbers
of OC differentiated from bone marrow (BM) progenitors ex vivo
to Naive levels (Fig. 3a) and blocked their fusion to large, active
multinucleated cells (Fig. 3a–c) that resorb bone20. Consistent
with its amelioration of CIA pathology, ABX administration
resulted in a decrease in large multinucleated OCs and a
corresponding increase in total numbers of BM-derived OCs
from CIA mice (Fig. 3a–c). Under these conditions of microbiota
depletion, the ability of ES-62 to inhibit generation of large
multinucleated OCs is lost (Fig. 3b): rather, and perhaps
consistent with the increased joint inflammation exhibited by
these mice, the ES-62-ABX group exhibits the largest multi-
nucleated cells of the ABX-treated cohorts, displaying signifi-
cantly lower numbers of OCs but larger, multinucleated cells than
Naive-ABX mice. ES-62 rewires osteoclastogenesis by modulating
the RANK/OPG bone remodelling axis20 and this is evidenced
again here by its ability to significantly decrease RANK
expression and increase (albeit not significantly) expression of
the decoy receptor, OPG relative to that seen in BM of PBS-CIA
mice (Fig. 3d, e). This axis is also targeted by ABX treatment, with
the elevated RANK expression observed in PBS-CIA BM being
lost following ABX treatment. In addition, the elevated OPG

Fig. 1 ES-62 normalises the microbiome during CIA towards a Naive phenotype. The composition of bacterial phyla present in the ileum and colon of Naive,

PBS and ES-62-treated CIA animals, presenting proportion values as pie charts (a) from a single representative experiment using pooled samples from

three mice in each condition. b Heatmap analysis of all bacteria present in the colon of Naive, PBS and ES-62-treated CIA animals from this representative

model (articular scores; naive, 0; PBS-CIA, 6.3 ± 2.6; ES-62-CIA, 0; *p < 0.05 for PBS-CIA versus Naive and ES-62-CIA mice) is shown. The profile of

bacterial abundance, is provided in Supplementary Table 1 for clarity. c–g Metagenonic analysis was performed on three independent models: in each

model, samples from three representative mice/group were pooled in each individual experiment and the mice selected exhibited the following articular

scores: Naive, 0; PBS-CIA, 7.00 ± 0.91; ES-62-CIA, 0.50 ± 0.33, where ***p < 0.001 for the PBS-CIA versus Naive and ES-62-CIA cohorts and n= 9 mice for

all groups over the three independent models. Statistically significant changes (two-way ANOVA with LSD Fishers multiple comparisons) observed over

the three independent experiments (mean ± SEM, n= 3) between the PBS-CIA and ES-62-CIA groups in Bacteroidetes (c; Bacteroidaceae; PBS versus

Naive or ES-62, p < 0.05), Firmicutes (d; Clostridiales; PBS versus Naive, p < 0.01 and PBS versus ES-62, p < 0.05) and Proteobacteria (e;

Epsilonproteobacteria; PBS versus Naive or ES-62, p < 0.05) in the colon and Firmicutes in the ileum (f; Clostridiaceae; PBS versus ES-62, p < 0.05) as well

as functional metagenomics of the colon (g; Phages; Naive versus PBS, p < 0.01, Protein metabolism; PBS versus Naive or ES-62, p < 0.01) are presented as

heatmaps with changes in bacterial populations in PBS- and ES-62-treated CIA animals normalised to Naive controls. Ileum (h) and colon (i) faecal matter

from Naive or ES-62-treated Naive animals was analysed for changes in bacterial populations in a single experiment using samples pooled from three

animals per group and displayed as heatmaps, where the ES-62-treated samples are normalised to the Naive controls
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expression observed in ES-62-conditioned OCs was abrogated
following ABX treatment (Fig. 3d, e): these changes would result
in similar levels of RANKL-driven osteoclastogenesis consistent
with the intermediate CIA phenotype observed in PBS- and ES-
62-ABX animals. Supporting these ABX-changes in osteoclasto-
genesis and consequently bone damage, relative to Naive mice,
PBS-ABX and ES-62-ABX animals exhibit similar grip strengths
(70.8 ± 5.4% and 58.8 ± 6.0%, respectively) that are intermediate
to those displayed by PBS- (42.3 ± 6.2%) and ES-62-CIA mice
(90.1 ± 9.6%). Collectively, these data not only support a role for
the microbiome in osteoclastogenesis but also implicate its

involvement in the ability of ES-62 to modulate pathogenic
osteoclastogenesis in CIA.

ES-62 protects against gut pathology in CIA. Intestinal dys-
biosis has been associated with loss of gut integrity and chronic
inflammation in conditions such as obesity that promote auto-
immune disorders like RA and cardiovascular comorbidities37,38.
Our metagenomic analysis showed that established CIA
was associated with gut microbiome changes, in particular
with reduction in butyrate-producing bacteria (Fig. 1b, d;
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Fig. 2 Antibiotic treatment results in an intermediate disease phenotype. a Data are presented as articular scores (mean ± SEM) and are pooled from three

independent experiments (PBS; n= 23, ES-62; n= 19, PBS-ABX; n= 22 and ES-62-ABX; n= 22). b H&E staining (scale bars represent 200 µm) of hind

paws, from representative mice from each treatment group (clinical articular scores of individual paws were: PBS≥ 3 (n= 9), ES-62= 0 (n= 7), PBS-

ABX= 0 (n= 3) and ES-62-ABX≥ 3 (n= 3)) selected to compare joint pathology occurring in the similarly scored ES-62-CIA and PBS-ABX (score 0) and

ES-62-ABX and PBS-CIA (articular score≥ 3) mice. c Blind scoring of pathology exhibited in joint sections imaged in (b). d, e Levels of collagen II (CII)-

specific IgG2a (d; PBS; n= 18, ES-62; n= 13, PBS-ABX; n= 16 and ES-62-ABX; n= 14) and IgG1 (e; PBS; n= 15, ES-62; n= 10, PBS-ABX; n= 16 and ES-62-

ABX; n= 14) antibodies in serum were determined by ELISA. f Splenic B regulatory cells (CD19+IL-10+ cells) were determined by flow cytometry (Naive;

n= 13, PBS; n= 21, ES-62; n= 14, Naive-ABX; n= 8 PBS-ABX; n= 14 and ES-62-ABX; n= 15). g, h IL-10 (g: PBS; n= 6, ES-62; n= 5, PBS-ABX; n= 6 and

ES-62-ABX; n= 6) and IL-6 (h: PBS; n= 24, ES-62; n= 10, PBS-ABX; n= 12 and ES-62-ABX; n= 13) concentrations in serum were determined by ELISA.

Statistics: all results are presented as mean ± SEM and each symbol represents an individual mouse; data are from one (g) or pooled from two or three

independent experiments. Statistical significance was determined using two-way ANOVA (a) or one-way ANOVA (c–h) with LSD Fishers multiple

comparisons and significance indicated by asterisks, *p < 0.05 and **p < 0.01 and #p < 0.05 (PBS vs. PBS+ABX [a] and ES-62-ABX vs. Naive [f])
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Supplementary Table 1) that have been implicated in main-
tenance of epithelial integrity and gut health29. Strikingly, mice
with CIA display severe gut pathology and inflammation, the
levels of which directly correlate with severity of CIA (Fig. 4a).
Moreover, ES-62 treatment protects against such gut damage,
specifically the thickening and generation of stubby villi in the
ileum (Fig. 4b, c) and hole-like lesions in the colon (Fig. 4b. d).
The physiological relevance of these colon lesions is unclear but
they may reflect the suppression of mucus production by goblet
cells in response to bacteria39 or alternatively, attachment/effa-
cement lesions induced by pathogenic bacteria, including
E. coli40. The gut pathology in PBS-CIA mice was diminished
in those administered ABX (Fig. 4b–d), suggesting that the
associated reduction in chronic gut (and consequently systemic)
inflammation contributes to the amelioration of CIA in PBS-ABX
mice. Of note, ES-62-ABX mice displayed increased pathology
and inflammatory cell infiltration of the gut tissue compared with
ES-62-CIA mice (Fig. 4b), findings again consistent with chronic
gut inflammation promoting disease severity.

To further address the role of gut pathology in CIA, we
analysed the ileum and colon tissue from Naive mice and those
undergoing CIA (treated with PBS or ES-62) at key points
during initiation and progression of disease: (i) Naive mice,
(ii) the breaking of tolerance and initiation of disease, following
immunisation with CII/CFA (≤ day 14), (iii) preclinical (day 21,
prior to booster immunisation with CII) and (iv) established
disease (≥ day 28; articular score: PBS–5.2 ± 0.8; ES-62–0.9 ±
1.24). This analysis revealed the presence of gut pathology in
PBS-CIA mice during the initiation phase with an increase in

both ileum villi thickness and colonic lesions following
immunisation (Fig. 5a–c). Interestingly, the ileum pathology
occurring during the initiation stage in PBS-CIA mice appeared
to resolve by the end of the preclinical phase (day 21), although
thickening and shortening of the villi was again induced by the
booster CII immunisation. This pattern was not the case for
the colon lesions, which peaked at day 21 and were maintained
throughout active disease in PBS-CIA mice. As opposed to CIA
mice, ileum integrity was maintained throughout all phases of
disease, whilst the high levels of colon lesions generated by day 21
of the preclinical phase were reduced in ES-62-treated animals
(Fig. 5b, c).

Supporting our metagenomics data, qPCR analysis showed that
ES-62 prevents the enrichment of Bacteroidetes and maintains
levels of Firmicutes in the colon of mice during established CIA
(Fig. 5d, e). However, analysis at the various phases of the disease
suggested a more dynamic situation: for example, following
the primary immunisation with CII/CFA, there is a significant
decrease in levels of both Bacteroidetes and Firmicutes, with
the rise in Bacteroidetes evident in established arthritis only
occurring following the booster immunisation (Fig. 5d, e). By
contrast, ES-62 acts to maintain healthy levels of Firmicutes in
CIA mice throughout disease, but most strongly during the
initiation and preclinical phases and in addition, inhibits the
CIA-induced increase in Bacteroidetes during established disease.
Moreover, although ES-62 promoted enrichment of butyrate-
producing bacteria (Butyrivibrio) at all stages of disease, this was
most evident in the initiation phase (Fig. 5f). Butyrate has
been reported to promote the development of regulatory T cells

a

c d e

b

800

600

400

200

0

3

2

1

0

30

20

10

0

OC size

**

***

***

**

**
*

***

***

*

S
iz

e
 o

f 
O

C
s
 (

µ
m

2
)

None

Naive

PBS

ES-62

ABX

R
A

N
K

 m
R

N
A

O
P

G
 m

R
N

A

200

OC number

***

*** *** *

N
u

m
b

e
r 

o
f 
O

C
s 150

100

50

0
Naive PBS ES-62 Naive PBS

ABX

ES-62 Naive PBS ES-62

PBS ES-62 PBS ES-62 PBS ES-62 PBS ES-62

ABX ABX

Naive PBS

ABX

ES-62

Fig. 3 ES-62 requires the gut microbiome to protect the bone remodelling axis. a–c Osteoclasts (OCs) were differentiated from bone marrow obtained at

cull and cultured for 5 days before differentiation, in terms of numbers (a) and size (b) of OCs, was measured using ImageJ analysis software and data

were normalised as a percentage of Naive controls with representative images (c) provided (Naive; n= 11, PBS; n= 11, ES-62; n= 6, Naive+ABX; n= 2,

PBS+ABX; n= 3, ES-62+ABX; n= 3). Whole bone marrow was used to quantify RANK (d; PBS; n= 20, ES-62; n= 13, PBS+ABX; n= 15, ES-62+ABX;

n= 15) and OPG (e; PBS; n= 17, ES-62; n= 11, PBS+ABX; n= 16, ES-62+ABX; n= 14) mRNA levels using qRT-PCR, and fold change was calculated

following normalisation to Naive controls. Statistics: all data are presented as mean ± SEM. In a and b, each symbol represents experimental replicates

and in d and e each symbol represents individual mice and data are pooled from three independent experiments. Statistical significance was determined

using one-way ANOVA with LSD Fishers multiple comparisons and significance indicated by asterisks, *p < 0.05, **p < 0.01 and ***p < 0.001

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-09361-0

6 NATURE COMMUNICATIONS |         (2019) 10:1554 | https://doi.org/10.1038/s41467-019-09361-0 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


(both Foxp3+ Tregs and IL-10+ Tr1 cells41,42) which by
suppressing and resolving chronic inflammation, could contri-
bute to the maintenance of gut barrier integrity. However,
whilst we find that the induction of CIA is accompanied by loss
of splenic Tr1 cells, the predominant regulatory T-cell subset
defective in CIA43, ES-62 does not restore their levels back
towards those of Naive mice (Fig. 5g). These data are consistent
with our previous findings that protection against CIA afforded
by ES-62 is not associated with induction of either Treg or
Tr1 cell responses21. Moreover, ABX treatment does not
modulate either the CIA-associated depletion of Tr1 cells or the
failure of ES-62 to induce their restoration, suggesting their
development in this model is not impacted by the status of the
microbiome (Fig. 5g). Thus, collectively these data indicate
that ES-62 likely promotes Butyrivibrio species to maintain
butyrate-mediated protection of intestinal epithelium physiology
and barrier integrity44.

The dynamic changes observed in the gut during the initiation
phase further questions whether CIA-associated autoimmune
(Th17) inflammation is responsible for triggering gut pathology
and consequently, perturbation of the microbiome or vice
versa. Interestingly, therefore, whilst confirming our findings
that dysbiosis and loss of intestinal barrier integrity are
established by day 14 in the CIA model, a very recent report45

shows that such breakdown in gut function precedes, and is
required for, CIA-associated IL-17 responses as increases in IL-17
can only be determined in the small intestine from day 14 whilst
those in the MLN occurred even later, being present during the
established disease phase (by day 35, but not detected on day 14),
and that ABX-depletion of the microbiota inhibits such IL-17
production and severity of joint disease. Moreover, these effects
appeared not to require (any) inflammation for initiation as they
could not be replicated by sham immunisation with CFA45.
Consistent with this idea that dysbiosis and associated gut
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pathology precedes and shapes the autoimmune inflammation
driving arthritis, we find that CIA-associated perturbation of the
colon microbiota is evident as early as day 6 (post CII
immunisation): this is broadly normalised by exposure to ES-
62, with the worm product modulating levels of potentially
pathogenic bacteria (such as the Enterobacteriaceae family of
Gamma proteobacteria) to below those found in Naive animals
(Fig. 6a). Accompanying the CIA-dysbiosis, there is damage to
both the ileum and colon, with shortening and thickening of the

ileum villi particularly evident at this early time point and this is
protected against by ES-62 (Fig. 6b). These changes in gut
function occur in the absence of the systemic inflammation
(serum IL-6 cytokine and CII-specific IgG2a antibodies were only
present around the limit of detection of the ELISAs employed,
with no differences observed amongst Naive, PBS-CIA and ES-
62-CIA groups), known to be targeted by ES-62 in CIA (Fig. 2).
By contrast, the late microbiota-driven IL-17 responses developed
in the MLN in the clinical phase of CIA45 were suppressed by
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exposure to ES-62 (Fig. 6c). Collectively, these findings indicate
that ES-62 primarily acts directly to normalise the CIA-associated
gut dysbiosis that both triggers mucosal inflammation and
initiates the mesenteric lymph node (MLN) IL-17 responses
that drive autoimmunity, rather than indirectly modulating the
dysbiosis and gut pathology arising from the systemic inflamma-
tion that results from the CIA-immunisation protocol.

Although the precise details of how gut microbiome perturba-
tion occurs and drives chronic autoimmune inflammation and
joint destruction in CIA remain to be defined, commensal
bacteria play key roles in educating the immune system and BM
progenitors and hence, loss of microbiome diversity can impact
on both inflammation and bone homoeostasis46,47. Such training
involves interactions of Pattern Recognition Receptors (PRR; e.g.,
TLRs and NODs) with the gut microbiome2,3,48. Consistent with
this, ES-62 can rewire BM progenitors and stromal cells from
CIA mice to an anti-inflammatory, regulatory or tissue repair
phenotype2,16,20,49–51 by subverting TLR4 signalling to prevent
the upregulation of the key TLR signal transducer, MyD88
observed during chronic inflammation52. Interestingly, therefore,
given the increased incidence and severity of CIA in ES-62-ABX
mice, we show that ES-62 dampening of aberrant MyD88
expression is abolished by ABX treatment (Fig. 6d).

Commensal bacteria can also dynamically educate OC
progenitor (OCP) maturation46,47: as OCs normally act in
concert with osteoblasts (OBs) to homeostatically maintain
healthy bone, the enhanced functional capacity of OCs elicited
by commensal bacteria may actually render hosts more
susceptible to bone damage during chronic inflammation, a
condition that promotes bone remodelling, particularly as
commensal bacteria also appear to act to suppress OB
function46,47. Reflecting the dynamic and differential changes in
the colonic microbiota, gut inflammation and pathology, there is
a strong increase in the monocyte populations containing OCPs
during the early inflammatory initiation phase of CIA that has
resolved by the end of the preclinical phase only to increase
again in the established phase of arthritis following the booster
CII immunisation. Consistent with our data that ES-62 does
not fundamentally suppress OC differentiation, there are no
differences in the percentage of monocytes between the PBS-CIA
and ES-62-CIA groups (Fig. 6e). However, following both
primary and booster immunisations, BM from CIA mice shows
enhanced capacity for functional OC maturation that is
suppressed by ES-62 (Fig. 6f, g).

Discussion
This study demonstrates that a defined parasitic worm-derived
product can impact on, and harness, the microbiome to exert its
therapeutic effects against chronic inflammation in target organs

distal to the gut, such as the joints. Collectively, our data suggest
that ES-62-mediated protection reflects broad normalisation of
the gut dysbiosis observed in arthritic mice.

Potentially pathogenic changes in the gut microbiome have
been described following analysis of stool faeces from patients
with new-onset disease (enrichment of Prevotella copri10,53), as
well as those with established arthritis (changes in the Clos-
tridiaceae, Coriobacteriaceae and Lachnospiraceae families54,55).
Perhaps reflecting this, our metagenomic analysis of CIA mice
during the established disease phase shows ES-62’s protective
actions to be most strongly associated with maintenance of the
Clostridiaceae, Lachnospiraceae and Ruminococcaceae families,
particularly those associated with butyrate production, e.g.,
Ruminococcus. Administration of butyrate was previously found
to ameliorate CIA severity, notably in terms of reduction in each
of inflammatory cell infiltration of the joint, pannus formation
and cartilage and bone destruction56. By contrast, butyrate exa-
cerbated antibody-induced arthritis, a model which bypasses the
initiation and adaptive immunity phases of disease, suggesting
that butyrate needs to act during these preclinical phases to
exhibit its protective actions56. Possibly consistent with this,
whilst ES-62 protects against depletion of butyrate-producing
species in mice with established disease, we also find Butyrivibrio
to be most enriched by ES-62 in the CIA initiation phase. Col-
lectively, these data suggest that depletion of butyrate-producing
bacteria associated with onset of CIA may contribute to the gut
pathology promoting and perpetuating the inflammation that
drives immune tolerance breakdown and consequent auto-
immune joint disease. Certainly, butyrate is known to regulate gut
barrier integrity44 and goblet cell production of MUC257. Indeed,
we find microbiome dysbiosis and gut pathology to precede joint
disease onset, being observed within 6 days of primary CII
immunisation and in apparent absence of systemic inflammation.
Furthermore, the loss of colon barrier integrity peaks by the end
of the CIA preclinical phase (d21) and such gut pathology is
accompanied by dynamic changes in the microbiome of CIA
mice as evidenced by the decrease in colon abundance of Bac-
teroidetes and Firmicutes during the early initiation phase of
disease and the enrichment of the former during established
arthritis.

The normalisation of the gut microbiota by ES-62 may actually
result in a dual pronged mechanism by which butyrate, in
addition to its local gut-protecting actions, could also impact
systemically to protect more directly against joint pathology.
Consistent with this, butyrate has been reported to suppress
osteoclastogenesis58, and by protecting against pathological bone
loss, to regulate bone mass35. Intriguingly, we find spikes of
functional maturation of OCs in the initiation and established
phases of CIA that are prevented by ES-62 and are associated
with its enrichment of Butyrivibrio. The mechanisms by which

Fig. 5 ES-62 protects against gut pathology occurring prior to onset of arthritis. a Representative H&E images (scale bars 200 µm) of ileum and colon of

mice culled during the Naive, initiation (post immunisation≤ d14), preclinical (d21 prior to challenge) and disease (established arthritis d≥ 28, articular

score PBS, 5.2 ± 0.8; ES-62–0.9 ± 1.24) phases of CIA. Changes in villus thickness (b; Initiation; PBS, n= 5, ES-62, n= 6, Pre-Clinical; PBS and ES-62, n= 3,

Disease; PBS, n= 4, ES-62, n= 5 mice) and number of colon lesions (c; Initiation; PBS and ES-62, n= 12 images spanning six mice each, Pre-Clinical; PBS,

n= 6 [3 mice], ES-62, n= 4 [2 mice]; Disease; PBS, n= 8 [4 mice], ES-62, n= 10 [5 mice]) were quantified using ImageJ analysis software with data

normalised to values of Naive mice and presented as mean ± SEM. Statistical significance was determined using two-way ANOVA comparing PBS and

ES-62 treatment at each time point where **p < 0.01 and ***p < 0.001. d–f Changes in Bacteroidetes (d), Firmicutes (e) and Butyrivibrio (f) populations in

the colon faecal matter of Naive, PBS- and ES-62-treated animals were measured by qPCR, normalised to total bacterial content and presented as % Naive

mice. Data are presented as mean ± SEM values from individual animals (Initiation; n= 6, Pre-Clinical; n= 3, Disease; n= 10) and statistical significance

determined using two-way ANOVA with LSD Fishers multiple comparisons where *p < 0.05, **p < 0.01 and ***p < 0.001. g Tr1 cells (CD3+IL-10+ cells)

were determined by flow cytometric analysis of splenocytes from individual mice (Naive; n= 4, PBS; n= 7, ES-62; n= 4, Naive-ABX; n= 4 PBS-ABX; n= 6

and ES-62-ABX; n= 7) from a single experiment. Statistical significance was determined using one-way ANOVA with LSD Fishers multiple comparisons

where *p < 0.05
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ES-62 orchestrates such maintenance of the complex homo-
eostasis of the gut-bone marrow axis are not clear. However, as
ES-62 can modulate the gut microbiota in Naive healthy mice, it
appears that such fine-tuning of the microbiome can occur
directly, rather than indirectly via potential anti-inflammatory
and immunoregulatory actions that suppress gut pathology, to
protect against dysbiosis. It is therefore possible that ES-62 may
act in a manner analogous to quorum-sensing molecules59,60,
which are produced by bacteria and signal to regulate population

densities within a particular microbial niche. Thus, by coordi-
nating gene expression responses both within and across species,
quorum sensing molecules shape the microbial community and
its interaction with the host, particularly with respect to virulence
and pathogenesis;59,60 our future plans therefore encompass
determining whether ES-62 can modulate bacterial growth
directly as a starting point in investigating whether quorum-
sensing activities contribute to its ability to normalise microbiome
dysbiosis and maintain gut homoeostasis.
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However, in terms of CIA, our current working model is that
the induced dysbiosis may impact on MyD88-integrated micro-
biota-sensing intestinal epithelial-dendritic cell interactions61,62

to drive gut pathology and loss of barrier integrity and to train
inflammation and (auto)immune responses that in turn impact
on the microbiome and perpetuate chronic pathology. ES-62
exploits TLR4 to sense (aberrant) MyD88 signalling2 allowing
such changes in the microbiome to be detected by the helminth
product and enabling it to dynamically stabilise intestinal epi-
thelial barrier function and integrity and hence fine-tune bacterial
species diversity and abundance to homeostatically maintain a
healthy microbiome. It is interesting therefore in this context that
systemic Th17 differentiation and consequent autoimmune
arthritis occurring in the IL1rn−/− model of RA is dependent on
TLR49,30. Moreover, the accompanying dysbiosis, that on faecal
transfer can confer arthritis-predisposing Th17 inflammation in
wild-type mice, is also regulated by TLR430. Furthermore, inter-
estingly, 11/44 taxa disrupted in IL1rn−/− mice were normalised
in IL1rn−/−TLR4−/− animals and these included Ruminococcus
species, which are also promoted by ES-6230.

In mechanistic terms, Breg levels—reset by ES-62 in CIA—
have also been reported to be regulated by the microbiome in
other models of autoimmune arthritis22. Indeed, consistent with
the proposal that Bregs are homeostatically induced to resolve
dysbiosis-induced inflammation in autoimmune arthritis, as
indicated by disruption of the process by ABX treatment22, we
have similarly found the ES-62-mediated restoration of IL-10+ B
cells, as well as the suppression of pathogenic anti-CII antibody
and IL-6 production, in CIA to be compromised by such per-
turbation of the microbiome. Collectively, these findings suggest
that by targeting MyD88 to maintain microbiome homoeostasis,
ES-62 may subsequently achieve its immunoregulatory effects,
which in turn, by dampening and resolving chronic inflamma-
tion, further contribute to the normalisation of intestinal barrier
integrity and the gut microbiome.

Given that normalisation of the gut microbiome appears cen-
tral to ES-62 resetting of immunoregulation in CIA, at first sight
it may appear rather counter-intuitive that the worm product fails
to afford protection63 in mouse models of type-1 diabetes
(T1D), multiple sclerosis (MS) and inflammatory bowel disease
(IBD); conditions which have each been reported to exhibit
patterns of microbiome dysbiosis. However, it is likely that at
least in the dextran sodium sulphate (DSS) model of IBD that
the severe physical damage to the intestinal epithelial barrier
bypasses the capacity of ES-62 to normalise the microbiome,
as the resultant leakage and aberrant bacterial colonisation
would generate inflammation and pathology. In addition, loss
of regulatory T-cell function appears necessary for pathogenesis
in each of the T1D, MS and IBD models tested and ES-62 appears
to lack the capacity to restore either Treg or Tr1 responses in
all of the models of inflammatory diseases we have tested to
date2,63. This is perhaps rather surprising given the well-
documented induction of regulatory T cells by helminths2 and
the capacity of T2-MZP Bregs, to induce Tr1 and Tregs64.
However, we do not see significant induction of T2-MZP
Bregs, but rather a general upregulation of IL-10+ B cells in the
CIA model21 where interestingly, we also fail to detect any
impact of the microbiome on Tr1 responses. Thus, one possibility
is that ES-62 only protects in models where (microbiota-
regulated) Bregs can directly mediate immunoregulatory effects,
such as CIA, MRL/Lpr-SLE and asthma models2. Consistent with
this, whilst roles for Bregs have been proposed in MS and IBD
(DSS) models, these appear to have been dependent on interac-
tions with regulatory T cells and indeed, the IBD-T cell transfer
models tested were performed in Rag1−/− mice that cannot
develop B cells63.

Finally, TLR4/MyD88 signalling in RA had previously been
attributed solely to recognition of DAMPs in the joint65 and
thus collectively, our findings shed new light on its pathogenic
roles in initiation and progression of disease as well as emphasise
its potential as a therapeutic target in RA. In particular, they
underscore the complex and central role of TLR4/MyD88 sig-
nalling in regulating the gut-bone marrow axis in musculoskeletal
homoeostasis and its dysregulation resulting in systemic inflam-
mation, breaking of tolerance, aberrant osteoclastogenesis and
consequently joint destruction in arthritis. Moreover, they suggest
that ES-62 may achieve its protective effects in CIA by directly
targeting this key regulatory node to normalise microbiome
dysbiosis and associated gut pathology in order to rebalance the
gut-bone marrow axis and limit aberrant inflammation and joint
damage, by consequently homeostatically restoring levels of Bregs
and resetting osteoclastogenesis. Thus, by exploiting ES-62 as a
unique tool to dissect pathogenic and protective microbial sig-
natures in CIA, we could potentially understand how to elicit
homoeostatic regulation of the gut and resolve inflammation in
autoimmune inflammatory arthritis.

Methods
Collagen-induced arthritis. Male DBA/1 mice were purchased at 6–8 weeks of age
(Envigo; Bicester, UK) and housed and maintained in the Central Research Facility
of the University of Glasgow. All experiments were approved by, and conducted in
accordance with, the Animal Welfare and Ethical Review Board of the University of
Glasgow, UK Home Office Regulations and Licences PPL P8C60C865, PIL
I518666F7, PIL 1675F0C46 and PIL ICEBDB864.

CIA was induced using bovine Collagen Type II (CII: 100 μg) emulsified with
complete Freund’s adjuvant (MD Biosciences) injected intradermally on day 0.
Mice were challenged with 200 μg of CII in PBS intraperitoneally on day 21.
Animals were treated with PBS or purified endotoxin-free ES-62 (2 µg/injection)
subcutaneously on days −2, 0 and 21, and joint inflammation and damage
(articular score) were determined as described previously16,32,50. Grip strength was
recorded as per the manufacturer’s instruction (Ugo Basile®, Italy) using a
Gripometer, which measured the grip strength (peak force and time resistance) of
the forelimbs of the mice. The animals were placed over a base plate and gripped a
T-shaped grasping bar, which was connected to the peak amplifier that
automatically detects the animal’s response. Three measurements were taken and
the average grip strength was calculated. In order to investigate the impact of gut
microbiome perturbation on initiation and progression of inflammatory arthritis,
animals were given drinking water containing [or not] a cocktail of antibiotics
(500 mg/L Vancomycin, 1 g/L Neomycin and 1 g/L Metronidazole) to eliminate
Gram-positive, Gram-negative and anaerobic microorganisms22 7 days prior to the
induction of CIA and thereafter continuously throughout the experiment. Blood
was sampled using endotoxin-free needles, and syringes and the resulting serum
isolated and stored at −20 °C in endotoxin-free Eppendorf tubes. Paw, ileum and
colon tissue was fixed in 4% paraformaldehyde; ileum and colon faecal contents
were collected in sterile RNAlater (Sigma, UK) and stored at −80 °C. Endotoxin-
free ES-62 was purified from spent culture medium as described in detail
previously32.

Flow cytometry. Spleen, lymph node (LN) and bone marrow (BM) cells were
suspended in FACS buffer (2.5% BSA; 0.5 mM EDTA, in PBS) following red
blood cell lysis (eBioscience, UK). BM cells were labelled with a cocktail of PE-
labelled antibodies specific for CD3 (catalogue number: 100205), B220 (catalogue
number: 103207) and Ter119 (catalogue number: 116207) to exclude analysis
of lymphocytes and erythroid cell populations using a dump channel, and
monocytes were identified by labelling with antibodies against CD11b (FITC;
catalogue number: 101206), Ly6C (PerCP Cy5.5; catalogue number: 128011)
and Ly6G (APC; catalogue number: 127613)20. Lymphocytes were labelled with
antibodies specific for CD3 (FITC; catalogue number: 100305/6), CD19 (AF700;
catalogue number: 115527/8), IL-10 (PE or APC; catalogue number: 505007/9) and
IL-17 (PerCP5.5 or APC; catalogue number: 506915/6/9/20). For surface marker
staining, antibodies were used at 0.2 µg/106 cells (1/100 dilution) except for anti-
CD45, which was used at 1/200 dilution. For Fix/Perm staining of intracellular
cytokines, 1 µg/106 cells (1/20 dilution) were used. Gating strategies are shown
in Supplementary Figure 3. All antibodies were purchased from BioLegend, UK.
Fixable viability stain (APC-ef780; ThermoFisher Scientific, UK) was used to
select for live cells and for analysis of IL-10+ regulatory B cells (Bregs), lympho-
cytes were stimulated with PMA, ionomycin, Brefeldin A and LPS as described
previously18,21. Data were acquired using a FACS Canto or BD LSRII flow cyt-
ometer and populations were gated as described previously using isotype and
fluorescence minus one (FMO) controls using FlowJo, LLC analysis software
(Tree Star/BD)18,20,21,50,66.
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Histology. Ileum, colon and joint (paw) tissues from individual mice in each
treatment group were fixed in 4% paraformaldehyde for 24 h before gut tissues
were embedded in OCT and paw joints were decalcified and subsequently paraffin
embedded. Paraffin sections (6 μm) and OCT cryosections (9–10 μm) were pre-
pared and standard H&E histological staining was performed on all tissues for
identification of morphological changes16,20,50. Ileum (villi thickness) and colon
(number of lesions) pathology was quantitated by ImageJ analysis. Joint pathology
was scored according to the grading system of 0 for no inflammation, 1 for mild
inflammation, pannus formation and bone damage, up to a score of 4 representing
a high level of inflammation, pannus infiltration and bone and cartilage destruc-
tion, as previously described67.

Osteoclast differentiation. OCs were differentiated from BM obtained from the
hind limbs of experimental animals as previously described20. Briefly, following
removal of adherent cells, BM cells were cultured in αMEM medium supplemented
with 30 ng/ml M-CSF and 50 ng/ml RANKL (Peprotech, London, UK) and then
assessed for OC differentiation by TRAP staining (Leukocyte Acid Phosphatase Kit,
Sigma-Aldrich, UK) on day 5. Images were obtained using an EVOS FL Auto Cell
Imaging System. TRAP+ cells with ≥ 3 nuclei were enumerated, and ImageJ soft-
ware was used to calculate the average size of multinucleated OCs per field of view
(FoV)20.

Serum cytokine and antibody ELISAs. Interleukin-6 (IL-6) and IL-10 expression
was measured by ELISA according to the manufacturer’s instructions (BD Bios-
ciences, Oxford, UK). For determination of collagen type II (CII)-specific IgG1 and
IgG2a antibodies in serum32, high-binding 96-well ELISA plates were coated with
CII (5 µg/ml) overnight at 4 °C before washing and blocking with BSA/PBS. Serum
was diluted 1:100 and then serially diluted threefold until 1:218,700 and incubated
with HRP-conjugated goat anti-mouse IgG1 or IgG2a (1:10,000) in 10% FBS/PBS
prior to developing with TMB and 2M sulphuric acid and read at an optical
density of 450 nm.

qRT-PCR. BM cells (106) were lysed in RLT lysis buffer prior to mRNA extraction
using RNeasy Plus Mini kit (Qiagen, Germany) according to the manufacturer’s
instructions. The High Capacity cDNA Reverse Transcriptase kit (Applied Bio-
systems, Life Technology, UK) was used to generate cDNA for use with StepOne
Plus™ real-time PCR system (Applied Biosystems, UK) and KiCqStart® qPCR
Ready Mix (Sigma-Aldrich). Pre-designed KiCqStart™ primers (Sigma-Aldrich)
were purchased to evaluate RANK (tnfrsf11a; forward: GAAATAAGGA
GTCCTCAGGG, reverse: GAAATAAGGAGTCCTCAGGG), OPG (tnfrsf11b;
forward: GAAGATCATCCAAGACATTGAC, reverse: TCCTCCATAAACTG
AGTAGC), MyD88 (myd88; forward: GAAGATCATCCAAGACATTGAC,
reverse: TCCTCCATAAACTGAGTAGC) and β-actin (actb; forward: GATGTAT
GAAGGCTTTGGTC, reverse: TGTGCACTTTTATTGGTCTC). Data were nor-
malised to the reference gene β-actin to obtain the ΔCT values that were used to
calculate the fold change from the ΔΔCT values following normalisation to bio-
logical control group.

Metagenomics. Given the well-documented variation amongst individual animals
that typically exhibit differential scores/affected joints in the CIA model and the
range of environmental parameters impacting on the microbiome68,69, we
attempted to minimise variation by pooling samples from three mice of similar
disease score/group from each independent CIA model rather than analysing each
individual mouse. Furthermore, pooling of samples also reduces variation in
sample and library preparation, whilst barcoding of these pooled samples allowed
analysis of the different treatment groups on a single chip and provided
internal controls for comparison of treatment groups within each experiment. This
process was repeated for three independent CIA models (involving nine repre-
sentative naive, PBS-CIA [articular score: 7.00 ± 0.91] and ES-62-CIA [articular
score: 0.50 ± 0.33, where ***p < 0.001 for the PBS-CIA versus naive and ES-62-CIA
cohorts] mice overall), further reducing the impact of disease score and individual
variation.

Genomic DNA from the ileum and colon faecal matter was purified using
QIAamp DNA Stool Mini Kit (Qiagen, Germany) and stored at −20 °C. For
shotgun metagenomic analysis using the Ion Torrent PGM™ platform, samples
from three individual mice per group were pooled and between 10 and 100 ng of
the pooled DNA was fragmented (NEB Fast DNA Fragmentation & Library Prep
Set for Ion Torrent, NEB Inc, UK) and barcoded (IonXpress Barcode Adapters Kit,
ThermoFisher Scientific, UK). Barcoded libraries were quantified using a Qubit
Fluorometer (ThermoFisher Scientific, UK) and bioanalyser (High Sensitivity DNA
analysis Kit, Agilent, UK). Up to three barcoded libraries were combined per Ion
316™ Chip Kit v2 following library preparation using the Ion PGM™ Hi-Q™ View
OT2 and Ion PGM™ Hi-Q™ View Sequencing Kits (ThermoFisher Scientific, UK).
Data were extracted as FASTQ files and analysed using MG-RAST to generate
taxonomic data from sequencing reads70. The number of reads per phylum, class,
order, family, genera or species of interest were expressed as a composition of all
bacteria present to normalise for variation between sequencing runs. Sequencing
runs can be accessed using MG-RAST IDs; mgm4777616.3, 4777615.3, 4777614.3,
4777613.3, 4777481.3, 4777480.3, 4777479.3, 4777478.3, 4767994.3, 4767993.3,

4767992.3, 4767991.3, 4767990.3, 4767989.3, 4767988.3, 4767987.3, 4767986.3,
4738191.3, 4738190.3, 4738025.3, 4737887.3, 4737053.3 and 4737052.3. qPCR
was used to validate changes in bacterial populations using primers specific for
Bacteroidetes (forward: GTTTAATTCGATGATACGCGAG, reverse: TTAAGCC
GACACCTCACGG)71, Firmicutes (forward: GGAGCATGTGGTTTAATTCGAA
GCA, reverse: AGCTGACGACAACCATGCAC)71, Butyrivibrio (forward:
GCGAAGAAGTATTTCGGTAT, reverse: CCAACACCTAGTATTCATC)72,
Proteobacteria (forward: TCGTCAGCTCGTGTCGTGA, reverse: CGTAAGGGC
CATGATG)73, Enterobacteriaceae (forward: GTGCCAGCAGC CGCGGTAA,
reverse: GCCTCAAGGGCACAACCTCCAAG)74, Lactobacillaceae (forward:
TGGAAACAGGTGCTAATACCG, reverse: GTCCATTGTGGAAGATTCCC)75,
segmented filamentous bacteria (forward: GACGCTGAGGCATGAGAGCAT,
reverse: GACGGCACGG ATTGTTATTCA)76, Lachnospiraceae (forward:
CGGTACCTGACTAAGAAGC, reverse: AGTTTCATTCTTGCGAACG)77 and
were normalised to the total levels of bacteria using pan-bacterial primers (forward:
CGGTGAATACGTTCCCGG, reverse: TACGGCTACCTTGTTACGACTT)77.

Statistics. All data were analysed using GraphPad Prism 6 software using one- or
two-way ANOVA with Fishers LSD post-tests for parametric data or
Kruskal–Wallis test and Dunn’s post test for non-parametric data. Unsupervised
hierarchical clustering with Euclidean distance was performed on the colon sam-
ples using the heatmap.2 function of the gplots package in R. Supervised heatmaps
were generated using GraphPad Prism 7 software. Indicators of significance include
*p < 0.05, **p < 0.01 and ***p < 0.001.

Reporting Summary. Further information on experimental design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data supporting the findings are all contained within the article and

Supplementary Information files. In addition, the metagenomic data are available from

the MG-RAST database using the accession numbers provided in the Methods section.

Other primary data files are available from the corresponding authors on reasonable

request.

Received: 23 July 2018 Accepted: 7 March 2019

References
1. Harnett, W. Secretory products of helminth parasites as immunomodulators.

Mol. Biochem. Parasitol. 195, 130–136 (2014).
2. Harnett, M. M. & Harnett, W. Can parasitic worms cure the modern world’s

ills? Trends Parasitol. 33, 694–705 (2017).
3. Bach, J. F. The hygiene hypothesis in autoimmunity: the role of pathogens

and commensals. Nat. Rev. Immunol. 18, 105–120 (2018).
4. de Ruiter, K. et al. Helminths, hygiene hypothesis and type 2 diabetes. Parasite

Immunol. 39, https://doi.org/10.1111/pim.12404 (2017).
5. Blander, J. M., Longman, R. S., Iliev, I. D., Sonnenberg, G. F. & Artis, D.

Regulation of inflammation by microbiota interactions with the host. Nat.
Immunol. 18, 851–860 (2017).

6. Zaiss, M. M. & Harris, N. L. Interactions between the intestinal microbiome
and helminth parasites. Parasite Immunol. 38, 5–11 (2016).

7. Giacomin, P., Agha, Z. & Loukas, A. Helminths and intestinal flora team up
to improve gut health. Trends Parasitol. 32, 664–666 (2016).

8. Gause, W. C. & Maizels, R. M. Macrobiota - helminths as active participants
and partners of the microbiota in host intestinal homeostasis. Curr. Opin.
Microbiol. 32, 14–18 (2016).

9. Abdollahi-Roodsaz, S., Abramson, S. B. & Scher, J. U. The metabolic role
of the gut microbiota in health and rheumatic disease: mechanisms and
interventions. Nat. Rev. Rheumatol. 12, 446–455 (2016).

10. Clemente, J. C., Manasson, J. & Scher, J. U. The role of the gut microbiome
in systemic inflammatory disease. BMJ (Clin. Res. Ed.) 360, j5145 (2018).

11. Grencis, R. K., Humphreys, N. E. & Bancroft, A. J. Immunity to
gastrointestinal nematodes: mechanisms and myths. Immunol. Rev. 260,
183–205 (2014).

12. Reynolds, L. A. et al. Commensal-pathogen interactions in the intestinal tract:
lactobacilli promote infection with, and are promoted by, helminth parasites.
Gut Microbes 5, 522–532 (2014).

13. Panda, A. K., Ravindran, B. & Das, B. K. Rheumatoid arthritis patients are
free of filarial infection in an area where filariasis is endemic: comment on
the article by Pineda et al. Arthritis Rheum. 65, 1402–1403 (2013).

14. Panda, A. K. & Das, B. K. Absence of filarial infection in patients of systemic
lupus erythematosus (SLE) in filarial endemic area: a possible protective role.
Lupus 23, 1553–1554 (2014).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-09361-0

12 NATURE COMMUNICATIONS |         (2019) 10:1554 | https://doi.org/10.1038/s41467-019-09361-0 | www.nature.com/naturecommunications

https://doi.org/10.1111/pim.12404
www.nature.com/naturecommunications


15. Melendez, A. J. et al. Inhibition of FcepsilonRI-mediated mast cell responses
by ES-62, a product of parasitic filarial nematodes. Nat. Med. 13, 1375–1381
(2007).

16. Pineda, M. A. et al. The parasitic helminth product ES-62 suppresses pathogenesis
in collagen-induced arthritis by targeting the interleukin-17-producing cellular
network at multiple sites. Arthritis Rheum. 64, 3168–3178 (2012).

17. Rzepecka, J. et al. The helminth product, ES-62, protects against airway
inflammation by resetting the Th cell phenotype. Int. J. Parasitol. 43, 211–223
(2013).

18. Rodgers, D. T. et al. The parasitic worm product ES-62 targets myeloid
differentiation factor 88-dependent effector mechanisms to suppress
antinuclear antibody production and proteinuria in MRL/lpr mice. Arthritis
Rheumatol. 67, 1023–1035 (2015).

19. Coltherd, J. C. et al. The parasitic worm-derived immunomodulator, ES-62
and its drug-like small molecule analogues exhibit therapeutic potential in a
model of chronic asthma. Sci. Rep. 6, 19224 (2016).

20. Doonan, J. et al. Protection against arthritis by the parasitic worm project ES-
62, and its drug-like small molecule analogues, is associated with inhibition of
osteoclastogenesis. Front. Immunol. 9, 1016 (2018).

21. Rodgers, D. T. et al. Protection against collagen-induced arthritis in mice
afforded by the parasitic worm product, ES-62, is associated with restoration
of the levels of interleukin-10−producing B cells and reduced plasma cell
infiltration of the joints. Immunology 141, 457–466 (2014).

22. Rosser, E. C. et al. Regulatory B cells are induced by gut microbiota-driven
interleukin-1beta and interleukin-6 production. Nat. Med. 20, 1334–1339 (2014).

23. Buigues, C. et al. Effect of a prebiotic formulation on frailty syndrome: a
randomized, double-blind clinical trial. Int. J. Mol. Sci. 17, E932 (2016).

24. Celis-Morales, C. A. et al. Associations of grip strength with cardiovascular,
respiratory, and cancer outcomes and all cause mortality: prospective cohort
study of half a million UK Biobank participants. BMJ (Clinical research ed)
361, k1651 (2018).

25. Charles-Schoeman, C. Cardiovascular disease and rheumatoid arthritis: an
update. Curr. Rheumatol. Rep. 14, 455–462 (2012).

26. Brown, J. M. & Hazen, S. L. The gut microbial endocrine organ: bacterially
derived signals driving cardiometabolic diseases. Annu. Rev. Med. 66, 343–359
(2015).

27. Grigg, J. B. & Sonnenberg, G. F. Host-microbiota interactions shape local
and systemic inflammatory diseases. J. Immunol. 198, 564–571 (2017).

28. Zeng, H. & Chi, H. Metabolic control of regulatory T cell development and
function. Trends Immunol. 36, 3–12 (2015).

29. Tamanai-Shacoori, Z. et al. Roseburia spp.: a marker of health? Future
Microbiol. 12, 157–170 (2017).

30. Rogier, R. et al. Aberrant intestinal microbiota due to IL-1 receptor antagonist
deficiency promotes IL-17- and TLR4-dependent arthritis. Microbiome 5, 63
(2017).

31. Rogier, R. et al. Alteration of the intestinal microbiome characterizes
preclinical inflammatory arthritis in mice and its modulation attenuates
established arthritis. Sci. Rep. 7, 15613 (2017).

32. McInnes, I. B. et al. A novel therapeutic approach targeting articular
inflammation using the filarial nematode-derived phosphorylcholine-
containing glycoprotein ES-62. J. Immunol. 171, 2127–2133 (2003).

33. Harnett, M. M. et al. The phosphorycholine moiety of the filarial nematode
immunomodulator ES-62 is responsible for its anti-inflammatory action in
arthritis. Ann. Rheum. Dis. 67, 518–523 (2008).

34. Maseda, D., Bonami, R. H. & Crofford, L. J. Regulation of B lymphocytes and
plasma cells by innate immune mechanisms and stromal cells in rheumatoid
arthritis. Expert Rev. Clin. Immunol. 10, 747–762 (2014).

35. Lucas, S. et al. Short-chain fatty acids regulate systemic bone mass and protect
from pathological bone loss. Nat. Commun. 9, 55 (2018).

36. Sjogren, K. et al. The gut microbiota regulates bone mass in mice. J. Bone
Mineral. Res.: Off. J. Am. Soc. Bone Mineral. Res. 27, 1357–1367 (2012).

37. Jin, C., Henao-Mejia, J. & Flavell, R. A. Innate immune receptors: key
regulators of metabolic disease progression. Cell. Metab. 17, 873–882 (2013).

38. Versini, M., Jeandel, P. Y., Rosenthal, E. & Shoenfeld, Y. Obesity in autoimmune
diseases: not a passive bystander. Autoimmun. Rev. 13, 981–1000 (2014).

39. Kim, J. J. & Khan, W. I. Goblet cells and mucins: role in innate defense in
enteric infections. Pathogens 2, 55–70 (2013).

40. Golan, L., Gonen, E., Yagel, S., Rosenshine, I. & Shpigel, N. Y.
Enterohemorrhagic Escherichia coli induce attaching and effacing lesions
and hemorrhagic colitis in human and bovine intestinal xenograft models.
Dis. Model Mech. 4, 86–94 (2011).

41. Arpaia, N. et al. Metabolites produced by commensal bacteria promote
peripheral regulatory T-cell generation. Nature 504, 451–455 (2013).

42. Kaisar, M. M. M., Pelgrom, L. R., van der Ham, A. J., Yazdanbakhsh, M. &
Everts, B. Butyrate conditions human dendritic cells to prime type 1
regulatory T cells via both histone deacetylase inhibition and G protein-
coupled receptor 109A signaling. Front. Immunol. 8, 1429 (2017).

43. Carter, N. A., Rosser, E. C. & Mauri, C. Interleukin-10 produced by B cells is
crucial for the suppression of Th17/Th1 responses, induction of T regulatory

type 1 cells and reduction of collagen-induced arthritis. Arthritis Res. Ther. 14,
R32 (2012).

44. Mathewson, N. D. et al. Gut microbiome-derived metabolites modulate
intestinal epithelial cell damage and mitigate graft-versus-host disease.
Nat. Immunol. 17, 505–513 (2016).

45. Jubair, W. K. et al. Modulation of inflammatory arthritis in mice by gut
microbiota through mucosal inflammation and autoantibody generation.
Arthritis Rheumatol. 70, 1220–1233 (2018).

46. Novince, C. M. et al. Commensal gut microbiota immunomodulatory actions
in bone marrow and liver have catabolic effects on skeletal homeostasis in
health. Sci. Rep. 7, 5747 (2017).

47. Charles, J. F., Ermann, J. & Aliprantis, A. O. The intestinal microbiome
and skeletal fitness: Connecting bugs and bones. Clin. Immunol. 159, 163–169
(2015).

48. Christ, A. et al. Western diet triggers NLRP3-dependent innate immune
reprogramming. Cell 172, 162–175 e114 (2018).

49. Pineda, M. A., Eason, R. J., Harnett, M. M. & Harnett, W. From the worm to
the pill, the parasitic worm product ES-62 raises new horizons in the
treatment of rheumatoid arthritis. Lupus 24, 400–411 (2015).

50. Pineda, M. A., Rodgers, D. T., Al-Riyami, L., Harnett, W. & Harnett, M. M.
ES-62 protects against collagen-induced arthritis by resetting interleukin-22
toward resolution of inflammation in the joints. Arthritis Rheumatol. 66,
1492–1503 (2014).

51. Harnett, M. M. et al. From Christian de Duve to Yoshinori Ohsumi: more
to autophagy than just dining at home. Biomed. J. 40, 9–22 (2017).

52. Li, J., Wang, X., Zhang, F. & Yin, H. Toll-like receptors as therapeutic targets
for autoimmune connective tissue diseases. Pharmacol. Ther. 138, 441–451
(2013).

53. Maeda, Y. et al. Dysbiosis contributes to arthritis development via activation
of autoreactive T cells in the intestine. Arthritis Rheumatol. 68, 2646–2661
(2016).

54. Zhang, X. et al. The oral and gut microbiomes are perturbed in rheumatoid
arthritis and partly normalized after treatment. Nat. Med. 21, 895–905 (2015).

55. Chen, J. et al. An expansion of rare lineage intestinal microbes characterizes
rheumatoid arthritis. Genome Med. 8, 43 (2016).

56. Mizuno, M., Noto, D., Kaga, N., Chiba, A. & Miyake, S. The dual role of short
fatty acid chains in the pathogenesis of autoimmune disease models. PLoS
ONE 12, e0173032 (2017).

57. Burger-van Paassen, N. et al. The regulation of intestinal mucin MUC2
expression by short-chain fatty acids: implications for epithelial protection.
Biochem. J. 420, 211–219 (2009).

58. Rahman, M. M. et al. Two histone deacetylase inhibitors, trichostatin A and
sodium butyrate, suppress differentiation into osteoclasts but not into
macrophages. Blood 101, 3451–3459 (2003).

59. Verbeke, F. et al. Peptides as quorum sensing molecules: measurement techniques
and obtained levels in vitro and in vivo. Front. Neurosci. 11, 183 (2017).

60. Abisado, R. G., Benomar, S., Klaus, J. R., Dandekar, A. A. & Chandler, J. R.
Bacterial quorum sensing and microbial community interactions. mBio 9,
e01749–18 (2018).

61. Rescigno, M. The intestinal epithelial barrier in the control of homeostasis and
immunity. Trends Immunol. 32, 256–264 (2011).

62. Rescigno, M. Dendritic cell-epithelial cell crosstalk in the gut. Immunol. Rev.
260, 118–128 (2014).

63. Doonan, J. et al. Failure of the anti-inflammatory parasitic worm product
ES-62 to provide protection in mouse models of type i diabetes, multiple
sclerosis, and inflammatory bowel disease. Molecules 23, https://doi.org/
10.3390/molecules23102669 (2018).

64. Rosser, E. C. & Mauri, C. Regulatory B cells: origin, phenotype, and function.
Immunity 42, 607–612 (2015).

65. Abdollahi-Roodsaz, S., van de Loo, F. A. & van den Berg, W. B. Trapped in a
vicious loop: Toll-like receptors sustain the spontaneous cytokine production
by rheumatoid synovium. Arthritis Res. Ther. 13, 105 (2011).

66. Lumb, F. E. et al. Dendritic cells provide a therapeutic target for synthetic
small molecule analogues of the parasitic worm product, ES-62. Sci. Rep. 7,
1704 (2017).

67. Rzepecka, J. et al. Prophylactic and therapeutic treatment with a synthetic
analogue of a parasitic worm product prevents experimental arthritis and
inhibits IL-1β production via NRF2-mediated counter-regulation of the
inflammasome. J. Autoimmun. 60, 59–73 (2015).

68. Reese, A. T. & Dunn, R. R. Drivers of microbiome biodiversity: a review of
general rules, feces, and ignorance. mBio 9, e01294–18 (2018).

69. Franklin, C. L. & Ericsson, A. C. Microbiota and reproducibility of rodent
models. Lab. Anim. (NY) 46, 114–122 (2017).

70. Meyer, F. et al. The metagenomics RAST server - a public resource for the
automatic phylogenetic and functional analysis of metagenomes. BMC
Bioinforma. 9, 386 (2008).

71. Yang, Y. W. et al. Use of 16S rRNA gene-targeted group-specific primers for
real-time PCR Analysis of predominant bacteria in mouse feces. Appl.
Environ. Microbiol. 81, 6749–6756 (2015).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-09361-0 ARTICLE

NATURE COMMUNICATIONS |         (2019) 10:1554 | https://doi.org/10.1038/s41467-019-09361-0 |www.nature.com/naturecommunications 13

https://doi.org/10.3390/molecules23102669
https://doi.org/10.3390/molecules23102669
www.nature.com/naturecommunications
www.nature.com/naturecommunications


72. Boeckaert, C. et al. Accumulation of trans C18:1 fatty acids in the rumen after
dietary algal supplementation is associated with changes in the Butyrivibrio
community. Appl. Environ. Microbiol. 74, 6923–6930 (2008).

73. Bacchetti De Gregoris, T., Aldred, N., Clare, A. S. & Burgess, J. G.
Improvement of phylum- and class-specific primers for real-time PCR
quantification of bacterial taxa. J. Microbiol. Methods 86, 351–356 (2011).

74. Hammer, A. M. et al. The effects of alcohol intoxication and burn injury
on the expression of claudins and mucins in the small and large intestines.
Shock (Augusta, Ga) 45, 73–81 (2016).

75. Rohani, M., Noohi, N., Talebi, M., Katouli, M. & Pourshafie, M. R. Highly
heterogeneous probiotic Lactobacillus species in healthy iranians with low
functional activities. PLoS ONE 10, e0144467 (2015).

76. Geuking, M. B. et al. Intestinal bacterial colonization induces mutualistic
regulatory T cell responses. Immunity 34, 794–806 (2011).

77. Rinttila, T., Kassinen, A., Malinen, E., Krogius, L. & Palva, A. Development
of an extensive set of 16S rDNA-targeted primers for quantification of
pathogenic and indigenous bacteria in faecal samples by real-time PCR.
J. Appl. Microbiol. 97, 1166–1177 (2004).

Acknowledgements
The work was funded by an award to M.M.H., W.H. and P.A.H. from Arthritis Research

UK (21133).

Author contributions
J.D., A.T., M.A.P., F.L., J.C. and A.M.K. performed the experiments for the study

designed by M.M.H., W.H. and P.A.H. J.D. and F.L. manufactured ES-62. M.M.H., W.H.

and J.D. wrote the paper and all authors were involved in reviewing and revising the

paper and have approved the final version.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-

019-09361-0.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/

reprintsandpermissions/

Journal peer review information: Nature Communications thanks the anonymous

reviewers for their contribution to the peer review of this work.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in

published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give

appropriate credit to the original author(s) and the source, provide a link to the Creative

Commons license, and indicate if changes were made. The images or other third party

material in this article are included in the article’s Creative Commons license, unless

indicated otherwise in a credit line to the material. If material is not included in the

article’s Creative Commons license and your intended use is not permitted by statutory

regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder. To view a copy of this license, visit http://creativecommons.org/

licenses/by/4.0/.

© The Author(s) 2019

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-09361-0

14 NATURE COMMUNICATIONS |         (2019) 10:1554 | https://doi.org/10.1038/s41467-019-09361-0 | www.nature.com/naturecommunications

https://doi.org/10.1038/s41467-019-09361-0
https://doi.org/10.1038/s41467-019-09361-0
http://npg.nature.com/reprintsandpermissions/
http://npg.nature.com/reprintsandpermissions/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	The parasitic worm product ES-62 normalises the gut microbiota bone marrow axis in inflammatory arthritis
	Results
	ES-62 normalises the gut microbiome in protecting against CIA
	Antibiotics both ameliorate CIA and impact on ES-62 protection
	ES-62 protects against gut pathology in CIA

	Discussion
	Methods
	Collagen-induced arthritis
	Flow cytometry
	Histology
	Osteoclast differentiation
	Serum cytokine and antibody ELISAs
	qRT-PCR
	Metagenomics
	Statistics
	Reporting Summary

	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	ACKNOWLEDGEMENTS


