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Abstract—In the context of extracting analytic eigen- or singu-
lar values from a polynomial matrix, a suitable cost function is
the smoothness of continuous, real, and potentially symmetric
periodic functions. This smoothness can be measured as the
power of the derivatives of that function, and can be tied to
a set of sample points on the unit circle that may be incomplete.
We have previously explored the utility of this cost function, and
here provide refinements by (i) analysing properties of the cost
function and (ii) imposing additional constraints on its evaluation.

I. INTRODUCTION

For a matrix R(z) : C → C
M×M that comprises rational

analytic functions in the variable z ∈ C and is parahermitian

such that RP(z) = RH(1/z∗) = R(z) [1], a parahermitian

matrix eigenvalue decomposition (EVD) with analytic factors

exists in almost all cases [2], [3]. These may generally

be transcendental functions and as such absolutely conver-

gent Laurent series. If the decomposition is approximated

by Laurent polynomials, the choice for the factors widens,

and include others, such as spectrally majorised solutions,

which time domain polynomial matrix EVD algorithms [4]–

[8] encourage or even guarantee [9] to obtain. The difference

between these solutions is contrasted in Fig. 1. In comparison,

discrete Fourier transform (DFT) domain algorithms [10]–

[13] can permit a choice to extract approximations of both

spectrally majorised and analytic solutions.

DFT-domain algorithms do not naturally possess the fre-

quency domain coherence that has motivated time domain ap-

proaches [4], [5], [7], and therefore require association across

frequency bins. In [10]–[12] this association is based on the

continuity of eigenvectors, which in principle is easier to detect

than a non-differentiability of eigenvalues. The association de-

cisions are most crucial near Q-fold algebraic multiplicities of

eigenvalues, where eigenvectors can be arbitrarily selected as

an orthogonal basis within a Q-dimensional subspace [2], thus

creating challenges for an eigenvector-driven association [13].

Similar challenges exist for the analytic SVD [14]–[18],

where analytic singular values can be extracted for a matrix

A(ω), ω ∈ R, over a given interval of ω, i.e. A(ω) is not

considered to be periodic in ω, and hence does not correspond

to a discrete time function. In fact, in [15], ω is not necessarily
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a frequency parameter. The extraction of analytic functions

in A(ω) is driven by their arc length as a measure for

smoothness [15] or by a Chebyshev interpolation. For a self-

adjoint matrix A(ω) (equivalent to parahermitianity on the

unit circle), an analytic EVD according to Rellich exists [19],

and again an algorithm for their extraction requires a suitable

cost function.

Since analyticity implies infinite differentiability, in this

paper we explore a suitable cost function that can distin-

guish between analytic and alternative (such as spectrally

majorised) solutions: the power of derivatives of a function

F (ejΩ). In [20], we have explored this metric and successfully

applied it to drive an analytic eigenvalue extraction in [13].

The extraction algorithm in [13] aims to create associations

for maximally smooth functions from an initially small but

iteratively increasing number of sample points, similar to the

‘missing samples problem’ [21]. Any yet unassigned sample

points are chosen such that a maximally smooth function for

the given sample set is extracted.

In this paper, we aim to further explore the smoothness

metric in [20], establish that is positive real, and introduce

additional constraints onto the solution to reflect the real-

valued and potentially symmetric nature of the eigenvalues

of a parahermitian matrix [2]. For this, Sec. II illuminates

the problem, with the interpolation of a continuous function

based on samples points discussed in Sec. III. Its derivative

powers are tied to the sample points in Sec. IV, followed by a
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Fig. 1. (a) spectrally majorised vs (b) analytic functions.
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Fig. 2. (a) set of sample points for K = 8 and M = 2, and (b) spectrally
majorised and (c) analytic associations of values and their interpolations.

smoothness metric for an incomplete grid of sample points

is elaborated in Secs. V and VI. Finally some results and

conclusions are provided in Secs. VII and VIII.

II. PROBLEM FORMULATION

We are given a set of MK sample points, which is spread

over K out of a total of N frequency bins and contains M
values per bin. The ultimate aim is to find an association of

this set to M functions that interpolate across the distinct

sample points as smoothly as possible. As an example, Fig. 2

demonstrates this for a case of N = K = 8 and M = 2.

The sample points are drawn in Fig. 2(a), whereby algebraic

multiplicities of values greater than one are indicated in

parentheses. Two different associations and their interpolation

— to be discussed later — are shown in Fig. 2(b) and (c).

Thus, the challenge is to measure the smoothness of a

function F (ejΩ) defined by sample points Fk = F (ejΩk) on

a regular grid of N frequency bins Ωk = 2πk/N . We further

specify:

(C1) only K ≤ N sample points may be known,

(C2) F (ejΩ) is real-valued,

(C3) F (ejΩ) may be symmetric with respect to Ω = 0.

As a result, we can state for its inverse Fourier transform f [τ ],

f [τ ] =
1

2π

∫ π

−π

F (ejΩ)ejΩτdΩ , (1)

or in short f [τ ] ◦—• F (ejΩ), that f [τ ] must be symmetric

such that f [τ ] = f∗[−τ ] and that it may be real valued.

III. DIRICHLET INTERPOLATION

For f [τ ] to be a symmetric sequence, it has to be of even

order, or odd length. However, to align with powerful fast

Fourier transform techniques, it can be advantageous to select

the number of sample points N if not to be a power of two then

at the very least to be even. We first address the simple case

of N being odd, and thereafter focus on the more challenging

case of N being even.

A. Interpolation for Odd Number of Sample Points

For N being odd, the interpolation across the sample points

Fk can be accomplished by the Dirichlet kernel PN (ejΩ),

PN (ejΩ) =
sin

(

N
2 Ω

)

sin
(

1
2Ω

) =

(N−1)/2
∑

τ=−(N−1)/2

e−jΩτ , (2)

which links to a rectangular window pN [τ ] that sits centred

with respect to τ = 0.

The kernel in (2) permits to express a 2π-periodic function

F (ejΩ) as a superposition of weighted and shifted contribu-

tions,

F (ejΩ) =
1

N

N−1
∑

k=0

FkPN (ej(Ω−Ωk)) (3)

=
1

N

N−1
∑

k=0

Fk

(N−1)/2
∑

τ=−(N−1)/2

e−j(Ω−Ωk)τ , (4)

=

(N−1)/2
∑

τ=−(N−1)/2

f [τ ]e−jΩτ , (5)

where (4) utilises the Fourier series representation of the

kernel, and f [τ ] is the result of an N -point inverse discrete

Fourier transform (IDFT) of F (ejΩk). The outcome in (5)

confirms f [τ ] ◦—• F (ejΩ), as set out in (1).

B. Interpolation for Even Number of Sample Points

The challenge for even N is exemplified in Fig. 3. When

basing an inverse Fourier transform on the discrete spectrum

represented by the sample points Fk of F (ejΩ), a periodised

time domain f̃ [τ ] ◦—• F (ejΩk) emerges. For an odd number

of samples points Fk, here N = 3, in Fig. 3(a), f [τ ] can be

extracted as the fundamental period of f̃ [τ ] in Fig. 3(b). In

the even case in Fig. 3(c) and (d), f̃ [τ ] will be periodic with

N , but also needs to be symmetric. Without loss of generality,
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Ω

0-2π 2π

~f [τ ]

0-1-2 21

(a)

(b)

4π
3

2π
3

-3

τ

N = 3

F (ejΩk )

Ω

0-2π 2π

~f [τ ]

0-1-2 21

(c)

(d)

-π π

τ

N=2

3

- 2π
3

- 4π
3

N = 3
N=2

Fig. 3. Sample points for N (a) odd and (c) even, with their equivalent
periodised, discrete time domain sequences in (b) and (d) respectively.



we therefore determine f̃ [τ ] as an inverse DFT of Fk over the

interval −N/2 + 1 ≤ τ ≤ N/2, and then construct f [τ ] as

f [τ ] =







f̃ [τ ] |τ | < N/2 ,
1
2 f̃ [τ ] + jsgn{τ}A |τ | = N/2 ,
0 |τ | > N/2 .

(6)

Thus, f̃ [τ ] emerges as a periodised version of f [τ ], whereby

time domain aliasing occurs at the marginal points of the

interval. Note that in this periodisation, the imaginary part A
is spurious, and therefore can be selected arbitrarily as A ∈ R.

We define the modified Dirichlet kernel for even N as

PN (ejΩ) = e−jΩ
2

sin
(

N
2 Ω

)

sin
(

1
2Ω

) =

N/2
∑

τ=−N/2+1

e−jΩτ .

Analysis similar to (3) through (5) leads to

F (ejΩ) =

N−LN−1
∑

τ=−LN

f̃ [τ ]e−jΩτ , (7)

followed by the extraction of f [τ ] from (7) via (6). In (7), the

summation limit uses the parameter LN , which generalises the

results for arbitrary N ∈ N, whereby LN = N/2 − 1 for N
being even and LN = (N − 1)/2 for N being odd.

IV. POWER OF DERIVATIVES OF THE DIRICHLET

INTERPOLATION

A. Power of Derivatives

To measure the smoothness of F (ejΩ), we evaluate the

power of its pth derivative,

χp =
1

2π

π
∫

−π

∣

∣

∣

∣

dp

dΩp
F (ejΩ)

∣

∣

∣

∣

2

dΩ .

Differentiating F (ejΩ) p times with respect to the frequency

parameter Ω yields

dp

dΩp
F (ejΩ) =

1

N

N−1
∑

k=0

Fk
dp

dΩP
P (ej(Ω−Ωk))

=

N−LN1
∑

τ=−LN

(−jτ)pf̃ [τ ]e−jΩτ

using (7).

Note that due to orthogonality of the complex exponential

terms and integration over an integer number of fundamental

periods, for a Fourier series with some arbitrary coefficients

bℓ,

1

2π

π
∫

−π

∣

∣

∣

∣

∣

∑

l

bℓe
jΩℓ

∣

∣

∣

∣

∣

2

dΩ =
∑

ℓ

1

2π

π
∫

−π

∣

∣bℓe
jΩℓ

∣

∣

2
dΩ

=
∑

ℓ

|bℓ|2 . (8)

Therefore, given (8) we can write

χp =

N−LN−1
∑

τ=−LN

∣

∣

∣
(−jτ)

p
f̃ [τ ]

∣

∣

∣

2

=

N−LN−1
∑

τ=−LN

τ2p|f̃ [τ ]|2 ,

i.e. the power of the derivatives can be entirely calculated

based on the time domain samples f̃ [τ ].

B. Matrix Formulation

An N -point DFT matrix TN is normalised such that

TNT
H
N = I. Based on the permutation matrix P ∈ N

N×N

to exert a DFT shift,

P =

[

0LN×N−LN
ILN

IN−LN
0N−LN×LN

]

, (9)

the coefficient vectors F ∈ R
N and f̃ ∈ C

N ,

F = [F0, F1, . . . , FN−1]
T

f̃ =
[

f̃ [−LN ], . . . , f̃ [N − LN − 1]
]T

, (10)

relate as f̃ = 1√
N
PT

H
NF . The organisation of f̃ in (10), being

centred with respect to τ = 0 according to Fig. 3(b) and (d),

requires the DFT shift by P in (9).

Further, we define

D = diag{(−LN ), . . . , 0, . . . , (N − LN − 1)} ,

such that

χp = f̃
H
D

2p
f̃ =

1

N
FH

TNP
H
D

2p
PT

H
NF .

If power is accumulated across several derivatives up to order

P , χ(P ) =
∑P

p=0 χp, then with the abbreviation

C =
1

N
TNP

H
P
∑

p=0

D
2p
PT

H
N ,

we can evaluate the cost as a weighted inner product χ(P ) =
FH

CF . Since the inner part PH
∑P

p=0 D
2p
P is real valued

and diagonal, with a symmetric sequence occupying this

diagonal, C necessarily is a circulant matrix comprising of

real-valued entries [22].

V. CONSTRAINED OPTIMISATION

Algorithms for the extraction of analytic eigenvalues often

require to measure the smoothness of function segments based

on a limited number of sample point [13]. This, together with

additional conditions on F (ejΩ), is in this section addressed

as an optimisation problem on the time domain coefficients in

a stacked vector fT = [f̃Tr f̃
T
i ],

min
f

fH
∆f such that Gf = b , (11)

with appropriate quantities ∆, G and b to be defined below.

We embed up to three different conditions on F (ejΩ):

C1: If only a limited number of sample points K ≤ N
are available, then we define a selection matrix S ∈
Z
K×N that relates this reduced set F (r) to F and f̃

as

F (r) = SF =
√
NSTNP

H
f̃ = Af̃ ,



or
[

Re{A} −Im{A}
Im{A} Re{A}

]

f =

[

F (r)

0K

]

. (12)

C2: F (ejΩ) is real-valued ↔ f [τ ] is symmetric,

i.e. f [τ ] = f∗[−τ ], which imposes the constraint
[

ILN
−KN 0LN×N

0LN×N ILN
KN

]

f = 0 , (13)

with KN given via the Ln×Ln reverse identity JLN

KN =

{

[0 JLN
0] N even

[0 JLN
] N odd .

C3: For a symmetric F (ejΩ), we can demand f [τ ], and

therefore also f̃ [τ ], to be real-valued:

f̃i = 0N .

Thus, for constraints C1 and C2, the overall constraint

in (11) will be drawn from (13) and (12), such that G ∈
R

2(LN+K)×2N and b ∈ R
2(LN+K). For K > N − LN , the

constraint equation will be an overdetermined system, and it

will either be possible to condense the constraint equation

Gf = b via an SVD similar to robust MVDR beamform-

ing [23], or in case it is approximately full rank, entirely via

f = G
†
b, with {·}† denoting the pseudo-inverse. Otherwise,

with ∆ =
∑P

p=0 blockdiag{D2p, D
2p}, the solution to the

optimisation problem is analogous to the Capon or minimum

variance distortionless response beamformer, with [20]

χmin = b
H(G∆

−1
G

H)†b .

Constraint C3 can be combined with C1 and C2 by purging

any reference to f̃i, and therefore condensing the constraints

such that

G =

[

Re{A}
ILN

−KN

]

, b =

[

F (r)

0LN

]

,

followed by optimisation for f = f̃r only.

VI. SCHUR COMPLEMENT

An alternative approach to Sec. V is to solve χ(P ) = FH
CF

under the conditions C1–C3 via the Schur complement of C

directly for the sample points in F . For this, we define F (q)

as containing F (r) as well as any additional components due

to the symmetry condition C3, such that
[

F (q)

x

]

=

[

Sq

S
⊥
q

]

F = ΣF

with Sq ∈ Z
L×N a binary selection matrix similar to S ∈

Z
K×N but potentially with added rows to reflect the symmetry

condition C3, i.e. K ≤ L < 2K, and S
⊥
q its orthogonal

complement.

The matrix B = ΣCΣ
T ∈ R

N×N can be partitioned as

B =

[

B1 B2

B
T
2 B4

]

,
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Fig. 4. Smooth approximations of F (ejΩ) using various interpolation
approaches given (a,b) K = 2 and (c,d) K = 3 sample points.

with B1 ∈ R
L×L and all other components of

appropriate dimensions. Based on the solution to

minx[F
(q),T

x
T]B[F (q),T

x
T]T, the smoothness metric

for the optimal completion x is given by [20]

χmin = F (q),T(B1 −B2B
−1
4 B

T
2 )F

(q)

via the Schur complement B1 −B2B
−1
4 B

T
2 of B, but which

differently from [20] incorporates the additional constraints.

VII. RESULTS AND DISCUSSION

We first provide an example for the interpolations achieved

by various settings, benchmarked against [20] and [21],

whereby the latter aims to achieve a time domain response

that does not exceed a support of K, without explicit de-

sire for smoothness but at minimal computational cost. In

Fig. 4, we see a sampling grid of N = 8 for the function

F (ejΩ) = 1 + cosΩ, and are given (i) K = 2 sample points

for k = {0, 1} and (ii) K = 3 sample points for k = {0, 1, 3}.

As the number of sample points increases, the interpolated

function is further tied down and therefore better approximates

the original F (ejΩ). A similar effect can be observed as

more constraints are taken on board. Constraining the missing

sample points to be real valued provides a small enhancement

and eliminates any deviation in the imaginary part, while the

symmetry condition essentially increases the number of given

sample points.

When checking on the P th derivative power σ2
P of an

interpolation based on K given sample points of the above

F (ejΩ), the metrics in Tab. I for P = 5 are returned.

Note that as K and the number of constraints increases, the

values converge towards the true σ2
P = 1

2 . The approach by



TABLE I
POWER IN THE P = 4TH DERIVATIVE OF AN INTERPOLATION DRIVEN BY

A COST FUNCTION WITH P = 4 FOR A VARIABLE NUMBER K OF SAMPLE

POINTS ON A GRID N = 8.

K C1 [20] C1+C2 C1+C2+C3 Selva [21]

2 0.152832 0.196791 0.401503 0.146447
3 0.438293 0.445379 0.488754 5.707107
4 0.493379 0.493481 0.499909 51.935029
5 0.499571 0.499572 0.500000 297.524387
6 0.499368 0.499368 0.500000 761.419354
7 0.499929 0.499929 0.500000 333.250000
8 0.500000 0.500000 0.500000 0.500000

Selva [21], which aims to solve the missing samples problem

by providing an interpolation for a compact f [τ ] ◦—• F (ejΩ)
via a highly efficient fast Fourier transform scheme, does not

offer the smooth interpolation that we seek.

Without the additional constraints C1–C3, in [20] the

constraint optimisation was found to have lower complexity

and better conditioning compared to the Schur approach for

K ≪ N , and vice versa for K → N . Here, with additional

constraints, the cost is shifted: MVDR is computationally more

expensive due to the increased dimension of the constraint

matrix, while the Schur complement scheme — dominated

the matrix inverse of B4 — contents with a lower dimension

and therefore lower cost.

VIII. CONCLUSIONS

This paper has illuminated properties of a cost function

that evaluates the power of derivatives from the smoothest

possible interpolation through a potentially incomplete number

of sample points on the unit circle. The particular type of

function to be interpolated here are eigenvalues, which in

the Fourier domain will be non-negative, real-valued, and can

potentially be symmetric. The cost function can be evaluated

as a weighted inner product of the coefficient vector, whereby

the weighting matrix is real-valued and circulant.

The real-valuedness and potential symmetry of eigenvalues

can be enforced by constraints, which also aids in matching

the power of the derivatives of an approximated function

more closely. We have benchmarked this method against the

previously existing approach in [20], and compared it to a low-

cost interpolation in [21]. The latter is not aimed at providing a

maximally smooth interpolation but sets an aspiration in terms

of its very low computational footprint.

Therefore, the proposed metric offers some good properties

for the extraction of analytic factors for, for example, the EVD

of an analytic, parahermitian matrix [12], [13]. Analyticity in

turn offers the opportunity of Laurent polynomial approxima-

tions that can be siginificantly lower in order than for factors

that are obtained by current time domain algorithms favouring

spectral majorisation [4], [5], [7], [9]. With lower order poly-

nomials translating into lower implementation cost, the pro-

posed metric may directly contribute to reduced computational

cost for applications such as broadband beamforming [24],

angle or arrival estimation [25], or source separation [26].
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