
Chen, Wei and Cao, Yingying and Cheng, Shi and Sun, Yifei and Liu,

Qunfeng and Li, Yun (2018) Simplex search-based brain storm

optimization. IEEE Access, 6. pp. 75997-76006. ISSN 2169-3536 ,

http://dx.doi.org/10.1109/ACCESS.2018.2883506

This version is available at https://strathprints.strath.ac.uk/67191/

Strathprints is designed to allow users to access the research output of the University of

Strathclyde. Unless otherwise explicitly stated on the manuscript, Copyright © and Moral Rights

for the papers on this site are retained by the individual authors and/or other copyright owners.

Please check the manuscript for details of any other licences that may have been applied. You

may not engage in further distribution of the material for any profitmaking activities or any

commercial gain. You may freely distribute both the url (https://strathprints.strath.ac.uk/) and the

content of this paper for research or private study, educational, or not-for-profit purposes without

prior permission or charge.

Any correspondence concerning this service should be sent to the Strathprints administrator:

strathprints@strath.ac.uk

The Strathprints institutional repository (https://strathprints.strath.ac.uk) is a digital archive of University of Strathclyde research

outputs. It has been developed to disseminate open access research outputs, expose data about those outputs, and enable the

management and persistent access to Strathclyde's intellectual output.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/195295079?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/

Received October 24, 2018, accepted November 21, 2018, date of publication November 27, 2018,
date of current version December 27, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2883506

Simplex Search-Based Brain Storm Optimization

WEI CHEN1, YINGYING CAO1, SHI CHENG 2, (Member, IEEE), YIFEI SUN3,4,

QUNFENG LIU 1,5, AND YUN LI1,5, (Member, IEEE)
1School of Computer Science and Network Security, Dongguan University of Technology, Dongguan 523808, China
2School of Computer Science, Shaanxi Normal University, Xi’an 710119, China
3Key Laboratory of Modern Teaching Technology, Ministry of Education, Shaanxi Normal University, Xi’an 710062, China
4School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710119, China
5Industry 4.0 Artificial Intelligence Laboratory, Dongguan University of Technology, Dongguan 523808, China

Corresponding author: Qunfeng Liu (liuqf@dgut.edu.cn) and Yun Li (Yun.Li@ieee.org)

This work was supported in part by the National Key R&D Program of China under Grant 2016YFD0400206, in part by the NSF of China

under Grant 61773119 and Grant 61806119, and in part by the NSF of Guangdong Province under Grant 2015A030313648.

ABSTRACT Through modeling human’s brainstorming process, the brain storm optimization (BSO)

algorithm has become a promising population-based evolutionary algorithm. However, BSO is pointed out

that it possesses a degenerated L-curve phenomenon, i.e., it often gets near optimum quickly but needs much

more cost to improve the accuracy. To overcome this question in this paper, an excellent direct search-based

local solver, the Nelder–Mead Simplex method is adopted in BSO. Through combining BSO’s exploration

ability and NMS’s exploitation ability together, a simplex search-based BSO (Simplex-BSO) is developed

via a better balance between global exploration and local exploitation. Simplex-BSO is shown to be able

to eliminate the degenerated L-curve phenomenon on unimodal functions, and alleviate significantly this

phenomenon on multimodal functions. Large number of experimental results shows that Simplex-BSO is a

promising algorithm for global optimization problems.

INDEX TERMS Brain storm optimization, Nelder-Mead Simplexmethod, global exploration, local exploita-

tion, visualizing confidence intervals.

I. INTRODUCTION

Numerous scientific or engineering problems can be modeled

as the following optimization problem

min f (x), s.t., x ∈ � ⊆ R
n, (1)

where n is the number of controllable variables, and f (x)

is the objective function. When � = R
n, problem (1) is

unconstrained, otherwise constrained. Specifically, when� is

a rectangle or hyperrectangle, problem (1) is bound (or box)

constrained.

When the objective function f (x) is nonconvex, prob-

lem (1) is often hard to find the global optimum x⋆ satisfied

f (x⋆) ≤ f (x), ∀x ∈ �. (2)

An important reason is that there is no information which can

guide to x⋆ mathematically. Therefore, many heuristic or evo-

lutionary optimization algorithms were developed for global

optimization problems [8], [12], [27].

Through modeling human’s brainstorming process,

the Brain Storm Optimization (BSO) algorithm proposed

recently in [19] and [20] has become a promising population-

based evolutionary algorithm, and has attracted more and

more theoretical analysis [3], [4], [9], [11], [21], [22],

[31] and practical applications [5], [14], [17], [24], [25].

An important progress of BSO is to transform operations

in the solution space to the objective space [22]. The new

version of BSO is easier in implementation and lower in

computational resources on the clustering strategy at each

iteration. In this paper, we refer BSO to BSO in the objective

space [22], unless otherwise stated.

In the BSO algorithm [22], the population evolutes through

updating each individual at each iteration. Specifically,

the whole population is firstly classified into two categories,

the best 20% individuals are included in the elite population

(elites), while the others are included in the set of regular

population (normals). Then one or two parent individuals are

selected randomly from either or both sets, new child indi-

vidual is generated through combining these selected parent

individuals linearly and then add some white noise. If the new

child individual is better than the original one, the original

individual will be updated with the new child individual. Such

process is then repeated until stopping condition holds.

Many numerical experiments have shown that BSO is

good at global exploration but not good enough at local

exploitation [3], [11], [28]. Specifically, BSO can get near

optimum quickly, but need much more cost to improve

VOLUME 6, 2018
2169-3536
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

75997

https://orcid.org/0000-0002-5129-995X
https://orcid.org/0000-0002-6286-941X

W. Chen et al.: Simplex Search-Based BSO

accuracy. Such phenomenon is called the ‘‘degenerated

L-curve’’ in this paper (Here, the L-curve of the algorithm

is the so-called convergence curve of the algorithm, in order

to give a visual description, we called it ‘‘L-curve’’ in this

paper), and will be discussed in detail in the next section. The

degenerated L-curve phenomenon prevents BSO reaching the

optimum quickly with high accuracy, and therefore BSO is

not suitable for optimizing directly computational expensive

problems or problems needed high accuracy solutions.

The main goal of this paper is to overcome or alleviate the

degenerated L-curve phenomenon of BSO. Our strategy is

to combine an efficient local solver into BSO. In this way,

we hope to accelerate local search firstly and then to improve

the whole global search. In this paper, the Nelder-Mead Sim-

plex (NMS) algorithm [16] is selected, which is one of the

most well-known and efficient derivative-free optimization

algorithm for local optimization [1], [26], [29]. By suitably

fusing the BSO’s evolutionary search and simplex search,

exploration and exploitation can be well balanced and the

whole performance can be improved.

Specifically, BSO is executed for just one iteration (update

the population only once), and then the best found position

is regarded as a start point for NMS. Given a small budget

of computational cost, NMS is executed, and the found best

position is then returned back to update the best individ-

ual of population. Repeat such process until some stopping

condition satisfied. Since BSO is good at global exploration

and NMS is good at local exploitation, our strategy can be

interpreted as a repeated process including ‘‘finding a good

local area’’ and ‘‘exploiting the local area’’.

The obtained algorithm, Simplex-BSO, is shown to allevi-

ate significantly BSO’s degenerated ‘‘L-curve’’ phenomenon,

and perform significantly better than BSO on some popular

benchmark sets by adopting the visualizing confidence inter-

vals (VCI) method [13]. Although one additional parameter

is employed, it is shown to be insensitive.

The remainder of this paper is organized as follows.

In Section II, the BSO algorithm is reviewed briefly and

its degenerated L-curve phenomenon is discussed. Then

the Simplex-BSO algorithm is developed and analyzed in

Section III. Large number of experimental results are reported

in Section IV. Finally, conclusions are drawn in Section V.

II. BRAIN STORM OPTIMIZATION AND ITS

DEGENERATED ‘‘L-CURVE’’

In this section, the BSO (Brain storm optimization in the

objective space) is reviewed firstly, and then its degenerated

L-curve phenomenon is discussed.

A. BRAIN STORM OPTIMIZATION IN THE

OBJECTIVE SPACE

This version of BSO is proposed in [22], whose procedure is

listed in Algorithm 1.

In Algorithm 1, each iteration of BSO includes

four components, namely ‘‘Classification’’, ‘‘Disruption’’,

‘‘New individual generation’’ and ‘‘Population updating’’.

Algorithm 1: Brain Storm Optimization (BSO)

1 Initialization: generate the initial population randomly

and evaluate them;

2 while stopping conditions do not hold do

3 Classification: classify all solutions into two

categories according to their fitness values: the best

20% individuals are called ‘‘elites’’ and the others

‘‘normals’’;

4 Disruption: select an individual from the population

randomly, and change its value in a randomly

selected dimension;

5 New individual generation: select one or two

individuals from elitists or normal to generate a

child(the pseudo code of ‘‘New individual

generation’’ is given in Algorithm 2);

6 Generate a new child by add a white noise to the

child’s each dimension;

7 Record the new child if it is better than the current

individual;

8 Update: update the whole population.

Algorithm 2: Pseudo Code of ‘‘New individual genera-

tion’’

1 if rand < pe, then

2 if rand < pone, then

3 generate a new individual based on one

randomly selected elitist;

4 else

5 generate a new individual based on two

randomly selected elitists;

6 else

7 if rand < pone, then

8 generate a new individual based on one

randomly selected normal;

9 else

10 generate a new individual based on two

randomly selected normals.

In ‘‘Classification’’ stage, the individuals are classified into

two clusters according to their fitness values, the best 20%

individuals are clustered as ‘‘elitists’’ and the remaining

as ‘‘normals’’. The component ‘‘Disruption’’ is utilized to

increase the population diversity, which is executed usually

with a small probability and one individual’s value in one

random dimension will be replaced by a random number.

The ‘‘Disruption’’ strategy is often helpful for individuals to

‘jump out’ of the local optima.

The most important component of BSO is how to gen-

erate new individuals. One or two individuals are selected

randomly from ‘‘elitists’’ or ‘‘normals’’ or both, and then

the selected individuals are combined linearly to generate a

75998 VOLUME 6, 2018

W. Chen et al.: Simplex Search-Based BSO

new individual. Then, adding different white noises to the

generated new individual in its different dimensions. The

author in [22] use the following step-size function (3) to

control the variances of these white noises,

ξ (t) = logsig
(0.5 × T − t

c

)

× rand(t), (3)

where logsig() is a logarithmic sigmoid function, T and t are

the maximum and current number of iterations, respectively,

c is a coefficient to change logsig() function’s slope, and

rand() return a random value between 0 and 1.

‘‘Population updating’’ is utilized to keep good solutions.

The new individual generated in the above stage will be

recorded if its fitness value is better than the current given

individual. However, the current individual is not updated in

time until all new individuals are generated and evaluated.

In other words, the whole population will be updated at the

end of iteration [22].

These components of the BSO algorithm [22] have been

analyzed and improved for specific applications [3], [7], [23].

In this paper, we aim to improve BSO through overcoming

one of its undesirable behaviors.

B. BSO’S DEGENERATED ‘‘L-CURVE’’

It was shown that BSO is promising in solving global opti-

mization problems [11], [19], [20], [30]. However, BSO is

still suffering from balance of global exploration and local

exploitation, just like many other global optimization algo-

rithms. On one hand, global exploration provides helpful

guidance and is necessary for nonconvex global optimiza-

tion. On the other hand, local exploitation is very important

for searching inside a potential good region and refining

the solutions. But how to balance between exploration and

FIGURE 1. Examples of BSO’s degenerated L-curve phenomenon. BSO
and Simplex-BSO are adopted to solve the Dixon-Price function and the
Rastrigin function, respectively. The found best function values are
plotted, and Simple-BSO’s curves are ‘‘L − type′′ while BSO’s are
degenerated ‘‘L − type′′ .

exploitation is not easy, and is often algorithm dependent and

even problem dependent.

To judge BSO’s ability of balancing between exploration

and exploitation, a set of 68 benchmark functions (the Hedar

test set [10], will be presented detailed in Section 4) are tested,

and the best function values for each function found by BSO

are recorded and plotted. Two examples from the Dixon-

Price function and the Rastrigin function are shown in the left

subfigures of Figure 1, where the right subfigures are results

from our proposed algorithm Simplex-BSO.

Comparing these subfigures, it is clear that Simplex-BSO’s

curves are L-type with high accuracy (about 10−25) to the

global optimal value 0, which implies that Simplex-BSO

find very good solutions within low computational cost

(about 2000 function evaluations). However, BSO’s curves

decrease slowly and finally (20000 function evaluations)

reach solutions with relatively low accuracy (about 10−10).

Therefore, we call it as BSO’s degenerated L-curve phe-

nomenon. Among all 68 benchmark functions, there are

56 functions whose curves are similar as those in the left

subfigures of Figure 1. In other words, BSO’s degenerated

L-curve phenomenon is popular.

Our finding implies that BSO pays less attention to local

search, and has degenerated its whole performance. In next

section, an efficient local solver is introduced into BSO to

overcome or alleviate its degenerated L-curve phenomenon.

III. SIMPLEX SEARCH BASED BRAIN STORM

OPTIMIZATION

It is shown that the BSO algorithm proposed in [22] pos-

sesses a degenerated L-curve phenomenon, and it is resulted

from the weakened local exploitation. In this section, an effi-

cient derivative-free local solver, the Nelder-Mead Simplex

method [16], is introduced into BSO. Our purpose is to

overcome or at least alleviate BSO’s degenerated L-curve

phenomenon through enhancing its local search.

We firstly review the NMS algorithm briefly, and then

develop the Simplex-BSO algorithm.

A. NELDER-MEAD SIMPLEX ALGORITHM

The NMS algorithm was proposed by Nelder and Mead

in 1965 [16], and currently it is still one of the best derivative-

free (local) optimization algorithm [18].

In NMS, a simplex of Rn, which is a geometry with n+ 1

vertical points x1, x2, ..., xn+1, is maintained. At each iter-

ation, the worst point (with worst function value) is often

replaced with a new better point, which is generated through

reflection, expansion or contraction of the centroid of the best

n points around the worst one. If all these operations cannot

find a better point, the worst n vertical points shrink around

the best one. In this way, the simplex is always updated at

each iteration, and the best vertical point will be selected as

the solution when some stopping condition holds.

The quasi code of the NMS algorithm is summarized as

the Algorithm 3, where the reflection, expansion, contraction

VOLUME 6, 2018 75999

W. Chen et al.: Simplex Search-Based BSO

(outside or inside) are displayed appear in brackets after the

description of the step.

Algorithm 3: Nelder-Mead Simplex (NMS)

1 Initialization: generate n+ 1 vertices of the initial

simplex;

2 while stopping conditions do not hold do

3 Order the points from the lowest function valuef (x1)

to highest f (xn+1);

4 Compute xr = 2x̄ − xn+1, where x̄ =
∑n

i=1 xi/n.

if f (x1) ≤ f (xr) < f (xn), then

5 xn+1 = xr , and terminiate this iteration

(Reflection);

6 if f (xr) < f (x1), then

7 compute xe = x̄ + 2(x̄ − xn+1),

if f (xe) < f (xr), then

8 xn+1 = xe, and terminiate this iteration

(Expansion);

9 else

10 xn+1 = xr , and terminate this iteration

(Reflection);

11 if f (xr) ≥ f (xn), then

12 if f (xr) < f (xn+1), then

13 compute xc = (x̄ + xr)/2,

if f (xc) < f (xr), then

14 xn+1 = xc, and terminiate this iteration

(Contract outside)

15 else

16 go to the Shrink step

17 else if f (xr) ≥ f (xn+1), then

18 compute xcc = (x̄ + xn+1)/2,

if f (xcc) < f (xn+1), then

19 xn+1 = xcc, and terminiate this iteration

(Contract inside).

20 else

21 go to the Shrink step

22 Shrink: xi = (xi + x1)/2, i = 2, ..., n+ 1.

At next subsection, the NMS algorithm is introduced into

BSO to improve BSO’s local exploitation ability.

B. SIMPLEX-BSO: SIMPLEX SEARCH BASED BRAIN

STORM OPTIMIZATION

To overcome BSO’s degenerated L-curve phenomenon,

which implies that BSO often gets near the optima quickly

but needs much more cost to improve the accuracy, a nature

way is to combine an efficient local solver, e.g., the NMS

algorithm. The main difficulty of this strategy is how to max-

imize both BSO’s exploration ability and NMS’s exploita-

tion ability. After comparing several different designs,

we found that the feedback between BSO’s global search

and NMS’s local search is important to improve the whole

performance.

Therefore, BSO’s exploration is firstly executed, and then

NMS’s exploitation is run around the found best position.

Such process is repeated. Specifically, in each iteration of

Simplex-BSO, an iteration of BSO is executed firstly and

then the found best position x0 is used as a starting point for

NMS’s search. The NMS algorithm then begins to search the

local area around x0, after consuming 40n (n is the dimension

of problem) computational cost, the found new best position

x ′
0 is returned back to replace x0. Repeat such process until

the stopping conditions hold. The Simplex-BSO algorithm is

summarized as the Algorithm 4.

Algorithm 4: Simplex-BSO

1 Initialization: generate the initial population randomly;

2 while stopping conditions do not hold do

3 Global search: update the whole population

according to the BSO algorithm (Algorithm 1).

Identify the best individual x0;

4 while search cost less than 40*length(x0) do

5 Local search: exploit the search area around x0
through executing the NMS algorithm

(Algorithm 3). Let x ′
0 be the found best point;

6 Update: Update the population via replacing x0 with

x ′
0.

As an integration of BSO and NMS, Simplex-BSO pro-

vides a better balance between global exploration and local

exploitation than BSO or NMS alone. On one hand, BSO’s

global search helps to find a good starting point for NMS,

which has a significant influence on the performance of

the NMS method. On the other hand, NMS’s efficient local

exploitation helps to find desirable solution quickly at the

potential good regions.

Then we turn to consider the allocation of the whole

computational cost. It is designed to be problem dependent.

For each iteration of Simplex-BSO, an iteration of BSO and

about 40n function evaluations of NMS are executed. In other

words, 40n plus the size of BSO’s population is consumed at

Simplex-BSO’s each iteration. Since the size of BSO’s popu-

lation is often fixed, therefore, local exploitation is relatively

biased as n increases.

C. INFLUENCE OF THE ADDITIONAL PARAMETER

An additional parameter, 40n, is introduced in Simplex-

BSO to balance BSO’s global search and NMS’s local

search. Although a simple rule is proposed in Algorithm 4,

it can be set more flexible and even adaptive.

Roughly speaking, low value of the parameter implies that

less cost is allocated in local search, and therefore, is more

suitable for hard problems or problems with many optima.

On the contrary, high value of the parameter is more suitable

for relatively easy problems.

76000 VOLUME 6, 2018

W. Chen et al.: Simplex Search-Based BSO

However, our extensive experiments show that the balance

parameter is insensitive for most not too hard problems.

Therefore, we propose 40n in Algorithm 4 for easy imple-

ment. More details about the sensitivity analysis is provided

in Section IV-B.3.

IV. EXPERIMENTAL RESULTS

In this section, the Simplex-BSO is compared numerically

with the following algorithms:

• NMS: an algorithm based on Nelder-Mead’s simplex

search [16];

• BSO: BSO in the objective space [22];

Our purpose is to verify that the proposed Simplex-BSO

can alleviate significantly BSO’s degenerated L-curve phe-

nomenon, and to show Simplex-BSO’s good performance.

TABLE 1. Information about the Hedar test set.

Two popular sets of benchmark functions, namely the

Hedar set [10] and the CEC2017 [2], are tested. Some of

the hybrid and composition function of the CEC2017 set are

really hard to solve, which makes the CEC2017 set harder

relatively than the Hedar set.

A. THE ELIMINATION OR ALLEVIATION OF BSO’S

DEGENERATED L-CURVE PHENOMENON

In this subsection, we present the numerical results on the

Hedar test set [10]. Table 1 shows the main information of the

Hedar set, including the function names, dimensions, Char-

acteristic, search regions and their minimal function values.

There are 16 unimodal problems and 52multimodal problems

in total.

In our experiments, 50 independent runs are executed

for each problem, and all algorithms stops only when

20,000 function evaluations are consumed on the Hedar test

set.

To compare the L-curves of BSO and Simplex-BSO,

50 series of the found best function evaluations on each func-

tion are averaged and plotted. Fig. 2 shows the L-curves on

four representative functions, including 1 unimodal function

(Beale) and 3 multimodal functions (Rastrigin, Griewank,

Powell).

FIGURE 2. L-curves of BSO and Simplex-BSO on 1 unimodal function
(Beale) and 3 multimodal functions (Rastrigin, Griewank, and Powell).
Simplex-BSO eliminates BSO’s degenerated L-curve phenomenon on all
16 unimodal functions, and alleviates it significantly on 40 multimodal
functions in the Hedar set.

1) L-CURVES ON 16 UNIMODAL FUNCTIONS

There are 16 unimodal functions in the Hedar set. The

L-curve results on these 16 functions are very similar as that

of the Beale function (see the top left subfigure in Fig. 2).

Specifically, Simplex-BSO finds a good solution with

accuracy of 10−24 within less than 1000 function evaluations.

On the contrary, BSO achieves an accuracy of 10−7 within

about 2000 function evaluations, and finally achieves the

accuracy of 10−15 when all the 20,000 function evaluations

VOLUME 6, 2018 76001

W. Chen et al.: Simplex Search-Based BSO

are consumed. Therefore, Simplex-BSO’s L-curves are very

like ‘‘L’’ while BSO’s are degenerated.

Since all L-curve results of these 16 functions are very sim-

ilar, therefore we can conclude that Simplex-BSO eliminates

BSO’s degenerated L-curve phenomenon on these unimodal

functions.

2) L-CURVES ON 52 MULTIMODAL FUNCTIONS

There are 52 multimodal functions in the Hedar set. The

L-curve results on these 52 functions show that Simplex-BSO

still performs very well, and it outperforms BSO on 40 func-

tions. Fig. 2 shows the L-curve results of the Rastrigin (2D),

Griewank (10D) and Powell (24D) functions as examples.

Since 20,000 function evaluations are fixed for different

dimensional functions, therefore, for low dimensional func-

tions, e.g., the Rastrigin 2D at the top right subfigure, BSO

often finds solutions with about 10−10 accuracy slowly. The

L-curve is degenerated. However, Simplex-BSO often can

find better solutions with about 10−20 accuracy and with

much faster convergent rate. For higher dimensional func-

tions, e.g., the Griewank 10D and Powell 24D functions,

BSO cannot find good solution since the accuracy is larger

than 100. On the contrary, Simplex-BSO still can find good

solutions with accuracy about 10−3 for Griewank 10D and

10−10 for Powell 24D.

However, there still 12 multimodal functions in the Hedar

set on which Simplex-BSO is outperformed by BSO. There-

fore, we can only conclude that Simplex-BSO alleviates

BSO’s degenerated L-curve phenomenon on the multimodal

functions.

B. DYNAMIC COMPARISON ON THE WHOLE SET

Since ‘‘L-curve’’ comparison is validation on each function,

it is inconvenient and hard to obtain a comprehensive result

when the number of benchmark functions is large. Therefore,

in this subsection, we provide dynamic comparison results

on the whole Hedar set through adopting the visualizing

confidence intervals (VCI) method.

1) THE VCI METHOD

The VCI method [13] is extended from two popular bench-

mark methods for deterministic optimization algorithms,

namely the data profile technique [15] and the performance

profile technique [6]. Through visualizing confidence inter-

vals of the found best objective function values, the VCI

method is shown to be convenient for benchmarking stochas-

tic global optimization algorithms, especially when the set of

benchmark functions or the number of algorithms is large.

Hence, it is proposed to replace the traditional statistic test

based methods [13].

Specifically, suppose there is a set S of optimization solvers

needed to be compared numerically, and a set P of benchmark

problems is selected. Then given any budget of function

evaluations µf , run each solver s ∈ S on each problem p ∈ P

for nr times, and record the series of the found best function

values. After all tests finished, a 4-D matrix H with size

µf × nr × np × ns is obtained, where the 4-tuple element

H (k, r, j, i) denotes the found best function value during k

function evaluations at the r-th run when test the i-th solver

on the j-th problem.

The matrix H is then used to generate a sample mean

matrix H

H (k, j, i) =
1

nr

nr
∑

r=1

H (k, r, j, i) (4)

and a sample variance matrix S2H

S2H (k, j, i) =
1

nr − 1

nr
∑

r=1

[

H (k, r, j, i) − H (k, j, i)
]2

(5)

for each algorithm i = 1, ..., ns on each problem j = 1, ..., np
with k = 1, ..., µf function evaluations. The confidence

upper bound matrix Hupper and the confidence lower bound

matrix Hlower are then defined as follows

Hupper (k, j, i) = H (k, j, i) +
2SH (k, j, i)√

nr
, (6)

Hlower (k, j, i) = H (k, j, i) −
2SH (k, j, i)√

nr
. (7)

In the VCI method, H ,Hupper and Hlower are analyzed

statistically with the data profile technique. The data profile

is a cumulative distribution function defined for any solver

s ∈ S as follows

ds(κ) =
1

|P|
size

{

p ∈ P :
tp,s

Dp + 1
≤ κ

}

, (8)

where |P| denotes the number of test problems, Dp is the

dimension of the problem p, and size{} returns the size of

a set. In (8), tp,s is the number of function evaluations needed

for solver s to find a position x such that the convergence

condition

f (x0) − f (x) ≥ (1 − τ)(f (x0) − fL) (9)

holds, where x0 is the starting point, fL is the smallest

objective function value obtained by any solver within µf

of function evaluations, and τ > 0 (in this paper, we use

τ = 1 × 10−7) is a tolerance. tp.s = ∞ if the condition (9)

does not satisfy after µf function evaluations.

Roughly speaking, the VCI method adopts the data pro-

file technique twice to benchmark stochastic optimization

algorithms. Specifically, the data profile technique is used to

analyze H firstly. From the generated data profiles, a winner

solver can be determined in the sense of best average perfor-

mance. Then the data profile technique is used to compare

the winner solver’s Hupper and the other solvers’ Hlower . The

purpose is to confirm that the winner solver performs the best

in the sense of the worst deviation.

In summary, the VCI method possesses several advantages

than the traditional methods (e.g., statistic test based meth-

ods) [13], and is very convenient for our purpose.

76002 VOLUME 6, 2018

W. Chen et al.: Simplex Search-Based BSO

2) DYNAMIC COMPARISONS WITH THE VCI METHOD

The VCI method allows us to compare both stochastic and

deterministic optimization algorithms, and therefore is suit-

able for comparison between BSOs and NMS. Two steps are

needed. Firstly, we compare the average behaviors of BSO,

Simplex-BSO and NMS to determine a winner algorithm.

Secondly, the winner’s Hupper is compared with the others’

Hlower to confirm whether the winner still performs the best

at the worst case. If so, then the conclusion is significant

statistically that the winner performs better than the other

algorithms. Otherwise, the conclusion is that the winner per-

forms averagely better than the other algorithms.

FIGURE 3. Data profiles resulted from comparing the average behaviors
of BSO, Simplex-BSO and NMS on the Hedar test set. The results show
that Simplex-BSO performs very well since it possesses both NMS’s good
local search ability and BSO’s global search ability.

Fig. 3 shows the results of the comparison of average

behaviors, where the horizontal axis is the computational cost

and the vertical axis shows the proportion of problems solved.

Therefore, the more close to the left top corner, the better the

curve (i.e., the algorithm) is.

We can see from Fig. 3 that the NMS algorithm performs

much better than BSO when the computational cost is small,

and it can solve more than 60% problems very quickly.

However, NMS cannot perform better when the computa-

tional cost is larger than about 2000. On the other hand,

BSO performs better and better as the computational cost

increases, and finally can solve about 52% problems. This

observation confirms that NMS is an efficient local optimiza-

tion algorithm while BSO is a global optimization algorithm,

and moreover, the original BSO performs much worse than

NMS.

From Fig. 3 we can see that Simplex-BSO possesses both

NMS’s local search ability and BSO’s global search abil-

ity. When the computational cost is less than about 2000,

Simplex-BSO performs worse slightly than NMS. However,

Simplex-BSO performs better and better as the computational

cost increases. Finally, Simplex-BSO can solve about 69%

problems, i.e. Simplex-BSO can not solve about 21 problem

(They are Ackley of dimmension 10 and 20, Hump, Levy of

dimmension 10 and 20, Mich of dimmension 5 and 10, Rast

of dimmension 5, 10 and 20, Rosen of dimmension 5, 10 and

20, Schw of dimmension 2, 5, 10 and 20, Shekel5, Shekel7,

Shekel10, Trid of dimmension 10 respectively), about 6%

higher than NMS and 17% higher than BSO.

The Hupper of Simplex-BSO is then compared with Hlower
of BSO and NMS. The result shows that Simplex-BSO’s

worst case is outperformed by the best cases of BSO and

NMS. According to the VCI method, the conclusion is that

Simplex-BSO performs better averagely than both BSO and

NMS.

Combined with the results in Section IV-A, the proposed

Simplex-BSO is a promising global optimization algorithm.

Through adopting simplex search in BSO, the local search

ability is enhanced significantly and the whole global search

ability is then strengthened. However, an additional parame-

ter 40n is adopted in Simplex-BSO to balance the local search

and global search. The sensitivity of the parameter is analyzed

in next subsection.

3) SENSITIVITY ANALYSIS OF THE ADDITIONAL PARAMETER

We adopt five different parameter values in Algorithm 4 to

analyze the additional parameter’s sensitivity. Specifically,

20n, 30n, 40n, 50n, 60n are adopted and tested on the Hedar

set. The average behaviors of 50 independent runs are com-

pared with the VCI method, and Fig. 4 shows the results.

FIGURE 4. Data profiles when comparing different version of
Simplex-BSO with different parameter values. The results imply that
this parameter is insensitive within a large period (40n, 60n).

From Fig. 4 we can see that Simplex-BSO with 40n per-

forms better than the versions with 20n, 30n, and performs

very similar with the versions with 50n, 60n. Therefore,

we conclude that the additional parameter 40n is insensitive

on the Hedar set, at least in the range of (40n, 60n). There are

VOLUME 6, 2018 76003

W. Chen et al.: Simplex Search-Based BSO

TABLE 2. Information about the CEC’17 test suite.

two reasons why we select the smallest value in this inter-

val. Firstly, all values within (40n, 50n) perform very well.

Secondly, a small parameter value is helpful in maintaining

population diversity, and therefore enhancing good global

search ability.

C. EXTENDED COMPARISON ON THE CEC2017 TEST SET

In previous subsection, Simplex-BSO has shown to be able

to eliminate BSO’s degenerated L-curve phenomenon on uni-

modal functions and alleviate significantly it on multimodal

functions in the Hedar set. Although an additional parameter

is introduced, our sensitivity analysis shows that it is insensi-

tive within an large interval.

In this subsection, Simplex-BSO is compared with BSO

and NMS on the CEC2017 test set [2], which includes 30 dif-

ferent functions and most of them are harder than those in the

Hedar set. Our purpose is to verify whether Simplex-BSO still

performs well.

Totally, 46 benchmark functions are tested, including all

the 16 two-dimensional and 30 ten-dimensional functions in

CEC2017 set. Main information about these functions are

listed in Table 2. For each function, 50 independent runs

are executed, and the algorithms stop only when 10, 000n

function evaluations are consumed, where n is the dimension.

The VCI method is adopted to analyze the test data.

1) RESULTS ON THE 2D FUNCTIONS

Fig. 5 shows the comparison results on 16 two-dimensional

functions in CEC2017. 50 independent runs are averaged, and

data profiles are generated through the VCI method.

FIGURE 5. Data profile results when comparing Simplex-BSO, BSO and
NMS on 16 two-dimensional functions in the CEC2017 set.

From Fig. 5 we can see that NMS finds 3 (=16*19%)

functions’ optimum very quickly but never gets better. The

reason is that NMS is a local solver and often stagnates in

a local optimal position. However, both BSO and Simplex-

BSO can solve more and more functions as computational

cost increases. Finally, Simplex-BSO solves 11 (=16*69%)

functions and BSO solves 10 (=16*63%) functions, much

larger than NMS’s 3 functions.

Simplex-BSO performs very well on these functions.

On one hand, it solves the most functions among these

3 algorithms. On another hand, it performs the best for

any given computational cost. The performance difference

between Simplex-BSO and BSO is almost always larger than

6%, and the difference becomes 25%when the computational

cost between 2500 and 6200.

76004 VOLUME 6, 2018

W. Chen et al.: Simplex Search-Based BSO

FIGURE 6. Data profile results when comparing Simplex-BSO, BSO and
NMS on 30 ten-dimensional functions in the CEC2017 set.

2) RESULTS ON THE 10D FUNCTIONS

Fig. 6 shows the comparison results on 30 ten-dimensional

functions in CEC2017. 50 independent runs averaged, and

data profiles are generated through the VCI method.

From Fig. 6 we can see that NMS solve about

12 (=30*40%) functions and Simplex-BSO solves 11

(=30*37%) functions with the best efficiency. On the con-

trary, BSO only solves 2 functions with the best efficiency.

As the computational cost increases, NMS never solves

more functions, while both Simplex-BSO and BSO solves

more and more functions. For instance, when the compu-

tational cost increases to about 6200, Simplex-BSO solves

12 functions and BSO solves 6 functions. Finally, Simplex-

BSO solves 17 (=30*57%) functions and BSO solves 14

(=30*47%) functions. Once again, Simplex-BSO performs

almost always better than BSO for any given computational

cost.

Averagely, Simplex-BSO still performs very well on the

CEC 2017 test set. Combined with the results on the Hedar

set, Simplex-BSO is a promising global optimization algo-

rithm. Through adopting an efficient NMS local solver in

BSO, the obtained algorithm Simplex-BSO enhances its local

search significantly and improves its whole performance.

V. CONCLUSIONS

In this paper, the BSO algorithm is shown to possess the

degenerated L-curve phenomenon. To overcome this prob-

lem, an efficient derivative-free local solver, the Nelder-Mead

Simplex method, is adopted into the BSO algorithm. The

obtained algorithm, Simplex-BSO, is shown to be able to

eliminate BSO’s degenerated L-curve phenomenon on uni-

modal functions and alleviate this phenomenon significantly

on multimodal functions. Although an additional balance

parameter is introduced in Simplex-BSO, it is shown to be

insensitive within a large interval. Extensive experimental

results show that the proposed Simplex-BSO algorithm is a

promising global optimization algorithm.

REFERENCES

[1] M. A. Ahandani, M.-T. Vakil-Baghmisheh, and M. Talebi, ‘‘Hybridizing

local search algorithms for global optimization,’’ Comput. Optim. Appl.,

vol. 59, no. 3, pp. 725–748, 2014.

[2] N. H. Awad,M. Z. Ali, J. J. Liang, B. Y. Qu, and P. N. Suganthan, ‘‘Problem

definitions and evaluation criteria for the CEC 2017 special session and

competition on single objective bound constrained real-parameter numer-

ical optimization,’’ School Elect. Electron. Eng., Nanyang Technol. Univ.,

Singapore, Tech. Rep., 2016.

[3] Y. Y. Cao et al., ‘‘A simple brain storm optimization algorithm via visualiz-

ing confidence intervals,’’ in Proc. 11th Int. Conf. Simulated Evol. Learn.

(SEAL), 2017, pp. 27–38.

[4] S. Cheng, Q. Qin, J. Chen, and Y. Shi, ‘‘Brain storm optimization algo-

rithm: A review,’’ Artif. Intell. Rev., vol. 46, no. 4, pp. 445–458, 2016.

[5] H. Duan, S. Li, and Y. Shi, ‘‘Predator–prey brain storm optimization for

dc brushless motor,’’ IEEE Trans. Magn., vol. 49, no. 10, pp. 5336–5340,

Oct. 2013.

[6] E. D. Dolan and J. J. Moré, ‘‘Benchmarking optimization software with

performance profiles,’’Math. Program., vol. 91, no. 2, pp. 201–213, 2002.

[7] M. El-Abd, ‘‘Global-best brain storm optimization algorithm,’’ Swarm

Evol. Comput., vol. 37, pp. 27–44, Dec. 2017.

[8] C. A. Floudas and C. E. Gounaris, ‘‘A review of recent advances in global

optimization,’’ J. Global Optim., vol. 45, no. 1, pp. 3–38, 2009.

[9] X. Guo, Y. Wu, and L. Xie, ‘‘Modified brain storm optimization algo-

rithm for multimodal optimization,’’ in Advances in Swarm Intelligence

(Lecture Notes in Computer Science), vol. 8795, Y. Tan, Y. Shi, and

C. A. C. Coello, Eds. New York, NY, USA: Springer, 2014, pp. 340–351.

[10] A.-R. Hedar. Global Optimization Test Problems. Accessed:

Nov. 27, 2018. [Online]. Available: http://www-optima.amp.i.kyoto-

u.ac.jp/member/student/hedar/Hedar_files/TestGO.htm

[11] Z. Jia, H. Duan, and Y. Shi ‘‘Hybrid brain storm optimisation and simulated

annealing algorithm for continuous optimisation problems,’’ Int. J. Bio-

Inspired Comput., vol. 8, no. 2, pp. 109–121, 2016.

[12] Q. Liu, ‘‘Linear scaling and the DIRECT algorithm,’’ J. Global Optim.,

vol. 56, no. 3, pp. 1233–1245, 2013.

[13] Q. Liu et al., ‘‘Benchmarking stochastic algorithms for global optimiza-

tion problems by visualizing confidence intervals,’’ IEEE Trans. Cybern.,

vol. 47, no. 9, pp. 2924–2937, Sep. 2017.

[14] X. Ma, Y. Jin, and Q. Dong, ‘‘A generalized dynamic fuzzy neural network

based on singular spectrum analysis optimized by brain storm optimiza-

tion for short-term wind speed forecasting,’’ Appl. Soft Comput., vol. 54,

pp. 296–312, May 2017.

[15] J. J. Moré and S. M. Wild, ‘‘Benchmarking derivative-free optimization

algorithms,’’ SIAM J. Optim., vol. 20, no. 1, pp. 172–191, 2009.

[16] J. A. Nelder and R. Mead, ‘‘A simplex method for function minimization,’’

Comput. J., vol. 7, no. 4, pp. 308–313, 1965.

[17] H. Qiu and H. Duan, ‘‘Receding horizon control for multiple UAV forma-

tion flight based on modified brain storm optimization,’’ Nonlinear Dyn.,

vol. 78, no. 3, pp. 1973–1988, 2014.

[18] L. Rios and N. Sahinidis, ‘‘Derivative-free optimization: A review of algo-

rithms and comparison of software implementations,’’ J. Global Optim.,

vol. 56, no. 3, pp. 1247–1293, 2013.

[19] Y. Shi, ‘‘Brain storm optimization algorithm,’’ in Advances in Swarm

Intelligence (Lecture Notes in Computer Science), vol. 6728, Y. Tan,

Y. Shi, Y. Chai, G. Wang, Eds., Springer Berlin Heidelberg, 2011,

pp. 303–309.

[20] Y. Shi, ‘‘An optimization algorithm based on brainstorming process,’’ Int.

J. Swarm Intell. Res., vol. 2, no. 4, pp. 35–62, 2011.

[21] Y. Shi, ‘‘Developmental swarm intelligence: Developmental learning per-

spective of swarm intelligence algorithms,’’ Int. J. Swarm Intell. Res.,

vol. 5, no. 1, pp. 36–54, 2014.

[22] Y. Shi, ‘‘Brain storm optimization algorithm in objective space,’’ in Proc.

IEEE Congr. Evol. Comput. (CEC), May 2015, pp. 1227–1234.

[23] Z. Song, J. Peng, C. Li, and P. X. Liu, ‘‘A simple brain storm optimization

algorithm with a periodic quantum learning strategy,’’ IEEE Access, vol. 6,

PP. 19968–19983, 2017.

VOLUME 6, 2018 76005

W. Chen et al.: Simplex Search-Based BSO

[24] D. Verma and S. Dubey, ‘‘Fuzzy brain storm optimization and adaptive

thresholding formultimodal vein-based recognition system,’’ Int. J. Pattern

Recognit. Artif. Intell., vol. 31, no. 05, 2017, Art. no. 1756007.

[25] J. Wang, R. Hou, C. Wang, and L. Shen, ‘‘Improved V -Support vector

regression model based on variable selection and brain storm optimization

for stock price forecasting,’’ Appl. Soft Comput., vol. 49, pp. 164–178,

Dec. 2016.

[26] L. Wang, Y. Xu, and L. Li, ‘‘Parameter identification of chaotic systems by

hybrid Nelder–Mead simplex search and differential evolution algorithm,’’

Expert Syst. Appl., vol. 38, no. 4, pp. 3238–3245, 2011.

[27] T. Weise, Global Optimization Algorithms—Theory and Application,

3rd ed. 2011 [Online]. Available: http://www.it-weise.de/projects/book.pdf

[28] Y. Yang, Y. Shi, and S. Xia, ‘‘Advanced discussion mechanism-based

brain storm optimization algorithm,’’ Soft Comput., vol. 19, no. 10,

pp. 2997–3007, 2015.

[29] E. Zahara and Y.-T. Kao, ‘‘Hybrid Nelder–Mead simplex search and par-

ticle swarm optimization for constrained engineering design problems,’’

Expert Syst. Appl., vol. 36, no. 2, pp. 3880–3886, 2009.

[30] Z.-H. Zhan, J. Zhang, Y.-H. Shi, and H.-L. Liu, ‘‘A modified brain storm

optimization,’’ in Proc. IEEE Congr. Evol. Comput. (CEC), Jun. 2012,

pp. 1–8.

[31] Z.-H. Zhan, W.-N. Chen, Y. Lin, Y.-J. Gong, Y.-L. Li, and J. Zhang,

‘‘Parameter investigation in brain storm optimization,’’ in Proc. IEEE

Symp. Swarm Intell. (SIS), Apr. 2013, pp. 103–110.

WEI CHEN received the bachelor’s and M.S.

degrees from Henan University in 2006 and the

Ph.D. degree from the South China University

of Technology, China, in 2009 and 2014, respec-

tively. From 2014 to 2016, he was engaged in

post-doctoral research in control science and engi-

neering with the South China University of Tech-

nology. He is currently an Assistant Research

Fellow with the School of Computer Science and

Network Security, Dongguan University of Tech-

nology. His current research interests include global optimization, evo-

lutionary computation, quantum computation, and quantum evolutionary

computation.

YINGYING CAO received the bachelor’s and

Ph.D. degrees from the School of Mathematics

and Computing Science, Sun Yat-sen University,

in 2007 and 2012, respectively. From 2011 to

2012, she was a Post-Graduate Visiting Researcher

at the City University of Hongkong. She is cur-

rently a Lecturer with the School of Computer

Science and Network Security, Dongguan Univer-

sity of Technology. Her current research interests

include computational intelligence, optimization

algorithms, and their applications.

SHI CHENG (M’14) received the bachelor’s

degree in mechanical and electrical engineer-

ing from Xiamen University, Xiamen, in 2005,

the master’s degree in software engineering from

Beihang University, Beijing, China, in 2008, and

the Ph.D. degree in electrical engineering and elec-

tronics from the University of Liverpool, Liver-

pool, U.K., in 2013. He is currently a Lecturer with

the School of Computer Science, Shaanxi Normal

University, China. His current research interests

include swarm intelligence, multiobjective optimization, and data mining

techniques and their applications.

YIFEI SUN received the bachelor’s and Ph.D.

degrees from Xidian University, China, in 2005

and 2014, respectively. She is currently a Lec-

turer with the School of Physics and Informa-

tion Technology, Shaanxi Normal University. Her

current research interests include artificial intel-

ligence, global optimization, and evolutionary

computation.

QUNFENG LIU received the bachelor’s and M.S.

degrees from the Huazhong University of Science

and Technology in 1999 and 2002, respectively,

and the Ph.D. degree from Hunan University,

China, in 2011. He is currently an Associate

Professor with the School of Computer Science

and Network Security, Dongguan University of

Technology, China. His current research interests

include global optimization, evolutionary compu-

tation, and machine learning.

YUN LI (S’87–M’90) received the B.S. degree

in electronics science, the M.Eng. in electronic

engineering, and the Ph.D. degree in computing

and control in 1984, 1987, and 1990, respectively.

He was a Professor with the School of Engineer-

ing, University of Glasgow, Glasgow, U.K. From

1989 to 1990, he was with the U.K. National Engi-

neering Laboratory and Industrial Systems and

Control Ltd. He joined the University of Glas-

gow as a Lecturer in 1991, served as the two-year

Founding Director of the University of Glasgow Singapore from 2011 to

2013, and was the Interim/Founding Director of the University’s First Joint

Programme in China in 2013, with the University of Electronic Science

and Technology (UESTC). He established Evolutionary ComputationWork-

groups for the IEEE Control System Society and European Network of

Excellence in Evolutionary Computing (EvoNet) in 1998 and served on the

Management Board of EvoNet from 2000 to 2005. He has been a Visiting

Professor with Kumamoto University, Japan, UESTC, and Sun Yat-sen

University, China. He is currently is a Professor with the School of Computer

Science and Technology, Dongguan University of Technology, Dongguan,

China. He has supervised over 20 Ph.D. students, has over 200 publications,

and is a Chartered Engineer in the U.K.

76006 VOLUME 6, 2018

	INTRODUCTION
	BRAIN STORM OPTIMIZATION AND ITS DEGENERATED ``L-CURVE''
	BRAIN STORM OPTIMIZATION IN THE OBJECTIVE SPACE
	BSO'S DEGENERATED ``L-CURVE''

	SIMPLEX SEARCH BASED BRAIN STORM OPTIMIZATION
	NELDER-MEAD SIMPLEX ALGORITHM
	SIMPLEX-BSO: SIMPLEX SEARCH BASED BRAIN STORM OPTIMIZATION
	INFLUENCE OF THE ADDITIONAL PARAMETER

	EXPERIMENTAL RESULTS
	THE ELIMINATION OR ALLEVIATION OF BSO'S DEGENERATED L-CURVE PHENOMENON
	L-CURVES ON 16 UNIMODAL FUNCTIONS
	L-CURVES ON 52 MULTIMODAL FUNCTIONS

	DYNAMIC COMPARISON ON THE WHOLE SET
	THE VCI METHOD
	DYNAMIC COMPARISONS WITH THE VCI METHOD
	SENSITIVITY ANALYSIS OF THE ADDITIONAL PARAMETER

	EXTENDED COMPARISON ON THE CEC2017 TEST SET
	RESULTS ON THE 2D FUNCTIONS
	RESULTS ON THE 10D FUNCTIONS

	CONCLUSIONS
	REFERENCES
	Biographies
	WEI CHEN
	YINGYING CAO
	SHI CHENG
	YIFEI SUN
	QUNFENG LIU
	YUN LI

