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AAS 19-406

A RELAXATION APPROACH FOR HYBRID MULTI-OBJECTIVE

OPTIMAL CONTROL: APPLICATION TO MULTIPLE DEBRIS

REMOVAL MISSIONS

Lorenzo A. Ricciardi∗and Massimiliano Vasile†

This paper presents a novel approach to the solution of multi-phase multi-objective
hybrid optimal control problems. The proposed solution strategy extends previous
work which integrated the Direct Finite Elements Transcription (DFET) method
to transcribe dynamics and objectives, with a memetic strategy called Multi Agent
Collaborative Search (MACS). The problem is reformulated as two non-linear pro-
gramming problems: a bi-level and a single level one. In the bi-level formulation
the outer level, handled by MACS, generates trial control vectors that are then
passed to the inner level, which enforces the feasibility of the solution. Feasible
control vectors are then returned to the outer level to evaluate the corresponding
objective functions. The single level formulation is also run periodically to ensure
local convergence to the Pareto front. In order to treat mixed integer problems, the
heuristics of MACS have been modified in order to preserve the discrete nature of
integer variables. For the single level refinement and the inner level of the bi-level
approach, discrete variables are relaxed and treated as continuous. Once a solution
to the relaxed problem has been found, a smooth constraint is added to systemat-
ically force the relaxed variables to assume integer values. The approach is first
tested on a simple motorised travelling salesmen problem and then applied to the
mission design of a multiple debris removal mission.

INTRODUCTION

This paper proposes a method for the solution of multi-objective hybrid optimal control problems.

The method is based on a direct transcription with Direct Finite Elements in Time (DFET) and a

solution of the resulting multi-objective nonlinear programming (NLP) problem with a version of

Multi Agent Collaborative Search (MACS) that implements a dual level optimisation and a single

level optimisation through a Pascoletti-Serafini scalarization.

In DFET, the time domain is divided into a given number of segments, or elements, and the

states and controls are approximated as arbitrary order polynomials on a given basis. DFET was

successfully used to solve many difficult trajectory optimisation problems1, 2 and is a very robust

transcription method with many interesting characteristics.3–6

MACS7 is a memetic evolutionary multi-objective optimisation algorithm in which a population

of agents is initially seeded in the search space with a Latin Hypercube sampling. All agents can

perform a set of individual actions to explore their neighborhood and improve their position. Non-

dominated solutions are saved to an external archive. Some agents can then perform social actions,
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exploiting the information coming from the archive or from other agents to collectively advance

towards the Pareto front. Individual and social actions are repeated until a maximum number of

function evaluations is reached. A special archiving strategy ensures a good distribution of points

across the Pareto front.

MACS and DFET have been coupled by employing two different but synergistic formulations of

the original Multi-objective optimal control problems, a bi-level formulation and a single level one.

In the bi-level formulation the outer level, handled by MACS, generates trial control vectors that

are then passed to the inner level, which enforces the feasibility of the solution by solving an NLP.

Feasible control vectors are then returned to the outer level to evaluate the corresponding objective

functions. The bi-level formulation is thus able to perform a global exploration of the search space

and return uniformly spread solutions in criteria space. The single level formulation is also run

periodically to ensure local convergence to the Pareto front. This synergistic approach has already

been applied to complex test cases focusing on the optimal control of nominal ascent, re-entry and

abort trajectory options for an airborne spaceplane launch system.8

The problems analysed so far with this approach were described by real variables only. Real

world problems can also depend on some decisions which can only assume a countable number of

possible values. The introduction of discrete decision variables results in a mixed integer problem,

which is significantly more complex than a purely continuous or purely discrete problem. In case

of an optimal control problem, a change of value of a discrete variable can completely alter the

switching structure of the controls or even the number or the sequence of phases of the problem.

There is a vast amount of literature on the solution of mixed integer problems, but essentially there

are two main approaches to solve them. The first class, called relaxation methods, treats discrete

variables as if they were continuous and then employs some technique to restore the integer nature

of the variables that were relaxed. The other class instead does not relax the discrete variables, thus

usually resulting in a separate treatment of the continuous and discrete variables. The problem can

then be tackled through a deterministic approach or through a stochastic approach.

Among the deterministic approaches, the most common method of the first class is the Branch and

Bound algorithm,9 while for the second kind there are the Outer Approximation method,10, 11 the

Generalised Benders Decomposition,12 or the use of deterministic discrete optimisation algorithms

like the Mesh Adaptive Descent Method (MADS).13, 14 Stochastic approaches can ether be natively

developed for discrete variables or be adapted to treat them by modifying the heuristics they employ,

thus do not need any relaxation.

For mixed integer optimal control with general nonlinear dynamics and objetives, in the past

have been proposed approaches coupling the Branch and Bound method with NLP solvers,15, 16 or

coupling stochastic algorithms and NLP solvers.17, 18

In the Branch and Bound based methods, the problem is initially relaxed and solved as purely

continuous. This solution is used as the lower bound for the optimal solution of the problem, while

a feasible solution for the non relaxed problem is used as an upper bound. In case all the relaxed

variables assume integer values, the optimal solution has already been found. However, this will

not happen in most of the cases, so one discrete variable will have to be branched, meaning that two

different problems will be solved by imposing its value to be either 0 or 1, and leaving the other

variables relaxed. Two new NLPs will be solved, which will update the lower bound and the upper

bound for the solution. In case the lower bound of one branch is higher than the upper bound for

the other, that branch cannot contain the optimal solution and is thus not further investigated.
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This way, a finite, albeit potentially very large number of steps is produced that converges to the

optimal solution. However, as also shown by Glocker,15 it must be highlighted that for non convex

problems it can happen that for the same values of the discrete variables there exist multiple locally

optimal solutions with different values for the objective function. This can introduce the possibility

that the branching procedure erroneously discards promising areas of the search space.

The method proposed by Englander17 consists of a dual loop algorithm in which the outer loop

solves a multi-objective problem handling a set of categorical variables through the multi-objective

genetic algorithm NSGA-II,19 and the inner loop solves a set of single objective constrained optimal

control problems using Monotonic Basin Hopping.20 Since the resulting optimal control problem

was optimising only one objective (the mass of the vehicle), the local optimality with respect to

the other objectives was not guaranteed. In addition, while a global search was performed for the

discrete parameters, the continuous parameters were treated only locally by the NLP solver. As

for the Branch and Bound based approaches, this can result in multiple local solutions for a given

choice of the discrete parameters. This problem was partially addressed by using a Monotonic Basin

Hopping method (MBH) in order to overcome this limitation.

The method proposed by Schlueter18 instead was based on MIDACO,21 a single objective Ant

Colony Optimisation algorithm, coupled with an NLP solver. The MIDACO solver was treating

both discrete and continuous variables without any relaxation, and the constraints were treated with

a new penalisation scheme. However, the satisfaction of the constraints was not required to be strict

in this global exploration phase. The MIDACO solver was allowed to run for a fixed maximum

runtime, and the best solution found was then refined by an NLP algorithm.

Although the approach produced good results in the tests, there is no guarantee that the best

weakly feasible solution found by MIDACO will not be significantly worsened by the NLP solver,

which has to strictly enforce the constraints. Moreover, since the NLP does not modify the discrete

variables, there is no guarantee that for a given choice of the discrete variables a fully feasible

solution exists.

This work focuses on optimal control problems with a fixed number of phases. It will show how

the existing method can be extended to deal with problems presenting discrete static variables. To

deal with mixed integer variables with the approach proposed in this work, the heuristics imple-

mented in MACS were modified in order to treat discrete variables. Thus, at the outer level, discrete

variables remain discrete. Similarly to the approach proposed by Schlueter, all variables are han-

dled simultaneously by the outer level global optimiser. However, the inner level will try to strictly

satisfy the constraints.

In order to allow the maximum flexibility to the inner level NLP, the discrete variables are relaxed

within the inner level. This gives the NLP the possibility of modifying even the discrete variables.

This is particularly helpful, since it could be impossible for the NLP to satisfy some constraints for a

fixed choice of the discrete variables, but this impossibility might require a large number of function

evaluations before the NLP solver surrenders. Once the NLP has converged to a relaxed feasible

solution, an additional set of constraints is imposed to enforce the relaxed variables to assume only

discrete values, and the inner level NLP is solved again starting from the relaxed solution. This

approach allows to strictly satisfy challenging mixed integer constraints and return fully feasible

solutions at the outer level. When the single level gradient based refinement is invoked, it starts

from a fully feasible solution and has thus a good chance of improving the guess it received.

Different numerical test cases will be shown. The first one is a multi-objective extension of the
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motorised travelling salesmen problem (TSP). The second test case is a more complex version of

the first, where the destinations visited by the travelling salesman do not have a fixed position in

time. Finally, a relevant and challenging space application will be tackled: a multiple destination

spacecraft trajectory optimisation typical of multi-debris removal missions or multiple target on-

orbit servicing missions. Although the test problems have a small scale in terms of combinatorial

complexity, the method is limited only by the size of the problems that the NLP can solve.

PROBLEM FORMULATION

Multi-objective Hybrid Optimal Control problems can be formulated as:

min
u∈U,σ∈σ,b∈B,µ∈M

J

s.t.

ẋ = F(x,u,σ,b,µ, t)
g(x,u,σ,b,µ, t) ≥ 0
ψ(x(t0),x(tf ),u(t0),u(tf ),σ(t0),σ(tf ),b,µ, t0, tf ) ≥ 0
t ∈ [t0, tf ]

(1)

where J = [J1, J2, ..., Ji..., Jm]T is, in general, a vector of objectives Ji that are functions of the

state vector x : [t0, tf ] → R
nx , continuous control variables u ∈ L∞(U ⊆ R

nu), discrete control

variables σ ∈ σ ⊆ Z
nσ , continuous static parameters b ∈ B ⊆ R

nb , discrete static parameters

µ ∈ M ⊆ Z
nz and time t. The functions x(t) belong to the Sobolev space W1,∞ while the

objective functions are Ji : R
3nx × R

nu × Z
nσ × R

nb × Z
nµ × R

2 −→ R. The objective vector

is subject to a set of dynamic constraints with F : Rnx × R
nu × Z

nσ × R
nb × Z

nµ × [t0, tf ] −→
R
nx , algebraic constraints g : Rnx × R

nu × Z
nσ × R

nb × Z
nµ × [t0, tf ] −→ R

ng , and boundary

conditions ψ : R2nx × R
2nu × Z

2nσ × R
nb × Z

nµ × [t0, tf ]
2 −→ R

nψ , where F(x,u,σ,b,µ, t),
g(x,u,σ,b,µ, t) and ψ(x(t0),x(tf ),u(t0),u(tf ),b,µ, t0, tf ) are vector fields.

When Np phases are present, dynamic constraints, path and boundary constraints, and objective

functions are defined on each timeline. In order to connect different timelines, a set of Nip inter-

phase constraints are introduced:

ψsp

(

x0,Isp
,xf,Isp

,u0,Isp
,uf,Isp

,σ0,Isp
, σf,Isp ,bIsp

,µIsp
, t0,Isp , tf,Isp

)

≥ 0 sp = 1, ..., Nip

(2)

where the index vector Isp collects all the indexes of the phases that are connected by constraint

ψsp . Note that the number of phases is fixed, but their temporal order is actually defined by the

inter-phase constraints (2).

The problem can be discretised following the procedure for DFET transcription illustrated by

Ricciardi and Vasile.8 This results in a Multi Objective Mixed Integer Nonlinear Programming

(MOMINLP) problem coming from the transcription of problem (1), with the inclusion of inter-

phase constraints (2). In vector form it can be written as:

min
y∈Y,p∈Π,d∈D

J̃

s.t.

C(y,p,d) ≥ 0

(3)

where y collects all the discretised state variables, p collects all the static and discretised dynamic

control variables, d collects all the integer valued control variables and static parameters, and C

collects all constraints, including boundary and interphase conditions.
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SOLUTION OF THE MIXED INTEGER OPTIMAL CONTROL PROBLEM

To solve Multi-Objective Optimal Control problems, Ricciardi and Vasile8 proposed an algorithm

combining two complementary approaches. The first one consists of a further reformulation of

the multi-objective NLP into a bi-level optimisation problem. At the outer level, MACS uses its

heuristics to generate trial solution vectors. This trial solution vector is received by the inner level,

which uses it as a first guess to enforce the constraints through an NLP solver. Once the NLP

converges, the solution is passed back to the outer level, which evaluates the objective functions and

employs the dominance criterion and the Chebychev scalarisation to decide weather the solution is

better than the existing ones. This provides global exploration capabilities and a good spreading of

the solutions on the Pareto front.

In order to guarantee local optimality, a single level gradient based refinement step takes place ev-

ery given number of iterations. This single level refinement reformulates the problem as a scalarised

version of the original multi-objective problem, and allows a simultaneous handling of feasibility

and optimality. Very importantly, the Chebychev scalarisation criterion used in the bi-level approach

is consistent with the Pascoletti-Serafini scalarisation employed in the single level approach.

This approach is here extended in order to treat mixed-integer problems. For the outer level,

treated with MACS, all variables were tagged as either real or discrete. The heuristics of MACS have

been modified in order to guarantee that after their application the value of the discrete variables

was integer and within the allowed bounds, while leaving unchanged the behaviour of the heuristics

when operating on the continuous variables.The next section contains a detailed explanation of the

modifications performed on the heuristics.

For the inner level and for the single level gradient based approach instead the discrete variables

were relaxed in order to work with the NLP solver. This way the inner level is able to change the

value of the relaxed variables in order to get a feasible solution. The following subsection explains

in greater detail these modifications.

Modification of the Heuristics of MACS

In order to preserve the behaviour and performances of the algorithm, the heuristics of MACS

have been modified in the simplest, least invasive way possible. This means that no additional

heuristic was introduced to deal with the discrete variables. In the following, the modifications

applied to the Inertia, Pattern Search and Differential Evolution heuristics are explained in detail.

Inertia. The idea of this heuristic is to proceed searching along the same promising direction

found at the previous iteration. The behaviour of this heuristic is thus strongly dependant on the

heuristic which found the promising search direction at the previous iteration, i.e. either the Pattern

Search or the Differential Evolution. However, since inertia produces a sample with a random

step length along the chosen direction, it could result in the generation of non integer values for

the discrete variables. For this reason, the inertia move is applied normally, but the components

of the displacement vector corresponding to the discrete variables are rounded towards the closest

integer. In case the rounding towards the closest integer would result in a zero displacement vector,

a rounding towards the next larger integer is performed instead.

Pattern Search. This heuristic simply changes one component of the solution vector at a time,

by a random amount:

xtrial,j = xij + α∆jρi (4)
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where the component j of the solution vector xi is perturbed by a random amount α scaled by the

size of the interval for variable j ∆j , and by a contraction factor ρi, which is decreased or increased

at each iteration depending on weather a better solution is found or not.

In case this heuristic is currently operating on a discrete variable, the modification consists in

rounding the perturbation α∆jρi to the closest integer. Similarly to the Inertia case, if this rounding

would result in a zero length move, a rounding towards the next integer is performed instead.

Differential Evolution. This heuristic simultaneously changes all the components of the solution

vector by combining it with other three solution vectors:

xtrial = xi + αe ((xi − xi1) + F (xi2 − xi3)) (5)

where solution vector xi is perturbed by a random amount α scaled by a displacement vector gen-

erated by three randomly chosen solution vectors x1, x2 and x3, which must all be different, and

multiplied by a mask vector e which randomly assumes component values of 0 or 1.

In order to ensure that the discrete variables remain discrete, the same procedure for the Inertia

case is adopted: the components of the displacement vector associated to the discrete variables are

rounded towards the closest integer. In case this rounding would result in a zero displacement, a

rounding by excess would be performed instead.

Relaxation and Integrality constraints

Within the inner level and the single level refinement the discrete variables are relaxed and treated

as continuous. This will likely generate a solution where the relaxed variables do not assume integer

values. After a relaxed solution is found, the NLP solver is invoked again but the following con-

straint is imposed in order to force it to converge to solutions where the relaxed variables assume

integer values:

sin(πσ̃j) = 0 (6)

where σ̃j is a relaxed variable.

This simple and smooth constraint is satisfied only for integer values of the relaxed variable σj .

However, since this constraint has many possible solutions, it can introduce several local optima.

For this reason it is enforced only after a solution to the relaxed problem is found: the NLP solver

is called again starting from the relaxed solution, but the constraint (6) is enforced. The delayed

imposition of constraints (6) should allow the NLP solver to avoid the local minima introduced by

this constraint and converge to the integer value closest to the relaxed solution.

Treatment of combinatorial constraints

An interesting problem arises when an optimal control problem is posed to compute the optimal

trajectory linking several targets but the order in which those targets must be visited can itself be

optimised. This situation is typical of the class of problems known as Travelling Salesman Problem

or Vehicle Routing Problem, but can occur also in the design of space missions.

Those problems can be formulated as multi-phase optimal control problems, where the boundary

conditions of each phase can be expressed as:

x(tf ; i) =
∑

j

µi,jPj (7)
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where x(tf ; i) indicates the boundary conditions at the end of phase i, µi,j are static optimisation

variables which can only assume a value of 0 or 1, and Pj are the target boundary conditions.

Variables µi,j can be considered as a choice on the target associated to each phase. In facts, if

µ1,j = 1 while all other µi,j = 0 the constraint will impose phase i to terminate at the position of

target P1. However, exactly one µi,j per phase must be equal to one. In addition, it may be required

to visit each target exactly once. This particular set of mutual exclusivity constraints needs a special

treatment.

Von Stryk and Glocker22 proposed to arrange the discrete variables µi,j in a matrix, relax the

variables µi,j into µ̃i,j and impose the following set of constraints















∑

i

µ̃i,j = 1 ∀j

∑

j

µ̃i,j = 1 ∀i
(8)

where µ̃i,j is the relaxed ith binary choice for phase j. For an n targets problem, this results in

a total of 2n constraints. The idea behind this set of constraints is to ensure that, if the variables

assume a value of 0 or 1, only one element per row and column can be 1, thus resulting in a unique

choice of target per each phase.

In the work of Von Stryk and Glocker, these constraints were employed to obtain a relaxed solu-

tion which constituted the upper bound for a branch and bound method: one relaxed variable was

then split into a branch where it had a fixed value of 0 and a value of 1 in the other. The branch and

bound method progressed until all relaxed variables were given a value of either 0 or 1, progressively

discarding regions of the search space which were considered unpromising.

This method has the advantage of not requiring any further special treatment for the discrete vari-

ables, which are treated separately to the continuous ones. However, it has two main disadvantages:

the first is that in order to obtain a solution to the full non-relaxed problem it has to solve many

NLPs, in the best case equal to twice the number of binary variables and in the worst case equal to

performing a full enumeration of the 2n possible combinations.

The second, less obvious disadvantage, is that the method relies on the NLP to provide an upper

bound for the solution. If the problem has multiple local solutions, the upper bound computed by

the NLP might be incorrect and the method might discard the region of the search space where the

true optimal solution lays. This will be further discussed in the results section.

Unfortunately, the set of constraints (8) has two major problems when applied in the current

framework: the first one is that it is composed by 2n equality constraints. When adding constraints

(6) to enforce each µ̃i,j to assume a value of 0 or 1, the problem becomes overdetermined for the

µ̃i,j , given that constraints (6) already impose an equality constraint per relaxed variable. Even if

the constraints are redundant at the solution points, the NLP solver might have serious difficulties

in handling this situation.

A second less obvious problem is shown in Figure 1: one should guarantee that the µ̃i,j involved

in each of constraints (8) are not all greater, or all less, of 0.5. The reason for this is that, in order to

satisfy the constraints, the NLP solver performs a linearisation of the constraints. Thus, it will try

to satisfy the constraints by pushing all the µ̃i,j towards either 0 or 1. However, this conflicts with

the constraints
∑

i µ̃i,j = 1. In other words, with a poor guess it might be impossible for the NLP

to find a feasible solution to an otherwise simple problem.
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Figure 1: Graphic representation of constraints 6

In order to overcome all these obstacles, another approach is proposed. First, equality constraints

(8) are rewritten as inequality constraints






















































∑

i

µ̃i,j ≤ 1 + ǫ ∀j

∑

i

µ̃i,j ≥ 1− ǫ ∀j

∑

j

µ̃i,j ≤ 1 + ǫ ∀i

∑

j

µ̃i,j ≤ 1− ǫ ∀i

(9)

where ǫ is a fixed positive parameter lower than 1. This set of linear inequality constraints solves

the issue of overdetermination of the system, because the only equality constraints remaining are

from Eq. (6). Moreover it creates a feasible region of thickness 2ǫ around the hyperplane defined

by the constraints (8), which should be easier to satisfy than a strict equality constraint.

However, it is still possible that all elements µ̃i,j of a row or column are on the same side of the

constraint (6), i.e. they are all lower or greater than 0.5. In order to solve this issue, an additional

set of constraints is imposed:






















∑

i

(

µ̃2i,j −
1

2

)

≥ r2 ∀j

∑

j

(

µ̃2i,j −
1

2

)

≥ r2 ∀i

(10)

where r is a parameter that can be chosen between rmin = 1

2
and rmax =

√
n
2

and n is the number

of targets. For each row and column equality of Eq. (8) this additional set of constraints is creating

a keep out sphere of radius r centred around the point
(

1

2
, · · · , 1

2

)

. As shown in Figure 2 for the

n = 2 case, this combination of constraints (9) and (10) has a feasible region of finite size around

the vertices of a unit hypercube that also le along the hyperplane parallel to the vector (1, 1, · · · , 1).
Thus, when the integrality constraints (6) are imposed, the NLP solver has a good initial guess and

can converge more easily towards a fully feasible solution.

It is important to remark that the feasible region of constraints (9) and (10) is disconnected and

has a number of islands equal to the number of possible sequences. Thus, many different feasible
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Figure 2: Feasible region of constraints 9 and 10

and locally optimal solutions are possible and a global exploration approach is necessary.

TEST CASES

This section presents three test cases. Since the main goal of this paper is to perform first tests

on the validity of the proposed approach, all the test cases are very simple in terms of combinatorial

complexity. For the same reason, the first test case is is a multi-objective extension of a single

objective problem already solved in the literature. This allows to directly compare the solutions

obtained by the proposed approach with the known solutions.

In the first test case, referred to in the literature as a motirised Travelling Salesmen Problem, a

vehicle has to visit several targets whose order is not specified. The second test case is an extension

of the first, where the targets to visit do not have a fixed position over time. The third is a space ap-

plication, where a spacecraft has to rendez-vous with multiple targets in order to deorbit or perform

on-orbit servicing, and again the order in which the targets are visited is not given a priori.

The algorithm was implemented in Matlab R© 2017b and run on a Linux workstation with 8 GB

of RAM and an Intel i7-4790 cpu.

A motorised Travelling Salesmen Problem

This section describes a multi-objective extension of a problem presented in:22 a vehicle, de-

scribed by a simple two dimensional dynamic model, starts from the origin of the plane and has to

visit three target destinations before finally returning to its starting position. It is controlled by the

magnitude of the acceleration and by the steering rate, both of which are limited. The order in which

the three targets are to be visited is not specified a priori but has to be found as part of the solution,

which in the original reference had to minimise the total mission time. The vehicle has to pass on

each target point without any restriction on the velocity or direction of velocity at the rendez-vous,

while at the final time it had to be at rest at the original position. This problem can be seen as an
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extension of a classic Travelling Salesman Problem, where the presence of a dynamical model for

the Salesmen significantly changes the nature of the problem and its complexity.

The objectives for this problem are the minimisation of the total time for the tour, and the min-

imisation of the energy required:

min
tf ,u,µ

(J1, J2)
T =

(

tf ,

∫ tf

t0

u21dt

)T

(11)

The dynamics of the vehicle are given by:



















ẋ =v cos(α)

ẏ =v sin(α)

v̇ =u1

α̇ =u2

(12)

where x and y denote the position of the vehicle on the plane, v the magnitude of its velocity and α

the direction of the velocity vector. The vehicle is controlled by the magnitude of the acceleration

u1 and by the steering rate u2, both of which are limited: u2
1
≤ 1, u2

2
≤ 1.

The vehicle starts at the origin at rest, and has to pass on 3 targets, whose location is











P1 = (1, 2)

P2 = (2, 2)

P3 = (2, 1)

(13)

The problem was formulated as a 4 phase problem, with the last phase targeting the origin. Match-

ing conditions were imposed between the states of the various phases, and final conditions for each

phase were imposed as per Eq. (7). The problem was discretised using 3 DFET elements of order 7
for both states and controls and each phase, resulting in a problem with 638 variables. Bounds for

the optimisation variables are reported in Table 1.

Table 1: Lower and upper bounds for the state, control and final time variables of the motorised

Travelling Salesman Problem

Variable Lower bound Upper bound

x (m) −5 5
y (m) −5 5
v (ms−1) −10 10
α (rad) −π π

u1 (#) −1 1
u2 (rad s−1) −1 1
tf (s) 0 15

The algorithm was run with 10 agents for a total of 40000 function evaluations with standard

settings, and the single level gradient based refinement every 10 iterations. 10 solutions were kept

into the archive. Figure 3 shows the Pareto front and the trajectories computed. Lower time solutions

require more energy, as expected. The order in which the target locations are visited is the same

10



for all the trajectories, starting from P3 and proceeding to P2 and P1. Rather unexpectedly, lower

time solutions have longer trajectories with a marked cusp, while longer time solutions have shorter

quasi rectilinear trajectories.

(a) Pareto front (b) Trajectories

Figure 3: Pareto front and Trajectories for the motorised Travelling Salesman Problem

To explain this unintuitive result it is useful to look at Figure 4, which shows the time histories

of the magnitude of the velocity and the corresponding control, the acceleration. As expected, the

minimum time trajectories are the result of a bang-bang control profile for the accelerations. In this

case, the bang-bang switch happens twice: a full acceleration is followed by a full deceleration until

velocity reaches zero. After that, the acceleration is still kept negative, meaning that the vehicle will

proceed backwards, until a full acceleration will stop the vehicle again when it reaches the origin.

The reason behind this unintuitive backwards arc is due to the limitations in the steering rate: the

maximum steering rate is not sufficient to allow the vehicle to smoothly turn and visit all three

targets while also accelerating. Thus, in order to reduce time, the optimiser found a solution which

is overcoming this limitation.

Low energy solutions instead have a smooth double linear profile, corresponding to a milder

acceleration/deceleration profile. Also for these solutions the vehicle proceeds backwards after the

second target. In particular, the vehicle stops at that point even if this was not imposed by the

boundary conditions. Since the velocities are lower for these solutions, a smaller curvature radius is

achievable, resulting in rectilinear trajectories for most of the interval connecting two targets.

Solution 10 can be compared with the solution found in the reference,22 which was solving the

minimum time problem. Table 2 reports a comparison of the times when each solution visits each

target and the total mission time. The difference in total mission time is below 0.3% and can be

attributed to the fact that the DFET transcription with Bernstein polynomials smooths the sharp

discontinuities of bang-bang profiles, resulting in a slight penalisation of the objective function.

This is also evident from Figure 5, which compares the reference solution with the solution obtained

with the proposed method and shows a very good agreement. It is expected that with some iterations

of mesh refinement, the bang-bang profiles of the solutions will be more sharp, thus decreasing the

value of the mission time and evantually reaching the same value of the solution present in the

literature.

11



(a) Time history of the velocity (b) Time history of the acceleration

Figure 4: Time histories of velocity and acceleration for the Travelling Salesman Problem. + marks

when a target is visited

(a) Time history of the velocity (b) Time history of the acceleration

Figure 5: Comparison of the solution obtained by current method and solution of Von Stryk and

Glocker.22 + marks when a target is visited

Table 2: Comparison of intermediate and final times between the reference solution and solution

10 on the Pareto front

Solution T (P1) T (P2) T (P3) Tf
Reference 5.3830 (s) 3.1390 (s) 2.286 (s) 7.6166 (s)

Solution 10 5.3958 (s) 3.1475 (s) 2.296 (s) 7.639 (s)
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Figure 6: Trajectories of the targets for the time dependent motorised Travelling Salesmen Problem

An important fact is mentioned in the work of Von Stryk and Glocker: multiple local solutions

exist even for a given order in which the targets are visited. It was not specified how the different

solutions were generated, but the authors mentioned that different initial guesses had to be provided

to the NLP solver in order to obtain different solutions. Since the approach proposed in this work

is global and treats simultaneously both the discrete and the continuous variables, this kind of ex-

ploration is performed automatically, and, as shown, is able to return the best solution reported in

the literature without requiring the user to generate different initial guesses for the NLP problem.

Moreover, since the approach proposed in the reference was based on a deterministic branch and

bound, it requires to compute all the solutions at the leaf level of the tree associated to the branch

and bound. If the number of targets increases, this number can potentially become exceedingly

large, resulting in intractable problems. With the approach proposed here, the maximum number

of trials is specified a priori. Thus, even if larger problems become more and more difficult, the

approach here proposed should still able to return a solution with a bounded number of function

evaluations and computational time.

A time dependent motorised Travelling Salesman Problem

The problem described in the previous section was solved again, but this time the position of the

targets is time dependent:











P1(t) = (0.5 + 0.5 cos(t), 1.5 + 0.5 sin(t))

P2(t) = (2 + cos(2t), 2− cos(2t))

P3(t) = (1.5 + 0.5 cos(3t), 1)

(14)

The time dependence of the position of the targets makes the problem particularly challenging, since

the choice of the sequence in which the targets are to be visited cannot be decoupled from time. The

time laws for the position of the targets were chosen in order to have periodic motions with different

amplitudes and frequencies. The trajectories of the targets are shown in Figure 6.

The problem was solved with the same settings as the previous case, except that the number of

agents was increased to 20, 20 solutions were kept in the archive, and a total of 100000 function

evaluations was allowed.
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(a) Pareto front (b) Trajectories

Figure 7: Pareto front and Trajectories for the time dependent motorised Travelling Salesman Prob-

lem

Table 3: Comparison of minimum time and minimum energy solution features between fixed and

time dependent motorised Travelling Salesman Problem

Targets Solution T (P1) T (P2) T (P3) Tf Energy

Fixed Min Tf 5.3958 (s) 3.1475 (s) 2.296 (s) 7.639 (s) 7.040

Moving Min Tf 2.0546 (s) 4.1399 (s) 5.5458 (s) 7.324 (s) 7.055

Fixed Min E 10.623 (s) 7.4999 (s) 4.7023 (s) 15 (s) 0.616

Moving Min E 11.389 (s) 7.1031 (s) 3.3213 (s) 15 (s) 0.487

Figure 7 shows the Pareto front and the trajectories computed. As it is evident, there is still a

trade-off between time and energy, but it appears to be composed of different branches . Solutions

1− 5 and 7− 15 visit the targets in the order (P3 → P2 → P1), while solutions 6 and 16− 20 visit

the targets in the order (P1 → P2 → P3).

Interestingly, the minimum time solution takes less time to visit all targets than the minimum

time solution of the previous case, indicating that the algorithm was able to exploit the relative

motions of the targets to find a favourable timing for the various encounters, whose sequence is

also different from the equivalent case of the previous problem. In order to do so, the solution also

requires slightly more energy than the equivalent fixed targets case. Similarly, the minimum energy

solution takes a sligthtly lower amount of energy than the fixed target minimum energy solution,

while both trajectories take the same time to complete. Table 3 summarises these findings.

The trajectories followed by the various solutions are also more complex than in the previous

case, although they still retain a similar overall shape. In order to convey a sense of the motion of

the targets and of the vehicle, Figure 8 shows different snapshots of all trajectories. The snapshots

were taken at the instants when the fastest solution (solution 20) reaches each target and finally

when it returns to the origin.

Figure 9 shows the time histories of the velocity and of the acceleration. The profiles are similar

to the previous case, although it is possible to see some differences. In particular, solutions 1 − 5,

7 − 15 and 16 − 20 seem to belong to different families, with solution 6 making a class of its
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(a) t = 2.0546 (b) t = 4.1399

(c) t = 5.5458 (d) t = 7.3237

Figure 8: Different snapshots of the trajectories for the time dependent motorised Travelling Sales-

man Problem
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own. The same applies for the controls, where it is also possible to detect some defects where

the NLP did not manage to converge to a locally optimal solution but stopped for small step size.

Again, it would be possible to improve the quality and the resolution of these solutions by a mesh

refinement procedure, but the overall trade-off and the main characteristics of the solutions were

already captured at this stage.

(a) Time history of the velocity (b) Time history of the acceleration

Figure 9: Time histories of velocity and acceleration for the time dependent Travelling Salesman

Problem. + marks when a target is visited

Multi target debris removal

As a final test case, the algorithm is applied to the design of a space mission to remove three

debris. The debris are assumed to be 3 defunct satellites located on the Geostationary orbit. A

spacecraft is sent to apply a de-orbiting kit on each of those satellites. The spacecraft is assumed to

start from an equatorial orbit. Thus it is convenient to express its dynamics using the full nonlinear

equations of relative motion in Hill’s frame,23 restricted to a planar motion:























































ẋ = vx

ẏ = vy

v̇x = 2ḟ

(

vy − y
ṙc

rc

)

+ xḟ2 +
µ

r2c
−
µ(rc + x)

r3d
+
uT cos(α)

m

v̇y = −2ḟ

(

vx − x
ṙc

rc

)

+ yḟ2 −
µy

r3d
+
uT sin(α)

m

ṁ =
−uT

g0Isp

(15)

where x and y are the positions of the spacecraft relative to a reference point on the Geostationary

orbit, vx and vy are the relative velocities, ḟ is the rate of change of true anomaly of the Geosta-

tionary orbit, rc is the radius of the Geostationary orbit, rd is the distance of the current position to

the centre of the Earth and and m is the mass of the spacecraft, which is controlled by an engine
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Figure 10: Positions of the targets and initial position of the spacecraft. Starting position lays inside

the circle.

with maximum thrust T and a specific impulse Isp. The thrust vector is expressed in terms of throt-

tling u and direction α. g0 is the gravitational acceleration at sea level, while µ is the gravitational

parameter of Earth.

The spacecraft has an initial mass of 1000 kg, a minimum mass of 100 kg and is equipped with

3 de-orbiting kits, each with a mass of 30 kg. The propulsion system is able to generate up to 10N
of thrust with a specific impulse of 300 s. The spacecraft starts from an equatorial circular orbit

with radius of 42 000 km, which is at a safe distance from the target orbit. This corresponds in the

selected Hill’s frame to the following initial conditions:























x(0) = −164 km

y(0) = 0 km

vx(0) = 0m s−1

vy(0) = 5.9971m s−1

(16)

Since the reference frame is collocated on a point on the Geostationary orbit, the targets have a

fixed position in time. This significantly simplifies the treatment of the boundary conditions, which

no longer have a periodic time dependency over time. In this reference frame, they are assumed to

be uniformly spread, forming an angle with the reference point on the Geostationary orbit of 30 deg,

180 deg and 300 deg. Since in this reference frame their positions are constant, their velocities are

0m s−1. Figure 10 shows position of the targets and the initial position of the spacecraft in the

relative frame.

The spacecraft has to rendez-vous and dock with all targets in order to apply the de-orbit kit.

The application of the de-orbiting kit is assumed to take 5 h. The order in which targets are to be

visited is not specified a priori. The objectives are the minimisation of the total mission time, and

the maximisation of the final mass, corresponding to the minimisation of propellent consumption:

min
tf ,u,µ

(J1, J2)
T = (tf ,−mf ) (17)
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The problem was formulated as a 3 phase problem, each phase was discretised with 3 DFET

elements of order 7, resulting in a problem with 551 variables. The upper and lower bounds for

state and control variables are reported in Table 4. The algorithm was run for 100000 function

evaluations with standard settings, 10 agents storing 10 points on the Pareto front.

Table 4: Lower and upper bounds for the state and control variables of the multi debris removal

mission

Variable Lower bound Upper bound

x (km) −126492 42164
y (km) −84328 84328
vx (km s−1) −20 20
vy (km s−1) −20 20
m (kg) 100 1000
u (#) 0 1
α (rad) −π π

tf (d) 0 40

(a) Pareto front (b) Trajectories

Figure 11: Pareto front and Trajectories for the multiple debris removal mission

Figure 11 shows the Pareto front and the trajectories of the spacecraft in the relative frame. A

tradeoff between mission time and final mass is present, as expected. Faster trajectories tend to

be closer to the centre of the circle, meaning that in order to reduce mission time the optimiser

exploited the relative rotation rate between the two orbits. All targets are visited in the same or-

der. The epicycloidal shape of the trajectories in the relative frame means that the trajectories are

more eccentric, while more circular shaped arcs mean that the corresponding trajectory is closer to

circular.

Figure 12 shows the time histories of the mass of the vehicle and the throttling of the engine. The

minimum time solution requires approximately 10 days and reached the lower bound of the final

mass, meaning that it employed all available propellent. Interestingly, the minimum time solution

does not have enough propellent to proceed at full throttle all the time, thus the optimiser had to save

propellent and increase the mission time in order to reach all targets. In general, all solutions have
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a bang-zero-bang structure, as expected, where shorter mission times solutions have comparatively

longer burns. The throttle and mass profiles are not very sharp, meaning that the solutions would

benefit from mesh refinement and that some improvements in the values of the objective functions

are expected. However, the overall trend and trade-off between the solutions is well captured.

(a) Time history of the mass (b) Time history of the throttle

Figure 12: Time histories of velocity and acceleration for the time dependent Travelling Salesman

Problem

CONCLUSIONS

This paper presented a new method for solving Multi-Objctive Hybrid optimal control problems.

It is based on the coupling of the DFET transcription with the MACS memetic multi-objective

optimisation algorithm. The resulting discretised problem is solved with a combination of two

approaches, a bi-level approach, which allows for global exploration and a generation of a well

spread set of solutions, and a single-level approach, which guarantees local optimality. An extension

of the heuristics of MACS has been presented in order to allow it to work with mixed integer

problems. Furthermore, a staged relaxation approach has been employed when the NLP solver

is invoked. The relaxed variables are then forced to assume integer values with a simple set of

smooth constraints. A special set of constraints was proposed to deal with problems where the

integer variables encode mutually exclusive choices, like the choice of the targets in the Travelling

Salesman problem. The approach was tested against a problem found in the literature, and against a

multiple debris removal mission. Although the problems tackled here are relatively small scale, the

main limitation of the proposed approach is given by the maximum size of problems that the NLP

solver can handle.
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