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Multiple-Time Scale Analysis for Pinned Breathers

in Bose-Hubbard Chains

Liviu F. Chirondojan, and Gian-Luca Oppo
SUPA and Department of Physics, University of Strathclyde,

Glasgow G4 0NG, Scotland, EU

(Dated: January 29, 2019)

Localized and pinned discrete breathers in Bose-Einstein Condensates in optical lattices or in
arrays of optical waveguides, oscillate with frequencies which are much higher than those present
in the spectrum of the background. Hence, the interaction between localized breathers and their
surroundings is extremely weak leading to a multiple-time scale perturbation expansion. We identify
the leading order in the asymptotic expansion of the breather amplitude which does not average
to zero after one full oscillation. The reduced model predicts a lower bound of the breather drift-
times and explains the topological differences between breathers in dimers, trimers and in spatially
extended one-dimensional lattices even in the presence of transport from boundary heat-baths.
These analytical boundaries hold true for lattices of any length, due to the highly localised nature
of breathers.

PACS numbers: 63.20.Pw, 03.75.Lm, 05.60.-k

I. INTRODUCTION

Bose-Einstein condensates (BEC) trapped in an opti-
cal lattice have attracted an enormous scientific inter-
est since they provide excellent control of the quantum
and supefluid phases of ultra-cold atoms [? ? ]. These
benefits have led to important realizations of analogues
of solid-state phenomena such as quantum phase transi-
tions [? ], transport [? ], Anderson localization [? ] and
macroscopic Zeno effect [? ]. In the superfluid phase of
the BEC, a lot of attention has been devoted to the case
of deep optical lattices where expansions of the wave-
function in Wannier functions and discrete models of the
lattice structure have wide and well tested validity. In
one dimensional lattice configurations, the dynamics of
the BEC cloud is well described by the discrete nonlinear
Schrödinger equation (DNLSE) [? ] that can be directly
derived from a Bose-Hubbard lattice Hamiltonian. One
fascinating aspect is that the DNLSE has been originally
used to describe light propagating in arrays of optical
waveguides and even protein systems in biophysics [? ? ].
Important and universal nonlinear features of the conser-
vative DNLSE are modulational instabilities and discrete
breathers [? ]. Discrete breathers are spatially localized
modes that own their stability to the discreteness of the
lattice and that oscillate in time with a well determined
frequency [? ? ? ].

When simulating BEC in optical lattices with the
DNLSE, discrete breathers are favoured in the presence
of repulsive atomic interactions that are typical, for ex-
ample, of 87Rb atoms. Several methods have been sug-
gested for the generation of discrete breathers in the
DNLSE including the evolution from Gaussian wavepack-
ets [? ? ] and the relaxation from random phase states
via localized losses [? ].

Breathers have been mostly investigated in the pres-
ence of small backgrounds, when perturbative techniques

can be developed to determine their stability [? ? ]. Here
we focus on the properties of localised solutions in the
presence of a large (order O(1)) fluctuating background.
The background can either evolve in an isolated setup,
where the total energy and mass are conserved, or after
including the interaction with suitable thermostats. In
the latter case, the action of the heat baths is mimicked
by implementing stochastic Langevin equations like in [?
], where the temperature and the chemical potential of
the background are given by the parameters of the reser-
voir.

Without loss of generality, we introduce a singular per-
turbation expansion for tall breathers in contact with a
large background on one of their sides only. This simpli-
fied set up allows for the direct integration of analytical
yet implicit expressions. As demonstrated by the com-
putational tests, the analytical findings can be extended
to breathers in contact with a background on both sides,
to lattices of any length, and under a large variety of
configurations, i.e. periodic boundary conditions (PBC),
reflecting boundary conditions (by imposing zeros at the
ends of the Bose-Hubbard chain) or in contact with heat
baths at the chain’s ends.

In an ideal breather, the tails are perfectly synchro-
nised with the oscillations at its peak and decay expo-
nentially fast along the lattice. When the background
is large, however, this synchronisation is destroyed and
the dynamics of the background follow trajectories which
are much slower than the breather oscillation. For large
enough backgrounds, the breather’s tails are completely
covered by and indistinguishable from the background:
in practice the localized solution occupies just a single
site in the lattice. Even under these conditions, it is pos-
sible to investigate the stability of the localized solution
and to determine the perturbations induced by the back-
ground on the breather.

We study the coupling between the breather and its
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surroundings by determining the leading perturbative or-
der at which there is a change in the breather size af-
ter one oscillation period. Our work sheds light on the
mechanism of adiabatic decoupling between localized so-
lutions and their surroundings, leading to a analytical
expressions that quantify the slow drifts in the breather
amplitude due to the very weak interactions between the
breather and its neighbours. In sections II, III, and IV we
present the multiple-scale analysis based on the perturba-
tion expansion in the inverse of the breather frequency.
By averaging over one period of the breather rotation,
we obtain in V the core equation that describes the ex-
tremely slow dynamics of the breather amplitude. The
theory is successfully compared with numerical simula-
tions in section VI where we show its independence of
the lattice length and application to infinitely-extended
backgrounds. We also show that trimer and dimer config-
urations are topologically different from more extended
systems, and that they display a higher degree of stabil-
ity. Conclusions and future developments are presented
in section VII.

II. PERTURBATION EXPANSION

The DNLSE is a useful model to study quantum trans-
port phenomena in BEC but also light diffraction in ar-
rays of optical waveguides or biochemical systems such as
biopolymers [? ] and proteins [? ]. Here we consider a
BEC in a deep optical lattice with repulsive interactions.
The evolution of the complex wave-function zj = xj+iyj
at site j follows from the Bose-Hubbard Hamiltonian [?
]

HBH =

N−1
∑

j=0

(

|zj |4 + z∗j zj+1 + zjz
∗
j+1) , (1)

where N is the number of sites and 0 ≤ j < N . The
evolution equations are

dzj
dt

≡ dtzj = 2i|zj |2zj + izj−1 + izj+1; (2)

where the time t is dimensionless [? ], z−1 = 0, while the
boundary conditions in j = N will be discussed later on.
In this paper we investigate a set up where a tall

breather sits in j = 0, i.e. we set |z0(0)|2 = I ≫ 1, to be
compared with a background of amplitude order O(1). It
is well known that the breather will eventually decay on
a time scale that depends on its height for positive tem-
peratures. Our numerical simulations confirm this fact
and show that the life time of a breather increases expo-
nentially with its initial mass (|z0(0)|2 = I) when keep-
ing the average background fluctuations fixed. There-
fore, given enough time, all breathers will encounter a
non-perturbative excitation that will destabilise them.
The work done here focuses on the laminar part of the
breather evolution, where the mass of the breather barely

changes. In the case of rare turbulent events, the breather
changes size suddenly and the perturbative approach can-
not be employed any longer. We tackle the laminar prob-
lem with a perturbative approach where the smallness
parameter is not the background amplitude, as previ-
ously considered [? ], but the inverse of the breather
amplitude.
Upon expressing the breather state into polar coor-

dinates, z0 ≡ A0e
iψ0 , while using a standard Cartesian

representation for the other lattice sites (zj = xj + iyj ,
j ≥ 1) the breather evolution can be written as

dtA0 = x1 sinψ0 − y1 cosψ0 (3)

dtψ0 = 2A2
0 +A−1

0 (x1 cosψ0 + y1 sinψ0) . (4)

From this representation it is transparent that if A0 ≫ 1,
the phase ψ0 rotates very rapidly with a frequency given
by ω ≈ 2A2

0 ≫ 1. From now on, ε = 1/ω is considered to
be a smallness parameter for the development of a suit-
able perturbative approach. By introducing the “slow”
phase φ0 = ψ0 − ωt, the DNLSE can be written as

dtA0 = x1 sin(ωt+ φ0)− y1 cos(ωt+ φ0)
dtφ0 = 2A2

0 − ε−1 +A0
−1

[

x1 cos(ωt+ φ0)+
+y1 sin(ωt+ φ0)

]

dtx1 = −2(x21 + y21)y1 − y2 −A0 sin(ωt+ φ0)
dty1 = 2(x21 + y21)x1 + x2 +A0 cos(ωt+ φ0)
dtxj = −2(x2j + y2j )yj − yj−1 − yj+1 j ≥ 2
dtyj = 2(x2j + y2j )xj + xj−1 + xj+1 j ≥ 2 .

(5)

FIG. 1. Average oscillation frequency of a large breather in
j = 0 and its background from simulations of Eq. (2) with
a heat-bath at infinite temperature in j = 15. The error
bars quantify the fluctuations of the oscillation frequency over
3 × 104 time units. The dashed black line shows that the
average frequencies of the background are close to a common
value given by 2×〈|zB |

2〉, where 〈|zB |
2〉 is the mean amplitude

generated by the Langevin heat-baths. The inset, shows the
average oscillation frequency of a breather with background
at both sides.

By writing the DNLSE in this fashion, one separates
the lattice wave-function between the breather in polar
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coordinates and the background sites in Cartesian coor-
dinates. Fig. 1 shows the average oscillation frequency in
a lattice of 15 sites with a breather of amplitude |z| = 6 in
j = 0 and in a lattice of 31 sites with a breather of ampli-
tude |z| = 6 in the middle (see inset). The lattice bound-
aries are in contact with Langevin heat-baths at infinite
temperature [? ]. One can see that the background ther-
malises to a common frequency with roughly the same
size of fluctuations, therefore justifying the choice of the
hybrid polar-Cartesian basis. Remarkably enough, the
frequency of the breather is very stable around the value
2|z|2 ≈ 72. This in turn, justifies the choice of the def-
inition of the smallness parameter. The only sites that
have frequency statistics different from the background
are the nearest neighbours of the breather, which, as it
will emerge later in this work, contain rapidly oscillating
components at low orders in their asymptotic expansions.
The perturbative approach is developed for breathers in
contact with backgrounds only on one side and is then
extended to the generic case when the breather sits at a
random lattice site and is perturbed by small excitations
arriving from backgrounds on both sides. Fig. 1 shows
that there is a clear separation of time scales due to the
much faster oscillation of the breather with respect to its
surrounding.

Two time scales appear naturally in the system: a
short one of order ε = 1/ω associated to the fast ro-
tation of the breather’s phase and a “long” one of order
O(1) associated to the fluctuating motion of the back-
ground. The most appropriate way to handle this kind
of problems is to consider multiple time scales by intro-
ducing two time variables and thereby by rewriting the
time derivative as

dt = ε−1∂t1 + ∂t2 , (6)

where t1 and t2 represent the fast and slow time scales,
respectively [? ].

Before proceeding with the formal expansion, it is use-
ful to go back to Eq. (5) to estimate the variation of
the different variables over a time scale of order ε. It
is legitimate to assume that the time dependence of the
fields is due to the fast rotation ω and thereby neglect
the variation of all the variables appearing in the r.h.s.
of the above equations. Upon integrating Eq. (5) for a

time ∆t = ε one obtains

∆A0 ≈ −ε
[

x1 cos(ωt+ φ0) + y1 sin(ωt+ φ0)
]

≈ O(ε)
∆φ0 ≈ εA−1

0

[

x1 sin(ωt+ φ0)− y1 cos(ωt+ φ0)
]

≈ O(ε3/2)
∆x1 ≈ −ε

[

2(x21 + y21)y1 + y2
]

+
+εA0 cos(ωt+ φ0)

≈ O(ε1/2)
∆y1 ≈ ε

[

2(x21 + y21)x1 + x2
]

+
+εA0 sin(ωt+ φ0)

≈ O(ε1/2)
∆xj ≈ ε

[

− 2(x2j + y2j )yj − yj−1 − yj+1

]

≈ O(ε)
∆yj ≈ ε

[

2(x2j + y2j )xj + xj−1 + xj+1

]

≈ O(ε)

(7)

These results suggest that any asymptotic expansion with
respect to ε should include half-integer powers (i.e. it
should be done with respect to

√
ε) and also provide in-

formation on where the series should start for each vari-
able. More precisely, we consider a perturbation expan-
sion given by

A0 ∼ ε−1/2A
[−1]
0 +

∑

m≥2 ε
m/2A

[m]
0

(

t1, t2
)

φ0 ∼ φ
[0]
0 +

∑

m≥3 ε
m/2φ

[m]
0

(

t1, t2
)

x1 ∼ x
[0]
1 +

∑

m≥1 ε
m/2x

[m]
1

(

t1, t2
)

y1 ∼ y
[0]
1 +

∑

m≥1 ε
m/2y

[m]
1

(

t1, t2
)

xj≥2 ∼ x
[0]
j +

∑

m≥2 ε
m/2x

[m]
j

(

t1, t2
)

yj≥2 ∼ y
[0]
j +

∑

m≥2 ε
m/2y

[m]
j

(

t1, t2
)

.

(8)

This perturbation is singular, since it includes the di-

verging term ε−1/2A
[−1]
0 (t2). This follows from our initial

assumption of dealing with tall breathers.
By inserting the power expansion (8) into Eq. (5) and

by a further Taylor expansion of the sinusoidal functions,
we are able to split each equation into a series of separate
conditions for the different powers of

√
ε. Our target is to

quantify the weak coupling between the breather and its
surroundings, by looking for the first term in the expan-
sion of the breather amplitude which does not average
to zero over one full rotation. Finding an analytical ex-
pression for this term would not only quantify the order
of magnitude of the slow derivative, but it would also
provide an upper bound of diffusive processes and char-
acterise the size and nature of the breather ’tails’ in the
presence of large backgrounds. The pinned breather is
extremely localised and only the nearest neighbour con-
tributes directly to the slow drifts of the breather mass.
At lowest order

√
ε, we find:

∂t1A
[−1]
0 = 0

∂t2A
[−1]
0 = 0

∂t1φ
[0]
0 = −1 + 2(A

[−1]
0 )2

∂t2φ
[0]
0 = 0

∂t1x
[0]
j = 0 j ≥ 1

∂t1y
[0]
j = 0 j ≥ 1 .

(9)
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The first two equations show that A
[−1]
0 is a constant.

With our initial choice A
[−1]
0 = 1/

√
2, it turns out that

φ
[0]
0 is a constant as well. The last couple of equations

tell us that the leading contributions of the background
variables are slow for all sites with j 6= 0.

For the breather wave-function, one obtains the follow-
ing differential equations for the amplitude and the phase
of the oscillatory motion.
At order 1 we find:

∂t1A
[2]
0 = x

[0]
1 sin(t1 + φ

[0]
0 )−

−y[0]1 cos(t1 + φ
[0]
0 ) .

(10)

At order ε1/2 we find:

∂t1A
[3]
0 = x

[1]
1 sin(t1 + φ

[0]
0 )−

−y[1]1 cos(t1 + φ
[0]
0 )

∂t1φ
[3]
0 = 4A

[2]
0 A

[−1]
0 +

[

x
[0]
1 cos(t1 + φ

[0]
0 )+

+y
[0]
1 sin(t1 + φ

[0]
0 )

]

/A
[−1]
0 .

(11)

At order ε we find:

∂t2A
[2]
0 + ∂t1A

[4]
0 = x

[2]
1 sin(t1 + φ

[0]
0 )−

−y[2]1 cos(t1 + φ
[0]
0 )

∂t1φ
[4]
0 =

[

x
[1]
1 cos(t1 + φ

[0]
0 )+

+y
[1]
1 sin(t1 + φ

[0]
0 )

]

/A
[−1]
0 .

(12)

At order ε3/2 we find:

∂t2A
[3]
0 + ∂t1A

[5]
0 = φ

[3]
0 x

[0]
1 cos(t1 + φ

[0]
0 )−

−y[3]1 cos(t1 + φ
[0]
0 )+

+x
[3]
1 sin(t1 + φ

[0]
0 )+

+φ
[3]
0 y

[0]
1 sin(t1 + φ

[0]
0 ) .

(13)

Finally, at order ε2 we find:

∂t2A
[4]
0 + ∂t1A

[6]
0 = φ

[4]
0 x

[0]
1 cos(t1 + φ

[0]
0 )+

+φ
[3]
0 x

[1]
1 cos(t1 + φ

[0]
0 )−

−y[4]1 cos(t1 + φ
[0]
0 )+

+x
[4]
1 sin(t1 + φ

[0]
0 )+

+φ
[4]
0 y

[0]
1 sin(t1 + φ

[0]
0 )+

+φ
[3]
0 y

[1]
1 sin(t1 + φ

[0]
0 ) .

(14)

We will see that the first order at which the breather
derivative does not average to zero is O(ε2). In order to
prove this fact, one must solve the coupled differential
equations for all orders lower than ε and determine the
corresponding expressions of the expansion terms.
The same procedure gives rise to the differential equa-

tion for the real and imaginary parts of the wave-function
at site j = 1, the site close to the breather.
At order ε−1/2 we find:

∂t1x
[1]
1 = −A[−1]

0 sin(t1 + φ
[0]
0 )

∂t1y
[1]
1 = +A

[−1]
0 cos(t1 + φ

[0]
0 ) .

(15)

At order 1 we find:

∂t2x
[0]
1 + ∂t1x

[2]
1 = −2y

[0]
1 (x

[0]
1

2
+ y

[0]
1

2
)− y

[0]
2

∂t2y
[0]
1 + ∂t1y

[2]
1 = +2x

[0]
1 (x

[0]
1

2
+ y

[0]
1

2
) + x

[0]
2 .

(16)

The last two equations contain the DNLSE on the RHS.
From the initial assumption, these equations suggest that

∂t1x
[2]
1 = 0, which means that both x

[2]
1 and y

[2]
1 are slow.

One can iterate the procedure and obtain increasingly
more complex formulas for the higher order terms of the
expansions of x1 and y1.
For generic sites, (16) at order 1 reduces to:

∂t2x
[0]
j + ∂t1x

[2]
j = −2y

[0]
j (x

[0]
j

2
+ y

[0]
j

2
)−

−y[0]j−1 − y
[0]
j+1

∂t2y
[0]
j + ∂t1y

[2]
j = +2x

[0]
j (x

[0]
j

2
+ y

[0]
j

2
)+

+x
[0]
j−1 + x

[0]
j+1

(17)

which leads to the same conclusion that x
[2]
j and y

[2]
j are

slow variables which will be used extensively while per-
forming averaging later in the work.

III. FIRST NON-TRIVIAL TERMS

The differential equations at specified orders of the per-
turbations need to be integrated to obtain the dynamical
expressions of the perturbative terms. In doing this, slow
terms appear as integration constants. The solvability
condition is then imposed by the requirements that the
energy and the norm have to remain conserved at any
given order of the perturbation.
We have seen above how to obtain non-trivial differen-

tial equations for the breather and its nearest neighbour.
By integrating Eqs. (10)-(15) and making use of the fact

that the background is slow and A
[−1]
0 and φ

[0]
0 are con-

stants, we obtain,

A
[2]
0 = −x[0]1 cos(t1 + φ

[0]
0 )− y

[0]
1 sin(t1 + φ

[0]
0 )+

+C1(t2)

x
[1]
1 = A

[−1]
0 cos(t1 + φ

[0]
0 ) + C2(t2)

y
[1]
1 = A

[−1]
0 sin(t1 + φ

[0]
0 ) + C3(t2)

(18)

where C1(t2), C2(t2) and C3(t2) are slow functions to be
determined.
Meanwhile, we know that the Hamiltonian of the sys-

tem is, at order O(ε−1/2),

HO(1/
√
ε) =

√
2
[

A
[2]
0 + x

[0]
1 cos(t1 + φ

[0]
0 )+

+y
[0]
1 sin(t1 + φ

[0]
0 )

] (19)

where we have made use of the equality A
[−1]
0 = 1/

√
2.

Upon substituting the analytical expression for A
[2]
0 in

(18) one obtains:

HO(1/
√
ε) =

√
2C1(t2) (20)



5

which requires C1 to be constant to guarantee that the
Hamiltonian is conserved. This constant is zero, since
any other value would induce secular terms when inte-
grating higher order terms.
By imposing the conservation of norm at order

√
ε we

obtain the additional constraint:

x
[0]
1 C2(t2) + y

[0]
1 C3(t2) = 0 . (21)

Therefore the two unknown slow functions must satisfy

C2(t2) = −Ky[0]1

C3(t2) = Kx
[0]
1 ,

(22)

where K is a real number to be determined.
The differential equation for x1 at order O(ε1/2) reads

∂t1x
[3]
1 + ∂t2x

[1]
1 = −2(x

[0]
1 x

[1]
1 y

[0]
1 +

+x
[0]
1

2
y
[1]
1 + 3y

[0]
1

2
y
[1]
1 ).

(23)

Replacing x
[1]
1 and y

[1]
1 with their analytical expressions

from (18) one arrives at

∂t1x
[3]
1 + ∂t2C2 =

= −2[x
[0]
1 y

[0]
1 (A

[−1]
0 cos(t1 + φ

[0]
0 ) + C2)+

+(x
[0]
1

2
+ 3y

[0]
1

2
)(A

[−1]
0 sin(t1 + φ

[0]
0 ) + C3)].

(24)

From this it follows that the most general form that

x
[3]
1 can have is D1(t2) + D2(t2) × t1 + D3(t2) sin(t1 +

φ
[0]
0 ) + D4(t2) cos(t1 + φ

[0]
0 ). The Hamiltonian at order

O(ε) contains terms of the sort A
[−1]
0 x

[3]
1 cos(t1 + φ

[0]
0 )

and A
[−1]
0 y

[3]
1 sin(t1 + φ

[0]
0 ) in addition to a plethora of

terms which can all be written as B1(t2)+B2(t2) sin(t1+

φ
[0]
0 ) +B3(t2) cos(t1 + φ

[0]
0 ) + high harmonics. This im-

plies that the Ansatze of x
[3]
1 and y

[3]
1 are of the type

B1(t2)+B2(t2) sin(t1+φ
[0]
0 )+B3(t2) cos(t1+φ

[0]
0 ), which

means that D2(t2) = 0. Isolating only the slow terms of
equation (2) one arrives at

∂t2C2(t2) = −2
[

2x
[0]
1 y

[0]
1 C2(t2)+

+C3(t2)
(

x
[0]
1

2
+ 3y

[0]
1

2)]

.
(25)

Using the constraint (22) and making all possible sim-
plifications leads to:

Kx
[0]
2 = 0 (26)

which implies that K must be zero for extended lat-

tices where x
[0]
2 6= 0. The slow terms that appear from

the integration over the fast time scale are all zero, i.e.
C1(t2) = C2(t2) = C3(t2) = 0 so that, Eq. (18) reduces
to

A
[2]
0 = −x[0]1 cos(t1 + φ

[0]
0 )− y

[0]
1 sin(t1 + φ

[0]
0 )

x
[1]
1 = A

[−1]
0 cos(t1 + φ

[0]
0 )

y
[1]
1 = A

[−1]
0 sin(t1 + φ

[0]
0 ) .

(27)

By using these solutions, it becomes apparent that the

second equation in (12) simplifies to ∂t1φ
[4]
0 = 1. This

fast term appears because in the differential equation of
the slow phase there is the term 2A2

0−ω which has a first
non-zero component at order ε.
The expressions (27) can now be averaged over one full

rotation by making use of the fact that x
[0]
1 and y

[0]
1 are

slow and that A
[−1]
0 is time-independent,

∫ 2π

0
dt1A

[2]
0 = 0

∫ 2π

0
dt1x

[1]
1 = 0

∫ 2π

0
dt1y

[1]
1 = 0

(28)

Therefore, the first non-trivial terms are zero when aver-
aged over one full rotation for both the breather and its
nearest neighbour. In order to quantify the coupling be-
tween breather and background, one is therefore forced
to continue the perturbative analysis to higher orders as
shown below.

IV. HIGHER ORDER TERMS

Having seen how to proceed with the perturbation ex-
pansion, i.e. by writing of the differential equations at
different orders of the expansion for the breather, its
neighbour and the background lattice, by integrating
these differential equations and by using the expressions
of the lower order terms, we provide here the final re-
sults corresponding to the application of this procedure
to terms in the expansion of order higher than those seen
in Section III. These are:

A
[3]
0 = 0

A
[4]
0 = −M(t2) cos(t1 + φ

[0]
0 )−

−N(t2) sin(t1 + φ
[0]
0 )

A
[5]
0 = P (t2)

[

− y
[0]
1 cos(φ

[0]
0 + t1)+

+x
[0]
1 sin(φ

[0]
0 + t1)

]

+

+ 3
2
√
2

(

x
[0]
1

2
− y

[0]
1

2)

cos[2(φ
[0]
0 + t1)]+

3
√
2x

[0]
1 y

[0]
1 cos(φ

[0]
0 + t1) sin(φ

[0]
0 + t1)

x
[2]
1 = −∂t2y

[0]
1 +M(t2)

x
[3]
1 = +2

(

x
[0]
1

2
+ 3y

[0]
1

2)
A

[−1]
0 cos(t1 + φ

[0]
0 )

−4x
[0]
1 y

[0]
1 A

[−1]
0 sin(t1 + φ

[0]
0 )

y
[2]
1 = ∂t2x

[0]
1 +N(t2)

y
[3]
1 = +2

(

3x
[0]
1

2
+ y

[0]
1

2)
A

[−1]
0 sin(t1 + φ

[0]
0 )

−4x
[0]
1 y

[0]
1 A

[−1]
0 cos(t1 + φ

[0]
0 )

φ
[3]
0 =

(

4A
[−1]
0 − 1

A
[−1]
0

)

[−x[0]1 sin(t1 + φ
[0]
0 )

+y
[0]
1 cos(t1 + φ

[0]
0 )] + P (t2)

φ
[4]
0 = t1 +Q(t2)

(29)

where M(t2), N(t2), P (t2) and Q(t2) are slow functions
to be determined.
The procedures for obtaining these expressions are de-

scribed in more detail in Appendix A.
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A. Solvability Conditions

We are now able to use analytical expressions of per-
turbation terms above in the evaluation of the norm and
the energy (Hamiltonian) of the system. We start by
considering the dimer (abbreviated by the superscript D)
formed by the breather and its first neighbour j = 1:

ND = ε−1A
[−1]
0

2
+A

[0]
1

2
+

+ε
[

A
[−1]
0

2
+ 2(x

[0]
1 x

[2]
1 + y

[0]
1 y

[2]
1 )

]

+
+O(ε3/2)

HD = ε−2A
[−1]
0

4
+A

[0]
1

4
+ ε

[

− 8A
[0]
1

6
+

+A
[0]
1

2(
15
2 − 4(x

[0]
1 x

[0]
2 + y

[0]
1 y

[0]
2 )+

4(x
[0]
1 M + y

[0]
1 N)

)

]

+O(ε3/2)

(30)

Here, it is more convenient to express the zero-order
wave-function using polar coordinates via the transfor-

mation: x
[0]
j → A

[0]
j cos(ψ

[0]
j ) and y

[0]
j → A

[0]
j sin(ψ

[0]
j ).

Similar calculations can be done for the rest of the
Bose-Hubbard lattice, and then one must impose the
constraint that the fluxes of norm and energy from the
background cancel those coming from the dimer at all
orders. An important consideration is that when one de-
fines the Hamiltonian of the background, the coupling
between sites j = 1 and j = 2 must also be included. For
the terms at order ε in the background (abbreviated by
the superscript B), one obtains:

NB
O(ε) = 2

∑

j>1

(

x
[0]
j x

[2]
j + y

[0]
j y

[2]
j

)

HB
O(ε) = 4

∑

j>1

[(

x
[0]
j

2
+ y

[0]
j

2)

×
(

x
[0]
j x

[2]
j + y

[0]
j y

[2]
j

)

]

+

+2
∑

j≥1

(

x
[2]
j x

[0]
j+1 + x

[0]
j x

[2]
j+1+

+y
[2]
j y

[0]
j+1 + y

[0]
j y

[2]
j+1

)

(31)

We now use the fact that background sites evolve
slowly compared to the breather rotation (i.e. also the
first correction is a slow function) and obtain

∂t2x
[2]
j = −y[2]j−1 − y

[2]
j+1 − 2y

[2]
j (3y

[0]
j

2
+ x

[0]
j

2
)−

−4x
[2]
j x

[0]
j y

[0]
j

∂t2y
[2]
j = +x

[2]
j−1 + x

[2]
j+1 + 2x

[2]
j (3x

[0]
j

2
+ y

[0]
j

2
)+

+4y
[2]
j x

[0]
j y

[0]
j

(32)

We determine x
[2]
2 and y

[2]
2 by imposing:

∂t2N
B
O(ε) = −∂t2ND

O(ε)

∂t2H
B
O(ε) = −∂t2HD

O(ε)

(33)

Note that ∂t2N
B
O(ε) and ∂t2H

B
O(ε) contain non-vanishing

terms that come only from the contact with the breather
and its nearest neighbours and not from the background.

By using the Cramer rule, we find that the two equa-
tions are always linearly independent and that the dis-
criminant of this system is strictly positive. After the
algebraic operations are completed,

x
[2]
2 =

(

− 17A
[0]
1

2 + 8A
[0]
1

5)

cos(ψ
[0]
1 )+

+4A
[0]
1

2
A

[0]
2 cos(2ψ

[0]
1 − ψ

[0]
2 )−

−2A
[0]
2

3
cos(ψ

[0]
2 )−A

[0]
3 cos(ψ

[0]
3 )+

+∂t2N − 4A
[0]
1

2
M−

2A
[0]
1

2
[M cos(2φ

[0]
0 ) +N sin(2φ

[0]
0 )]

(34)

y
[2]
2 =

(

− 17A
[0]
1

2 + 8A
[0]
1

5)

sin(ψ
[0]
1 )+

+4A
[0]
1

2
A

[0]
2 sin(2ψ

[0]
1 − ψ

[0]
2 )−

−2A
[0]
2

3
sin(ψ

[0]
2 )−A

[0]
3 sin(ψ

[0]
3 )−

−∂t2M − 4A
[0]
1

2
N+

2A
[0]
1

2
[N cos(2φ

[0]
0 )−M sin(2φ

[0]
0 )]

The solvability conditions have been used to determine

the expressions (34) for x
[2]
2 and y

[2]
2 . However, the func-

tions M(t2), N(t2), P (t2) and Q(t2) cannot be deter-
mined from the solvability conditions. These terms can-
cel at all orders leading to the trivial relation 0 = 0. We
show in the next subsection, however, that the explicit
form of these functions is not necessary when determining
the first differential equation in the perturbation expan-
sion that does not average to zero over one period of the
breather rotation.

V. AVERAGING OVER ONE PERIOD OF THE

BREATHER ROTATION

Let us now introduce the notation

DA
ε2 ≡ ∂t2A

[4]
0 + ∂t1A

[6]
0 (35)

This is the lowest-order term providing an average non-
zero slow contribution to the evolution of the breather
mass. With the help of Eq. (14), replacing all the
known functions with their explicit expressions, and af-
ter averaging over one fast rotation (i.e. taking 〈∗〉 ≡
1
2π

∫ 2π

0
(∗)dt1) we arrive at,

〈DA
ε2〉 = x

[0]
1 sin(φ

[0]
0 )− y

[0]
1 cos(φ

[0]
0 ) + P (t2)−

−〈y[4]1 cos(t1 + φ
[0]
0 )〉+ 〈x[4]1 sin(t1 + φ

[0]
0 )〉

(36)

where P (t2) is one of the unknown slow functions in the

expression of φ
[3]
0 in Eq. (29) and x

[4]
1 , y

[4]
1 are unknown

high order terms for the wave-function of the nearest
neighbour.

It is now useful to express 〈y[4]1 cos(t1 + φ
[0]
0 )〉 and

〈x[4]1 sin(t1 + φ
[0]
0 )〉 as functions of the zero-order wave-

function and of the five unknown slow terms: x
[2]
2 , y

[2]
2 ,

M(t2), N(t2) and P (t2).
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From the expansion of the DNLSE at site j = 1, we
write the differential equation for the derivative of x1 at
order ε:

∂t1x
[4]
1 + ∂t2x

[2]
1 = −2x

[1]
1

2
y
[0]
1 − 4x

[0]
1 x

[2]
1 y

[0]
1 −

−4x
[0]
1 x

[1]
1 y

[1]
1 − 6y

[0]
1 y

[1]
1

2
−

−2x
[0]
1

2
y
[2]
1 − 6y

[0]
1

2
y
[2]
1 −

−A[−1]
0 φ

[3]
0 cos(t1 + φ

[0]
0 )−

−A[2]
0 sin(t1 + φ

[0]
0 )− y

[2]
2

(37)

At this stage, one can replace all the known terms on
the right hand side with their expressions from (29) and

make all possible simplifications. In addition, ∂t2x
[2]
1 can

be substituted with its analytical expression and moved
to the right hand side.

We integrate both sides with respect to the fast time t1.

This leads to an analytical expression for x
[4]
1 which con-

tains the terms x
[2]
2 , y

[2]
2 , M(t2), N(t2) and P (t2) which

are all slow functions. After integrating this equation,

one finds that x
[4]
1 contains terms which are different from

the other high order functions of (29) because they con-
tain expressions of the type F (t2)× t1. These terms ap-
pear in the Hamiltonian at order ε3/2, together with the

known function φ
[4]
0 = t1 +Q(t2) and the term A

[6]
0 .

The next required step is to calculate 〈x[4]1 sin(t1+φ
[0]
0 )〉

which again contains the slow terms x
[2]
2 , y

[2]
2 , M(t2),

N(t2) and P (t2).

〈x[4]1 sin(t1 + φ
[0]
0 )〉 = −A

[−1]
0 P

2
+

+

{

6A
[−1]
0

2
y
[0]
1 + 2

[

− 4y
[0]
1 (x

[0]
1

4
+

+x
[0]
1 x

[0]
2 + 2x

[0]
1

2
y
[0]
1

2
+ y

[0]
1

4
)+

+(2x
[0]
1

2
+ x

[0]
2

2
− 2y

[0]
1

2
)y

[0]
2 +

+y
[0]
2

3
]

+ y
[2]
2 + y

[0]
3

}

cos(φ
[0]
0 )

(38)

Analogously, one can obtain an expression for

〈y[4]1 cos(t1 + φ
[0]
0 )〉, and then express the average from

(36) as:

〈DA
ε2〉 = y

[2]
2 cos(φ

[0]
0 )− x

[2]
2 sin(φ

[0]
0 )−

−2A
[0]
2

3
sin(φ

[0]
0 − ψ

[0]
2 )+

+A
[0]
1

[

(

− 2 + 8A
[0]
1

4)
sin(φ

[0]
0 − ψ

[0]
1 )+

+4A
[0]
1 A

[0]
2 sin(φ

[0]
0 − 2ψ

[0]
1 + ψ

[0]
2 )

]

−A[0]
3 sin(φ

[0]
0 − ψ

[0]
3 )

+∂t2M(t2) cos(φ
[0]
0 )+

+∂t2N(t2) sin(φ
[0]
0 )

−2A
[0]
1

2[
N(t2) cos(φ

[0]
0 − 2ψ

[0]
1 )+

+M(t2) sin(φ
[0]
0 − 2ψ

[0]
1 )

]

+4A
[0]
1

2[
N(t2) cos(φ

[0]
0 )−

−M(t2) sin(φ
[0]
0 )

]

(39)

We can now replace x
[2]
2 and y

[2]
2 with their analytical

expressions obtained in the previous subsection (see Eq.
(34)) obtaining,

〈DA
ε2〉 =

13

2
A

[0]
1 sin(φ

[0]
0 − ψ

[0]
1 ) (40)

It is quite remarkable that M(t2), N(t2) and P (t2) do
not appear in the final expression of Eq. (40). This jus-
tifies a posteriori the truncation of the calculations made
in the application of the solvability conditions above. We
also note that:

〈DA
ε2〉 = 〈∂t2A

[4]
0 + ∂t1A

[6]
0 〉 = 〈∂t1A

[6]
0 〉 (41)

and finally obtain

〈∂t1A
[6]
0 〉 = 13

2
A

[0]
1 sin(φ

[0]
0 − ψ

[0]
1 ) . (42)

Eq. (42) is the main result of our work and is compared
with numerical simulations of the DNLS in the next sec-
tion.

VI. BREATHER FLUCTUATIONS AND

COMPARISON WITH SIMULATIONS

A. Decoupling due to the separation of time scales

At zeroth order, breathers can be replaced by pinned
vacancies that act on the background as reflective bound-
aries. This means that the evolution of all zero-order
terms

{

(x
[0]
j , y

[0]
j )

}

is independent of the evolution of the

breather for all j 6= 0. This vacancy-breather analogy
suggests that both dark and bright solitons induce sim-
ilar dynamics to their backgrounds, reflecting back all
excitations. Dark solitons are far less stable, however,
especially when interacting with large backgrounds. The
stability of dark solitons can be enhanced with the help
of local dissipations and by inhibiting tunnelling to the
vacancy through the Quantum Zeno Effect [? ]. Once
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again this analogy is only valid in the absence of rare
events caused by very large fluctuations. The differential
equation for the background becomes:

i∂t2z
[0]
j 6=0 = −2

∣

∣

∣
z
[0]
j

∣

∣

∣

2

z
[0]
j − z

[0]
j−1 − z

[0]
j+1 (43)

where z
[0]
0 ≡ 0 is a reflective boundary. Fig. 2 shows

how the amplitude of the zero-order wave-function for
the nearest neighbour of the breather obtained from Eq.
(43) compares with that of the full solution of Eq. (2)).
The slow function approximates the full trajectory very
well for several hundred breather periods. After a while,
the two trajectories separate due to the chaotic nature of
the DNLSE. The reflective boundary approximation be-
comes even more accurate when the size of the breather
is increased, bounding the two trajectories close together
for much longer times than those shown in Fig. 2. We
note that these results are not conflicting with the work
of Flach et al. [? ] where a transmission coefficient for
a small amplitude plane wave interacting with a discrete
breather is found to be of order O(ε4) which is several or-
ders of magnitude higher than the relevant orders of our
perturbative analysis. Therefore, for our current analy-
sis, the breather is simply a reflective boundary.

FIG. 2. Time evolution of the amplitude of the nearest neigh-
bour on the right of the breather obtained by integrating the
DNLSE Eq. (2) (light blue strip) and from the zero-order re-
duced equation (43) (black line). Replacing the breather with
a reflective boundary produces a similar dynamics of the back-
ground. The breather had an initial amplitude of |z0| = 6 and
sat in the middle of a 15 sites lattice which was thermalised at
infinite temperature and had the average occupation number
〈|zj |

2〉 = 0.5. Analogous decouplings occur for both the left
and the right neighbours.

Backgrounds characterised by low temperatures tend
to be less fluctuating and therefore, in their presence, this
breather/vacancy analogy is satisfied over significantly

longer time scales. It is however worth noting that even
for high-temperature backgrounds, one can still obtain
results for the breather fluctuations and for the back-
ground dynamics similar to those of Fig. 2 when using
the simplified equation (43). As it will be seen later in
this work, one can build a decoupling theory which is
valid for times far longer than the separation time seen
in Fig. 2, since it is possible to express the fluctuations
in the breather size as a function of the zero-order back-
ground at any given time, regardless of what the initial
condition is. In order to build this theory however, it is
crucial to use the adiabatic decoupling between the zero-
order wave-function of the background and the breather
oscillations.
This type of decoupling is also addressed in [? ] where

it is shown that breathers induce weakly non-ergodic dy-
namics. These localised solutions split the lattice into
mutually disconnected regions, thermalised at different
chemical potentials and different temperatures.
A clear evidence for the separation of the two time

scales is also presented in Fig. 3. There, one can see
that the background evolves over time scales of O(10),
while the breather height is effectively frozen over scales
of this magnitude. In addition, the sites in the back-
ground frequently reach amplitudes which are close to
zero, even if their overall size is of order O(1). This pro-
vides an additional justification for the choice of a hybrid
polar-Cartesian system, which was introduced to avoid
diverging derivatives for small values of the background
amplitudes. From Fig. 3 one sees that the first neigh-
bour (red line) displays a fast component of oscillation
that comes from the breather. This component originates
in the first non-trivial terms identified in Eq. (18). Note
that the breather amplitude does not display any visible
variations during times which characterise the evolution
of the slow background.

B. Size of fluctuations

The amplitude of the breather fluctuates in time

around a constant value ε−1/2A
[−1]
0 . For low orders of

ε, the fluctuations average to zero over one fast rotation.
More remarkably, our calculations are able to determine
the magnitude of the slow perturbation which does not
cancel over one fast oscillation. These slow drifts in the
derivative of the breather norm appear at order O(ε2),
and for lattices with more than three sites (N > 3) are
given by:

〈dtA0〉 =
13

2
ε2A

[0]
1 sin(φ

[0]
0 − ψ

[0]
1 ) +O(ε

5/2) (44)

as a direct consequence of formula (42). A
[0]
1 and ψ

[0]
1

are the amplitude and the phase of the wave-function at
the nearest site of the breather. Remarkably, the slow
drift depends only on the state of the nearest neighbour
of the breather, all interactions with more distant sites
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FIG. 3. Time evolution of the amplitude of a breather in
j = 0 (blue) and those of its two nearest neighbours (j = 1 in
red, and j = 2 in black) for a lattice of 7 sites in contact with
a heat-bath at positive temperature at one end from Eq. (2).

cancelling out after imposing the solvability conditions
(33).

Note that Eq. (44) has been derived for breathers in
contact with a background on one side only. Extensions
to a more generic configurations require a sum of both
left and right contributions

〈dtA0〉 =
13

2
ε2

∑

j=±1

A
[0]
j sin(φ

[0]
0 − ψ

[0]
j ) +O(ε

5/2) . (45)

This is an approximation since in the case of breathers
in contact with backgrounds on both sides, there are
two solvability conditions for four unknown high order
functions and mixed terms of left and right backgrounds.
These terms and the flow of energy from one side of the
breather to the other are negligible so that the derivative
of the breather norm only contains two contributions of
the type shown in Eq. (44).

For lattices of length N > 3, we run computational
simulations and record the evolution of A0(t1, t2). This
variable contains numerous high order terms which av-
erage to zero over one full oscillation of the breather.
In order to extract the slow drifts, one must take the
Fourier Transform of A0, apply a Heaviside step func-
tion filter, and then take the inverse Fourier Transform.
Analogously, one applies the same algorithm on A1(t1, t2)
to obtain a numerical approximation of the zeroth order
amplitude of the nearest neighbour.

Let Πf (X) denote a low-pass filtered version of a signal
X, f being the cut-off frequency: all frequencies above
this value are filtered out before applying, the inverse
Fourier Transform. The averaged equation (44) implies

that:

−2π
13

2
ε3Πf (A1) ≤ Πf (A0) ≤ 2π

13

2
ε3Πf (A1) (46)

where one has used that −1 ≤ sin(x) ≤ 1 ∀x ∈ R and
also the properties of the Fourier transforms for deriva-
tives F(X ′) = iωF(X). The analytical predictions given
by the multiple time scale analysis can therefore be tested
by checking the truthfulness of (46). A similar idea is pre-
sented in [? ], where the authors make analytical predic-
tions on the behaviour of a multiple scale system, which
are ultimately confirmed by computational tests which
consist of numerical filtering.

FIG. 4. Time evolution of dt|z0| over a time span of 100
time units. (a) dt|z0| from the numerical integration of Eq.
(2) (pale blue curve) and after the fast oscillating components
have been filtered out (black line). (b) Same as (a) but magni-
fied by a factor of 5000 (black line) with the analytical bounds
from the inequalities (46) (red lines).

In order to test the accuracy of (42), (44) and (45),
we focus on the fluctuations of the time derivative of the
breather amplitude (dt|z0|), as shown in Fig. 4. This
test shows the evolution of dt|z0| over a time span of 100
time units for a breather of initial size |z0| = 5, in contact
with a background generated by a Langevin heat-bath at
temperature T = 3 and chemical potential µ = −3.4. In
our simulations, we have set a buffer zone of seven sites
between the breather, situated at site j = 0, and the
heat-bath located at site j = 8. In Fig. 4 (a), one can
see that the fluctuations of the time derivative of the
breather norm from the integration of Eq. (2) are of
order O(1). This is not surprising, since when applying
the two-scale differential operator ε−1∂t1+∂t2 on the first
non-trivial term from (27) one obtains a contribution of

the form ε−1∂t1
(

εA
[2]
0

)

, which creates fluctuations of or-
der O(1). This dominant component in the derivative of
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the norm, however, vanishes when averaged over one full
rotation. In order to see only the slow components of
the derivative, one must use numerical low pass filters.
Fig. 4 (b) displays the same quantity, dt|z0|, but after
the application of the numerical low pass filter and suit-
able magnification. The same black curve is also shown
in the upper diagram, where due to the large difference
in the magnitude of the fluctuations, it appears to be al-
most flat. What is remarkable is the excellent agreement
between the slow fluctuations given by the numerical in-
tegration of Eq. (2) and the analytical boundaries pre-
dicted by the inequalities of Eq. (46). The extension of
formula (44) to symmetric backgrounds is tested in Fig.
5. Similar tests have been ran for hundreds of configu-
rations, by varying the initial height of the breather and
the parameters of the heat-baths. For both positive and
infinite temperature Langevin heat-baths, the evolution
of the breather norm remains confined between bound-
aries that are very well approximated by those defined in
equation (45).

FIG. 5. Same as Fig. 4 but for a breather with backgrounds
on both sides. (a) Time evolution of dt|z0| over a time span of
100 time units from the numerical integration of Eq. (2) (pale
blue curve) and after the fast oscillating components have
been filtered out (black line). (b) Same as (a) but magnified
by a factor of 5000 (black line) with the analytical bounds
from the inequalities (46) based on Eq. (45) (red lines).

C. Stability of the trimer configuration

The Bose-Hubbard configuration with only three sites
(N = 3) is known as a trimer and has been the subject of
extensive research [? ? ? ? ? ]. Our perturbative model
is capable to explain why trimer configurations give rise
to breathers with a higher stability with respect to longer

lattices.
One can obtain a slow drift equation for a dimer by re-

placing in (39) all the wave-functions for sites with j ≥ 2
with zero (as exemplified in Appendix B). This provides
a new formula which will is valid when the breather does
not have more than one neighbour on each side (i.e. the
breather is either in a dimer or at the middle of a trimer).
For backgrounds which are dominantly below one, this
formula is:

〈dtA0〉 = −2ε2
∑

j=±1

A
[0]
j sin(φ

[0]
0 − ψ

[0]
j ) +O(ε

5/2) . (47)

FIG. 6. Time evolution of dt|z0| in a three site lattice with
the breather located in the middle of the chain over a time
span of 100 units. (a) dt|z0| from the numerical integration
of Eq. (2) (pale blue curve) and after the fast oscillating
components have been filtered out (black line). (b) Same as
(a) but magnified by a factor of 5000 (black line) with the
analytical bounds from the inequalities (46) after the factor
13/2 has been replaced by −2 to accommodate for limited
size effects (red lines).

This makes the noise in the case of dimers and trimers
around 3.25 times smaller than the one calculated for ex-
tended lattices, with N > 3. Formula (47) is confirmed
by the numerical tests presented in Fig. 6 which are
done using the same low pass filters as introduced in the
previous section. The difference in derivative between
trimers and extended lattice configurations also implies
a different size for the area of the Poincaré sections in
the two cases. One can expect that extended systems
produce Poincaré sections which are roughly 3.252 ≈ 10
times larger in area. The Poincaré section is taken by
sampling the data after each complete rotation of the
breather that takes 2πǫ time units. Here ǫ is the inverse
of the frequency which is determined numerically by ap-
plying Fast Fourier Transforms on the evolution of the
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real part of the breather norm.

VII. CONCLUSIONS

Tall breathers tend to decouple from the background
even when the latter is relatively strong. If the breather
amplitude is large enough, all background sites, including
the nearest neighbours, perceive the breather as a purely
reflective boundary. This localised solution is very sta-
ble, displaying fast fluctuations which average to zero
over one oscillation period. In order to quantify the slow
changes of the breather size, one has to consider high
orders of a (singular) perturbation expansion, the small-
ness parameter being the inverse of the breather mass.
Here we have developed a multiple time-scales perturba-
tive approach, which, with the help of conditions arising
from energy and mass conservation, is able to predict
topological differences among dimers, trimers, and lat-
tices with N > 3. Breathers in trimer configurations are
shown to be more stable than those in larger lattices. For
spatially extended lattices, the bounds of the slow deriva-
tives (given by the inequality (46)) are independent of the
system size. This explains why, for long periods of time,
these localised solutions are not affected by the phonon
backgrounds they are in direct contact with.
During most of the evolution, in the absence of large

excitations, the breather norm is dictated by laminar dy-
namics, during which the wave-function is perturbative
in character, and the fluctuations in the breather size are
very small, being very well approximated by equation
(45). Very rarely, the phonon background spontaneously
creates a neighbouring excitation large enough to take the
system out of the perturbative regime, causing a sudden
change in the breather shape. One can increase the like-
lihood of such events by either increasing the background
size, or by decreasing the initial size of the breather.
The nature of these strong interactions which take the
breather dynamics outside of the perturbative domain,
and the definition of a destabilisation threshold will be
the topics of future communications.
The existence of a clear perturbative regime, even in

the presence of large backgrounds, suggests that most of

the trajectories of the system can be simulated with the
help of averaged differential equations where the fast time
scale has been eliminated. This type of model would be
useful for investigating phenomena which occur during
time scales that are larger than the fast fluctuations of
the breather, such as the effect of breathers on quantum
transport and the thermalisation of backgrounds in the
presence of breathers.
If one wants to study the entire evolution of breathers,

perturbative techniques do not suffice. They can be
used however to differentiate between slow processes and
catastrophic events, which occur when Eq. (45) is vio-
lated.
Breather lifetimes are characterised by three time-

scales: the very small period of the breather rotation,
the times over which the background evolves, and the
times over which rare events may occur. The first order
at which there is a non-zero term in the second time scale
is ε2 for the derivative of the breather norm. This term,
however, averages to zero over the second time scale if one
makes the assumption that correlations between the ze-
roth order wave-function components decay very rapidly.
What follows from this is that, under the assumption
of a very slow diffusion, the evolution of the breather
is most likely given by events which occur on the third
time scale, i.e. rare events. As the amplitude of the
breather is increased drastically, the spontaneous forma-
tion of an excitation of order

√
ε decreases exponentially,

since the background amplitudes have probability distri-
butions which decay exponentially fast [? ]. This might
imply that in those domains, the lifetime of breathers is
not dictated by rare events, but by diffusion processes
which could occur at even higher orders than that at
which the first non-zero terms occurs.
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Appendix A: Higher Order Terms in the Perturbative Calculation

At order O(ε1/2) Eq. (11) for the breather norm stated

∂t1A
[3]
0 = x

[1]
1 sin(t1 + φ

[0]
0 )− y

[1]
1 cos(t1 + φ

[0]
0 ). (A1)

By using the findings of Eq. (18) and by substituting x
[1]
1 and y

[1]
1 , one arrives to ∂t1A

[3]
0 =0. Therefore A

[3]
0 is a slow

function of the type:

A
[3]
0 = C4(t2) (A2)
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The Hamiltonian of the system at order O(1) is the Hamiltonian of the zero order wave-function plus the contribution

of 4A
[3]
0 A

[−1]
0

3
. Therefore A

[3]
0 is not just slow but actually zero.

Under the assumption that the zero-order wave-function for the background obeys the DNLSE, one can deduce
from (17) that:

x
[2]
1 = −∂t2y

[0]
1 +M

y
[2]
1 = ∂t2x

[0]
1 +N

(A3)

Where M and N are slow functions. At this stage of the procedure, it is possible to solve all equations from (11) and

(12) and find the analytical expressions of φ
[3]
0 , A

[4]
0 and φ

[4]
0 .

Finally one can determine x
[3]
1 , y

[3]
1 and A

[5]
0 up to a slow component. The slow components of these terms are

proved to be zero at the stage when the solvability conditions for x
[2]
2 and y

[2]
2 is set.

Appendix B: Dimer and Trimer Configurations

The averaged equation for the breather amplitude (39) are

〈DA
ε2〉 = y

[2]
2 cos(φ

[0]
0 )− x

[2]
2 sin(φ

[0]
0 )−

−2A
[0]
2

3
sin(φ

[0]
0 − ψ

[0]
2 )+

+A
[0]
1

[

(

− 2 + 8A
[0]
1

4)
sin(φ

[0]
0 − ψ

[0]
1 )+

+4A
[0]
1 A

[0]
2 sin(φ

[0]
0 − 2ψ

[0]
1 + ψ

[0]
2 )

]

−A[0]
3 sin(φ

[0]
0 − ψ

[0]
3 )

+∂t2M(t2) cos(φ
[0]
0 )+

+∂t2N(t2) sin(φ
[0]
0 )

−2A
[0]
1

2[
N(t2) cos(φ

[0]
0 − 2ψ

[0]
1 )+

+M(t2) sin(φ
[0]
0 − 2ψ

[0]
1 )

]

+4A
[0]
1

2[
N(t2) cos(φ

[0]
0 )−

−M(t2) sin(φ
[0]
0 )

]

.

(B1)

In a dimer configuration, all sites with j ≥ 2 have Aj = 0, and all x
[k]
j≥2 = y

[k]
j≥2 = 0 ∀ k. This also implies that

M = N = 0. Under these circumstances, the equation from (B1) greatly simplifies to:

〈DA
ε2〉 = A

[0]
1

(

− 2 + 8A
[0]
1

4)
sin(φ

[0]
0 − ψ

[0]
1 ). (B2)

In the presence of small backgrounds 8A
[0]
1

5
<< 2A

[0]
1 , therefore (B2) can be approximated by:

〈DA
ε2〉 = −2A

[0]
1 sin(φ

[0]
0 − ψ

[0]
1 ). (B3)

In the case when the breather sits at the middle of a trimer lattice, one can add independent left and right
contributions, just as it was done for the case of lattices of generic lengths, and arrive at the expression (47).


