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Abstract. In this paper, we introduce two perturbations in the classical deterministic susceptible-
infected-susceptible epidemic model. Greenhalgh and Gray [1] in 2011 use a perturbation on β
in SIS model. Based on their previous work, we consider another perturbation on the parameter
µ+ γ and formulate the original model as a stochastic differential equation (SDE) with two inde-
pendent Brownian Motions for the number of infected population. We then prove that our Model
has a unique and bounded global solution I(t). Also we establish conditions for extinction and
persistence of the infected population I(t). Under the conditions of persistence, we show that
there is a unique stationary distribution and derive its mean and variance. Computer simulations
illustrate our results and provide evidence to back up our theory.
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1 Introduction

Research on epidemics modelled by introducing deterministic compartmental models makes great
contribution to understanding the behaviour of epidemics and helping control of deadly diseases [10,
11]. For example, Capasso[11] introduces the Kermack-Mckendrick model to describe diseases that
offer permanent immunity after an individual catching the diseases for a period of time. However,
some diseases such as sexually transmitted and bacterial disease do not have permanent immunity.
Susceptible individuals will catch the disease at some time to become infected, while after a short
period of time infected individuals will become susceptible again. Susceptible-infected-susceptible
(SIS) model is a very simple but also commonly used model to describe such epidemic problems [9].
S(t) and I(t) are used to represent the numbers of susceptible and infected populations at time t. The
deterministic models is {

dS(t)
dt

= µN − βS(t)I(t) + γI(t)− µS(t)
dI(t)

dt
= βS(t)I(t)− (µ+ γ)I(t)

(1.1)

with initial values S0 +I0 = N and hereN is the total size of population. µ is the per capita death rate
and γ is the rate at which infected individuals become cured. β is the disease transmission coefficient.
With the condition S + I = N , we can rewrite the original two ODEs (1.1) into

dI(t) = [β(N − I(t))I(t)− (µ+ γ)I(t)] dt (1.2)
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While deterministic models are not enough to describe problems in real world because parameters
are easily influenced by all kinds of circumstances with uncertainty. Thus stochastic models with
different environmental noises are more appropriate in epidemic problems. For example, A.Gray et
al. [1] consider the perturbation on β in deterministic SIS model. They firstly analyse (1.2) in a
small time interval [t, t + dt) with the d notation for small change in any quantity. Hence we have
dI(t) = I(t+ dt)− I(t) in (1.2). Then the disease transmission coefficient β can be regarded as the
rate at which each infected individual make contacts with other individuals and the total number of
new infections in the small time interval is βI(t)S(t) dt and also, a single infected individual makes
β dt potentially infectious contacts with other individuals in the small time interval. Consequently,
when some stochastic environmental factor is introduced on each individual in the population, they
replace β by a random variable β̃

β̃ dt = β dt+ σ1 dB1(t) (1.3)

Here dB1(t) = B1(t + dt) − B1(t) is the increment of a standard Brownian motion. Hence the
potentially infectious contacts made by a single infected individual with another individual in the
population in the small time interval [t, t+ dt) are normally distributed with mean β dt and variance
σ2

1 dt. Also, Y. Zhao et al.[12] use the same perturbation in SIS model with a vaccination and then find
the conditions for the disease to become extinct and persist. There are also many other contributions
on different epidemic models using multiple environmental noises [5, 6, 7, 13].

Now based on the previous work of A. Gray et al. [1], we now consider another perturbation on
(µ + γ) with (1.3) existing in traditional SIS model. Within the same small time interval [t, t + dt),
we regard (µ+ γ)I(t) dt as the total number of infected individuals becoming cured or pass away in
this time interval. In other words, this is the total reduction of infections. Hence each single individual
contributes (µ+ γ) dt in the reduction of infections in the small time interval [t, t+ dt).
Then we introduce stochasticity on (µ+ γ). (µ+ γ) is replaced by a random variable (µ̃+ γ̃)

(µ̃+ γ̃) dt = (µ+ γ) dt+ σ2

√
N − I(t) dB2(t) (1.4)

Here we do not simply set (µ̃+ γ̃) dt = (µ+ γ) dt+ σ2 dB2(t) to be the second perturbation. When
susceptible population S(t) = N − I(t) is large, which means there are few infected individuals, the
error of estimating µ and γ will be large. Thus we suppose that the variance of estimating µ + γ is
proportional to the number of susceptible population. As a result, the reduction of infections caused
by medical care and death of a single infected individual in the small time interval [t, t + dt) is nor-
mally distributed with mean (µ + γ) dt and variance σ2

2(N − I(t)) dt. This is also a biologically
reasonable model because the variance trends to 0 when dt goes to 0.

Such a diffusion coefficient in square root form is widely used in financial stochastic differential
equations such as Square Root Process. Mao [2] indicates that Square Root Process may be more
appropriate if the asset price volatility does not increase dramatically when S(t) increases (S(t)
greater than 1), because the variance of error term is proportional to S(t). Meanwhile, in epidemic
modelling, Liang and Greenhalgh et al. introduce demographic stochasticity [6] in the determin-
istic SIS model based on Allen’s work [14]. The diffusion coefficient of their SDE SIS model is√
βI(t)(N − I(t)) + (µ+ γ) which is very similar to ours. However, to the best of our knowledge,

there is not enough work on incorporating white noise with square-root diffusion into the epidemic
models. As a result, this paper aims to fill the gap.

As a result, we assume that two Brownian motions B1(t) and B2(t) are independent. We then substi-
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tute two perturbations in our SIS ODE (1.2). We have

dI(t) = [β(N − I(t))I(t)− (µ+ γ)I(t)] dt+ σ1I(t)(N − I(t)) dB1(t)

− σ2I(t)
√
N − I(t) dB2(t) (1.5)

with initial value I(0) = I0 ∈ (0, N). In the following sections we will concentrate on giving some
properties of the solution I(t) of this SDE.

2 Existence of unique positive solution

In order for the model to make sense, we need to prove that the solution of our SDE has a unique
global solution which remain within (0, N), with the initial value I0 ∈ (0, N) .
Theorem 2.1. If µ + γ ≥ 1

2
σ2

2N , then for any given initial value I(0) = I0 ∈ (0, N), the SDE has a
unique global positive solution I(t) ∈ (0, N) for all t ≥ 0 with probability one, namely,

P{I(t) ∈ (0, N), ∀t ≥ 0} = 1

Proof.
The coefficients of our SDE are locally Lipschitz continuous and for any given initial value, there is
a unique maximal local solution I(t) on t ∈ [0, τe), where τe is the explosion time [2]. Let k0 ≥ 0 be
sufficient large to satisfy 1

k0
< I0 < N − 1

k0
. For each integer k ≥ k0, define the stopping time

τk = inf{t ∈ [0, τe) : I(t) /∈ (1/k,N − 1/k)}

In this paper we set inf∅ = ∞. Obviously, τk is increasing when k → ∞. And we set τ∞ =
limk→∞ τk. It is clear that τ∞ ≤ τe almost sure. So if we can show that τ∞ = ∞ a.s., then τe = ∞
a.s. and I(t) ∈ (0, N) a.s. for all t ≥ 0.
Here we assume τ∞ = ∞ a.s. is not true. Then we can find a pair of constants T > 0 and ε ∈ (0, 1)
such that

P{τ∞ ≤ T} > ε

So we can find an integer k1 ≥ k0 large enough, such that

P{τk ≤ T} ≥ ε ∀k ≥ k1 (2.1)

Define a function V : (0, N)→ R+ by

V (x) = − log x− log (N − x) + log
N2

4

and
Vx = −1

x
+

1

N − x
, Vxx =

1

x2
+

1

(N − x)2

Let f(t) = β(N − I(t))I(t) − (µ + γ)I(t), g(t) = (σ1I(t)(N − I(t)),−σ2

√
N − I(t)I(t)) and

dB(t) = ( dB1(t), dB2(t)).
By Ito formula [2], we have, for any t ∈ [0, T ] and k ≥ k1

EV (I(t ∧ τk)) = V (I0) + E
∫ t∧τk

0

LV (I(s)) ds+ E
∫ t∧τk

0

Vxg(s) dB(s) (2.2)
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E
∫ t∧τk

0
Vxg(s) dB(s) = 0. Also it is easy to show that

LV (x) = −β(N − x) + (µ+ γ) + βx− (µ+ γ)
x

N − x

+
1

2
(σ2

1(N − x)2 + σ2
1x

2 + σ2
2(N − x) + σ2

2

x2

N − x
)

≤ −β(N − x) + (µ+ γ) + βx+
1

2
[σ2

1(N − x)2 + σ2
1x

2 + σ2
2(N − x)]

≤ C (2.3)

C is a constant when µ+ γ ≥ 1
2
σ2

2N and x ∈ (0, N).
Then we have

EV (I(t ∧ τk)) ≤ V (I0) + E
∫ t∧τk

0

C ds

≤ V (I0) + Ct (2.4)

which yields that
EV (I(T ∧ τk)) ≤ V (I0) + CT (2.5)

Set Ωk = {τk ≤ T} for k ≥ k1 and we have P(Ωk) ≥ ε. For every ω ∈ Ωk, I(τk, ω) equals either 1/k
or N − 1/k and we have

V (I(τk, ω)) = log
N2

4(N − 1/k)1/k

Hence

∞ > V (I0) + CT ≥ E[IΩk
(ω)V (I(τk, ω))]

≥ P(Ωk) log
N2

4(N − 1/k)1/k

= ε log
N2

4(N − 1/k)1/k

letting k →∞ will lead to the contradiction

∞ > V (I0) + CT =∞

So the assumption is wrong and we must have τ∞ = ∞ almost sure, whence the proof is now
completed. However, the condition for our model to have bounded positive solution µ + γ ≥ 1

2
σ2

2N
might be confusing to readers. There are two different ways to understand this condition. In [1] there
is no constraint on σ1 but after adding second perturbation on µ + γ, the square root term will trend
to infinity very fast when I(t)→ N . So there must be a condition on σ2 to neutralize it. Also, by the
classical Feller test in Mao’s book [2] on Mean Reverting Square Root Process, there is a very similar
result on constraining the coefficient before square root term in order to make the solution always
positive.

3 Extinction

In this section, we will discuss the conditions for the disease to die out in our SDE model (1.5). Here
we give the conditions for the solution I(t) of our SDE becoming extinction.

4



Theorem 3.1. Given that RS
0 := RD

0 −
σ2
1N

2+σ2
2N

2(µ+γ)
= βN

µ+γ
− σ2

1N
2+σ2

2N

2(µ+γ)
< 1, then for any given initial

value I(0) = I0 ∈ (0, N), the solution of SDE obeys

lim sup
t→∞

1

t
log I(t) < 0 a.s. (3.1)

if one of the following three conditions is satisfied
• σ2

1N + 1
2
σ2

2 ≤ β or
• 1

2
σ2

2 ≥ β or
• (β − σ1

√
2(µ+ γ)) ∨ (β − σ2

1N) < 1
2
σ2

2 < β
namely, I(t) will trend to zero exponentially a.s. And the disease will die out with probability one.
Proof. Here we use Ito formula

log I(t)

t
=

log I0

t
+

1

t

∫ t

0

LṼ (I(s)) ds+
1

t

∫ t

0

σ1(N − I(s)) dB1(s)

− 1

t

∫ t

0

σ2

√
(N − I(s)) dB2(s) (3.2)

LṼ is defined by

LṼ (x) = β(N − x)− (µ+ γ)− 1

2
[σ2

1(N − x)2 + σ2
2(N − x)], x ∈ (0, N) (3.3)

According to the large number theorem for martingales[2], we must have

lim sup
t→∞

1

t
{
∫ t

0

σ1(N − I(s)) dB1(s)−
∫ t

0

σ2

√
(N − I(s)) dB2(s)} = 0 (3.4)

So if we can prove LṼ ≤ C̃ < 0, then lim supt→∞
1
t

log I(t) < 0 a.s.(C̃ is a constant)
We first examine LṼ at 0 and N. LṼ (N) = −(µ+ γ) < 0 and LṼ (0) = βN − (µ+ γ)− 1

2
(σ2

1N
2 +

σ2
2N) so we must have firstly

LṼ (0) < 0,which is ensured byRS
0 < 1 (3.5)

LṼ (x) has the maximal value when

x = x̂ =
−β + σ2

1N + 1
2
σ2

2

σ2
1

= N +
1
2
σ2

2 − β
σ2

1

(3.6)

and

LṼ (x̂) =
1

2

(β − 1
2
σ2

2)2

σ2
1

− (µ+ γ) (3.7)

is the maximal value of LṼ when x ∈ R
So we need to discuss with the following three different cases
Case 1. x̂ ≤ 0
With LṼ < 0 at 0 and N, if we have x̂ ≤ 0 Then LṼ < 0 for all x ∈ (0, N).Consequently,

σ2
1N +

1

2
σ2

2 ≤ β (3.8)

Case 2. x̂ ≥ N
This is similar with Case 1.. LṼ < 0 for all x ∈ (0, N).So we must have

1

2
σ2

2 ≥ β (3.9)
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Case 3. x̂ ∈ (0, N) In this case we need to make sure the maximal value LṼ (x̂) < 0. So we have

LṼ (x̂) =
1

2

(β − 1
2
σ2

2)2

σ2
1

− (µ+ γ) < 0 (3.10)

Also,
1

2
σ2

2 < β (3.11)

and
σ2

1N +
1

2
σ2

2 > β (3.12)

is required for x̂ within (0, N). Rearrange and we therefore have the result for Case 3

(β − σ1

√
2(µ+ γ)) ∨ (β − σ2

1N) <
1

2
σ2

2 < β (3.13)

Hence when any of the three cases is satisfied, we must have LṼ ≤ C̃ < 0 (C̃ is a constant). It then
follows that

lim sup
t→∞

log I(t)

t
≤ lim sup

t→∞

log I0

t
+ lim sup

t→∞

1

t
C̃t+ 0 < 0 a.s.

Therefore we now have obtained the proof of Theorem 4.1.

Simulation. In this paper we assume that the unit of time is one day and the population size is measured
in units of 1 million. Consequently, our parameters are given by the following values in this section.

N = 100, β = 0.4, µ+ γ = 0.45, σ1 = 0.03

In order to find the value of σ2, we initially need the model to make sense, so we have

σ2 ≤ 2(µ+ γ)/N = 0.94868 (3.14)

and also if there is extinction in our model, we need

RS
0 < 1,which results in σ2 ≥ 0 (3.15)

Using these parameters in the other three conditions, we have the corresponding σ2 to satisfy the three
conditions in extinction.
• condition 1:σ2 ≤ 0.78740078 or,
• condition 2:σ2 ≥ 0.8944271 or,
• condition 3: 0.78740078 ≤ σ2 ≤ 0.8944271
Here we choose 0.3, 0.9 and 0.82 respectively and plot our model by using Euler-Maruyama (EM)
Method[2, 3] in R, with step size ∆ = 0.001 and both large and small initial values. The computer
simulations are presented in Figure 1, 2 and 3. Clearly, our results in this section are illustrated and
supported by the simulations. With the values of parameters, the disease will die out.
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Figure 1: Extinction with condition 1
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Figure 2: Extinction with condition 2
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Figure 3: Extinction with condition 3

4 Persistence

In this section we want to discuss the conditions for the disease to persist in our model. However,
there are many definitions of persistence in stochastic dynamic problems[1, 2, 3, 5, 4, 7, 15]. For
example, in Mao’s book [2] he gives a very general definition of persistence, which only needs the
disease to never become extinction with probability 1, such that

lim inf
t→∞

I(t) > 0

While Greenhalgh and Gray [1] define persistence of their model as oscillations around a positive
level. This is a very strong result in epidemic problem. As our works is an extension of [1], we give
the theorem 4.1 as following

Theorem 4.1. If RS
0 = RD

0 −
σ2
1N

2+σ2
2N

2(µ+γ)
= βN

µ+γ
− σ2

1N
2+σ2

2N

2(µ+γ)
> 1, then for any given initial value

I(0) = I0 ∈ (0, N), the solution of (1.5) follows

lim sup
t→∞

I(t) ≥ ξ and lim inf
t→∞

I(t) ≤ ξ a.s. (4.1)

where

ξ =
−β + σ2

1N + 1
2
σ2

2 +
√
β2 − σ2

2β − 2σ2
1(µ+ γ) + 1

4
σ4

2

σ2
1

(4.2)

which is the only positive root of LṼ = 0 in (0, N). I(t) will be above or below the level ξ infinitely
often with probability one.
Proof. When RS

0 > 1, recall that

LṼ (x) = β(N − x)− (µ+ γ)− 1

2
[σ2

1(N − x)2 + σ2
2(N − x)], x ∈ (0, N)
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and we have LṼ (0) > 0, LṼ (N) = −(µ + γ) < 0 and ξ > x̂ =
−β+σ2

1N+ 1
2
σ2
2

σ2
1

. So LṼ (x) is strictly
increasing in (0, 0 ∨ x̂) and strictly decreasing in (0 ∨ x̂, N).
Here we recall (3.2)

log I(t)

t
=

log I0

t
+

1

t

∫ t

0

LṼ (I(s)) ds+
1

t

∫ t

0

σ1(N − I(s)) dB1(s)

− 1

t

∫ t

0

σ2

√
(N − I(s)) dB2(s)

By the large number theorem for martingales[2], there is an Ω2 ⊂ Ω with P{Ω2} = 1 such that for
every ω ∈ Ω2

lim
t→∞

1

t
{
∫ t

0

σ1(N − I(s)) dB1(s)−
∫ t

0

σ2

√
(N − I(s)) dB2(s)} = 0 (4.3)

Now we assume that lim supt→∞ I(t) ≥ ξ a.s. is not true. Then there must be a small ε ∈ (0, 1) such
that

P{lim sup
t→∞

I(t) ≤ ξ − 2ε} > ε (4.4)

Let Ω1 = {lim supt→∞ I(t) ≤ ξ − 2ε}, then for every ω ∈ Ω1, there exist T = T (ω) large enough,
such that

I(t, ω) ≤ ξ − 2ε+ ε = ξ − ε, when t ≥ T (ω) (4.5)

which means when t ≥ T (ω), LṼ (I(t, ω)) ≥ LṼ (ξ − ε). So we have for any fixed ω ∈ Ω1 ∩Ω2 and
t ≥ T (ω)

lim inf
t→∞

1

t
log I(t, ω) ≥ 0 + lim

t→∞

1

t

∫ T (ω)

0

LṼ (I(s, ω)) ds+ lim
t→∞

1

t
LṼ (ξ − ε)(t− T (ω))

≥ LṼ (ξ − ε) > 0

which yields
lim
t→∞

I(t, ω) =∞ (4.6)

and this contradicts with the assumption (4.4). So we must have lim supt→∞ I(t) ≥ ξ almost sure.

Similarly, if we assume that lim inft→∞ I(t) ≤ ξ a.s. is not true.Then there must be a small δ ∈ (0, 1)
such that

P{lim inf
t→∞

I(t) ≥ ξ + 2δ} > δ (4.7)

Let Ω3 = {lim inft→∞ I(t) ≥ ξ + 2δ}, then for every ω ∈ Ω3, there exist T ′ = T ′(ω) large enough,
such that

I(t, ω) ≥ ξ + 2δ − δ = ξ + δ, when t ≥ T ′(ω) (4.8)

Now we fix any ω ∈ Ω3 ∩ Ω2 and t ≥ T ′(ω) in (3.2) and we have

lim sup
t→∞

1

t
log I(t, ω) ≤ 0 + lim

t→∞

1

t

∫ T ′(ω)

0

LṼ (I(s, ω)) ds+ lim
t→∞

1

t
LṼ (ξ + δ)(t− T ′(ω))

≤ LṼ (ξ + δ) < 0

which yields
lim
t→∞

I(t, ω) = 0 (4.9)
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and this contradicts the assumption (4.7). So we must have lim inft→∞ I(t) ≤ ξ almost sure.

Simulation. In this section we choose the values of our parameter as following

N = 100, β = 0.5, µ+ γ = 0.45, σ1 = 0.03

With RS
0 > 1, we have σ2 < 0.1. Hence here we choose σ2 = 0.05 and the level ξ = 0.916056.

Similarly, as the level ξ is very closed to zero, we use both large and small initial values and plot the
level ξ in the simulation plots to illustrate the results. From Figure 4, it is clear that the number of
infectious population will fluctuated around the level ξ. Thus the disease will not die out or explode,
which means the disease will persist.
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Figure 4: Persistence

5 Stationary Distribution

In this section we will prove that there exists a unique stationary distribution of our SDE model (1.5)
when the solution persists between 0 and N. So we give the first theorem this section.

Theorem 5.1 If RS
0 > 1, then our SDE model (1.5) has a unique stationary distribution

In order to complete our proof, we need to initially use a well-known result from Khaminskii as a
lemma. [8]
Lemma 5 . The SDE model (1.3) has a unique stationary distribution if there is a strictly proper
subinterval (a,b) of (0,N) such that E(τ) <∞ for all I0 ∈ (0, a] ∪ [b,N), where

τ = inf{t ≥ 0 : I(t) ∈ (a, b)} (5.1)

also,
sup
I0∈[ā,b̄]

E(τ) <∞ (5.2)
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for every interval [ā, b̄] ⊂ (0, N) Now we can prove Theorem 5.1 using Lemma 5.
Proof. Firstly we need to fix any (a, b) such that,

0 < a < ξ < b < N (5.3)

recall LṼ in last section, we can see that

LṼ (x) ≥ LṼ (0) ∧ LṼ (a), if 0 < x ≤ a (5.4)

LṼ (x) ≤ LṼ (b), if b ≤ x < N (5.5)

also, recall (3.2)

log I(t) = log I0 +

∫ t

0

LṼ (I(s)) ds+

∫ t

0

σ1(N − I(s)) dB1(s)

−
∫ t

0

σ2

√
(N − I(s)) dB2(s)

and define
τ = inf{t ≥ 0 : I(t) ∈ (a, b)} (5.6)

Case 1. For all t ≥ 0 and any I0 ∈ (0, a), from (5.4), we have

E log I(t ∧ τ) = E log I0 + E
∫ t∧τ

0

LṼ (I(s)) ds+ 0

≥ log I0 + E(LṼ (0) ∧ LṼ (a))(t ∧ τ) (5.7)

From definition of τ , we know that

log a ≥ E log I(t ∧ τ) when I0 ∈ (0, a] (5.8)

Rearrange and we have

E(t ∧ τ) ≤
log ( a

I0
)

LṼ (0) ∧ LṼ (a)

when t→∞
E(τ) ≤

log ( a
I0

)

LṼ (0) ∧ LṼ (a)
<∞,∀I0 ∈ (0, a] (5.9)

Case 2.For all t ≥ 0 and any I0 ∈ (b,N),from (5.5), we have

E log I(t ∧ τ) = E log I0 + E
∫ t∧τ

0

LṼ (I(s)) ds+ 0

≤ log I0 + E(LṼ (b))(t ∧ τ) (5.10)

From definition of τ , we know that

log b ≤ E log I(t ∧ τ) when I0 ∈ (b,N ] (5.11)

Rearrange and we have
log b ≤ log I0 + LṼ (b)E(t ∧ τ)

E(t ∧ τ) ≤ −
log ( b

I0
)

| LṼ (b) |

11



when t→∞

E(τ) ≤ −
log ( b

I0
)

| LṼ (b) |
≤ ∞ ∀I0 ∈ (b,N ] (5.12)

Combine the results from both Case 1 and Case 2 and we complete the proof of Theorem 6.1. Now
we need to give the mean and variance of the stationary distribution.

Theorem 5.2 If RS
0 > 1 and denote m and v as the mean and variance of the stationary distribution of

SDE model (1.5). Then we have

m =
2β(RS

0 − 1)(µ+ γ)

2β2 − σ2
1(βN + µ+ γ)− σ2

2β
(5.13)

and
v =

βN − µ− γ
β

m−m2 (5.14)

Proof. For any I0 ∈ (0, N), we firstly recall (1.5) in the integral form

I(t) = I0 +

∫ t

0

[β(N − I(s))I(s)− (µ+ γ)I(s)] ds+

∫ t

0

σ1I(s)(N − I(s)) dB1(s)∫ t

0

−σ2I(s)
√
N − I(s) dB2(s) (5.15)

Dividing both sides by t and when t→∞, applying the ergodic property of the stationary distribution
[8] and also the large number theorem of martingales, we have the result that

0 = (βN − µ− γ)m− βm2 (5.16)

wherem,m2 are the mean and second moment of the stationary distribution. Also,we need to consider
(3.2) as well

log I(t)

t
=

log I0

t
+

1

t

∫ t

0

LṼ (I(s)) ds+
1

t

∫ t

0

σ1(N − I(s)) dB1(s)

− 1

t

∫ t

0

σ2

√
(N − I(s)) dB2(s) (5.17)

when t→∞. We have

1

2
σ2

1m2 − (σ2
1N +

1

2
σ2

2 − β)m = βN − µ− γ − 1

2
σ2

1N
2 − 1

2
σ2

2N (5.18)

Note that βN − µ− γ − 1
2
σ2

1N
2 − 1

2
σ2

2N = (RS
0 − 1)(µ+ γ). Rewrite this

1

2
σ2

1m2 − (σ2
1N +

1

2
σ2

2 − β)m = (RS
0 − 1)(µ+ γ) (5.19)

Rearrange and we have

m =
2β(RS

0 − 1)(µ+ γ)

2β2 − σ2
1(βN + µ+ γ)− σ2

2β
(5.20)

Hence
v = m2 −m2 =

βN − µ− γ
β

m−m2 (5.21)
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Simulation. In this section we choose the values of our parameter as following

N = 100, β = 0.5, µ+ γ = 0.45, σ1 = 0.02, σ2 = 0.05

RS
0 = 1.06389 > 1 so the disease will persist and there is a stationary distribution of our model. And

for these parameters, the mean and variance of the stationary distribution of our model is

m = 6.23982, v = 23.4628

In order to reach the stationary distribution in our simulation, we set a long run of 20000 iterations
with step size ∆ = 0.001 and then calculate the mean and variance for the last 1000 iterations. The
results from simulations show that

m = 6.531954, v = 23.2428

Figure 5 also displays the path of I(t) and the empirical cumulative distribution functions for the last
1000 samples of the simulation.
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Figure 5: Stationary Distribution

Conclusion

In this paper we introduce another perturbation on µ+γ based on Greenhalgh and Gray’s research[1]
with a different form. This SIS SDE model with two independent Brownian motion has very similar
properties as theirs[1]. We firstly prove that our model has a unique and positive solution which is
bounded with (0, N) with probability 1. Then we define the Stochastic Reproduction Number of our
model, which needs a weaker condition for the model to be extinction compared to the classical de-
terministic model and the previous model with one perturbation. When RS

0 < 1, we find the further
three conditions for the disease to die out. As long as one of these is satisfied, the disease will die out
with probability one. When RS

0 > 1, we prove that the solution of our model will oscillate around

13



a positive level ξ almost surely. Under this circumstance, we find the unique positive stationary dis-
tribution of our SDE model with the expression of mean and variance. Importantly, simulations with
different values of parameters are produced to illustrate and support our theoretical results.

Our new perturbation clearly needs σ2 not too large from Theorem 2.1 to ensure a unique bounded
positive solution of (1.5). However this perturbation extends the requirements for RS

0 < 1 compared
to the deterministic SIS model and the results in [1]. This means for those parameters that will not
cause the disease to die out in the deterministic model as well as Gray’s model [1], extinction will
become possible if we add the new perturbation. Meanwhile, we find the unique stationary distribu-
tion with no extra conditions, which means that adding our new perturbation in Gray’s model [1] will
have similar results.
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