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ABSTRACT
Obtaining accurate CFD solutions of unsteady flows during the design process of
an aircraft can be a highly-demanding task in terms of computational and time
resources. A common practice is the recourse to Reduced Basis Methods (RBM),
which manage to reduce the number of degrees of freedom to be solved yet allow
preserving high accuracy, as opposed for example to low-fidelity methods like vortex-
lattice or panel methods. RBM based on Proper Orthogonal Decomposition have
been extensively studied and adopted but limitations are observed when trying to
solve unsteady problems, where the temporal sequence of snapshots and the evolving
nonlinear dynamics of the flow field need to be addressed carefully while building
the reduced model. The present work investigates the problem of the accuracy in
reconstructing nonlinear unsteady fluid flows by means of RBM methods for a spe-
cific class of impulsively started lifting bodies. The classical snapshot POD approach
and a recent variant named Spectral POD will be comparatively studied to assess
their capacity to reconstruct unsteady flow fields typical of aerospace applications.
The periodic motion past a cylinder will be considered first as a benchmark test
while the impulsive start of a 2D three element airfoil and a 3D wing in high-lift
configurations will be considered as use cases.
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1. Introduction

The investigation of unsteady aerodynamics is a critical element in the design of an
aircraft and it can be a really time-consuming task, especially when many different
aircraft configurations or operating conditions have to be assessed. In the attempt
to reduce the computational requirements of these analyses while preserving strong
consistency with the physics, the so-called Reduced Basis Methods (RBM) have been
developed. The literature is dense with contributions that cover different types of flows
and different aspects of the reduction process. Notable introductions to the topic can
be found in the work of Rowley and Dawson (2017), Taira et al. (2017), Lassila
et al. (2014) and Dowell et al. (1999). RBM allow obtaining accurate aerodynamic
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solutions in a fast manner by extracting relevant knowledge from a set of available
solutions (called snapshots or observables) in the form of basis functions of a vector
space (also referred to as modes) and using it to recast the original problem in a
more compact form, where the number of degrees of freedom (DoF) is substantially
reduced. The whole process has two phases: an off-line and on-line steps. The modes
identification step is regarded as an off-line phase since it is performed once and for
all, using the information coming from either simulations or experiments. The on-line
phase is instead the step where the physical solution is reconstructed by combining
together the information brought by the modes. Both steps are crucial since defining
a good RBM implies identifying the correct low-dimensional space and describing
properly its dynamics and/or its evolution with changing parameters over this space.

For the specific case of unsteady flows, the off-line phase can be extremely deli-
cate since it needs to define a proper sub-space where the nonlinear time dynamics
is completely embedded. The loss of important dynamical information at this stage
might cause misleading results and/or instabilities during the on-line phase, which
need to be fixed in some ways, usually introducing additional terms in the model.
This might happen when relying for example on Proper Orthogonal Decomposition
(POD) (Weller, Lombardi and Iollo 2009; Cazemier 1998) to identify the RBM modes.
POD was introduced for the analysis of turbulent flows by Lumley (Lumley 1967) and
it has been widely used in literature for both steady and unsteady problems (Stabile
and Rozza 2018; Ripepi et al. 2018; Stabile et al. 2017; Ripepi and Goertz 2015;
Zhan, Habashi and Fossati 2015; Iuliano and Quagliarella 2013; Carlberg and Farhat
2008; Lieu, Farhat and Lesoinne 2005; Bui-Thanh 2003; Legresley and Alonso 2000),
since it allows to describe most of the information of the initial data set with the
lowest number of modes possible (Holmes et al. 2012). It identifies a basis, which is
the closest to the set of snapshots in terms of an average projection error based on an
energy norm. The POD optimality has to be intended as the ability to describe most
of the energy content of the initial data set with the lowest number of modes possible.
Nevertheless, POD considers no correlation among the snapshots of the system at the
feature extraction level. Each snapshot is treated as a statistical realization of the
system under consideration and stochastically independent from all the others. This
might be a strong limit when unsteady problems are considered and the evolution over
time is strongly nonlinear. The statistical approach of POD might results in the loss
of important dynamical information (Rowley 2005), which are usually not the most
likely realization of the system (the most energetic ones).

A lot of effort has been put in the literature to overcome this recognized limit. The
Dynamic Mode Decomposition (DMD) (Schmid 2010) was introduced as a method
intended to extract dynamic information also and not only spatial structures from the
snapshots. Once the dynamic modes are extracted from the data, the system dynamics
can be reconstructed using an analytic formula where time appears explicitly, without
the need to rely on the governing equation of the initial system or other techniques to
recover time dynamics. The DMD procedure to approximate the time dynamics relies
only on the super-position of dynamic modes oscillating in time with a particular
frequency and grow/decay rate. This might become a source of inaccuracy when flows
with no characteristic pattern in frequency are considered. It is worth to notice that
DMD is equivalent to Discrete Fourier Transform (DFT) when applied to a data-set
with zero-mean (Chen, Tu and Rowley 2012). Attempts to overcome the limits of
POD and DMD for complex, non-periodic unsteady flows, led to the introduction of
the so-called Spectral Proper Orthogonal Decomposition (SPOD) (Sieber, Paschereit
and Oberleithner 2016), that introduces a filter at the basis extraction level, which
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explicitly allows taking into account the snapshots temporal correlation. The filter can
be applied over a time window which varies continuously from an interval of zero-size
to the whole observed time-interval. This allows SPOD to be a bridge between POD,
i.e. filter of zero-size, and DMD/Discrete Fourier Transform (DFT) when the filter is
applied over the whole time-interval. In the last case, the modes time dynamics is in
fact dictated by sines and cosines as it would be for DFT. As such, SPOD aims at
identifying a bridge between the ability to obtain an optimal reduction of the system
and the need to preserve the nonlinear dynamic information coming from data (Noack
2016). The main effect of the SPOD filter applied at the basis extraction stage is
to change the energy levels associated to the modes which define the reduced basis.
The energy level of each mode is defined on the basis of the norm used for the basis
extraction.

The aim of the present work is to investigate how the energy redistribution induced
by the SPOD extraction technique over the reduced basis can influence the reconstruc-
tion of particular unsteady aeronautical flows, namely the dynamics of the starting
vortices detaching from airfoil and wings with complex geometries consequently to an
impulsive start. The square cylinder is also considered to evaluate the different per-
formances of POD and SPOD when a von Karman vortex street is established. The
paper is structured as follows: in Sections 2 and 3 the offline and on-line phases of
the RBM techniques used, namely POD and SPOD, are briefly described, in Section
4 the techniques are applied to the chosen test-cases and results are presented, finally
in Section 5 a discussion and conclusions are reported.

2. Proper Orthogonal Decomposition and Spectral POD

In this section, POD and SPOD are briefly introduced with particular attention to the
crucial differences on the basis of which the two methods will behave in reconstructing
the dynamics of unsteady flows. In the following, only data coming from CFD simu-
lation will be considered as snapshots. A reduced basis method allows to express the
unsteady solution u(x, t) of the original system in terms of an combination of modes

u(x, t) ≈ û(x, t) =

Nm∑
i=1

ai(t)φi(x) (1)

with Nm, number of modes, smaller than the number of initial snapshots Ns, used to
build the RBM, and much smaller than the number of initial DoF coming from the
CFD simulation. The φi are the modes which define the low-dimensional basis, while
the ai are the coefficients required to reconstruct the physical solution starting from
the modes. They can be provided by intrusive or non-intrusive techniques.

POD allows to extract an optimal basis from a given set of snapshots in terms
of a specific norm, defined over the n−dimensional space spanned by the snapshots
themselves. For a CFD simulation n is the number of grid points defined by the mesh
times the number of unknowns chosen to build the reduced basis. The norm is taken
as the measure of the global kinetic energy of each flow snapshot

‖u‖ =

√√√√ n∑
i=1

u2
i (2)
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where u is the vector of unknowns, which is a unique column vector with all the
velocity components at each grid point, u = [u, v, w]T . Therefore, the POD optimality
condition, which allows to extract the closest basis to the initial dataset, is defined

max
Φ∈Rn

〈U,Φ〉 with ‖Φ‖ = 1 (3)

where 〈·, ·〉 represents the average over time and U is the matrix of the collected snap-
shots {u1,u2, . . . ,uNs

}. In order to extract POD modes Φ, the method of snapshots
introduced by Sirovich (Sirovich 1987) has been largely used in literature, especially
for fluid dynamics problems, since it is based on solving an eigenvalue problem that
is much smaller than the initial number of degree of freedom. According to Sirovich,
since POD modes can be expressed as a linear combination of the initial snapshots

φi(x) =

Ns∑
i=1

aiui (4)

the procedure used to extract POD modes is equivalent to solving the following eigen-
value problem

Rai = λiai (5)

where R is the POD temporal correlation matrix, defined as R = U∗U, λi are the POD
eigenvalues, which are a measure of the energy associated to the corresponding mode,
and ai are the POD eigenvectors, which bring information about the time dynamics.
At this point it can be noticed how the dimension of the eigenvalue problem to solve
is Ns, number of snapshots used to build the POD basis, much smaller than n, DoF.
The spatial modes can be recovered then as

φi =
1√
λi

Uai (6)

The idea of Spectral POD is to introduce a filter applied to the correlation matrix R,
which leads to the following filtered matrix

Rfi,j =

Nf∑
k=−Nf

gkRi+k,j+k (7)

where Nf is the size of the SPOD filter, gk are weights. Equation (7) shows that
the SPOD filter acts along the diagonal of the temporal correlation matrix, which is
equivalent to weight elements characterized by the same ∆t in time, i.e. the function
R(t1, t2) is evaluated for different t1 and t2, keeping t1 − t2 = ∆t constant (Sieber,
Paschereit and Oberleithner 2017). This procedure leads to an energy redistribution
within the modes with respect to POD, which will be shown to be useful to recover
a better dynamics. The filter Nf , which is the SPOD tuning parameter, allows to
make a balance between the most likely states of the system, i.e. the most energetic
ones provided by the POD, promoting the dimensionality reduction, and the temporal
correlation between snapshots, which is important to preserve the dynamics of less
energetic structures. The weights gk can be defined in different ways, but the most
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reasonable choice seems to be either a box filter with gk = 1
1+Nf

= const. or a Gaussian

filter with certain variance (Sieber, Paschereit and Oberleithner 2016). Once the Rf

matrix is computed, the procedure to extract spatial and temporal modes proceeds
in the same way as POD. It is worth to notice that, when the filter in Equation (7)
acts over all the correlation matrix, Rf becomes a Toeplitz matrix and the SPOD is
equivalent to a DFT (Gray 2006; Wise 1955). Therefore in the following, when the
SPOD is performed using Nf equal to the size of the matrix R, it will be referred to
as either DFT or SPOD.

3. Reconstruction

To obtain the coefficients for reconstruction in Equation (1) at each desired time
instant an intrusive or non-intrusive technique can be used. The intrusive technique is
a projection technique where the system governing equations are first projected into
the extracted low-dimensional basis and then integrated using the classical methods
for solving ODEs or PDEs. The non-intrusive technique consists instead of a data-
fitting approach based on the available snapshots. Most of the literature about RBM
for unsteady problems uses intrusive techniques while non-intrusive techniques are
more often considered for parametric studies. In the present work, a non-intrusive
procedure is used to obtain the coefficients, to avoid some of the known issues of
projection based approaches when dealing with compressible viscous flows (Rowley,
Colonius and Murray 2004; Weller, Lombardi and Iollo 2009; Barone et al. 2009).
Radial basis functions are considered

aj(t) ≈
Ns∑
i=1

wif(‖t− ti‖) (8)

where the ti are the time instants corresponding to the components of the POD eigen-
vectors ai in Equation (5).

4. Results

Three test cases are considered to evaluate the ability in reconstruction of the POD
and the recent SPOD introduced in Section 2. Two different categories of flows are con-
sidered, namely a flow with periodic oscillations and an unsteady impulsive start flow
without any characteristic frequency. The improved ability of the SPOD is highlighted
in reconstructing the second category of flows over the all time interval investigated,
once the energetic content is fixed, as opposed to the case of a periodic motion, where
POD and SPOD are only slightly different. The energetic content of the reduced basis
as a function of the number of modes Nm is computed as

Ec =

∑Nm

i=1Ei∑Ns

i=1Ei
× 100 =

∑Nm

i=1 λi∑Ns

i=1 λi
× 100 (9)
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Nf Nm/Ns

En = 99.9%
εu(%) εv(%) Nm/Ns

En = 95%
εu(%) εv(%)

0 (POD) 22/30 1.5 4.0 6/30 3.4 8.4
10 28/30 1.4 3.8 10/30 4.3 9.4
20 29/30 - - 12/30 2.7 7.5

30 (DFT) 29/30 - - 13/30 2.0 5.7
Table 1. Error in reconstruction for the square cylinder, computed according to Equation (10) for u and v

component of velocity, for two different energetic content and varying the SPOD filter size.

For each test-case, the snapshots are obtained using the SU2 CFD solver and the
global error in reconstruction, defined as

ε =
‖uCFD − uRBM‖
‖uCFD‖

(10)

is reported for a specific time instant, where the uRBM is the reduced basis reconstruc-
tion obtained with either POD or SPOD, fixing the energetic content in Equation (9),
whereas uCFD is the exact CFD solution. Moreover, qualitative results in terms of
reconstruction are reported as well, comparing the contour lines of the RBM and CFD
solution. All the reconstructed time instant are computed out of the training points,
in order to test how the RBM performs in reconstructing new solutions, i.e. not used
to build the reduced basis.

Square Cylinder. The periodic flow past a square cylinder is considered. The solu-
tion is initialized using the far field conditions and the sampling of the snapshots to
build the reduced basis is carried out after the initial transient, once the vortex shed-
ding has established. The domain discretization is performed through a completely
structured mesh with 190244 number of elements and 191040 number of points. A
dual time-stepping method is used for the unsteady simulation with ∆t = 1.5×10−3 s
and the Mach number, Reynolds number and angle of attack are respectively M = 0.1,
Re = 22000 and α = 0 deg. At the fixed Reynolds number, the vortex street is tur-
bulent, therefore the simulation is run as fully turbulent using SST turbulence model.
To build the RB, a sampling ∆t equal to four times the ∆tCFD is fixed and a number
of snapshots Ns = 30 is sampled over the limit cycle, equispaced in time. The time
required to compute one single time step of the CFD simulation is approximately 0.5
h on one core, considering for the dual-time stepping 10−6 as the residuals tolerance
and a maximum of 1000 inner iterations. For both POD and SPOD, the time required
is approximately 0.3 s for off-line phase and 0.12 s to obtain a single reconstructed
snapshot for the on-line phase. Table 1 reports the error for the two components of
velocity as defined in Equation (10) and the number of modes required for two fixed
energetic contents, namely 95% and 99.9%. Figures 1 and 2 report instead contours
of the exact and reconstructed solution.

30P30N airfoil. The impulsive start of the three component 30P30N airfoil is now
investigated (Rumsey et al. 1998). The solution is initialized using the far field condi-
tions and the sampling of the snapshots to build the reduced basis is performed from
the first step of the simulation. The mesh used for the domain discretization is a vis-
cous unstructured mesh with 559652 number of elements and 327733 number of points.
A dual time-stepping method is used for the unsteady simulation with ∆t = 10−3 s
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Figure 1. Comparison between velocity magnitude contours from CFD and RBM reconstruction with dif-
ferent values of the SPOD filter, using Ec = 95% at time t = 3.5 s from the impulsive start (left to right,

top to bottom: Nf = 0, 10, 20, 30). Solid line: CFD coloured with the value of the error ε; Dashed line: RBM

reconstruction.

Figure 2. Comparison between velocity magnitude contours from CFD and RBM reconstruction with dif-

ferent values of the SPOD filter, using Ec = 99.9% at time t = 3.5 s from the impulsive start (left to right,
top to bottom: Nf = 0, 10, 20, 30). Solid line: CFD coloured with the value of the error ε; Dashed line: RBM
reconstruction.
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Figure 3. Comparison between velocity magnitude contours from CFD and RBM reconstruction with differ-

ent values of the SPOD filter, using Ec = 95% at time t = 6.5× 10−2 s from the impulsive start (left to right,

top to bottom: Nf = 0, 10, 30, 40). Solid line: CFD coloured with the value of the error ε; Dashed line: RBM
reconstruction.

Nf Nm/Ns

En = 99.9%
εu(%) εv(%) Nm/Ns

En = 95%
εu(%) εv(%)

0 (POD) 20/40 0.4 0.98 7/40 2.8 4.9
10 32/40 0.3 0.72 14/40 1.7 3.2
20 35/40 0.2 0.53 18/40 0.8 1.9
30 38/40 - - 22/40 0.5 1.2

40 (DFT) 40/40 - - 25/40 0.5 1.2
Table 2. Error in reconstruction for the 30P30N, computed according to Equation (10) for u and v component

of velocity, for two different energetic content and varying the SPOD filter size.

and the Mach number, Reynolds number and angle of attack are respectively M = 0.2,
Re = 9×106 and α = 19 deg. The turbulence is modeled using SST turbulence model.
The RB is built using a sampling ∆t equal to three times the ∆tCFD and a number
of snapshots Ns = 40 equi-spaced in time. The time required to compute a single
time step for the CFD simulation is approximately 1.25 h on one core, considering for
the dual-time stepping 10−6 as the residuals tolerance and a maximum of 1000 inner
iterations. For both POD and SPOD, the time required is approximately 0.7 s for the
off-line phase and 0.32 s to obtain a single reconstructed snapshot for the on-line phase.
Table 2 reports the error for the two components of velocity as defined in Equation
(10) and the number of modes required for two fixed energetic contents, namely 95%
and 99.9%. Figures 3 and 4 report instead contours of the exact and reconstructed
solution.

High-Lift wing-body configuration. The impulsive start of a high-lift wing body
configuration is finally considered (Rumsey et al. 2011). Only half of the geometry is
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Figure 4. Comparison between velocity magnitude contours from CFD and RBM reconstruction with dif-

ferent values of the SPOD filter, using Ec = 99.9% at time t = 6.5 × 10−2 s from the impulsive start (left to

right, top to bottom: Nf = 0, 10, 30, 40). Solid line: CFD coloured with the value of the error ε; Dashed line:
RBM reconstruction.

retained and a symmetry boundary condition is imposed on the plane of symmetry.
The mesh used is a viscous unstructured mesh with 21492137 number of elements
and 3652657 number of points. Analogously to the previous test-case, the solution is
initialized using the far field conditions and the sampling of the snapshots to build the
reduced basis is performed from the first step of the simulation. A dual time-stepping
method is used for the unsteady simulation with ∆t = 10−3 s and the Mach number,
Reynolds number and angle of attack are respectively M = 0.2, Re = 4.3 × 106 and
α = 13 deg. The turbulence is modeled using SST turbulence model. To build the RB, a
sampling ∆t equal to six times the ∆tCFD is fixed and a number of snapshots Ns = 18
is sampled, equi-spaced in time. The time required to compute a single time step for
the CFD simulation is approximately 80 h on one core, considering for the dual-time
stepping 10−6 as the residuals tolerance and a maximum of 1000 inner iterations. For
both POD and SPOD, the time required is approximately 12 s for the off-line phase
and 8.2 s to obtain a single reconstructed snapshot for the on-line phase. Table 3
reports the error for the three components of velocity as defined in Equation (10) and
the number of modes required for a fixed energetic content of 99.9%. Figures 5 and 6
report instead contours of the exact and reconstructed solution on two different slices
in span wise direction.

5. Discussion and final remarks

The use of the two RBM introduced in Section 2 to reconstruct new approximate
solutions reduces the computational time of several order of magnitude with respect
to the full order model. The energy redistribution due to the filter applied to the
POD correlation matrix entails a greater number of modes to reach a fixed energetic
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Figure 5. Comparison between velocity magnitude contours from CFD and RBM reconstruction with dif-
ferent values of the SPOD filter, using Ec = 99.9% at time t = 8.1 × 10−2 s from the impulsive start (left

to right, top to bottom: Nf = 0, 6, 12, 18). Filled contours: CFD velocity magnitude; Solid black lines: RBM
reconstruction.

Figure 6. Comparison between velocity magnitude contours from CFD and RBM reconstruction with dif-

ferent values of the SPOD filter, using Ec = 99.9% at time t = 8.1 × 10−2 s from the impulsive start (left
to right, top to bottom: Nf = 0, 6, 12, 18). Filled contours: CFD velocity magnitude; Solid black lines: RBM
reconstruction.
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Nf Nm/Ns

En = 99.9%
εu(%) εv(%) εw(%)

0 (POD) 14/18 1.20 1.35 3.65
6 17/18 1.22 - -
12 18/18 - - -

18 (DFT) 18/18 - - -
Table 3. Error in reconstruction for the 3D wing-body configuration, computed according to Equation (10)

for u, v and w component of velocity, with fixed energetic content and varying the SPOD filter size.

content for each test-case, as it can be noticed from Tables 1, 2 and 3. Nevertheless,
the computational cost of the two techniques is almost the same, both for the off-
line and on-line steps, since the main dimensionality reduction is performed in terms
of considering at most Ns modes, instead of the n initial DoF coming from the CFD
simulation. There is no significant effect on the global error as the filter is varied for the
three test-cases but differences can be noticed locally, looking at the contour fields.
For the periodic case, vortex shedding past a square cylinder, an energetic content
of 99.9% shows no difference between POD and SPOD (Figure 2). However, as the
energetic content is lowered to 95% (Figure 1) a fine difference can be noticed between
the two techniques in resolving the coherent structures more downstream in the von
Karman vortex street.

For the case of the impulsive start of the 30P30N airfoil, the same behaviour can be
highlighted for both the energetic content (Figure 3 and 4). The POD doesn’t perform
as well as SPOD in reproducing the dynamic of the starting vortex as it propagates
downstream and dissipates. The difference between the two techniques is much more
remarkable when an energetic content of 95% is fixed (Figure 3), where it can be
noticed how the performances in resolving the starting vortex dynamics improve
significantly as the filter increases. Finally, for the 3D wing-body configuration, the
Figures 5 and 6, corresponding to an energetic content of 99.9%, highlight again how
the POD fails in reconstructing the whole dynamics of the starting vortex. As a matter
of fact, Figure 6 shows how the reconstruction improves as the filter increases in the
sense that more details of the flow field are recovered. This behaviour, common over
the three test-cases, can be easily explained considering the optimization procedure
on which POD basis extraction is performed. Since the POD modes represent a set
which maximize in average the energy of projection of the set of initial snapshots,
coherent structures which are less energetic might not be recovered properly. This
can be clearly seen comparing the two slices reported in Figures 5 and 6 for the 3D
test-case. Closer to the wing, where the coherent structures have an higher energetic
content, POD is able to recover the flow field with the same level of detail as SPOD.
On the slice far away from the wing, instead, the coherent structures are less energetic
and SPOD performs better.

Downstream of these observations the following conclusions can be drawn:

- The energy-based POD mode truncation has limitations in recovering the whole
unsteady dynamics of less energetic structures;

- It is relevant to take into account the temporal dependency of snapshots at the
modes extraction level (SPOD filter applied to the temporal correlation matrix);

- The energy-based SPOD mode truncation allows a better reconstruction of less
energetic flow structure dynamics.
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