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Abstract

This paper presents a study of the erosion resistance of coated and uncoated polymer 

matrix composites for tidal turbine conditions. It focuses on the development of 

comparative erosive wear mode and mechanism maps for such materials. In our earlier 

work, i.e. testing of glass fibre reinforced polymer composites for tribological applications in 

marine simulated conditions, several erosion related issues were highlighted. The combined 

effects of the NaCl solution and sand enhanced the erosive wear dramatically of the 

uncoated specimens. In order to address those issues, an erosion resistant polymeric 

coating was applied to the composite and tested in marine simulated conditions with an 

extended range of sand particle size. The test results of the uncoated and coated composite 

have been compared in this research by erosive wear mode and mechanism maps 

techniques. These maps reveal that the coating has enhanced the erosion resistance. These 

findings provide significant progress towards materials selection approaches to manufacture of 

tidal turbine blades.

Keywords: Tidal turbine blade, leading edge erosion, polymeric composite and coatings, 

erosion maps
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1. Introduction

Decreasing amounts of fossil fuel reserves and increasing awareness of environmental 

issues have forced a significant increase in research of renewable energy sources, such as 

wind, marine, solar, and biomass electricity generation technologies. Of these technologies, 

marine energy has significant advantages compared to other available renewable energy 

resources. Marine tidal energy is extremely predictable and can be developed without the 

destruction of environmental infrastructure [1]. Furthermore, the higher density(x 784) of 

seawater (compared to air) means that a tidal turbine can produce much higher power than 

the equivalent diameter wind turbine operating at similar impact velocities [2].

Contrary to the above-mentioned advantages, there are still several challenges facing the 

tidal power industry before commercialization and full adoption of such technologies on a 

global scale. These can be summarized as technical, design, materials, reliability, cost, 

operation and maintenance issues. In particular, the capital cost and rotor blade material 

reliability of the tidal turbine are major barriers to harnessing this technology [3]. The tidal 

turbine blade is an important part of this device which converts tidal into mechanical energy 

to rotate an electric generator. The materials of the rotor blade must be erosion and 

corrosion resistant in salt water, have favourable antibiofouling properties, and sufficiently 

robust to withstand the aggressive marine environment. [4].

Polymer composites are being used in the manufacturing of the wind turbine blades. Fibre 

reinforced polymer composites have favourable mechanical properties and higher strength 

to density ratio and corrosion resistant qualities. Similar to a wind turbine, fibre reinforced 

polymer composites can be used as tidal turbine blade materials following appropriate 

surface treatment.[5]. To date, there is no optimum design and selection of a suitable 

material for a tidal turbine blade. Tribological issues, such as rotor blade erosion, cavitation, 

and effects of combined impact of solid particle and seawater need to be addressed to 

optimize materials performance [6].

In our previous research work, a commercially available composite G10 epoxy glass laminate 

was tested in a tidal turbine laboratory simulated conditions for leading edge erosion 

evaluation of a rotor blade in seawater conditions containing particles. The test results 

showed various tribological issues, such as matrix cutting, reinforcement fracture, mass 
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gain, salt solution interaction, swelling, fibre and matrix de-bonding, and reinforcement 

degradation resulting in mass gain and erosion of the exposed surface [7]. Similar erosive 

wear behaviour of reinforced composite materials was found by Zahavi et al. in their study 

of such materials [8].

The literature shows that a glass fibre reinforced unsaturated polyester laminate gains 

weight by moisture absorption when immersed in saltwater for different long periods. The 

mechanical properties, such as bending and tensile strength are decreased when it is kept 

immersed in salt water for a longer period [9]. Moreover, G10 epoxy glass laminate has 

shown mass gain by the diffusion of the salt solution. Increases in the overall mass of the 

rotor blades can raise operational issues such as unbalancing of the tidal turbine [10].

Furthermore, an increase in the mass of the rotor blade by diffusion can play a significant 

role in the tribological behaviour of the polymer composite. At the start, the moisture 

passes through a fibre-matrix interface through the pores and void in the matrix by a 

diffusion process. This results in swelling of the matrix, a reduction in adhesion between the 

reinforcement and the resin, and de-bonding of reinforcement fibre and matrix at the 

interface [7]. These factors accelerate the mass loss rate of the material by erosion.  The 

absorption of moisture may result in extraction of soluble elements of the composite 

material in a salt solution. The net mass variation is equal to the difference of mass gain by 

diffusion and mass loss by extraction processes [9, 10, 11, 12].

Similar to a wind turbine blade, the leading edge erosion of a tidal turbine blade results in 

roughened surfaces. A damaged exposed surface of the rotor blade tends to raise different 

problems, such as rapid moisture absorption and accelerated mass gain, increase in 

Reynolds number, which leads to an increase in drag and decrease in lift, resulting in an 

unbalanced blade operation. These factors compromise the efficiency, availability, and 

reliability by increasing the rate of failures, maintenance and operational cost, and 

downtimes for the tidal turbines [13, 14, 15, 16]. For sustainable energy resources, the 

marine renewable energy (MRE) industry needs to ensure that MRE devices must not raise 

any environmental issue and are maintenance free to complete their life cycles [17].

To overcome the above mentioned tribological and diffusion-related issues to enhance the 

performance and life cycle of fibre-reinforced composites in the marine environment, an 
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erosion resistant polymeric coating was applied to the G10 epoxy glass laminate substrate. 

Both the uncoated and coated specimens were tested in a scaled laboratory simulated tidal 

turbine erosion rig. Mass change and SEM analysis were carried out for both materials. On 

the basis of test results, erosion mode and mechanism maps have been constructed and 

presented in this paper. These erosion maps show that erosion resistant polymeric coatings 

functioned as a barrier between seawater and the substrate along with an enhancing 

erosion resistance of the substrate in the marine environment. The increase in erosion 

resistance of this fibre reinforced composite by the application of coatings is an important 

development towards the selection and use of advanced materials for the manufacturing of 

the tidal turbine blades. Future work will involve exploring and testing of further advanced 

materials and hybrid composite coatings for such applications.

2. Experimental

2.1. Material

A commercially available composite G10 epoxy glass laminate was used for this study as an 

uncoated specimen and as a substrate for the polymer coatings. This composite has 

favourable mechanical properties such as high strength, high stiffness, and high creep 

resistance. This material is being used in several industries, such as aerospace, medical, and 

power generation under seawater applications. It is comprised of epoxy resin with 

continuous glass fibre cloth reinforcement. Moreover, this thermosetting material has low 

moisture absorption and corrosion resistance in both onshore and offshore environments. 

The size of specimens was 60 x 25 x 6 mm by length, breadth, and thickness.  Figure 1(a) 

shows the pre-test SEM image of the uncoated specimen.  The material properties are as 

below:

Table 1. G10 epoxy glass laminate properties

Flexural strength (MPa) = 482 Tensile strength (MPa) = 320
Shear strength (MPa) = 131                                          Charpy impact strength (kJ m-2) 65

Density (g cm-3) = 2 Specific gravity = 2
Water absorption (mg m-2) = 8 Hardness, Rockwell (m-scale) = 110
Body colour = Green Standard finish = Satin/Glossy
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Figure 1: (a) SEM image of the uncoated specimen, and (b) SEM image of the coated specimen.

2.2. Coating

Erosion and corrosion resistant polymeric coating were tested in this research work. This 

coating process is a rapid and cold cure. The coatings were supplied and generated by 

Belzona Polymerics Ltd. Using on our samples above as substrates. This polymeric coating 

consists of two components, the base component is an Epoxy Phenol Novolac Resin, and the 

other solidifier component is a Polyalkene Amine. The combination ratio for the base to 

solidifier component for the coating is; 2.2 parts base: 1 part solidifier (by weight). These 

components are the uncured Epoxy resin, which when mixed, begins the curing process to 

form a polymeric coating. The chemical composition of base and solidifier is shown 

separately in Table 2. As a preparation process, the specimen surfaces were roughened to 

75 Ra (μm) with 100 μm chilled iron grit and cleaned with a cleaner agent. After preparation 

of samples, the coating was applied by a hand short bristle brush. The average thickness of 

the coatings was 0.5 mm [18]. Fig. 1 (b) shows the pre-test SEM image of the coated 

specimen. The mechanical strengths and other material properties are shown in Table 3.

Table 2. Chemical composition of base component and solidifier component

Base component Quantity

Epoxy Phenol Novolac Resin 100%

Solidifier component (Mixture) composition Quantity
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Polyalkylene Amine 55-60%

Phenol, Styrenated 25-30%

2-Piperazine-1-Yl Ethylamine 10%

Formaldehyde Polymer with 1.3 

Benzenedimethanamine and Phenol

1-5%

Table 3. Coating properties

Flexural strength (MPa) = 43.1 Flexural Modulus (MPa) = 2037.4   
Mandrel Flexibility = Pass at 2.5° / pipe dia. Tensile shear strength (MPa) = 26.9

Pull off adhesion (Posi Test Dolly Pull off) 
(MPa) = 22.1

Taber Abrasion: Wet (H10 Wheels) = 46mm3

Dry (CS17 Wheels) = 13mm3 loss per 1000 
cycles

Elongation = 1.12% Young’s Modulus (MPa) = 1963.6
Compressive yield strength (MPa) = 39.8 Compressive Modulus (MPa) = 784.6
Density (g cm-3) = 1.14 Hardness, Shore D = 77
Relative density = 1.14 Water absorption (mg m-2) = Nil

2.3. Test slurries and test conditions

Two types of saltwater (sea water analogue) plus sand slurry were used for the testing of 

the uncoated and coated polymeric composite substrate. Sand was divided into two groups 

on the basis of particle size as Sand ‘A’ (200 ± 50μm) and Sand ‘B’ (425 ± 175μm); the shape 

of sand particles was sub-angular. The salinity of the slurry was 3.5% salt and sand 

concentration was 3% of the mass of the water. The test was run in room ambient 

conditions for 2 hours at the rotor blade tip velocity of 3 ms-1 of the rotor blade. The slurries 

were changed after half an hour of the test run during each experiment to reduce the 

effects of sand particle shape attrition. The range of angles of attack tested was 0° to 90° 

with an increment of 15°.

The angle of attack plays an important role in the leading edge erosion of the tidal turbine 

blades. Figure 2 shows the schematic of an incident of an angle of attack at the leading edge 

of the rotor blade. The leading edge is located at the forward intersection point of the upper 

and lower surface of the hydrofoil of the rotor blade. A straight chord line passes through 
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the leading edge and trailing edge of the hydrofoil. The angle of attack ‘α’ shown in Fig. 2, is 

between the relative velocity vector and the chord line. An angle of attack depends on the 

shape and profile of the hydrofoil of a rotor blade. A rotor blade is designed to extract 

maximum power from the marine tide flow stream on the basis of lift force; drag force and 

camber of the hydrofoil.

The range of angles of attack was selected in view of the numerical analysis and 

experimental results available in the literature for the operating conditions of the rotor 

blades. Muratoglu et al. [23] had carried out a performance basis numerical analysis by 

using JavaFoil Code on the already developed hydrokinetic turbine blade with respect to 

angles of attack. They studied lift, drag and pressure coefficients of different hydrofoils, 

such as NACA, NREL, and RISф hydrofoils. On the basis of comparison of JavaFoil, XFOIL, 

EllipSys2D, and experimental results they found that an angle of attack 15° had the highest 

value of the coefficient of lift [23].

Figure 2: The angle of attack on the leading edge of the hydrofoil [16].

The lift coefficient has a small value at the lower angle of attacks, which increases with the 

increase in angle of attack in a linear manner until it reaches the highest value. Then it 

decreases abruptly and the hydrofoil stalls as the angle of attack increases. On the other 

hand, a coefficient of drag increases with an increase in the angle of attacks [16]. In a 

technical review, Fraenkel [24] has stated that hydrofoils stalling results in a sudden 

increase in drag and decrease in efficiency. Therefore the rotor blades are designed to 

operate just before the stalling point. He concluded that a good shaped cambered hydrofoil 

with a cylindrical leading edge is more efficient and operates at higher angles of attack as 
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compared to other unfavourable shaped ones. Moreover, there is a need to twist tidal 

turbine blades to operate at different angles of attack at various radii [24]. Like a wind 

turbine blade, there are three main phases for the erosion of the rotor blade as upper core 

breach, lower core breach and leading edge breach. Therefore the erosion may occur on any 

exposed surface of the rotor blade [51]. That is why this experimental work was carried out 

for a range of angles of attack 0° to 90° to establish a database for the leading edge erosion 

of the tidal turbine blade. 

Moreover, in view of the above mentioned experimental conditions, the tip speed of the 

rotor was optimised to get a steady and an undisturbed flow of the slurry in the test 

chamber to investigate the leading edge erosion due to the solid particle in a marine 

simulated environment. The cavitation damage was not considered at this stage because 

the required vapour pressure could not be reached to generate bubbles in the slurries. 

Moreover, the difference between the root and tip speed was also ignored in this paper. 

The solid particles were treated at rest and the tip speed was considered as the speed of 

impingement [25].

2.4. Test Apparatus

A slurry pot test rig was used for this experimental work to simulate laboratory conditions of 

a tidal turbine (the conditions have been scaled down for realistic tidal turbine conditions as 

identified by CFD modelling and identification of thrust loads on the blade surface) Fig 3. 

This rig has two motors, the upper function as a tidal turbine rotor and the bottom maintain 

the sand slurry in suspension in the test chamber. Two specimens can be tested at the same 

time at different angles of attacks. A range of angles attack can be tested in this 

configuration. The four baffles bars in the test chamber are installed to minimise swirling 

and centrifugal effects. These bars also provide a flow of the slurry in the axial direction. The 

upper and bottom motors rotate in different directions to ensure even mixing of the sand 

particles in solution and to maintain an even flow of the slurry in the test chamber [19 - 22]. 

Page 8 of 26

http://mc.manuscriptcentral.com/tandf/tribtrans, E-mail: cdellacorte@stle.org

Submitted Manuscript for Tribology Transactions for Peer Review Only

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review Only

9

Figure 3: (a) The slurry pot test rig, and (b) the test chamber.

2.5. Test Methodology

The test samples were cut into a size of 60 x 25 mm from a G10 epoxy glass laminate sheet 

of 6 mm thickness. The specimens were cleaned and weighed on an analytical balance prior 

to and after the test run. The accuracy of this electronic balance was 0.1 mg. The front face 

position of the sample in the specimen holder was taken as an impact angle of the slurry 

[20]. A vortices free lower impact velocity was chosen for this experimental work [22]. The 

axial movement of the slurry was confirmed by a high speed camera by analysing the 

trajectory of the erodent in the test chamber. The impact velocity of the specimen was 

calibrated for each combination of test slurry and impact angle. The uniform distribution of 

the erodent in the salt water plus sand slurry was maintained by the stirring process of the 

bottom motor [21].

 Before starting an experiment, the test chamber was filled with slurry and removed any 

trapped air from the chamber. At the end of the test, each sample was rinsed in pure water 

and blown with a gentle heat to minimise the effect of water absorption. The mass loss was 

measured 24 hours later after keeping the specimen at the room temperature. For the 

erosion comparison of the uncoated and coated substrate, the volume losses were 

calculated from the densities of both materials. SEM was used to compare the erosion 

behaviour of the uncoated and coated substrate.

Samples

Stirrer

Baffles bars

Bottom motor

Test chamber

Upper motor
(a) (b)

Slurry flow direction
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3. Test results

3.1. Erosive wear

Figure 4 (a) shows the volume loss of uncoated specimens in salt water + Sand A (200 ± 50) 

μm slurry and Figure 4 (b) shows the volume loss of coated specimens in salt water + Sand B 

(425 ± 175) μm slurry. With respect to volume loss, both graphs show high wear of the 

uncoated composite up to the 15° angle of attack, while, for the coating, high erosion is 

observed at a 30° angle of attack. On the other hand, there is low wear prevalent for the 

uncoated composite at an impact angle of 75° and for further higher impact angles.  For the 

coated specimen, there is low wear for the range of angles of attack except 30°.
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Figure 4: (a) Erosive wear of uncoated and coated specimens, in salt water + Sand A (200 ± 50μm) 

slurry, and (b) shows the erosive wear of coated specimens in salt water + Sand B (425 ± 175μm) 

slurry.

(a)

(b)
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3.2. SEM images of the eroded surfaces

3.2.1. SEM images of the eroded surfaces in salty water + Sand A (200 ± 50μm) slurry.

Figure 5 (a, b, c, d) shows SEM images of the eroded surfaces of the uncoated specimens in 

salt water + Sand A slurry. These images show the exposed fibres, blisters, and damaged 

surfaces and fractured fibres, due to the cutting and impact of the erodent. Figure 5 (e, f, g, 

h) shows SEM images of the eroded surfaces of the coated specimens in salt water + Sand A 

slurry. In these images, the micro-cutting action of the erodent dominates the coated 

surfaces at 15° and 30° angles of attack. Figure 5 (f) shows that there is an increased 

intensity of cutting at 30° but the coating was not worn through to the substrate.
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erodent and exposed fibre

and  

Exposed fibre

 

(b)

Brittle fracture and pit 
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exposed fibre
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Ductile cutting action of the 
erodent
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(e)

Ductile cutting action of the 
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Figure 5: SEM images of the eroded surfaces of the specimens in salt water + Sand A (200 ± 50μm) 

slurry, (a) uncoated specimen at angle of attack 15°, (b) uncoated at angle of attack 30°, (c) 

uncoated at angle of attack 60°, (d) uncoated specimen at angle of attack 75°, (e) coated at angle of 

attack 15°, (f) coated at angle of attack 30°, (g) coated at angle of attack 60°, and (h) coated at 

angle of attack 75°.

3.2.2. SEM images of the eroded surfaces in salt water + Sand B (425 ± 175μm) slurry.

Figure 6 (a, b, c, d) shows SEM images of the eroded surfaces of the uncoated specimens in 

salt water + Sand B slurry. In these images, large size sand particles have significantly 

damaged the exposed surfaces. The sharp cutting action of the erodent can be seen at 15° 

and 30° angle of attack Fig. 6 (a, b).  Fracture of the matrix and exposure of fibre could be 

seen on the exposed surfaces as a result of cutting action of the erodent in these images. At 

60° and 75° angles of attack, erosive wear Fig. 6 (c, d), results in severe brittle erosive wear 

of the uncoated composite.

Figure 6 (e, f, g, h) shows SEM images of the eroded surfaces of the coated specimens in salt 

water + Sand B slurry. These images show that erosion mechanism progressing in the same 

manner from 0° to 90° angles of attack as that of in the case of the uncoated composite. 

However, the polymeric coating material showed different erosion behaviour, i.e. “ductile 

erosion”. As it is evident from Fig. 5 (e, f, g, h) and Fig. 6 (e, f, g, h) the coating showed good 

adhesion to the substrate and did not wear through to the substrate.
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Figure 6: SEM images of the eroded surfaces of the specimens in salt water + Sand B (425 ± 175μm) 

slurry, (a) uncoated specimen at angle of attack 15°, (b) uncoated at angle of attack 30°, (c) 

uncoated at angle of attack 60°, (d) uncoated at angle of attack 75°, (e) coated specimen at angle of 
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attack 15°, (f) coated at angle of attack 30°, (g) coated at angle of attack 60°, and (h) coated at 

angle of attack 75°.

4. Discussion

The efficiency of the tidal turbine depends on the performance of the rotor blade. The rotor 

blade is an important and essential part of the tidal turbine, which extracts kinetic energy 

from the tide stream. The working concept of the tidal turbine blade is similar to that of the 

wind turbine blade, but the design and reliability assessment procedure of the wind turbine 

blade cannot be applied due to several reasons, mainly, the heavy load on the tidal turbine 

blade due to the higher density of the seawater [26]. There are several technologies and 

material related factors which compromise the performance and reliability of the rotor 

blade. One of these factors is the tribological issue, such as leading edge erosion by the 

impact of the sand particles, erosion by cavitation, and the combined effects of seawater 

and solid particles on the tidal turbine blade. In this paper, the erosion of the rotor blade 

due to the impact of the erodent in marine simulated conditions, i.e. salt water plus sand 

particles, has been investigated. The erosion due to cavitation was ignored because of 

optimised tip speed and atmospheric pressure, which were not appropriate for reaching a 

vapour pressure to generate bubbles for cavitation [27].

As a part of the research programme on advanced materials for the renewable devices, a 

commercially available fibre reinforced polymer composite G10 epoxy glass laminate 

substrate and coated with a polymer composite erosion resistant coating was tested in a 

laboratory simulated tidal turbine blade conditions. Test results of the uncoated composite 

revealed a different erosion behaviour of this composite than that of metal. So-called 

ductile or brittle erosion behaviours of metals have not been followed by this material Fig. 4 

(a) & (b). The volume loss trend of the substrate shows semi ductile erosion behaviour of 

this material. The variation of erosive behaviour of the fibre-reinforced composite can be 

attributed to its material class, mechanical properties, and combined effects of the erodent 

and seawater [7, 28, 29, 52].

For marine devices, wear of structural materials is a continuous process. The combined 

effects of solid particle and seawater result in a gradual degradation of materials [7]. Several 

factors relating to the particle, target material and the environment contribute to the 
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degradation of the tidal turbine blades. The effects of these parameters are apparent in Fig. 

4. The volume loss of substrate and coatings increased with an increase in sand particle size 

Fig. 4 (a) & (b). This increase in erosion rate is in agreement with the research work found in 

the literature. For solid particle erosion, the volume loss depends on the solid particles, 

which increases with the increase in size, angularity, and hardness of the erodent. This trend 

is not always constant at higher concentrations of solid particles. Higher concentrations 

result in the dissipation of kinetic energy of the solid particle due to mutual collisions, 

blanketing and limited rotation in the stream [22, 28].

By correlating the volume loss of the substrate, Fig. 4 (a) & (b) with the topographies of the 

eroded surfaces in Fig. 5 (a, b, c, d) & Fig. 6 (a, b, c, d), it is apparent that the cutting action 

of the erodent leads to high volume loss as well as degradation of the exposed surfaces at 

the lower angles of attack. At the higher impact angles, brittle fracture of the matrix of the 

uncoated composite dominates in these images for both slurries. In the context of fibre 

reinforced composite as a tidal turbine blade material, these surface degradation processes 

can raise several issues, such as leading edge erosion, rapid rate of diffusion and accelerated 

mass gain and an increase in Reynolds number, which results in a decrease in the lift to drag 

ratio and reducing the operational efficiency of the turbine blade.

The increase in mass plays a significant role in the degradation of the fibre reinforced 

composite material. Initially, the moisture diffuses to the fibre-matrix interface through the 

pores and voids. The absorbed moisture can result in swelling of the matrix, crack initiation, 

pit propagation, reduction in adhesion between reinforcement and resin, de-bonding of 

reinforcement fibre and matrix at the interface, and the decrease in mechanical properties. 

These results are consistent with our previous study for this substrate [7, 11, 27]. The 

absorbed moisture results in the extraction of soluble matter from the composites into the 

slurries. The net mass variation will be the difference of mass gain by diffusion and mass loss 

by the extraction processes [9, 10, 11, 12]. All these rotor blade material related factors 

affect the performance and life cycle the marine tidal turbines [13, 14, 15, 16].

The unique trend of solid particle erosion, i.e. the ductile and brittle material erosion 

behaviour depends on the properties of the erodent. Erosion of ductile material may peak 

at a lower angle of attack, while the erosion of nominally brittle one peak at 90° [31]. 
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Furthermore, it is clearly mentioned in the literature that rubber and thermoplastic polymer 

these observations, the uncoated composite follows “semi ductile” erosion behaviour, while 

the polymer coating follows “ductile” behaviour of this tribo-system. This is to point out that 

classical erosion of materials does not hold especially when the particle geometry changes, 

e.g. from angular to round one; in all, the erosion trend is determined by the properties of 

the erodent as well as that of target materials [32].

Contrary to the substrate, the use of erosion resistant coating reduces the volume loss Fig. 

4. The coated specimens show a peak in volume loss at an angle of attack 30° in both 

slurries, which is a ductile erosive behaviour of this material Fig. 4 (a) & (b). The erosion 

behaviour of this composite is in agreement with the research work found in the literature 

[8, 31, 32]. Other work has shown that the peak in volume loss due to erosion depends on 

the characteristics of the erodent as well [33]. The cutting action of the erodent  dominates 

at lower angles of attack, which results in higher volume loss of the coating at 30° Fig. 4, Fig. 

5 (e, f), Fig. 6 (e, f), [30]. The exposed surface topographies show the volume loss is followed 

by the deformation of the upper layers of the coating, Fig. 5 (g, h), Fig. 6 (g, h), [8]. The 

coating acts as a barrier between saltwater and substrate, remains intact with good 

adhesion to the substrate and protects the composite from the tribological as well as 

environmental damage Fig. 5 (e, f, g, h), Fig. 6 (e, f, g, h). Moreover, this polymeric coating 

remains insoluble as well as non-reactive with saltwater [18, 53, 54]. Despite these 

developments, there are still erosion issues with this coating, which need to be addressed in 

order to increase the efficiency of such devices by reducing the drag forces on the rotor 

blades [47].

5. Erosive wear maps

Wear maps are a powerful tool for the investigation of a tribo-system data in a 

comprehensive manner. These maps provide basic information and a guide to the designers 

and engineers in the selection of appropriate materials, system operating conditions, 

prediction of wear behaviour, mechanisms of failures of components and devices for the 

tribological aspects. These can be categorised as erosion mode maps, erosion-transition 

maps, erosion-regime maps, and erosion-mechanism maps. Generally, wear-mode, wear-

transition and wear-regime maps focus on the description of the wear mode, while the wear 
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mechanism map details the mechanisms of wear and highlights the regions of wear 

dominance of a tribo-system. The wear modes and mechanisms transitions boundaries are 

approximated on these maps. The erosion modes can be termed as low erosion, medium 

erosion, and severe erosion [34 – 37]. These maps have been constructed for a range of 

angles of attack 0° to 90° to establish a database for the leading edge as well as overall 

erosion of the tidal turbine blade. 

5.1. Erosion mode maps

In view of the experimental observations such as volume loss, exposed surface 

topographies, and literature, empirical wear mode maps have been constructed of uncoated 

and coated composite substrate to assess the coating performance Fig. 7. These maps can 

be a useful technique for the investigation and prediction of mode degradation, level of 

wastage, and potential ‘safe’ and ‘unsafe’ operation conditions for a tidal turbine material. 

The following erosive wear mode regimes (a) very low erosion, (b) low erosion, (c) medium 

erosion, and (c) severe erosion are defined in view of volume loss, consistent with research 

literature, and physical observations of the exposed surfaces such as SEM images [34 – 37].

Erosion mode regime boundaries:

a) Very low erosion ≤ [(5 x 10-10)m3] + exposed surface topography

b) [(5 x 10-10)m3] < Low erosion ≤ [(12 x 10-10)m3] + exposed surface topography

c) [(12 x 10-10)m3] < Medium erosion ≤ [(26 x 10-10)m3] + exposed surface topography

d) Severe erosion ˃ [(26 x 10-10)m3] + exposed surface topography

(a) (b)
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Figure 7: Erosion mode maps in sand + salt solution, a) uncoated composite, and b) coated 

composite.

As shown in Fig. 7 (a), for the uncoated specimens severe erosive wear is predominating at 

lower angles of attack because of the cutting action of the erodent. The severity of the 

erosion increases with an increase in particle size, which results in the volume. On the other 

hand, with an increase in impact angle, the wear mode transition occurs from severe to 

medium wear, which again reverts to severe wear. It should be noted that damage of the 

exposed surface due to material displacement, and plastic deformation, without any change 

in weight or volume, can also be incorporated into the wear mapping description and is 

addressed further below [38]. 

The medium wear area on this map describes a mixture of low and severe wear as a result 

of volume loss and surface damage. Both the severe and medium wear zones on this map 

may be regarded as unsafe operating conditions [39]. Moreover, the combined effects 

of salt solution and sand particles on the uncoated composite result in increasingly severe 

erosion by removal of material through the cutting action of the erodent at lower angles of 

attack and impact action of solid particles at higher angles of attack Fig. 5 (a, b, c, d) and Fig. 

6 (a, b , c, d), [7].

By contrast, the coating shows entirely different erosive wear modes than that of uncoated 

composite Fig. 7 (b). The applications of the coatings have expanded the low wear area of 

the map of this tribo-system and results in the creation of a new wear regime, i.e. very low 

wear. Moreover, the severe wear mode has been eliminated from the map. The very low 

and low wear regimes areas can be regarded as safe operating conditions [39]. Comparison 

of these maps shows that the coating has increased the erosion resistance of the substrate 

by a factor of 3 [39 – 41, 42 - 44].

5.2. Erosion mechanism maps

Erosion mechanism maps show the composite substrate and coating underwent 

degradation with changes in impact angles and sand and salt water slurries in this tribo-

system Fig. 8, [39 – 41, 42 - 44]. These maps can be helpful to correlate the erosion of the 

rotor blade with laboratory simulated marine conditions to the actual tidal blade 
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operating conditions. The erosion mechanism boundaries are identified on these maps. 

Moreover, these maps clearly show the transitions in erosion mechanisms with the operating 

conditions, which depend on the erosion rate and exposed surface morphologies [45 – 46]. 

It has been well established in the literature that the erosion mechanisms depend on the 

impact angle [32, 48]. The theory of erosion presented by Bitter is based on the assumption 

that up to < 10° impact angles, the erosion is controlled by the cutting process of the 

erodent. At 90°, erosion is controlled by the deformation induced by the impact action of 

the erodent. For the remaining impact angles between 10–90° erosive wear is progressed by 

the combined cutting and deformation wear of the erodent [32 - 48]. This theory is not 

universally accepted as the shape and hardness of the erodent play an important role in the 

erosion of materials as well [31]. There is maximum loss of the kinetic energy of the erodent 

at 90° angle of impact [52]. 

The empirical erosion mechanism maps for the specimens of the substrate and erosion 

resistant coating are shown below in Fig. 8.

Figure 8: Erosion mechanism maps in sand + salt solution, a) uncoated composite, and b) coated 

composite.

Erosion regime I - The uncoated composite indicates semi-ductile erosive behaviour in salt 

water + sand slurries for various impact angles Fig. 4 and Fig. 8 (a). In this region of the 

erosion mechanistic map, severe degradation of the substrate occurred as a result of higher 

volume loss Fig. 4 (a, b). The SEM images show the wear progressed by cutting action of the 

matrix, pit formation, exposure of the fibre and de-bonding at the matrix-reinforcement 

Marine env assisted 
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interface in this regime Fig. 5 (a, b) and Fig. 6 (a, b). An antagonistic erosive effect of salt 

water and the sand particle is in evidence, which results in an enhanced volume loss of the 

specimens [7]. The continuous cutting action of the erodent leads to damage of the exposed 

surface by pit propagation. On the other hand, the erosion resistant polymeric coating 

exhibits ductile erosion behaviour Fig. 4. The volume loss increases with the increase in solid 

particle size. The highest volume loss of the coating is still less than that of the uncoated 

specimens Fig 4 (a, b). The mechanisms of erosion are similar for both the coated and 

uncoated composite, i.e. cutting action of the erodent dominates in this regime Fig. 5 (a, b) 

and Fig. 6 (a, b), [7, 52].

Erosion regime II - This region of the mechanism maps is associated with the erosion of the 

exposed surfaces with smaller particles at higher impact angles for the substrate and lower 

impact angles for the coating. For the substrate, the exposed surface damage (fibres and 

matrix) by the impact of the erodent dominates for these angles of attack Fig. 5 (c, d). On 

the other hand, the micro-cutting process of the specimens dominates in this area for the 

coatings Fig. 5 (e, f). This regime relates to the mild erosive wear mode. Both the uncoated 

and coated composites show ductile erosive wear properties Fig.4 (a).

Erosion regime III - This area of the erosion mechanistic maps is related to the larger size of 

the sand particle and higher angles of attack. SEM images of the eroded surfaces of both 

materials show distinctive features Fig. 6. For the uncoated exposed surface, the erosion is 

facilitated by an environment-assisted effect, which leads to severe damage of the 

substrate. Different types of surface degradation are observed, such as de-bonding of the 

reinforcement fibre-matrix at the interface, fractured fibres, delamination, pit formation, 

and flake like topographies Fig. 6 (c-d) & Fig. 8 (a). These observations are similar to those 

found in the literature for the erosion of the composites [32, 48, 49]. 

By contrast, the erosion of the coating indicates very little degradation. Tiny 

indentation/deformation marks of the sand particle are visible on exposed surfaces Figs. 6 (e 

- h) & Fig. 8 (b). The coatings act as a ductile erosion material Fig. 4. It has been established 

in the literature that the impact of the erodent could result in the decrease of mechanical 

properties (strength) of the fibre reinforced polymer composites up to 40% [49]. The 
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generation of defects in the matrix of the composites presents further issues such as voids, 

and pores, which affect the mechanical properties of these materials [50].

Erosion regime IV - In this regime of the erosion mechanistic maps, erosion mechanisms are 

similar to those in the regime III Fig 8. The impact of small solid particle results in less severe 

damage on the exposed surface of the coatings and there is no indication of surface damage 

Fig. 5 (g, h).

The above findings have shown that the G10 epoxy glass laminate composite has several 

tribological issues for tidal turbine applications despite its favourable mechanical properties. 

As a part of the on-going research for suitable materials for exposure, an erosion resistant 

polymeric coating was tested in the tidal turbine laboratory simulated environment. This 

coating has successfully protected the composite substrate in the test conditions above. The 

coating remained insoluble as well as non-reactive with saltwater [18, 53, 54]. Despite the 

observed increase in performance, there are however some erosion related issues 

remaining with this coating in these conditions, which need to be addressed in order to 

enhance the tribological resistance of such devices to reduce the drag forces on the rotor 

blades. Erosion maps showing mechanistic changes for both coated and uncoated materials 

provide a means of optimizing the exposure conditions for both coated and uncoated 

materials. Future work will be to evaluate composite hybrid coatings for such marine 

devices.

6. Conclusions

1. In this study of erosion of candidate tidal turbine blades, with impact of sand particles in 

marine simulated conditions, it has been shown that the use of glass fibre reinforced 

polymer matrix composites presents some challenges due to poor erosion resistance. 

2. The application of a polymer based coating has reduced the mass loss and surface 

degradation of the substrate, during erosion tests at different impact angles and with impact 

at various sand particle sizes.
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3.  For the polymer based coatings, on the erosion maps generated, the low erosive wear 

regime was expanded to a higher range of impact angles and sand particles. As a result, a 

new erosive wear mode region, i.e. very low wear, was identified on the map

4. The G10 epoxy glass laminate composite has demonstrated relatively poor erosion 

resistance despite having favorable mechanical properties, i.e. high stiffness, and strength. 

However, its relatively high strength can be used to support an erosion resistant polymeric 

coating, to make it a suitable choice for tidal turbine blade applications.
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