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Abstract: An optimal predictive control algorithm is introduced for the control of 

linear and nonlinear discrete-time multivariable systems. The controller is 

specified in a “restricted structure” form involving a set of given linear transfer-

functions and a set of gains that minimize a Generalized Predictive Control (GPC) 

cost-index.  The set of functions can be chosen as proportional, integral and 

derivative terms; however, a wide range of controller structures is possible. This is 

referred to as Restricted-Structure GPC control.   

The multi-step predictive control cost-function is novel, since it includes 

weightings on the “low-order” controller gains and the rate of change of gains.  

This considerably improves the numerical computations ensuring critical inverse 

computations cannot lead to a singular matrix. It also provides the option of adding 

soft or hard constraints on the controller gains which provides additional flexibility 

for control design. The ability to include a plant model that can include a general 

nonlinear operator is also new for restricted structure control solutions. 

The low-order controller provides a potential improvement in robustness, since it 

is often less sensitive to plant uncertainties.  The simple controller structure also 

enables relatively unskilled staff to retune the system using familiar tuning terms, 

and provides a potentially simpler QP problem for the constrained case.  
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1. Introduction  

The proposed Restricted Structure (RS) controller is an attempt to obtain the benefits of 

model based predictive control but using a low-order classical structure that can easily be 

retuned using familiar tuning terms.  If adequate performance can be obtained the low-

order controller often provides better robustness and can be implemented with lower 

computing resources.  The PID controller is just one option for the choice of low-order 

controller structure, where the optimal gains are provided by the optimized solution.  

       The PID controller is very effective in industry and is used successfully across 

industrial sectors.  However, if systems involve difficult dynamics, such as open-loop 

unstable or non-minimum phase behaviour, transport-delays, or interactions; then ‘multi-

loop’ or ‘decentralized’ PID control can provide poor performance.  A higher-order 

controller may then be required and one that can deal formally with multivariable system 

dynamics.  It is then reasonable to extend the controller structure by including other terms 

like a time-constant or a double integrator term. 

        Richalet developed simple approaches to Model Predictive Control (MPC), and 

introduced the idea of using a functional basis (Richalet et. al. 1978, Richalet et. al. 1993, 

Rossiter et. al. 2002, Richalet 1998).  The first applications took place in the early 70's, 

and since that time there have been many applications Khadir and Ringwood (2008).  The 

optimal control approach in the following also requires functions to be defined, but these 

relate to the structure of the controller to be implemented such as extended PID.  The 

proposed approach is a special form of Generalized Predictive Control (GPC).   

Optimal Restricted Structure (RS) feedback control design, involves a pre-defined 

controller structure, where gains are to be found to minimize a cost-index. The previous 

work by Grimble and co-workers (2000 and 2004 a, b, c) assumed a constant gain and 



controller parameters whereas the current work allows the gains to be time-varying.  

Moreover, the previous contributions assumed linear system models but in the following, 

a nonlinear model represented by an unstructured model is included. 

The RS multivariable controller is defined here in terms of a set of frequency-

sensitive functions, multiplied by gains that are found to minimise an extended GPC cost-

function.  The method will be referred to as Restricted Structure-Generalized Predictive 

Control (RS-GPC). In the RS-GPC approach introduced below the functions that 

determine the RS controller are specified in the frequency-domain. The controller gains 

are computed to minimize a cost-index, which can penalize deviations in controller gain 

and the rate of change of these gains. The gains vary to compensate for any changes in 

the reference or disturbance signals.  

There are many differences with traditional MPC theory, which may be listed as 

follows:  

1. The restricted structure controller (within the control loop) is low-order, possibly 

half the usual order, which provides opportunities for improved robustness and a 

simplified on-line algorithm.  

2. It may be used to tune classical controller structures (like auto-tuning).    

3. The inclusion of gain and rate of change of gain terms in the criterion enables soft 

constraints to be applied to the controller parameter or gain-variations. 

4. The feedback gains are optimized and not future control trajectories, so that the 

constrained version enables constraints on controller gains to be introduced, not 

available in standard MPC (the usual MPC constraints may also be included). 

5. The nonlinear version described in the final sections allow a general nonlinear 

operator to represent the plant. 



1.1 Methods of Computing Low-Order Optimal Controls  

A fixed-structure and low-order control scheme for Nano-positioning systems was 

developed by Eielsen et al. (2013). The authors noted “The control schemes are fixed-

structure, low-order control laws, for which few results exist in the literature with regards 

to optimal tuning.”  There are powerful optimization algorithms or linear matrix 

inequality methods that have been applied to the problem. However, it is desirable that 

an optimal solution be physically justifiable and this requires a more direct solution.     

Several attempts have been made to combine the benefits of PID with predictive 

control.  In one approach the GPC performance index was modified by including PID 

terms (Guo et. al. 2008). A RS predictive control approach was described in (Grimble 

2004c), but the numerical solution involved an approximation to a frequency response.  

A predictive PID controller was proposed in Katebi and Moradi (2001) and in Moradi, 

Katebi and Johnson (2001). The controller consisted of m parallel PID controllers, where 

m was the horizon chosen to give the best approximation to a GPC solution. 

An optimal predictive PID control algorithm using a GPC solution was described in 

Udeuhi, Ordys and Grimble (2002).  The aim was to develop an online optimization 

method for tuning PID controllers that could operate either as classical PID controllers 

or as a form of multivariable GPC controller.  The controller involved weightings that 

were related to the PID controller gain terms after discretisation.  The philosophy was to 

try to obtain the same performance from PID controls as with GPC design. This is not 

the aim below, but the RS-GPC controller approach can be specialized to this case when 

the cost-function is simplified, and when the general functions that define the controller 

structure are based on PID control.  

 A GPC based PID controller for use in a weigh feeder, which dispenses material at 

a specified rate and is used in the process industries was proposed by Sato (2010).   A 

stochastic predictive PID controller that was mathematically equivalent to a GPC 



controller with steady-state weighting was derived by Millar et. al. (1996), and a heat 

exchanger application was described.   

The motivation in the following is to gain the benefits of low-order controllers, 

including the simplicity of implementation/tuning and the natural robustness they often 

inherit.  The use of a predictive control framework to compute gains is a convenient 

optimization framework. It provides the benefits of model based control design. The plant 

model is novel for RS control since it allows for the presence of an input subsystem 

represented by a general nonlinear operator. The cost-index used is also novel since it 

includes terms to limit the controller gain or parameter amplitudes, and to cost the rate of 

change of controller gains.  It provides a unique ability to manage the optimal gains, using 

either soft or hard constraints, and it improves numerical properties.      

1.2 Strategy and Control Design Philosophy 

The discrete-time multivariable plant model is represented by the combination of a 

general linear or nonlinear operator and a linear state-space subsystem model (can be 

open-loop unstable). The process model includes a linear state-space model and any 

unstructured input subsystem which can include a nonlinear stable operator.  

       The objective here is not to generate a control action that is the same as GPC.  The 

aim is to generate gains to minimise a GPC cost-index, under the constraint of using a 

RS-GPC structure (like extended PID).  A motivating factor is that classical controllers 

exhibit natural robustness properties in the presence of significant uncertainties and 

nonlinearities.  The predictive element is concerned with providing a simple way of 

generating the RS-controller gains.  An incidental benefit is that the controller will be able 

to exploit future set-point information and benefit from predictive capabilities. 

 



 

Figure 1.   General Strategy of Restricted Structure Predictive Controller   

The general philosophy is illustrated in Fig. 1.  A low-order controller is chosen 

like the PI controller shown. A Kalman filter takes measurements and computed controls 

to determine the state estimates, which are used in an optimization algorithm to find the 

optimal PI controller gains stored in vector kc(t). The computation of the gains depends 

upon a receding horizon philosophy. This is different to the usual MPC algorithm since 

the controller within the loop has a conventional structure and RS-controller gains, rather 

than future controls, are computed. 

2. System Description 

The feedback system is shown in Fig. 2. The outputs to be controlled and measured 

outputs are denoted by y(t) and ( )my t , respectively. The observations includes 

measurement noise ( ) ( )  ( )m m mt t tz y v= + . The stochastic disturbance signals on measured 

and controlled outputs are represented by linear time-invariant models driven by zero-

mean white noise. The deterministic output disturbance terms and reference are denoted 

( )md t , ( )pd t  and ( )wr t , respectively. These are known throughout the prediction-horizon.  



The white noise ( )mv t is assumed to have a constant covariance matrix 0= ≥T
f fR R , and 

the zero-mean white noise disturbance ( )tξ  has an identity covariance matrix.  The input 

sub-system 1  is assumed stable and has a general operator form, as follows: 

                                       ( )( ) ( )( )1k1
−= ku t z u t                                       (1) 

where kz I−  denotes a matrix of the common delay elements in the output with k > 0.  Let 

( ) ( )( )0 1k =u t u t  and denote the output linear subsystem as 0 0k
kzW W−= , which can 

contain any unstable modes.  In the initial analysis, the strategy is to first consider the 

simpler linear problem (where 1k I= ) and to then introduce the nonlinear input-

subsystem in the last section.  The reference rw(t) is filtered so that r(t) = 1( )wW z− rw(t), 

where 1( )wW z− is an ideal response model, and the error signal e(t) = r(t) – y(t).   The 

weighted error to be minimized in the cost-function is denoted: 

 1
c( ) ( ) ( )pe t P z e t−=  (2) 

where 1
c ( )P z− is a stable proper dynamic cost-weighting. The input to the RS-controller is 

defined as follows: 

                                                       0 ( ) ( ) – ( )w me r zt t t=  (3) 
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       Figure 2.   RS-GPC System for Unstructured and State-Space Plant Subsystems 

2.1 Augmented Linear State-Space Plant Output Subsystem 

 The first subsystems to be defined is associated with the linear disturbance model and 

any linear state-space sub-system (denoted 0W ) in the plant model.  The state-space 

output subsystem is assumed stabilizable and detectable and is shown in Fig. 3. It includes 

any disturbance model and cost-function weighting term 1
c ( )P z− .  The states, measured 

outputs, observations and weighted error of the augmented LTI system are given by the 

augmented system equations as follows: 

                                         0( 1) ( ) ( ) ( ) ( )dx t Ax t Bu t k D t d tξ+ = + − + +                             (4) 

 0( ) ( ) ( ) ( )m m m my t d t C x t E u t k= + + −  (5) 

 0( ) ( ) ( ) ( ) ( )m m m m mz t v t d t C x t E u t k= + + + −  (6) 

 0( ) ( ) ( ) ( )pp p pe t d t C x t E u t k= + + −      
(7)    

The signals are explained in more detail and dimensions are listed in Appendix 1.    

 

 

 

 

 

 

 

 

 

 

Fig. 3:  Linear Plant Input and State-Space Linear Output and Disturbance Subsystems 
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2.2 State-Space Prediction Models 

The prediction of outputs is required in the later control solution.  The future values of 

the states and outputs, at time t, may be obtained by repeated use of the state-equation:                                   

                                        0( 1) ( ) ( ) ( ) ( )dx t Ax t Bu t k D t d tξ+ = + − + +    

Generalising this result, obtain the state at the future times t i+ , where i > 0, as: 

 ( )0
1

( ) ( ) ( 1 ) ( 1) ( 1)( )
i

i i j
dd

j
x t i A x t A Bu t j k D t j d t iξ−

=

+ = + + − − + + − + + −∑           (8) 

where the future known disturbance term is given as: 

 
1

( 1) ( 1)
i

i j
dd d

j
d t i d t j−

=

+ − = + −∑  (9) 

          The future states depend upon the inputs and the state-vector at time t.  The 

expression for the future states may be obtained by changing the time in (8) by the k-steps 

of the explicit delay giving:                                             

( )0
1

( ) ( ) ( 1) ( 1) ( 1)( )i
i i j

dd
j

x t i k A x t k A Bu t j D t j k d t i kξ−

=

+ + = + + + − + + + − + + + −∑      (10) 

where 
1

( 1) ( 1)
i

i j
dd d

j

d t i k d t j k−

=

+ + − = + + −∑ .  The weighted error or output ( )pe t to be 

regulated at future times can include any stable dynamic cost-function weighting. Noting 

(7) it has the following form (for i 1≥ ): 

0( ) ( ) ( ) ( )pp p pe t i k d t i k C x t i k E u t i+ + = + + + + + + +  

( ) ( 1) ( )p
i

p dd pd t i k C d t i k C A x t k= + + + + + − + +  



 ( )0 0
1

( 1) ( 1) ( )
i

i j
p p

j
C A Bu t j D t j k E u t iξ−

=

+ + − + + + − + +∑  (11) 

Collecting the deterministic disturbance signal terms together:                                  
                   

 ( ) ( ) ( 1)pd p p ddd t i k d t i k C d t i k+ + = + + + + + −  (12)
 

Weighted outputs or errors:  Noting (11) the weighted output ( )pe t  becomes:
 

( ) ( ) ( )pd
i

p pe t i k d t i k C A x t k+ + = + + + +  

 ( )0 0
1

( 1) ( 1) ( )
i

i j
p p

j
C A Bu t j D t j k E u t iξ−

=

+ + − + + + − + +∑  (13) 

State Prediction:  The i-steps prediction may be written in terms of the future inputs and 

the estimated state-vector at time t (using (8)) follows as: 

 0
1

ˆ ˆ( | ) ( | ) ( 1 ) ( 1)( )
i

i i j
dd

j

x t i t A x t t A Bu t j k d t i−

=

+ = + + − − + + −∑  (14) 

Vector Matrix Notation:  Introducing an obvious notation for the error and output signals 

they may be collected in the N+1 vector form, where N > 0 (Ordys and Clarke 1993) as: 

     

2

( ) ( )
( 1 ) ( 1 )
( 2 ) ( 2 ) ( )

( ) ( )

pd

pd

pd

pd

pp

pp

p p

N
p p

C Ie t k d t k
C Ae t k d t k

e t k C Ad t k x t k

e t N k d t N k C A

 + +   
    + + + +     
    + + + += + +
    
    
    + + + +     

 

0

0

1 2
0

0 0 0 ( )
0 0 ( 1)

0
( 1)

p

p p

N N
p p p

u t
C B u t

C AB C B

u t NC A B C A B C B− −

   
   +   
   +
   
   
   + −  







 

  



 

0

0

0

1 2
0

0 0 0( ) ( )
0 0( 1) ( 1 )

( 2)
0

( ) ( 1 )

p

pp

p pp

N N
p p p p

E u t t k
C DE u t t k

C AD C DE u t

E u t N t N kC A D C A D C D

ξ
ξ

ξ− −

   + 
    + + +    
  +  + +
    
    
    + + − +    





  

   



 (15) 

This equation (15) may be written as follows: 

 0
, , , ,( ) ( )Pt k N Pt k N PN N PN N PN t N PN N t k NE D C A x t k C B E U C D W+ + += + + + + +  (16) 

where the matrices are defined by comparison of (15) and (16). These are defined in 

Appendix 2. A matrix PNV , for N > 0, may also be defined as follows: 

 
2

1 2

0 0 0
0

0

p

p p

pPN PN N PN
N

p p
N N

p p p p

E
C B E

C BV C B E
C A B E
C A B C A B C B E

−

− −

 
 
 
 = + =
 
 
  



 

  

 



 (17) 

For a single-stage criterion the horizon N = 0 and .PN pV E=   The k steps-ahead tracking 

error ,Pt k NE + , includes any dynamic error weighting, and may be written, using (16), as:    

                          0
, , , ,( )Pt k N Pt k N PN N PN t N PN N t k NE D C A x t k V U C D W+ + += + + + +  (18) 

2.3 Linear Prediction Equations 

The i-steps ahead prediction of the output may be computed noting (11) and assuming 

the future values of the control action are known.  Let ˆ ( | )pe t i k t+ + ˆ{ ( ) | }pE e t i k t= + + , 

then the predicted weighted signal to be minimized, using (13), becomes:  

    0 0
1

ˆ ˆ( | ) ( ) ( | ) ( 1) ( )pd

i
i i j

p p p p
j

e t i k t d t i k C A x t k t C A Bu t j E u t i−

=

+ + = + + + + + + − + +∑  (19) 



The ˆ( | )x t k t+  denotes a least squares state estimate from a Kalman filter, driven by 

measured outputs (6).  Collecting results for the case N ≥ 0 the vector of predicted outputs 

,
ˆ

Pt k NE +  may be obtained in the block matrix form: 

,

2

ˆ ( | ) ( )
ˆ ( 1 | ) ( 1 )
ˆ ( 2 | ) ( 2 ) ˆ( | )

ˆ ( | ) ( )

pd

pd

pd

pd

Pt k N

pp

pp

p p

N
p p

PN NC AD

C Ie t k t d t k
C Ae t k t d t k

e t k t C Ad t k x t k t

e t N k t d t N k C A

+

 + +   
    + + + +     
    + + + += + +
    
    
    + + + +     

 

 

  

 

0

0

2

1 2
0

0
,

0 0 0 ( )
0 ( 1)

0
( )

p

p p

p
N

p p
N N

p p p p

t NPN PN N PN UV C B E

E u t
C B E u t

C B

C A B E
u t NC A B C A B C B E

−

− −

= +

   
   +   
   +
   
   
   +   



 

   

 




 (20) 

This prediction N+1 vector in (20) can clearly be written in the form: 

 0
, , ,

ˆ ˆ( | )P t k N Pt k N PN N PN t NE D C A x t k t V U+ += + + +  (21) 

Output prediction error:                           

, , ,
ˆ

Pt k N Pt k N Pt k NE E E+ + += −
  

           0 0
, , ,ˆ( ) ( ( | ) )PN N PN t N PN N t k N PN N PN t NC A x t k V U C D W C A x t k t V U+= + + + − + +   

Thence, the inferred output estimation error has the form:      

 , ,( )Pt k N PN N PN N t k NE C A x t k t C D W+ += + +   (22) 

where the k-steps-ahead state estimation error ˆ( ) ( ) ( | )x t k t x t k x t k t+ = + − +  is 

independent of the choice of control.  Also recall ˆ( | )x t k t+  and ( | )x t k t+  are orthogonal 



and the expectation of the product of the future values of the control action (assumed 

known in deriving the prediction equation), and the zero mean white noise driving signals, 

is null.  It follows that ,
ˆ

Pt k NE +  in (21) and the prediction error ,Pt k NE +
  are orthogonal. 

2.4 Kalman Estimator  

The state estimate ˆ( | )x t k t+  may be obtained, k-steps-ahead, in a computationally efficient 

form from a Kalman filter (Grimble and Johnson, 1988).  The number of states in the 

filter is not increased by the number of the explicit delays k.  The estimation equations 

may be listed as follows: 

 0ˆ ˆ( 1| ) ( | ) ( ) ( )dx t t Ax t t Bu t k d t+ = + − +  (23) 

 ( )ˆ ˆ ˆ( 1| 1) ( 1| ) ( 1) ( 1| )f m mx t t x t t K z t z t t+ + = + + + − +  (24) 

where   0ˆˆ ( 1| ) ( 1) ( 1| ) ( 1 )m m m mz t t d t C x t t E u t k+ = + + + + + −  (25) 

3.  Restricted Structure-Generalized Predictive Control 

To parameterize the controller a total of eN  linear dynamic functions can be chosen with 

different frequency responses.  It may be useful to introduce pre and post-compensation 

matrices, 1( )uL z− and 1( )eL z− , so that the control signal may be expressed as follows: 

         1 1 1 1 1
0

1 1
( ) ( ) , ( ) ( ) ( ) ( ) , ( ) ( )( ) ( )

N N

u j j e u j j L
j j

e e

u t L z f z k t L z e t L z f z k t e t− − − − −

= =

= =∑ ∑  (26) 

where the weighted input to the RS-controller: 

                                       1 1
0( ) ( ) ( ) ( )( ( ) ( ))L we ee t L z e t L z r t z t− −= = −                               (27) 

The 1( )uL z−

 and 
1( )eL z−  denotes frequency weighting on plant input and outputs. These 



weightings are not essential but they may be useful for multivariable systems when 

diagonal functions are used to simplify (26).  The details of the controller 

parameterization in (26), and the matrices involved, are described in Appendix 3. It is 

shown that the gains of the controller in the restricted structure controller can be collected 

in a vector denoted ( )ck t .   The RS-controller may then be written in the following form: 

                                                    1( ) ( ) ( )u e cu t L z F t k−=                                                 (28) 

The gains might for example, represent the vector of gains in a 3-term PID controller.   

3.1 Restricted Structure Controller 

There are two methods of implementing the restricted structure controller.  The gain can 

be written in terms of a fixed gain and a deviation. That is, for the optimization procedure 

the gains can be separated into a constant component ck  and a time-varying deviation

( )ck t , where the total gain: 

                                                           ( ) ( )c c ck t k k t= +               (29) 

This gives rise to two cases: 

1. Letting ck = 0 is what will be termed the absolute control gain case, where the 

total controller gains ( ) ( )c ck t k t=  are to be computed to minimize the criterion. 

2. If 0ck ≠  the so-called gain, deviation ( )ck t  is to be computed to minimize the 

criterion. 

If a PID controller structure is chosen, then the first case above is where the total 

controller gains are to be minimized.  The second case can be used when an existing PID 

controller is involved, which defines the fixed gain ck term. The computed gain is then 

just the deviation away from the fixed PID levels. This case can be thought of as using 



two parallel PID controllers, with one having fixed gains, and one having gain deviations. 

The RS controller may be written, using (26) and (29) as follows:         

               { } { }1 1 1 1

1 1

( ) ( ) ( ) ( ) ( ) ( ) ( )
e e

L L

N N

u j j u j j
j j

u t L z f z k e t L z f z k e t− − − −

= =

= +∑ ∑      

In terms of the parametrization and the matrix ( )eF t introduced in Appendix 3, the 

RS-control follows as:  

                1 1 1( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )u e c u e c u e cu t L z F t k L z F t k L z F t k t− − −= = +                           (30) 

3.2 Vector of Future Controls  

The computation of the controller gains in the next section, based on a predictive control 

philosophy, provides the gains in a simple manner.  This is not the usual approach to 

predictive control, since it will be assumed that the controller structure is defined in a 

desired form a priori.  A modified receding-horizon philosophy will be invoked. Recall 

an optimal control signal at time t is based on the receding horizon principle (Kwon and 

Pearson, 1977), where the optimal control is taken as the first element in vector 0
,t NU .  

The optimal control is computed for the full horizon but only the value at time t is used.    

The equivalent assumption for RS-GPC control is that ( )ck t can be assumed constant in 

the  interval [0, N] and the computed ( )ck t  can be used to compute the optimal control 

for time t.  In the spirit of receding control at the next sample time the process can be 

repeated and a new gain can be computed and used to compute the optimal control.  With 

this assumption the vector of future controls 
,t N

U

 

may be written, using (83), as follows: 

 

1

1

,

1

( ) ( ) ( )
( 1) ( ) ( 1)

( )

( ) ( ) ( )

u e

u e
t N c

u e

u t L z F t
u t L z F t

U k t

u t N L z F t N

−

−

−

  
  + +  = =
  
  + +    

 
 (31) 



At each future time the gain in (31) is assumed the same over the prediction horizon.  This 

is different to conventional MPC, where the vector of future controls is computed.   The 

matrix (31) may be denoted feU and defined as follows: 

       1 1 1( ) ( ( ) ( )) ( ( ) ( 1)) ( ( ) ( ))
TT T T

fe u e u e u eU t L z F t L z F t L z F t N− − − = + +                (32) 

The vector of future controls for the RS-GPC controller, from (31) and (32): 

                                                     , ( ) ( )t N f e cU U t k t=                                                 (33) 

4. Optimizing the Restricted-Structure Controller 

The minimization of a cost-function for a controller of restricted structure, is well 

established, but the RS problem considered below is unusual.  First, there is no 

approximation in the optimization procedure that occurs in (Grimble, 2004a, 2004b).  

Secondly, the controller structure is defined in a form where functions are pre-specified 

and are multiplied by gains that are to be optimized.  For the initial results, the 

unstructured subsystem block is removed by letting =1k I .  It is reintroduced in Section 

§6.  The GPC performance index that motivates the RS-GPC criterion described below, 

may be expressed as follows (see Clarke et. al. 1987, 1989): 

 2
0 0

0
{ e ( ) e ( ) ( ) ( )) }

N
T T

p p j
j

J E t j k t j k u t j u t j tλ
=

= + + + + + + +∑  (34) 

where {.| } E t denotes the conditional expectation, conditioned on measurements up to 

time t and jλ denotes a scalar control signal weighting.  The optimal control signal is to 

be calculated for the interval [ , ]t t Nτ ∈ + .   The state-space model generating the tracking 

error pe  may include any dynamic cost-function weighting 1( )cP z− , such as a low-pass 



filter to penalise the low-frequency disturbances.  The GPC criterion may be written using 

the previous definitions of future signals as follows: 

 { }0 2 0
, , , ,{ } |T T

t Pt k N Pt k N t N N t NJ E J t E E E U U t+ += = + Λ  (35) 

       The RS-GPC cost-function required here has a term to limit the deviation in gains of 

the controller that may be added into (35), so that large gain deviations are penalized.  In 

addition to be able to be able to influence the rate of gain variations the difference of the 

gain deviations may also be costed.  The RS-GPC cost-function is defined as follows:  

   { }0 2 0 2 2
, , , ,{ } ( ) ( ) ( ) ( ) |T T T T

t Pt k N Pt k N t N N t N c K c c D cJ E J t E E E U U k t k t k t k t t+ += = + Λ + Λ + ∆ Λ ∆     (36) 

where the gain change deviation: 

 ( ) ( ) ( 1) ( ) ( 1)c c c c ck t k t k t k t k t∆ = − − = − −                                  (37) 

The terms in the criterion may be summarized as follows: 

• The cost-weightings on the future inputs 0u  are defined as: 

     2 2 2 2
0 1{ , ,..., }N Ndiag λ λ λΛ = . 

• The cost-weightings on the deviations in controller gains are defined as:

2 2 2 2
0 1{ , ,..., }

eK Ndiag ρ ρ ρΛ = .   

• The cost-weighting on the deviations in the difference of the gains is denoted:

2 2 2 2
0 1{ , ,..., }

eD Ndiag γ γ γΛ = . 

where the integer N is the number of steps in the prediction horizon and Ne is the number 

of functions employed in parameterizing the controller. 

 



Implementing the controller gains in the parallel form in (29) can be interpreted as the 

first term being a fixed controller and the second term (having optimal deviation gains) 

as providing adaption to reference or disturbance signal changes. The cost-function (36) 

includes a penalty on the gain deviations ( )ck t  and their rate of change ( )ck t∆  . The two 

methods of implementing the controller gains will not therefore lead to the same results. 

For example, assuming the fixed component of the controller is stabilizing and increasing 

the penalty on ( )ck t will result in the fixed controller performance being approached.   

4.1 Cost-Function Minimization 

        The vector of future errors can be replaced by orthogonal predicted errors and 

estimation error terms.   From equation  (36) obtain the criterion as follows:  

0 2 0
, , , , , ,

ˆ ˆ( ) ( ){ T T
Pt k N Pt k N Pt k N Pt k N t N N t NJ E E E E E U U+ + + += + + + Λ 

       

 2 2( ) ( ) ( ) ( ) | }T T
c K c c D ck t k t k t k t t+ Λ + ∆ Λ ∆     (38) 

The terms in the cost-index can  be simplified by using the orthogonality of the optimal 

estimate ,
ˆ

Pt k NE +  and the estimation error ,Pt k NE +
 . Simplifying the expression,          

       0 2 0 2 2
, , , , 0

ˆ ˆ ( ) ( ) ( ) ( ) ( )T T T T
Pt k N Pt k N t N N t N c K c c D cJ E E U U k t k t k t k t J t+ += + Λ + Λ + ∆ Λ ∆ +                  (39) 

where , ,( )Pt k N PN N PN N t k NE C A x t k t C D W+ += + +   and the cost-term 0 , ,( ) { | }T
Pt k N Pt k NJ t E E E t+ +=  

 

is independent of the control.   Noting (21) the vector of state-estimates may be written 

as follows:   

               0 0
, , , , ,

ˆ ˆ( | )P t k N Pt k N PN N PN t N Pt k N PN t NE D C A x t k t V U D V U+ + += + + + = +              (40) 

where the signal: 



 , , ˆ( | )Pt k N Pt k N PN ND D C A x t k t+ += + +       (41) 

The state-estimate ˆ( | )x t k t+  only depends upon past values of the control signal. The 

multi-step cost-function (39) may therefore be expanded as follows:        

0 0 0 2 0
, , , , , , ( ) ( )T T

Pt k N PN t N Pt k N PN t N t N N t NJ D V U D V U U U+ += + + + Λ               

2 2
0( ) ( ) ( ) ( ) ( )T T

c K c c D ck t k t k t k t J t+ Λ + ∆ Λ ∆ +                                                                                                                         

( )0 0 0 2 0
, , , , , , , ,

T T T T T T
Pt k N Pt k N t N PN Pt k N Pt k N PN t N t N PN PN N t ND D U V D D V U U V V U+ + + += + + + + Λ   

 2 2
0( ) ( ) ( ) ( ) ( )T T

c K c c D ck t k t k t k t J t+ Λ + ∆ Λ ∆ +     (42) 

Before performing the optimization, the controller structure will be defined to have the 

desired restricted structure form. From (29) ( ) ( )c c ck t k k t= +   and from (37) the change 

in gain ( ) ( ) ( 1)c c ck t k t k t∆ = − − .  Recall in this section is =1k I , so that 0
, ,t N t NU U= , where

, ( ) ( )t N f e cU U t k t= . Substituting the cost-function (42) may now be expanded as below:  

( )2
, , , ,( ) ( ) ( ) ( ) ( )T T T T T T T T

Pt k N Pt k N c fe PN Pt k N Pt k N PN fe c c fe PN PN N fe cJ D D k t U V D D V U k t k t U V V U k t+ + + += + + + + Λ   
 

2 2 2 2( ) ( ) ( 1) ( ) ( ) ( 1)T T T T
c K c c K c c D c c D ck k t k t k k t k t k t k t− Λ − Λ − − Λ − Λ −  

2 2 2 2
0( )( ) ( ) ( 1) ( 1)T T T

c K D c c K c c D ck t k t k k k t k t J+ Λ + Λ + Λ + − Λ − +  

The equations can be simplified by defining:          

 2 2 2( )T T
N fe PN PN N fe K DX U V V U= + Λ + Λ + Λ  (43) 

 CN
T T
fe PNP U V=                                                   (44) 



 CN
T T

PN N PN PN NfeC P C A U V C Aφ = =  (45) 

Substituting for these system matrices, the following expression is obtained:  

, , , ,( ) ( )CN CN
T T T T
Pt k N Pt k N c Pt k N Pt k N cJ D D k t P D D P k t+ + + += + +   

 

2 2 2 2( ) ( ) ( 1) ( ) ( ) ( 1)T T T T
c K c c K c c D c c D ck k t k t k k t k t k t k t− Λ − Λ − − Λ − Λ −  

 ( )2 2 2 2 2
0( ) ( ) ( ) ( 1) ( 1)T T T T T

c fe PN PN N fe K D c c K c c D ck t U V V U k t k k k t k t J+ + Λ + Λ + Λ + Λ + − Λ − +   

, , , ,( ) ( )CN CN
T T T T
Pt k N Pt k N c Pt k N Pt k N cD D k t P D D P k t+ + + += + +   

 

               ( ) ( )2 2 2 2
0( 1) ( ) ( ) ( 1) ( ) ( )T T T T

c K c D c c K c D c c N ck k t k t k t k k t k t X k t J− Λ + − Λ − Λ + Λ − + +  

Let the signal ψ(t) be defined to simplify this equation: 

                                               2 2 1( ) ( )K c D ck k ttψ = −Λ −Λ −                                  (46) 

The cost-function expression becomes:
                                

              

, , , ,( ) ( )CN CN
T T T T
Pt k N Pt k N c Pt k N Pt k N cJ D D k t P D D P k t+ + + += + +   

 

   0( ) ( )( ) ( ) ( ) ( )T T
c c

T
c N ct k t k t k t X k t Jtψ ψ+ + + +  (47) 

where               2 2
0 0( 1) ( 1)T T

c K c c D cJ k k k t k t J= Λ + − Λ − +  (48) 

and 0J (defined in (39)) are both terms that determine the minimum cost (independent of 

the gains ( )ck t to be optimized). The approach for minimizing this cost term, if the signals 

are deterministic, is almost identical to that when the conditional cost-function is 

considered. The gradient of the cost-function must be set to zero, to obtain the vector of 



future optimal controls (Grimble and Johnson, 1988).  Noting the 0J  term is independent 

of the control action, the vector of optimal gains becomes: 

 ( ) ( )12 2 2
, ( )( ) ( ) CN

T T
c fe PN PN N fe K D Pt k Nk t U V V U P D tψ

−

+= − + Λ + Λ + Λ +  (49) 

Also recall from (41) and (45),    

 ( )0
, , , ˆ( | )CN CNPt k N Pt k N Pt k N PN ND P D P D C A x t k t+ + += = + +   (50) 

Thus, the optimal gains in (49) can be simplified further as follows: 

                                                 ( )1 0
,( ) ( )c N Pt k Nk t X D tψ−

+= − +                                       (51) 

where 

 0
, , ˆ( | )CNPt k N Pt k ND P D C x t k tφ+ += + +                            (52) 

Asymptotic behaviour 

 Observe from (49) that if 2
D IΛ →∞×  the limiting gain ( ) ( 1)c ck t k t= − and the gains 

become constant. Similarly, if 2
K IΛ →∞×  the limiting gain ( )c ck t k=  and the gains 

become equal to the constant initial PID gain settings.  

Minimum-cost 

 Substituting in (47) for 0
, ,

T T
Pt k N fe PN Pt k ND U V D+ +=  , using (52) and substituting for the gain 

( )ck t in (51), the minimum-cost becomes: 

 ( ) ( )0 1 0
, , , , 0( ) ( )T T

min Pt k N Pt k N Pt k N N Pt k N
TJ D D D X Dt Jtψ ψ−

+ + + += − + + +                (53) 

where 2 2
0 0( 1) ( 1)T T

c K c c D cJ k k k t k t J= Λ + − Λ − + .  The ck  is fixed and ( 1)ck t −  is also known. 

  



Theorem 1:     Restricted Structure-Generalized Predictive Controller     

Consider the linear system and assumptions introduced in §2, where the sub-system

=1k I .  The restricted structure generalized predictive controller is required to 

minimize the following cost-index: 

        { }0 2 0 2 2
, , , ,{ } ( ) ( ) ( ) ( ) |T T T T

t Pt k N Pt k N t N N t N c K c c D cJ E J E E E U U k t k t k t k t t+ += = + Λ + Λ + ∆ Λ ∆          (54)
 

The RS-GPC controller can be implemented as follows: 

 1 1 1

1
( ) ( ) , ( ) ( ) ( ) ( ) ( )( )

N

u j j L u c
j

e

eu t L z f z k t e t L z F t k t− − −

=

= =∑  (55) 

where the functions ( )1, ( )j jf z k t−  for [1, ]ej N∈  are specified for the chosen RS controller 

structure, and where 1
0( ) ( ) ( )L ee t L z e t−= .  The block-diagonal matrix ( )eF t has the form:         

 { }1 2( ) ( ) ( ) ( )f f fmeF t diag e t e t e t=   (56) 

where for each i ={1, 2 ,…,m} the row vector 1 2( ) i i i r
f i e e ee t f f f =   ,  and these 

functions are
 
pre-specified by the designer. The optimal feedback controller gains are 

chosen to minimize (54).   By invoking a form of the receding horizon philosophy, the 

RS-GPC optimal time-varying gains satisfy: 

( )1 0 2 2
,( ) ( 1)c N Pt k N K c D ck t X D k k t−

+= − − Λ − Λ −
 

 ( )1
, ˆ | ) ( )(CNN Pt k NX P D C x t tk tφ ψ−

+= − + + +  (57)
  

where the matrices 2 2 1( ) ( )K c D ck k ttψ = −Λ −Λ − , 2 2 2( )T T
N fe PN PN N fe K DX U V V U= + Λ + Λ + Λ , and

CN

T T
fe PNP U V=  and T T

fe PN PN NC U V C Aφ = .  The total gain vector follows: 



   

1 211 12 21 22 1 2
1 2

T T T

T

T T T T T r T T r m T m T m r
c c c c m c c c c c c c c c

channel 1gains channel 2 gains channel m gains

k k k k k k k k k k k k k
 
  = =   
 

    
  

     

(58)

 The vector of future controls may be obtained as: 

 , ( ) ( )t N fe cU U t k t=                                                  (59) 

where 1 1 1( ) ( ( ) ( )) ( ( ) ( 1)) ( ( ) ( ))
TT T T T

fe u e u e u eU t L z F t L z F t L z F t N− − − = + +                    ● 

Solution:   The RS-GPC proof follows by collecting the results above.                         ● 
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                                        Figure 4. RS-GPC State-Space Controller Structure  

 

Comments on the Form of the solution 

 The RS optimal control problem is illustrated in Fig. 4.  The controller is parameterized 

so that it has a conventional cascade form and the gains are found to minimize the cost-

function (36).  The PID structure in Fig. 4 is only representative of possible RS control 



solutions. The theory applies for any RS controller, which can be represented by a 

summation of transfer-function terms multiplied by gains.   

Numerical robustness 

The solution for the RS-GPC optimal control (57) depends upon the inverse of NX .  This 

time-varying matrix is full-rank because of the cost-weighting definitions.  The 

expression for the gain-vector is similar to the vector of future controls in the usual GPC 

solution.  However, the denominator matrix in (57) will often be of lower dimension.  The 

weightings 2
KΛ and 2

DΛ  depend on the number of the RS-controller gains and they ensure 

that NX does not become singular. The gains are not penalized in the cost-functions of 

traditional model predictive controls. However, it is valuable to be able to cost and tune 

these gains, and avoid numerical problems with near singular NX .   

4.2 Square of Sum Optimization Problem 

The problem considered here is a special cost-minimization control problem, which is 

needed to motivate a nonlinear predictive control problem introduced later.  The solution 

is obtained by completing the squares in Appendix 4.  

Theorem 2:     Equivalent Cost-Minimization Problem 

Consider the system and assumptions introduced in §2, where the input subsystem 

=1k I and the minimization of the RS-GPC cost-index (36), where the vector of 

optimal RS-GPC controls is given by (51).  Let a multi-step cost-index be defined as 

follows: 

 , ,( ) { | }N N
T
Pt k Pt kJ t E t+ += Φ Φ  (60) 

 ,

0 0 1 2
, , ( ) ( )CN CN N CN CNP N P tt k t k N c cP E F U F k t F k t+ +Φ = + + + ∆   (61) 



Let the weightings CN
T T
fe PNP U V= , 0 2

CN
T
fe NF U= Λ , 1 2

CN KF = Λ , 2 2
CN DF = Λ  and PN PN N PNV C B E= + , 

and define 2 2 2( )T T
N fe PN PN N fe K DX U V V U= + Λ + Λ + Λ . Then the vector of optimal gains 

becomes: 

                ( )1 2 2
, ˆ( ) ( | ) ( 1)CNc N Pt k N K c D ck t X P D C x t k t k k tφ

−
+= − + + − Λ −Λ −                 (62) 

where T T
PN PN NfeC U V C Aφ =  and 2 2 1( ) ( )K c D ck k ttψ = −Λ −Λ − .  This expression for the gain 

vector is identical to the RS-GPC controller in (51) or Theorem 1.   The optimal control 

can be realized as in shown in Fig. 5.   The vector of future controls is given as follows: 

 , ( ) ( )t N fe cU U t k t=     or     ( )1 0
, , ( )t N fe N Pt k NU U X D tψ−

+= − +                  (63)   

Solution:    The proof follows by collecting results in Appendix 4.               ■ 

 

                               Figure 5.  RS-GPC State-Space Controller Structure  
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4.3 Cost-Function Tuning Variables 

Retuning the controller should be simple.  For a scalar problem, the weighting on the 

control signal provides a simple way to vary the speed of response of the system.  The 

weighting on the error can be chosen to be unity. In this case, or if integral action is 

included, then the integrator weighting gain can be scaled to unity.  The remaining 

weightings 1 2
CN KF = Λ  and 2 2

CN DF = Λ  are on the magnitude of the gains and rate of gain 

changes.  The cost of control is a term introduced by Isaac Horowitz to drew attention to 

the cost of feedback.  High gains have disadvantages and the ability to reduce these gains 

whilst not sacrificing performance is valuable, providing the control action is satisfactory.   

4.4 Stability 

The fact that the solution provides an optimal control does not of course guarantee 

stability.  If the system has no disturbance or reference changes, then from (62), the RS-

controller gains become constant and the stability conditions are those for a linear time-

invariant system, and the characteristic polynomial can be inspected.  Under more general 

changing conditions, the system is time-varying.  Nevertheless, if the rate of change of 

gains is controlled and the gains vary sufficiently slowly, it should be possible to establish 

stability conditions using similar analysis to that for adaptive systems.  However, if hard 

constraints on controller gains are applied the region of operation is well defined.  The 

approach of Dıaz-Rodrıguez and Bhattacharyya (2016) defines a stabilizing set of PI (or 

PID) controllers for such systems.  The definition of the cost-function weightings is 

important since they determine performance and stability (illustrated in the example). 

5. SI Automotive Engine Design  

A spark-ignition (SI) engine simulation model was used to evaluate the design approach, 

and for simplicity the engine control model provided in Matlab/Simulink was utilized. 

The model consists of the simplified dynamics of the SI engine air path, as well as a simple 

vehicle dynamics model with inputs and outputs shown in Fig. 6.  



 

                      Figure 6.  Engine Model: Inputs, Outputs and Parameters 

The original control problem involved engine idle speed control by manipulating the 

throttle input, subject to a varying load torque.  The control objective here is to keep the 

engine speed at the set-point irrespective of the load torque disturbance. For comparison 

purposes, a PI-controller with an anti-windup mechanism is included.  A speed set-point 

signal (in rpm) is to be tracked, in the presence of load torque.  The controller computes 

the necessary throttle angle based on the desired rpm and the measured engine speed, 

which is the output of the vehicle dynamics subsystem. 

Model Equations  

The equations for various engine model subsystems follow. The signals under 

consideration are as follows: 

• controlled output: engine speed N (rpm) 

• measurements: engine speed and intake manifold pressure imP  (bar) 

• control input: throttle angle  (deg.) 

• unknown varying disturbance input: load torque loadT  (Nm) 

• known input: spark advance SA (deg.). 

Throttle flow: ( ) ( )a f rm sgn f p    where 
1,
0,
1,

a m

f a m

a m

P P
sgn P P

P P

   

 (flow direction) 

Engine 

Model 

Throttle 

Load torque 

Spark 

Speed 

Engine torque 

MAF 

Charge 

MAP 



 2 3( ) 2.821 0.05231 0.10299 0.00063f            (discharge coefficient) 

  ( ), ( )r m a a mp min P P P P  (pressure ratio) 

 2 (1 ), 0.5( )
(sonic flow)1.0 0.5

r r r
r

r

p p pp
p

    
and atmospheric pressure is set to Pa = 1 bar. 

Intake manifold pressure:  ( , )m a pump m
m

RTP m f P N
V

 

 where RT/Vm=0.41328 and 

2 2( , ) 0.366 0.08979 0.0337 0.0001pump m m m mf P N P N N P P N                (pumping)  

Air charge: 20.0001 0.1812 0.0725 0.0005 0.0362m m mCAC N P P P N            

Power stroke delay:  This parameter defines the variable time delay affecting the air 
charge delivered for combustion, delt N .  

Engine torque: ( , , , )eng TQT f CAC CFC SA N  where,  

2

2 2 2

( , , , ) 181.3 379.36 21.91 0.85 0.26

0.0028 0.027 0.000107 0.00048 2.55 0.05
TQf CAC AFR SA N CAC AFR AFR SA

SA N N N SA SA CAC SA CAC

         

                

The stoichiometric air-fuel ratio (AFR) is assumed AFR = 14.6. 

Vehicle dynamics:  (1 ) eng loadN J T T  , where the vehicle inertia J = 0.14.  

5.1 Design Aspects  

The control problem is to manipulate the throttle angle to track the engine speed set-point 

subject to unknown drag/load torque variations. The test scenarios involve speed set-point 

step changes from 2000 to 2500 rpm, and load torque varying between 20 to 25 Nm.  Let 

the prediction-horizon N = 20 and delay k = 1. The cost weightings: 

2
NΛ =400.I,   2

DΛ  = 1e10×diag{1  0.1  1},   2
KΛ = 1e9×diag{12   1  0.1},  

1 1(1 - 0. )98z /0.25 1) (cP z−−= −×  and 1
c

1 1) 100 30 ) / (1 0.1 )( (k z z z− − −−= − .  



The frequency response of the weighting on control is shown in Fig. 7 and the error 

weighting multiplied by the plant transfer function (between throttle angle (degrees) and 

speed (rpm)).  The plots cross at about 2 radians per second and the rule of thumb is that 

the bandwidth should be in the region of 0.5 seconds.   

The step-responses shown in Fig. 8 are for the two RS cases of using absolute 

gains or gain deviations, and final response is for the use of MPC.  In this latter case a 

Generalized Predictive Control algorithm was used as in Ordys and Clarke (1993). None 

of the methods is clearly preferable, since it is likely similar results can be obtained by 

different weightings.  This does not apply to the constrained gain cases where the 

particular problem may dictate the best choice.  The gains in Fig. 9 indicate the gains only 

change when disturbances or reference changes occur.   

 

                      Figure 7.  Weighting Frequency Responses Plant × Pc and Fc 

Comparison with Fixed PID 

The results shown in Fig. 10 compare the absolute gain case against a traditional PID 

solution.  The torque control is clearly superior, but it is more the advantages of the model 

based solution for RS-GPC which is the main benefit. 



     

Figure 8.  Comparison of Time Responses for RS-Absolute and Gain Deviation Cases, 

and MPC Design (No Reference Knowledge, Gain Constraint, Rate of Change Weight)  

 

 

Figure 9. Comparison of Responses of Gains for Absolute and Gain Deviation Cases  
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Figure 10. Comparison with PID Including of RS-GPC with Absolute Gains  

Effect of gain constraints 

 For the case of constrained gain magnitudes let the constraints be set as: kmax = [2e-4   2e-

3   5e-3]T,  kmin = [0   0.5e-5   1e-5]T, ∆ kmax = [1   1   1]T,             ∆ kmin = [-1   -1   -1]T. A 

comparison of the time-responses for the unconstrained and constrained cases using 

absolute gains are shown in Fig. 11.  The gains in Fig. 12, show the constraints are active. 

 

Figure 11. Absolute Gain Case Showing Responses for Unconstrained and Constrained 

Gain Cases (Includes No Future Reference Knowledge, Rate of Change Weighting) 



 

Figure 12. Absolute Gain Responses for Unconstrained and Constrained Cases 

 

Robustness 

 The plant model is mismatched by inserting a mismatch transfer-function on each of the 

plant state signal paths where the mismatch was defined as: 

2(1, 1) 157.9 / ( 6.283 157.9)mismatchW s s= + +   

2(2,2) 268.5 / ( 7.54 157.9)mismatchW s s= + +  

Clearly, the PID controller response, shown in Fig. 13 is more sensitive than the design 

using absolute gains (compare with PID in Fig. 10).   The RS-GPC controller does of 

course adapt in some sense, since the computed restricted structure controller PID gains 

are modified when mismatch is present as shown in Fig. 14.  Not surprisingly, there is 

more gain variation needed to cope with the mismatch case. 

Transport delay 

The RS-GPC absolute gain method and PID control are compared in Fig. 15 when an 

additional 10-step delay uncertainty is introduced in the plant. Mismatch on the transport-



delay can be very destabilizing and the PID controller responses deteriorate due to the 

addition of the transport delay elements.  The RS-GPC design is not phased too much by 

this error in knowledge of the delay.  It is the optimised gains from the predictive control, 

shown in Fig. 16, which compensates for the mismatch.   

 
Figure 13. Comparison with PID of RS-GPC with Absolute Gains for Mismatch Plant 
Model (Includes No Future Reference, Gain Constraint, Rate of Change Weighting) 

 

Figure 14. Absolute Gains of RS-GPC for Mismatch and No Mismatch Cases 



 

Figure 15. Comparison Responses for Mismatch on Delay of 10 Steps RS-GPC 

Absolute Gain Case and PID 

 

 

Figure 16. Comparison Gains for RS-GPC Absolute Gain Case with and without 

Mismatch on Delay of 10 Steps 



 

 

Figure 17. Gain Responses for RS-GPC Absolute Gain Case with Reference Model, 

with and without Future Reference Compared to PID (Including No Gain Constraint) 

 

Future setpoint knowledge 

The RS-GPC controller provides a predictive capability, as shown in the Fig. 17. This 

applies to both the absolute and incremental gain cases, however, in this case the 

absolute gain formulation has the advantage since a larger portion of the gains are 

allowed to vary.  A reference model 1( )wW z−  was also used in this case and the gain of 

Pc was increased.  The results are particularly good for the absolute gain case with the 

shaped future reference signal. 

 

Changing Gains by Modifying Functions Parameterizing Controller 

 If the functions that define the controller structure 1, ( )( )j jf z k t−  are modified by using 

scalar multipliers, the optimal solution should change.  If the functions 1, ( )( )j jf z k t− , 



defined in (26), are multiplied by scalars ( , , )α β γ they can influence the proportional, 

integral and derivative behaviour. Recall the criterion: 

{ }0 2 0 2 2
, , , ,{ } ( ) ( ) ( ) ( ) |T T T T

t Pt k N Pt k N t N N t N c K c c D cJ E J E E E U U k t k t k t k t t+ += = + Λ + Λ + ∆ Λ ∆   
 

and note from (57): 

( )1 2 2
, ˆ( ) ( | ) ( 1)T T T T

c N fe PN Pt k N PN PN N K c D cfek t X U V D U V C A x t k t k k t−
+= − + + − Λ −Λ −  

and 2 2 2( )T T
N fe PN PN N fe K DX U V V U= + Λ + Λ + Λ .  The behaviour in the deviation gain case, 

follows from inspection of these equations. In this case ( ) ( )c c ck t k k t= +  and the cost terms 

involving 2 2
K DΛ + Λ are quite dominant, since they act on gain deviations, and much of the 

gains are fixed at ck .  Now a scalar multiplication of the functions affects the ( )T
feU t .  The 

consequence is that an increase in the function gains increases the gain ( )ck t .  This is 

shown in the deviation in gains case in Fig. 18.   

 

Figure 18. Comparison Responses for RS-GPC Gain Deviation Case Nominal, Lower 

and Higher Gains in Functions (Including No Future Setpoint, Gain Constraint) 



 

 

Figure 19. Responses for RS-GPC Deviation Gain Case Nominal, Lower and Arbitrary 

Higher Gains (Including No Future Setpoint, No Gain Constraint) 

 

If the PID gains are changed directly in an arbitrary manner, by simply multiplying the 

gain vector elements in ( )ck t by scaling factors, the results are as shown in Fig. 19 for the 

deviation gain cases.  The results are not optimal and changes are quite arbitrary, but it 

does provide a mechanism for retuning a plant.  

5.2 Lessons from the Example    

The lessons learned may be summarized as: 

• The use of time-varying gains can lead to better responses in comparison with 

classical fixed-gain controllers. 

• Mismatch for the cases tried had a lot less effect when using the RS-GPC 

controller relative to a classical fixed gain PID controller.  This also applied to 

mismatch in the knowledge of the transport delay. 



• The controller gains only change when the disturbance or reference changes. 

• Arbitrary modification of the computed gains leads to predictable behaviour for 

simple modifications. For example, increasing or decreasing all gains by 20% 

speeds up or slows down responses correspondingly. 

• The future reference information changes the time-varying control gains to 

improve responses but the mechanism is not as direct as traditional MPC. 

5.3 Simplifications for Implementation 

If the sample rate for the RS-controller is the same for the feedback loop as for the 

background processing the execution time may not be very different to a conventional 

GPC design (assuming system is linear).  This occurs because the Kalman estimator and 

the optimization computations involve similar types of matrix in the two problems. The 

main matrix to be inverted does of course depend upon the controller parameterization 

chosen.  For the results shown in Fig. 8 the RS-GPC simulation had an elapsed time of 

12.3536 seconds and the MPC elapsed time was 9.8957 seconds. The former depends 

upon the number of gains to be computed (3 for PID) and the background processing and 

the latter depends on the control horizon.  

  

A benefit of the RS-controller is that numerical savings can be made because of the 

structure of the controller. There is no need to update the gains at the same sample rate as 

the feedback loop RS-controller.  Using a lower sampling rate for the background 

processing should significantly reduce the computational burden. Another possible 

simplification is to compute and store the RS-controller gains to be implemented using 

scheduling.  The procedure could involve: 

● The controller can be used in a simulation using standard driving cycles or using 

a form of Monte Carlo testing. 



● The gains computed by the RS controller can be averaged over different zones of 

operation and values stored according to operating point (driving conditions). 

The resulting implementation should be much more efficient than traditional MPC in 

terms of computing resources. 

6. RS-GPC Control Problem for Nonlinear System 

A similar problem is now considered but one that reveals the link with traditional 

transport-delay compensation methods and with NGMV control problems Grimble 

(2005), Grimble and Majecki (2010a and 2010b).  The unstructured input sub-system 


1k is included in this case.  The model for 1k can be nonlinear and the model is 

assumed to be in “black-box” form. That is, the model equations need not be known, and 

it is only assumed the output of 1k can be calculated for a given input.  The actual input 

to the system is the control signal ( )u t , shown in Fig. 2, rather than the input to the input 

unstructured sub-system ( ) ( )( )0 1k u t u t=  .   

The cost-function for the problem of interest may include an additional control 

signal costing term.  If the smallest delay in each output channel of the plant is of 

magnitude k-steps this implies that the control signal t affects the output at least k-steps 

later.  For this reason, the dynamic control signal costing is defined to have the following 

form: 

 ( )( ) ( )( )c c
k

ku t z u t−=   (64) 

The control weighting operator ck  will be assumed to be full-rank and invertible and can 

be nonlinear.  In analogy with the previous RS-GPC problem a multi-step cost-index may 



now be defined that is an extension of the cost-function in (91).   Let the function , ,ck N t NU  

be defined to have the simple diagonal form:                           

 ,,c( )Nk N tU = ( )( ) ( )( ) ( )( ){ , 1 ,..., }ck ck ckdiag u t u t u t N+ +                 (65) 

Recall the parameterization , ( ) ( )t N fe cU U t k t= , so that the vector of inputs may be 

expressed as follows:                        

                                                    0
, ( ) ( )t N fe cU U t k t=1k,N                                            (66) 

where  , ,1 1 1 1 1( ) { , ,... , } [( )( ) ,..., ( )( ) ]N N

T T T
t k k k t k kU diag U u t u t N= = +     1k,N   

Extended Cost-Index:                      0 0
, ,{ | }N N

T
p Pt k Pt kJ E t+ += Φ Φ                                    (67) 

where 
+Φ0

,NP t k
 in (67) is an extension of (61), to include future control costing terms: 

,
0 1 20 0

, , , ,c( ) ( )
CN CNCN CN NN

T
Pt k Pt k N t N c c fe k N tP E F U F k t F k t U U+ +Φ = + + + ∆ +  

 

Recall 0 2
CN

T
fe NF U= Λ , 1 2

CN KF = Λ , 2 2
CN DF = Λ , , ( ) ( )t N fe cU U t k t= , ( ) ( )c c ck t k t k= −  and 

( ) ( ) ( 1)c c ck t k t k t∆ = − − .  Hence, obtain: 

,
0 2 0 2 2

, , , ,c( ( ) ) ( ) ( 1)( )CN NN
T T

Pt k Pt k N fe N t N K c c D c c fe k N tP E U U k t k k t k t U U+ +Φ = + Λ + Λ − + Λ − − +   

( ),
2 2 2 2 2

,c ( ) ( 1)CN N
T T

P t k fe N fe K D fe k N fe c K c D cP E U U U U k t k k t+= + Λ + Λ + Λ + − Λ −Λ − 1k,N                                                                                                           

6.1 RS-GPC with Unstructured Block Control Solution  

Only a brief summary of the solution of this problem is provided since it follows from 

very similar steps to those in Appendix 4.  Observe from (92) that 

,

0
, , ,c NN N

k T
Pt Pt f e k N tz U U−Φ = Φ +   and 0 0 0

, , ,
ˆ

N N NPt k Pt k Pt k+ + +Φ = Φ +Φ .  Thence obtain, 

    ( ),
0 2 2 2

, ,cˆˆ ( ) ( )CN NN
T T

Pt k P t k fe N fe K D fe k N fe cP E U U U U k t tψ+ +Φ = + Λ + Λ + Λ + + 1k,N  (68) 



Substituting from (21) for the future predicted error ,
ˆ

P t k NE + : 

0
, ,

ˆ ˆ( | )CN CNNPt k Pt k N PN NP D P C A x t k t+ +Φ = + +  

( )2 2 2
,c ( ) ( ) ( )CN

T T
K D fe k N fe PN fe N fe cU U P V U U k t tψ+ Λ + Λ + + + Λ + 1k,N  

The estimation error: 

 0
, , ,N N

T T
Pt k Pt k fe PN Pt k NU V E+ + +Φ = Φ =    (69) 

The future predicted values of error in the signal
+Φ0

,
ˆ

NP t k
, involves the estimated vector of 

weighted errors ,
ˆ

Pt k NE +  and these are orthogonal to ,Pt k NE +
 .  The estimation error is zero 

mean and the expected value of the product with a known signal is null, and hence the 

cost to be minimized may be written as follows: 

 0 0
, , 1

ˆ ˆ( ) ( )N N
T

Pt k Pt kJ t J t+ += Φ Φ +   (70) 

where the optimal control gives 0
,

ˆ 0NPt k+Φ = .  The condition for optimality, that determines 

the optimal solution, noting CN

T T
fe PNP U V= , becomes:  

, ˆ( | )CN CNPt k N PN NP D P C A x t k t+ + +  

 ( )2 2 2
,c ( ) ( ) ( ) 0T T T

K D fe k N fe fe PN PN N fe cU U U V V U k t tψ+ Λ + Λ + + + Λ + = 1k,N  (71) 

This is similar to (97), but with added weighting ,ck N  and sub-system 1k,N present.   

6.2 The RS-GPC Control Signal 

The vector of future optimal control signals, to minimize the cost-index (70), follows 

from the condition for optimality (71).  The vector of future optimal controls becomes:                 



    ( ) 12 2 0 2
, ,c( ) ( ) ( ) ( )( )T T T

c K D fe k N fe Pt k N fe PN PN N 1k,N fe ck t U U D U V V U k t tψ
−

+= − Λ + Λ + + + Λ +      (72) 

An alternative solution of equation (71), that may be easier for implementation, leads to 

the following gain vector expression: 

( ) ( )( )12 2 0 2
, ,c( ) ( ) ( ) ( )T T

c K D Pt k N fe k N PN PN N fe ck t D U V V U k t tψ
−

+= − Λ + Λ + + + Λ + 
1k,N  (73) 

where 0
, , ˆ( | )CNPt k N Pt k ND P D C x t k tφ+ += + + .  

  

Theorem 3:   Optimal RS-GPC Control Law 

Consider the plant, disturbance and output weighting models put in augmented state 

equation form (4) to (7),  with input from the stable input plant dynamics 1k .   The cost-

function to be minimized, with N > 0, involving a sum of future cost-terms, is defined as 

follows: 

                                             0 0
, ,{ | }N N

T
p Pt k Pt kJ E t+ += Φ Φ                                                  (74)   

  ,

0 1 20 0
, , , ,c( ) ( )

CN CNCN CN NN
T

Pt k Pt k N t N c c fe k N tP E F U F k t F k t U U+ +Φ = + + + ∆ +                   (75)   

The error and control-input cost-function weightings are introduced as in the RS-GPC 

problem (34) and these determine the block matrix cost-index terms CN

T T
fe PNP U V=  and 

0 2
CN

T
fe NF U= Λ , PN PN N PNV C B E= +  and CN

T T
PN N fe PN PN NC P C A U V C Aφ = = . The gain weighting 

1 2
CN KF = Λ  and rate of change weighting 2 2

CN DF = Λ  is also included, together with the 

dynamic control weighting function ,ck N .  The optimal gain vector, to minimize (74) 

becomes:                     



       ( )1 2
, ˆ( ) ( | ) ( ) ( ) ( )CN

T T
c F Pt k N fe PN PN N fe ck t X P D C x t k t U V V U k t tφ ψ−

+= − + + + + Λ +1k,N        (76)

where 2 2 1( ) ( )K c D ck k ttψ = −Λ −Λ −  and 2 2
,c

T
F K D fe k N feX U U= Λ + Λ +  .   The vector of future 

controls for prediction can be computed as , ( ) ( )t N fe cU U t k t= .                                     ■                                                  

Solution:  The proof follows by collecting results before the Theorem.                      ■ 

Remarks on the solution:  

• The control law in Fig. 20, includes an internal model for the process, and is 

implemented using a receding horizon approach as in the above RS-GPC solution.  

• The controller involves a Kalman predictor stage but the order of the Kalman 

filter only depends only on the delay free linear subsystems.    

• Note NX from (43) the optimal gain (76) in the limiting case when the weighting

,c 0k N →  and when =1k,N I  becomes the same as for RS-GPC control (88). 

• Constraints may be applied at each sampling instant using quadratic programming 

to the magnitude of the controller gains, or their rate of change of gains. 



 

Figure 20.  RS-GPC Feedback Control and Predictor for State and Unstructured Plant            

6.3 Stability of the Closed-Loop                  

 An expression may be derived for the control and output signals in closed-loop form, in 

terms of the exogenous inputs.  Assume the stochastic external inputs are null and let  

1 1 1( )= I z A z− − −Φ −   then the state 0( 1) ( ) ( ) ( )dx t Ax t Bu t k d t+ = + − +  can be represented as 

follows: 

                                      0( ) ( ( ) ( ))dx t Bu t k d t= Φ − +  

The predicted-state, in this deterministic case ˆ( | ) ( )x t k t x t k+ = + . The cost-function can 

be simplified assuming 2 0KΛ → and 2 0DΛ → . Recall from , ( )t N fe cU U k t=  where from (32): 

                   1 1 1ˆ ˆ( ) ( ) ( ) ( 1) ( ) ( ) ( )
TT T T T T T

fe e u e u e uU t F t L z F t N L z F t N L z− − − = + − +   

Assume eN N≥  and ( )feU t  and ,c
T
fe k N feU U  are full-rank. For the absolute gain case 

2 20 ( 1) 0( )c K c D ck and k k ttψ= = −Λ −Λ − = . Then from (71), the condition for optimality 

may be written as: 
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          ( )2
, ,cˆ( | ) ( ) ( ) 0CN CN

T T
Pt k N PN N fe k N PN PN N fe cP D P C A x t k t U V V U k t+ + + + + + Λ = 1k,N  

Recall (66) and 0 1k,N( ) ( ) ( )I 0 fe cu t C U t k t=  , where [ ,0,...,0]I 0C I=  and T T
fe PN PN NC U V C Aφ =  so 

that 0ˆ( | ) ( ( ) ( ))dx t k t Bu t d t k+ = Φ + + . The condition for optimality may be written as:                                             

                  ( )2
, 1k,Nc ( ) ( )T T T

fe k N fe I 0 fe fe PN PN N fe cU U C BC U U V V U k tφ+ Φ + + Λ  1k,N    

                                           ( ), ( )CN Pt k N dP D C d t kφ+= − + Φ +     

Recall from (30) the RS control ( ) ( ) ( )u e cu t L F t k t= . It follows that for the gain and control 

signals to be stable the operator in this equation, namely: 

                      ( )2
, 1k,Nc ( )T T T

fe k N fe I 0 fe fe PN PN N feU U C BC U U V V Uφ+ Φ + + Λ  1k,N  

must have a stable inverse, which provides a necessary condition for stability.                                                              

7. Concluding Remarks 

The example revealed some useful results and properties confirmed in other examples 

investigated. Firstly, the use of dynamic cost-function weightings was found to be 

important to provide flexibility and enable good transient response solutions to be 

obtained. Secondly on the question of implementation it was not obvious which of the 

two methods of implementing the controller (Absolute or Gain Deviation gains) was the 

most useful, since by careful tuning “good” results (not the same) could be achieved by 

either method, in for example step-response performance terms. It was concluded that the 

application would determine which was the most suitable.  

 

Thirdly, it was found that the time-varying gains of the controller were found to remain 

constant much of the time, only changing with major disturbances or set-point changes. 

This is what was really needed and distinguished the work from much of the previous 

work on restricted structure control that assumed constant gains. The time-variation is 

what enables higher performance to be achieved. On the other hand, the robustness of 



low-order controllers relates to controllers with constant gains, and it is therefore useful 

that the gains do not normally vary widely for the types of system investigated.  There 

was no problem experienced in implementing the constraints on gains that worked 

effectively but how useful this might be will depend upon hardware constraints in the 

application.  

 

Fourthly, and the most important was the improved robustness achieved. Both for plant 

model mismatch and errors in transport-delay knowledge there was a considerable 

improvement over the classical control solution. Other examples have also indicated the 

approach may offer improved robustness, which was the main motivation for the work (it 

is recognized examples are by no means a proof). Finally, the example demonstrated that 

this type of model based predictive control solution that requires highly qualified design 

engineers can still be retuned using traditional tuning inputs like PID gain adjustments. 

By combining the two most successful control techniques used in industry a design 

method has been produced with good potential in applications.  The work is novel since 

the previous work on RS-controllers has not included the nonlinear subsystem, or the 

potential to use either soft or hard constraints on the controller gains.  

The advantages of this RS-GPC approach may be summarized as follows: 

• The computations will normally be less than traditional MPC since the main 

matrix to be inverted depends on the number of gains used in the RS-controller, 

which are often less than the control horizon needed for good performance. 

• The PID controller is very effective and seems to have inherited the natural 

robustness of low-order controllers.  Moreover, adding terms to its dynamic order 

should give it greater flexibility. 



• Parameterising the controller in terms of a set of linear dynamic functions (like 

PID function terms), multiplied by unknown gains is simple and computation of 

the gains by predictive control is straightforward. 

• Using prediction enables information on future reference and disturbance changes 

to be included. The controller structure can include natural feed-forward terms 

(from known disturbances), and it provides transport-delay compensation.   

• A higher performance than PID should be possible, since time-varying gains and 

more functions provide added refinement and flexibility.  This should be 

particularly beneficial for multivariable applications (Majecki et.al. 2015, 2017). 

• Provides a way of auto-tuning or benchmarking low-order designs like a PID 

controller, assuming a model is available.  

• If the optimal gains are computed and simply stored for operation in different 

regions it provides a simple solution for implementation using scheduling.  
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Appendix 1: Notation and Signal Dimensions 

The signals and dimensions may be listed as follows: 

( )x t :      Vector of n system states in the linear plant subsystem and the disturbance model. 

0 ( )u t :    Vector of 0m input signals to the linear output subsystem. 

( )u t :      Vector of m controls applied to the input subsystem, representing the plant input. 

( )my t :    Vector of r plant output signals that are measured. 

( )mz t :    Vector of r observations or measured plant outputs including measurement noise. 

( )wr t :     Vector of r plant set-point or reference signals (known k + N steps ahead). 

( )r t :      Vector of r plant set-point or deterministic reference model output signals. 

0 ( )e t :     Vector of r noisy error (reference-observations) signals. 

( )pe t :    Vector of m inferred output or error signals to be controlled including weightings. 

( )md t :    Vector of r known output disturbance signal values. 



( )pd t :    Vector of r known inferred output disturbance signal values. 

( )dd t :    Vector of q known input disturbance signal values. 

Appendix 2: Block Matrix Definitions 

The following vectors and block-matrices may be defined for the general case N > 0 as:   

{ , ,... , }PN p p pC diag C C C=       and     { , ,..., }PN p p pE diag E E E=         (N+1 square) 
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For the special case of a single-step cost-function N = 0 define ,NA I=  0N NB D= = ,  

PN pC C= , PN pE E= .  The ,t NW  denotes a vector of white noise inputs and 0
,t NU  denotes 

a block vector of future input signals.   

Appendix 3: Parameterizing the RS-GPC Controller 

The function 1, ( )( )j jf z k t− and gains
 

( )jk t are defined to have the following matrix forms: 

            ( )

1 1
11 11 1 1

1
1 22 22

1 1
1 1

( ) ( ) ( ) ( )
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( ) ( ) ( ) ( )

j j j j
r r
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In the special case when these matrices can be defined to be diagonal: 

( ) { }1 1 1 1
11 11 22 22, ( ) ( ) ( ), ( ) ( ), , ( ) ( )j j j j j j

j j mm mmf z k t diag f z k t f z k t f z k t− − − −= 
 

where { }11 22, , ,j j j
j mmk diag k k k=  . The proposed controller structure involves the sum 

of vector functions that form the control signal.  These might be the sum of proportional, 

integral and filtered derivative terms for each of the channels.  From (26): 

        ( )1 1 1 1
1 1 2 2( ) ( ) ( , ( )) ( ) ( , ( )) ( ) ( , ( )) ( )

e NL L LNu eu t L z f z k t e t f z k t e t f z k t e t− − − −= + + +

   

 

The functions 1( , ( ))j jf z k t−  and the gains ( )jk t  determine the controller structure and the 

controller gains, respectively.  The gains ( )jk t  represent a set of time-varying gain vectors 

for the multivariable controller, with a total of Ne function block terms.   

Let the vector of weighted errors 1
0( ) ( ) ( )L ee t L z e t−=  may be written in terms of the scalar 

signals for each error channel as:                                                                 

 1 2( ) ( ) ( ) ( )T L L L
L re t e t e t e t =     

Each of the terms in the summation in (26) has the form ( )1, ( ) ( )Lj jf z k t e t− .  From (77) the 

contribution of the j th function term in each channel, can be written as:
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The expression (26) for the control signal may now be written (from (78)) as: 
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(79) 

Control signal for parameterized controller 

The expression (79) provides a valid parameterization of the controller but it needs to be 

in a more convenient form for the optimization of the gains.   An expression is required 

where the gains are collected in a vector to be optimized.  Motivated by the summation 

terms in (79) define: 

 1 1 2 1 1[ ( ) ( ) ( ) ( ) .... ( ) ( )]eL L LNis
e is s is s is sf f z e t f z e t f z e t− − −=  (80) 

and the gain vector: 

 1 2 Ne
TTi T T

c is is is
sk k k k =    (81) 

Thus, from (80) and (81) obtain: 
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That is, the contribution to the control in channel i, corresponding to the error in output 

channel s, can be obtained as:     
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1
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e
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N
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=∑  (82)  



The parameterized control in the general case, follows from (79) and (82): 
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The scalar gains may now be collected in one total vector as:    

1 2( )
TT T T

c c c cmk t k k k =   ,         where          1 2( ) i r Ti i
c i c c ck t k k k =                       

The total gain-vector has

 

r×m×Ne   rows which may be written as:                                                                                                                                  

1 211 12 21 22 1 2
1 2

r r m r
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TT T T m m
c c c c m c c c c c c c c c

channel 1gains channel 2 gains channel m gains

k k k k k k k k k k k k k
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 11 12

1 2 1 2 1 2
11 11 12 12

N N N
m r

e e e
T

m r m rk k k k k k k k k =       (84) 

The gain-vector ck  includes the functional controller gains for each channel listed in 

order.  The restricted structure controller may now be represented as ( ) ( ) ( )u e cu t L F t k t= . 

Appendix 4: Square of Sum Optimization Problem 

The following proof for Theorem 2 shows that an equivalent minimum variance problem 

may be solved which has the same solution as the RS-GPC design, which is needed for 

motivating the nonlinear control problem solved in the last section. Let the constant 

positive-definite, real symmetric matrix in (43) be factorized as:  

 2 2 2( )T T T
N fe PN PN N fe K DY Y X U V V U= = + Λ + Λ + Λ   

Note from (33), , ( ) ( )t N f e cU U t k t=  and (50) 0
, ,CNPt k N Pt k ND P D+ +=  .  From (47) the criterion:   



, , , , 0( ) ( ) (( ) ( ) ( )) ( )( )CN CN
T T T T T T
Pt k N Pt k N c Pt k N Pt k N c N c

T
c c cJ D D k t P D D P kt tk t k t k t k t X t Jψ ψ+ + + += + + + + + +     

( ), , , (( )) CN
T T
Pt k N Pt k N c Pt k ND D k P tt D ψ+ + += + +  

   

( ), 0( ) ( ) ( ) ( )CN
T T T T T
Pt k N c c cD P t k t k t Y Y k t Jψ++ + + +

 

Recall 0
, ,CNPt k N Pt k ND P D+ +=   and then by completing the squares: 

 ( )( ) ( )( )0 1 0
, ,( ) ( ) (( ))T T T T T

Pt k N c Pt k N c minJ D t Y k t Y Y D Yk t Jtψ ψ− −
+ += + + + + +    

where the minimum-cost, including terms that do not involve ( )ck t , follows as:
 

 ( ) ( )0 1 0
, , , , 0( )( )T T T T

min Pt k N Pt k N Pt k N Pt k NJ D D D tt Y Y D Jψ ψ− −
+ + + += − + + +     

 

From inspection of the cost J  it is also useful to define the signal:  

 ( )0
,

ˆ ( ) ( )T
Pt k N cY D t Y k tψ−

+Φ = + +
P t+k,N  (85) 

The cost-function (54) may therefore be written in an equivalent form as: 

 ˆ ˆ ( )minJ J t= Φ Φ +T
Pt+k,N Pt+k,N  (86) 

Observe that the last term ( )minJ t  in equation does not depend upon current control action 

and the optimal control is found by setting the squared term in (86) to zero.  That is, the 

optimal control is obtained by setting the term containing the predicted inferred output 

Φ̂P t+k,N to zero.  Also note CN

T T
fe PNP U V=  and the minimum cost ( )minJ t therefore depends 

on ( )f eU t , which is a function of the controller parameterization.  

 
Writing T

NX Y Y= the condition for optimality in this problem can be expressed as: 



 0
, ( ) ( ) 0Pt k N N cD t X k tψ+ + + =  (87) 

and the optimal gain vector: 
                                              ( )1 0

,( ) ( ) ( )T
c Pt k Nk t Y Y D tψ−

+= − +
 

 ( )1
, ˆ( | ) ( )CNN Pt k NX P D C x t k t tφ ψ−

+= − + + +  (88) 

This solution (88) is the same control as in (51).  That is, the RS-GPC optimal controller 

for the above system and cost (54), is the same as the controller to minimise the Euclidean 

norm of the signal Φ̂t+k,N , defined in (86).          

Modified Cost-Function Generating RS-GPC Control 

 This result motivates the definition of a different multi-step minimum-variance cost 

problem that has the same solution (still considering case 1k I= ). Consider a new 

signal to be minimised involving a weighted sum of error and inputs as in NGMV control 

of the form 0 0c( ) ( ) ( )ct k P e t k F u tφ + = + + .  The vector of future values of this signal, for a 

multi-step cost-index, may be defined as:                     

                    ,

0 0 1 2
, , ( ) ( )CN CN N CN CNP N P tt k t k N c cP E F U F k t F k t+ +Φ = + + + ∆   (89) 

Introduce cost-weightings, motivated by the RS-GPC weightings, to have the form:                  

          ( )CN

T T
fe PNP U t V= ,     0 2( )CN

T
fe NF U t= Λ      and     

1 2
CN KF = Λ  ,       2 2

CN DF = Λ  (90) 

where ( ) ( ) ( 1)c c ck t k t k t∆ = − −   .   This choice is justified by the results in Theorem 2 that 

follows below.  The new multi-step cost-function, using the vector of signals (89):                                                     

 , ,{ } { | }N N
T

t P t k P t kJ E J E t+ += = Φ Φ   (91) 

 



Solution     

The solution to this problem for the minimization of the variance of ,NPt k+Φ  may be 

considered, noting  (89) and substituting for , , ,
ˆ

Pt k N Pt k N Pt k NE E E+ + += +  . From (89), 

20 0 1
, , ,CN CN CN CNNPt k Pt k N t N c cP E F U F k F k+ +Φ = + + + ∆ 

 20 0 1
, , ,

ˆ
CN CN CN CN CNPt k N t N c c Pt k NP E F U F k F k P E+ += + + + ∆ +    (92) 

This expression may be written in terms of the estimate and the estimation error as: 

 , , ,
ˆ

N N NPt k Pt k Pt k+ + +Φ = Φ +Φ  (93) 

Clearly the predicted signal and the prediction error: 

                       20 0 1
, , ,

ˆˆ
CN CN CN CNNPt k Pt k N t N c cP E F U F k F k+ +Φ = + + + ∆    

                                                      , ,CNNPt k Pt k NP E+ +Φ =                                                   (94) 

The performance index (91) may therefore be expanded and written as: 

, , , , , ,
ˆ ˆ{ } { | } {( ) ( ) | }N N N N N N

T T
t Pt k Pt k Pt k Pt k Pt k Pt kJ E J E t E t+ + + + + += = Φ Φ = Φ +Φ Φ +Φ   

 

The terms in the performance index (91) can be simplified, recalling the optimal estimate

,
ˆ

Pt k NE +  and the estimation error ,Pt k NE +
  are orthogonal.  Thus, obtain: 

, , , , , , , ,
ˆ ˆ ˆ ˆ{ | } { | } { | } { | }N N N N N N N N

T T T T
Pt k Pt k Pt k Pt k Pt k Pt k Pt k Pt kJ E t E t E t E t+ + + + + + + += Φ Φ + Φ Φ + Φ Φ + Φ Φ      

 , , 1
ˆ ˆ ( )N N

T
Pt k Pt k J t+ += Φ Φ +   (95) 

The last cost-term (95), that is independent of control action, may be written as:  



 1 , , , ,( ) { | } { | }N N CN CN
T T T
Pt k Pt k Pt k N Pt k NJ t E t E E P P E t+ + + += Φ Φ =     (96) 

The signals
+Φ

,
ˆ

NP t k
 may be simplified, by substituting for ,

ˆ
Pt k NE +  from (21).  Thence, 

                                 
20 0 1

, , ,
ˆˆ

CN CN CNN CNPt k Pt k N t N c cP E F U F k F k+ +Φ = + + + ∆ 
 

20 0 0 1
, , ,ˆ( ( | ) )CN CN CN CNPt k N PN N PN t N t N c cP D C A x t k t V U F U F k F k+= + + + + + + ∆ 

 

20 0 0 0 1
, , ,CN CN CNCNPt k N PN t N t N c cD P V U F U F k F k+= + + + + ∆ 

      

Substituting from (33) the , ( ) ( ) ( )( ( ))t N fe c f e c cU U t k t U t k k t= = +   and recalling the 

definitions of weights 0 2
CN N

T
feF U= Λ , 1 2

CN KF = Λ and 2 2
CN DF = Λ .  Also noting (52) obtain:   

20 0 2 2
, , ,

ˆ
N CN N

T
P t k Pt k N PN t N fe fe c K c D cD P V U U U k k k+ +Φ = + + Λ + Λ + Λ ∆ 

 

( )0 2 2 2
, ( ) ( ( ) ( 1))T T T

Pt k N fe PN PN fe fe N fe c K c D c cD U V V U U U k t k k t k t+= + + Λ + Λ + Λ − −    

Recall from (37) ( ) ( ) ( 1)c c ck t k t k t∆ = − − and from (29) ( ) ( )c c ck t k t k= − then, 

( )0 2 2 2 2 2
, ,

ˆ ( ) ( ) ( 1)N
T T

P t k Pt k N fe PN PN N fe K D c K c D cD U V V U k t k k t+ +Φ = + + Λ + Λ +Λ −Λ −Λ −
 

 0
, ( ) ( )Pt k N N cD X k t tψ+= + +  (97) 

The optimal control must set the first squared term in (95) to zero ,
ˆ 0NPt k+Φ = .   The optimal 

gains therefore follow by setting (97) to zero, giving: 

              ( )1 0
,( ) ( )c N Pt k Nk t X D tψ−

+= − + ( )1
, ˆ( | ) ( )CNN Pt k NX P D C x t k t tφ ψ−

+= − + + +             (98)

This expression is the same as would be obtained from the condition for optimality (87), 



derived for the equivalent optimization problem.  The solution (98) is the same as the 

vector of RS-GPC control gains, as summarised in Theorem 2 which follows. 
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