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Abstract 

To reduce the fuel consumption and green-house gas emissions of ships, it is necessary to understand the ship resistance. In this 

context, understanding the effect of surface roughness on the frictional resistance is of particular importance since the skin 

friction, which often takes a large portion in ship drag, increases with surface roughness. Although a large number of studies have 

been carried out since the age of William Froude, understanding the roughness effect is yet challenging due to its unique feature 

in scaling. In this study, a Computational Fluid Dynamics (CFD) based unsteady Reynolds Averaged Navier-Stokes (RANS) 

resistance simulation model was developed to predict the effect of barnacle fouling mainly on the resistance and hull wake 

characteristics of the full-scale KRISO container ship (KCS) hull. Initially, a roughness function model was employed in the wall-

function of the CFD software to represent the surface conditions of barnacle fouling. A validation study was carried out involving 

the model-scale flat plate simulation, and then the same approach was applied in full-scale flat plate simulation and full-scale 3D 

KCS hull simulation for predicting the effect of barnacle fouling. The increase in frictional resistance due to the different fouling 

conditions were predicted and compared with the results obtained using the boundary layer similarity law analysis of Granville. 

Also, a further investigation of the roughness effect on the residuary resistance, viscous pressure resistance and wave making 

resistance was carried out. Finally, the roughness effect on the wave profile, pressure distribution along the hull, velocity 

distribution around the hull and wake flows were examined.  

Keywords: ship resistance; roughness effect; biofouling; computational fluid dynamics (CFD); full-scale simulation; KRISO 

container ship (KCS) 

 

1. Introduction 

To meet the needs of a globalized world, there has been a rapid expansion of maritime transportation. According to United 

Nations Conference on Trade and Development (UNCTAD, 2017), the seaborne trade volumes have more than tripled during the 

last four decades. While marine transport is considered more fuel-efficient than other freight methods, its greenhouse gas 

emissions are substantial and growing fast. The International Maritime Organization (IMO, 2014), forecasted maritime CO2 

emissions is to increase by 50% to 250% in the period to 2050 depending on the scenarios of future economic and energy 

developments.  

Within this framework, understanding further details of the ship resistance is important to minimize the fuel consumption and 

GHG emissions. Particularly, frictional resistance component plays an important role as it takes the largest portion of the total 

ship resistance for the majority merchant ships. For example, skin friction can account for up to 90% of the total resistance, for a 

slow-speed ship (Lackenby, 1962). The skin friction is critically affected by the surface roughness, as a proof, Schultz and Swain 

(2000) observed huge increases of 370% and 190% in skin friction due to the biofilm and algae in their experiment using a flow 

channel. Accordingly investigating the effect of hull fouling on ship resistance is of particular importance, to predict the increased 

ship resistance in-service. 

A large number of experimental studies have been devoted to exploring the effect of surface roughness on skin friction over past 

120 years, since the very first experimental investigation of the effect of hull roughness on a destroyer conducted by Froude 

(1872, 1874). As stated in Schultz and Swain (2000), there have been numerous studies to explore the adverse effect of marine 

coatings and biofouling on ship resistance by conducting various types of experimental methods including towing test of flat 

plates (McEntee, 1915; Benson et al., 1938; Lewkowicz and Das, 1986), rotating disk (Watanabe et al., 1969; Loeb et al., 1984; 

Candries et al., 2003), flow channel (Candries and Atlar, 2005; Andrewartha et al., 2010) or others (Kempf, 1937; Watanabe et al., 
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1969). The literature further indicates that the impact of calcareous fouling (e.g. barnacles) is particularly critical and greatly 

dependent on the type and coverage of fouling (McEntee, 1915; Kempf, 1937; Schultz, 2004; 2007).  

More recently, there have been studies exploring the roughness effect of calcareous fouling. Demirel et al. (2017a) conducted a 

series of towing test using flat plates covered with 3D printed artificial barnacle patches and observed a 119% increase in skin 

friction due to the barnacles of varying sizes and coverages. Gowing et al. (2018) measured the drag of 3D printed panels of 

barnacles, oysters and tubeworms of varying spatial density and size scales, and the levels of fouling conditions were converted 

to the equivalent sand grain roughness. Womack et al. (2018) measured the boundary layer characteristics along idealized model 

barnacles in shape of truncated cones, and they found the equivalent sand grain roughness height and skin friction coefficients 

according to the densities of the model barnacles.  

Although the detrimental impacts of the surface roughness on drag have been reported from the earliest times (Townsin, 2003), 

predicting the roughness effect on the full-scale ship is not an easy task owing to its unique feature in scaling. That is to say, the 

size of surface roughness cannot be downscaled proportionally to the model ship (Franzini, 1997). 

The most widely used method to predict the roughness effect on full-scale ship resistance is the boundary layer similarity law 

scaling which was proposed by Granville (1958; 1978). The merit of using this method is that the full-scale roughness effect on 

an arbitrary length of the body covered with the same roughness can be predicted, once the roughness function, 𝛥𝑈+, of the 

surface is given. Since there is no universal roughness function for all types of roughness, the roughness functions of individual 

roughness types have to be obtained experimentally using the direct or indirect methods (Demirel, 2015). The indirect methods 

have been preferred by researchers to the direct methods since the indirect methods are generally simpler and more economical 

compare to the direct methods. Accordingly, there have been a large number of experimental studies to acquire roughness 

functions and the corresponding roughness Reynolds number, 𝑘+, using the indirect methods derived by Granville (1958; 1978; 

1982; 1987), including local method with displacement thickness (Schultz and Swain, 1999; Flack et al., 2005; Schultz et al., 2015), 

local method without displacement thickness (Karlsson, 1978), overall method (Schultz and Myers, 2003; Schultz, 2004; Shapiro, 

2004; Demirel, 2015; Demirel et al. 2017a) or rotating disk method (Schultz and Myers, 2003; Holm et al., 2004). Schultz and 

Myers (2003) further concluded that the roughness functions obtained from the different indirect methods can bring a good 

agreement with the results obtained from the direct method.  

These findings are valuable since the obtained roughness functions can be practically used for the prediction of the roughness 

effect at any length and speed of ship. Demirel (2015) utilized the roughness functions of marine coatings and biofouling to 

develop an in-house prediction code for the ship added resistance based on the boundary layer similarity law analysis of Granville 

(1958). Although Granville’s similarity law scaling shows good agreement with full-scale ship trial results (Schultz, 2007), 

Granville’s extrapolation method is still limited by the use of boundary layer analysis. That is to say, this method can only predict 

the roughness effect of given surface roughness on the frictional resistance of a flat plate of ship length and hence cannot consider 

the three-dimensional (3D) effect and inevitably it cannot examine the total resistance coefficients. Another restriction of this 

scaling method is that only one fixed roughness Reynolds number, 𝑘+, and thus roughness function, 𝛥𝑈+, are taken into account 

in the calculation to represent the roughness effect on the whole flat plate, which is definitely not realistic as the local friction 

velocity, 𝑢𝜏, varies by the flow being developed along the flat plate in reality (White, 2011).  

Implementation of computational fluid dynamics (CFD) is an effective way to overcome the above-mentioned limits of boundary 

layer similarity law analysis. In CFD simulations the distribution of the local friction velocity, 𝑈𝜏, is dynamically computed for each 

discretized cell, and therefore the dynamically varying roughness Reynolds number,  𝑘+, and corresponding roughness function, 

𝛥𝑈+, can be taken into account in the computation, and hence the roughness effect on ship resistance can be more accurately 

predicted (Demirel et al. 2017b). For this reason, there have been several studies investigating the roughness effect of marine 

coatings and biofouling on ship resistance using CFD simulations. Patel (1998) remarked that once the roughness function model, 

𝛥𝑈+ = 𝑓(𝑘+), of the roughness type is known, the given roughness function model can be employed into the wall-function in 

the CFD so that the wall boundary condition in the simulation represents the roughness on the surface. Date and Turnock (1999) 

proposed a numerical approach modifying the wall-function coefficient to predict the roughness effect on frictional resistance of 

a flat plate, however their method cannot directly represent the viscous flow over rough surface as the dynamically changing 

values of 𝛥𝑈+,  is not considered in the CFD computation. Izaquirre-Alza et al. (2010) conducted CFD simulation of a flat plate 

coated with marine coatings using SST 𝑘-𝜔 turbulence model and showed a good agreement with the experimental result, 

however they did not provide any information about the roughness function model employed in their CFD model and valid 

evidence of the selection of the roughness height of the coatings. Eça and Hoekstra (2011) examined the effect of sand-grain 

roughness on skin friction of a ship-length flat plate and further asserted that the roughness can be accurately simulated using 

either wall-functions or near-wall resolution. However, there is a continuing concern by ITTC (2011a) in the use of sand grain 



roughness for prediction of ship resistance due to the dissimilar behaviour of closely packed sand grain roughness which is not 

found in real ship surface roughness. Demirel et al. (2014), on the other hand, developed a CFD model for the prediction of skin 

friction of antifouling coatings. They employed roughness functions obtained from a series of towing tests of flat plates coated 

with antifouling coatings (Schultz, 2004) and validated the modified wall-function approach by comparing the results obtained 

by CFD with the experimental data. They then applied the same approach to ship-length flat plate simulations to investigate the 

frictional resistance of the antifouling coatings.  

There have been fewer studies carried out for the examination of the effect of the surface roughness on 3D hull shape. Castro et 

al. (2011) conducted full-scale simulations of the KRISO container ship (KCS) modifying the wall-function coefficients according 

to the roughness height of the coating. However, they used a fixed value of roughness function so that the simulation cannot 

accurately reflect the roughness effect due to the coating roughness as the case of Date and Turnock (1999). Recently, Demirel 

et al. (2017b), developed a CFD model to explore the roughness effect of marine coatings and biofouling on full-scale ship 

resistance. They conducted simulations of full-scale flat plate and KCS hull and compared the simulation results with the results 

obtained using similarity law analysis. Although they employed the roughness function model suggested by Schultz (2007) into 

the wall-function of the CFD software, they have not directly validated their results against any experimental data. As discussed 

above, it is still questionable if the surface boundary conditions of the existing CFD studies can realistically represent the surface 

roughness of real ships. Therefore, it is worth conducting a systematic analysis by employing a realistic surface boundary condition 

to predict the effect of hull fouling on ship performance. 

To the best of the authors’ knowledge, there exists no specific study to predict the effect of barnacles of varying sizes and 

coverages on the ship resistance components. Therefore, this study aims to fill this gap by developing a CFD model to simulate a 

realistic surface roughness through employing a roughness function model representing barnacle fouling and performing a 

comprehensive investigation on the roughness effect of barnacle fouling on ship hydrodynamic characteristics using the proposed 

CFD model. The main advantage of the proposed approach is that the CFD simulations enable extensive analysis on the 

hydrodynamic details of the turbulent flow over the rough surface of a ship in a fully non-linear way, which is not possible using 

boundary layer similarity law analysis. 

In this study, the roughness function of barnacle fouling obtained by Demirel et al. (2017a) was employed in the wall-function of 

the CFD model to simulate the surface roughness of barnacle fouling of varying sizes and coverages. Firstly, the use of the modified 

wall-function approach was validated against the experimental data. Then the same wall-function approach was used for full-

scale flat plate simulations and 3D KCS hull simulations. The increase of frictional resistance due to the different fouling conditions 

were predicted and compared with the results obtained using boundary layer similarity law analysis. Finally, the roughness effect 

on the wave profile, pressure distribution along the hull, velocity distribution around the hull and its wake were examined. 

 

1.1. Roughness effect on the turbulent boundary layer 

The surface roughness causes an increase in the turbulence. As a consequence, the turbulent stress, wall shear stress and finally 

the skin friction increase. The roughness effect can also be observed in the velocity profile in the log-law region. Clauser (1954) 

showed that the roughness effect results in a downward shift in the velocity profile in the log-law region. This downward shift is 

termed as the ‘Roughness Function’, 𝛥𝑈+. The non-dimensional velocity profile in log-the law region for a rough surface is then 

given as 

𝑈+ =
1

𝜅
log 𝑦+ + 𝐵 − 𝛥𝑈+ 

(1) 

 

The roughness function, 𝛥𝑈+ can be expressed as a function of the roughness Reynolds number, 𝑘+, defined as 

𝑘+ =
𝑘𝑈𝜏

𝜈
 

(2) 

It should be borne in mind that 𝛥𝑈+simply vanishes in the case of a smooth condition. Once the roughness function, 𝛥𝑈+ =

𝑓(𝑘+), of a certain roughness surface is known, it can be utilized in the boundary layer similarity law analysis of Granville (1958, 

1987) or directly embedded into a CFD solver to predict the roughness effect on the frictional resistance of a ship covered with 

the given roughness (Demirel et al., 2017b).  



2. Methodology 

2.1. Approach 

Figure 1 shows the flow chart of the methodology to achieve the aim of this study, i.e. the development of a CFD model to 

simulate the effect of barnacle fouling on a ship surface. Step 1 is employing the roughness function of the barnacle fouling into 

the wall-function in the CFD model so that the wall boundary condition can represent the rough surface due to barnacles. The 

roughness function and the corresponding roughness heights obtained by Demirel et al. (2017a) was selected and employed in 

the wall-function of the CFD model. Step 2 is the validation of the proposed wall-function. A model-scale flat plate covered with 

barnacles of varying sizes and coverages was simulated numerically. Then the simulation results were compared with the 

experimental result of Demirel et al. (2017a). Step 3 is involved by conducting full-scale CFD simulations using the modified wall-

function approach to predict the effect of barnacle fouling on the ship resistance components. The frictional resistance 

coefficients were predicted for the KCS 3D hull and compared with the results obtained from the full-scale flat plate simulation 

of the same ship using CFD as well as the results for the same ship based on the Granville’s similarity law scaling procedure. The 

roughness effect on the different resistance components were also examined using the results of KCS hull simulations. Finally, 

the roughness effect on the wave profile, pressure distribution along the hull, velocity distribution and boundary layer 

development around the hull, and on the wake flow were examined.  

 

Figure 1 The methodology followed in the study 

 

2.2. Roughness function of barnacle fouling 

In this study, the roughness function of barnacle fouling obtained by Demirel et al. (2017a) was embedded into the wall-function 

of the CFD models so that the surface boundary condition of the hull can represent the barnacle fouled surface. 

Demirel et al. (2017a) used an experimental approach to find the roughness function of barnacle fouling. The study was based on 

an extensive series of towing test of flat plates covered with artificial barnacle patches. Different sizes of real barnacles, 

categorised as small, medium and big regarding their size, were digitised using 3D scanning technology and 3D printed into 

artificial barnacle tiles. The barnacle tiles were then glued onto the surfaces of flat plates by differing the coverage area and the 

plates were towed at a range of speeds. From the analyses of the experimental results, they found that the roughness functions 

of the barnacle fouling can be expressed using the Colebrook type roughness functions of Grigson (1992), given by 

𝛥𝑈+ =
1

𝜅
ln(1 + 𝑘+) 

(3) 

 



Table 1 compares the roughness length scales of barnacle fouling obtained by the experiment and Figure 2 shows the roughness 

functions for the test surfaces. For further details about the experiment, one can refer the supplementary data in the online 

version, at doi.org/10.1080/08927014.2017.1373279. 

Table 1 Roughness length scales of test surfaces, adapted from Demirel et al. (2017a) 

Test surface Barnacle type 
Surface coverage 

(%) 
Barnacle height 

ℎ (mm) 

Representative sand-
grain roughness height 

𝑘𝐺  (μm) 

B10% Big 10 % 5 174 
B20% Big 20 % 5 489 
M10% Medium 10 % 2.5 84 
M20% Medium 20 % 2.5 165 
M40% Medium 40 % 2.5 388 
M50% Medium 50 % 2.5 460 
S10% Small 10 % 1.25 24 
S20% Small 20 % 1.25 63 
S40% Small 40 % 1.25 149 
S50% Small 50 % 1.25 194 

 

 

 

Figure 2 Roughness functions for the test surfaces, adapted from Demirel et al. (2017a) 

 

 

2.3. Numerical modelling 

2.3.1. Mathematical formulations 

The proposed CFD model was developed based on the unsteady Reynolds-averaged Navier-Stokes (URANS) method using a 

commercial CFD software package, STAR-CCM+. The averaged continuity and momentum equations for incompressible flows 

may be given in tensor notation and Cartesian coordinates as in the following two equations (Ferziger and Peric, 2002). 

𝜕(𝜌�̅�𝑖)

𝜕𝑥𝑖
= 0 

(4) 

𝜕(𝜌�̅�𝑖)

𝜕𝑡
+

𝜕

𝜕𝑥𝑗
(𝜌�̅�𝑖�̅�𝑗 + 𝜌𝑢𝑖

′𝑢𝑗
′̅̅ ̅̅ ̅̅ ) = −

𝜕�̅�

𝜕𝑥𝑖
+

𝜕�̅�𝑖𝑗

𝜕𝑥𝑗
 

(5) 

in which, 𝜌 is density, �̅�𝑖 is the averaged velocity vector, 𝜌𝑢𝑖
′𝑢𝑗

′̅̅ ̅̅ ̅̅  is the Reynolds stress, �̅� is the averaged pressure, �̅�𝑖𝑗  is the mean 

viscous stress tensor components. This viscous stress for a Newtonian fluid can be expressed as  

�̅�𝑖𝑗 = 𝜇 (
𝜕�̅�𝑖

𝜕𝑥𝑗
+

𝜕�̅�𝑗

𝜕𝑥𝑖
) 

(6) 



where 𝜇 is the dynamic viscosity. 

In the CFD solver, the computational domains were discretized and solved using a finite volume method. The second-order 

upwind convection scheme and a first-order temporal discretization were used for the momentum equations. The overall solution 

procedure was based on a Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) type algorithm. 

The shear stress transport (SST) 𝑘 -𝜔  turbulence model was used to predict the effects of turbulence, which combines the 

advantages of the 𝑘-𝜔 and the 𝑘-ε turbulence model. This model uses a 𝑘-𝜔 formulation in the inner parts of the boundary layer 

and a 𝑘-ε behaviour in the free-stream for a more accurate near wall treatment with less sensitivity of inlet turbulence properties, 

which brings a better prediction in adverse pressure gradients and separating flow (Menter, 1994). A second-order convection 

scheme was used for the equations of the turbulent model. 

For the models where free surfaces are present (model-scale flat plate and full-scale KCS hull simulations), the Volume of Fluid 

(VOF) method was used with High Resolution Interface Capturing (HRIC).  

2.3.2. Geometry and boundary conditions 

In the study, three different CFD models were generated, using the modified wall-function approach, to study the effect of the 

barnacle fouling, and these included: (i) Model-scale flat plate simulations for the validation; (ii) Full-scale flat plate representation 

of the KCS hull ; (iii)  Full-scale 3D simulations of the KCS hull appended with a rudder.  

For all CFD models, the surface boundary conditions of the plates and ship hulls were defined as the no-slip condition. For smooth 

cases, the smooth type wall-function was used, while the fouled cases used the rough type wall-function containing the roughness 

function model, corresponding equations (1) and (3), for the boundary condition of the hull. 

Figure 3 shows the dimensions and boundary conditions used for the model-scale flat plate simulation. The dimensions of the 

plate and the domain were selected to represent the towing test of Demirel et al. (2017a). For the boundary condition of the side 

wall and bottom of the towing tank, the slip-wall boundary condition was chosen to specify the flow field in the coordinate system 

fixed on the plate. For the two opposite faces at the 𝑥-direction, a velocity inlet boundary condition was applied for the inlet free-

stream boundary condition, and a pressure outlet was chosen for the outlet boundary condition. In order to save the 

computational time, a symmetry boundary condition was applied on the vertical centre plane (𝑦 = 0), so that only a half of the 

plate and the control volume were taken into account. The authors believe that this does not significantly affect the results. 

Figure 4 shows the dimensions and boundary conditions used for the full-scale flat plate simulation. The length of the full-scale 

flat plate was chosen to represent the length of the KCS so that the roughness effect at the same Reynolds number of the KCS at 

its design speed (24 knots) and slow streaming speed (19 knots) can be examined. The full-scale plate simulation was modelled 

as fully submerged by defining the boundary conditions of horizontal and vertical centre planes (𝑧 = 0 and 𝑦 = 0, respectively) 

as the symmetry planes. As a consequence, only a quarter of the plate and fluid domain was taken into account in order to save 

the computational time.  

Table 2 shows the principal particulars of the KCS used in the full-scale KCS hull simulation. The body plan, and side profiles of 

KCS, the boundary conditions and the dimensions of the computational domain are shown in Figure 5. The velocity inlet and 

pressure outlet boundary conditions were applied as the inlet and outlet boundary conditions. For the representation of deep 

water and infinite air conditions, the boundary conditions of the side walls, bottom and top of the domain were set to the velocity 

inlet, as similarly used by Demirel et al. (2017b). The vertical centre plane was defined as the symmetry plane, and hence only a 

half of the domain was taken into account. It is important to note that the full-scale KCS simulations were conducted in a fixed 

condition, such that the ship was not allowed to sink or trim in the simulations. 



 

Figure 3 The dimensions and boundary conditions for the model-scale flat plate simulation model, (a) the plate, (b) profile view of 
the computational domain, (c) top view of the computational domain. 

 

Figure 4 The dimensions and boundary conditions for the full-scale flat plate simulation model, (a) the plate, (b) profile view of the 
computational domain, (c) top view of the computational domain. 

 

 

Table 2 Principal particulars of the KCS in full-scale and model-scale, adapted from Kim et al. (2001) and Larsson et al. (2013) 

Length between the perpendiculars 𝐿𝐵𝑃 (m)  230 

Length of waterline 𝐿𝑊𝐿 (m)  232.5 

Beam at waterline 𝐵𝑊𝐿 (m)  32.2 

Depth 𝐷 (m)  19.0 

Design draft 𝑇 (m)  10.8 

Wetted surface area with a rudder 𝑆 (m2)  9539 

Displacement ∇ (m3)  52030 

Block coefficient 𝐶𝐵  0.6505 

Design speed 𝑉 (knot, m/s)  24 

Froude number 𝐹𝑛  0.26 

Propeller diameter 𝐷𝑝 (m)  7.9 

Hub ratio 𝐷ℎ/𝐷𝑝   0.18 

 



 

Figure 5 The dimensions and boundary conditions for the full-scale KCS hull simulation model, (a) body plane and side profiles of 
the KCS, adapted from Kim et al. (2001), (b) profile view of the computational domain, (c) top view of the computational domain 

 

2.3.3. Mesh generation 

Mesh generation was performed using the built-in automated mesh tool of STAR-CCM+. Trimmed hexahedral meshes were used 

for the high-quality grid for the complex domains. Local refinements were made for finer grids in the critical regions, such as the 

areas around the body, near the free surface, leading and trailing edges, the rudder and bulbous bow of the hull.  

The prism layer meshes were used for near-wall refinement, and the thickness of the first layer cell on the surface was chosen 

such that the 𝑦+ value is always higher than 30, and higher than 𝑘+ value, as suggested by Demirel et al. (2017b), Owen et al. 

(2018), and CD-Adapco (2017). Figure 6 shows the volume meshes on the cross-sections of the domain.   



 

Figure 6 Volume mesh of full-scale KCS hull simulation model, (a) top view, (b) profile view, (c) stern refinement, (d) bow refinement 

 

3. Results 

3.1. Verification study 

A verification study was conducted to assess the numerical uncertainties of the CFD models and to determine sufficient grid-

spacing and time step. The Grid Convergence Index (GCI) method based on the extrapolation of Richardson (1910) was used to 

estimate the order of accuracy of the simulations. It is of note that, although the GCI method was firstly intended to be used for 

spatial convergence studies, it can also be used for a temporal convergence study as shown in Tezdogan et al. (2015) and Terziev 

et al. (2018). 

According to Celik et al. (2008) the apparent order of the method, 𝑝𝑎, is determined by 

𝑝𝑎 =
1

ln(𝑟21)
| ln |

𝜀32

𝜀21
| + 𝑞(𝑝𝑎) |   

(7) 

𝑞(𝑝𝑎) = ln (
𝑟21

𝑝𝑎 − 𝑠

𝑟32
𝑝𝑎 − 𝑠

)   
(8) 

𝑠 = 𝑠𝑖𝑔𝑛 (
𝜀32

𝜀21
) (9) 



where, 𝑟21  and 𝑟32  are refinement factors given by 𝑟21 = √𝑁1/𝑁2
3  for a spatial convergence study of a 3D model, or 𝑟21 =

𝛥𝑡1/𝛥𝑡2 for a temporal convergence study. 𝑁 and 𝛥𝑡 are the cell number and time step, respectively. 𝜀32=𝜙3 − 𝜙2,  𝜀21=𝜙2 −

𝜙1, and 𝜙𝑘  denotes the key variables, i.e. 𝐶𝑇 in this study. 

The extrapolated value is calculated by 

𝜙𝑒𝑥𝑡
21 =

𝑟21
𝑝

𝜙1 − 𝜙2

𝑟21
𝑝

− 1
 

(10) 

The approximate relative error, 𝑒𝑎
21, and extrapolated relative error, 𝑒𝑒𝑥𝑡

21 , are then obtained by 

𝑒𝑎
21 = |

𝜙1 − 𝜙2

𝜙1
| 

(11) 

𝑒𝑒𝑥𝑡
21 = |

𝜙𝑒𝑥𝑡
21 − 𝜙1

𝜙𝑒𝑥𝑡
21 | 

(12) 

 

Finally, the fine-grid convergence index is found by 

𝐺𝐶𝐼𝑓𝑖𝑛𝑒
21 =

1.25𝑒𝑎
21

𝑟21
𝑝

− 1
 

(13) 

 

3.1.1. Spatial convergence study 

For spatial convergence study, three different resolution of meshes were generated, which are referred to as fine, medium, and 

coarse meshes corresponding the cell numbers of 𝑁1, 𝑁2, and 𝑁3. Table 3 shows the required parameters for the calculation of 

the spatial discretization error. The total resistance coefficient values, 𝐶𝑇, of smooth cases were used as the key variables. The 

inlet velocity for the model-scale flat plate simulation was set to 𝑉 = 2.435 𝑚/𝑠 which is one of the towing speeds of Demirel et 

al. (2017a), while the inlet velocity of 24 knots was used for the simulations of full-scale flat plate and KCS hull. As indicated in 

the table, the numerical uncertainty of fine meshes (𝐺𝐶𝐼𝑓𝑖𝑛𝑒
21 ) for the model-scale flat plate, full-scale flat plate and KCS hull CFD 

models are 0.77%, 0.11% and 0.96% respectively. For accurate prediction of the roughness effect of barnacle fouling, the fine 

mesh of each case was used in this study. 

Table 3 Parameters used for the calculation of the discretization error for the spatial convergence study, key variable: 𝐶𝑇 

 
Model-scale flat plate Full-scale flat plate Full-scale KCS hull 

𝑁1 2,300,000 1,200,000 2,000,000 

𝑁2 930,000 850,000 1,300,000 

𝑁3 460,000 610,000 630,000 

𝑟21 1.35 1.12 1.26 

𝑟32 1.26 1.12 1.42 

𝜙1 3.981E-03 1.357E-03 2.095E-03 

𝜙2 4.021E-03 1.355E-03 2.103E-03 

𝜙3 4.092E-03 1.347E-03 2.126E-03 

𝜀32 7.16E-05 -7.94E-06 2.27E-05 

𝜀21 3.98E-05 -2.62E-06 8.67E-06 

𝑠 1 1 1 

𝑒𝑎
21 1.00% 0.19% 0.41% 

𝑞 3.74E-01 6.50E-02 -5.34E-01 

𝑝a 3.19E+00 1.02E+01 1.86E+00 

𝜙𝑒𝑥𝑡
21  3.956E-03 1.358E-03 2.078E-03 

𝑒𝑒𝑥𝑡
21  0.62% -0.09% 0.78% 

𝐺𝐶𝐼𝑓𝑖𝑛𝑒
21  0.77% 0.11% 0.96% 

 

 



3.1.2. Temporal convergence study 

For the temporal convergence study, three different time steps, namely 𝛥𝑡1, 𝛥𝑡2, and 𝛥𝑡3, were applied to the simulations using 

fine meshes. Table 4 shows the required parameters for the calculation of the temporal discretization error. The total resistance 

coefficient values, 𝐶𝑇, of smooth cases were used as the key variable. The inlet velocity for the model-scale flat plate simulation 

was set to 𝑉 = 2.435 𝑚/𝑠 which is one of the towing speeds of Demirel et al. (2017a), while the inlet velocity of 24 knots was 

used for full-scale flat plate and the KCS hull simulations. As indicated in the table, the numerical uncertainties of the smallest 

time steps (𝐺𝐶𝐼𝛥𝑡1

21 ) of the model-scale flat plate, full-scale flat plate, and KCS hull CFD models are 0.01%, 0.002% and 0.65% 

respectively. For accurate prediction of the roughness effect of barnacle fouling on ship resistance, the smallest time step, 𝛥𝑡1, 

of each model was used in this study. It is of note that the recommended time step by ITTC (2011b) is 0.005~0.01𝐿/𝑉, and the 

time steps used in this study were within this range or even smaller. 

Table 4 Parameters of the calculation of the discretization error for the temporal convergence study, key variable: 𝐶𝑇 

 
Model-scale flat plate Full-scale flat plate Full-scale KCS hull 

𝛥𝑡1 0.01s 0.16s 0.02s 

𝛥𝑡2 0.02s 0.32s 0.04s 

𝛥𝑡3 0.04s 0.64s 0.08s 

𝑟21, 𝑟32 2 2 2 

𝜙1 3.981E-03 1.357E-03 2.095E-03 

𝜙2 3.980E-03 1.357E-03 2.108E-03 

𝜙3 3.978E-03 1.360E-03 2.136E-03 

𝜀32 -2.58E-06 2.77E-06 2.88E-05 

𝜀21 -8.80E-07 2.50E-07 1.31E-05 

𝑒𝑎
21 0.02% 0.018% 0.62% 

𝑝a 1.55E+00 3.47E+00 1.14E+00 

𝜙𝑒𝑥𝑡
21  3.982E-03 1.357E-03 2.084E-03 

𝑒𝑒𝑥𝑡
21  -0.01% 0.0018% 0.52% 

𝐺𝐶𝐼𝛥𝑡1

21  0.01% 0.0023% 0.65% 
 

3.2. Validation study 

3.2.1. Validation of the CFD models in smooth condition  

To validate the CFD models in smooth condition, the 𝐶𝑇 values obtained using the CFD simulations were compared with the 

experimental data of Demirel et al. (2017a) and the extrapolated result using the experimental data of Kim et al. (2001). The inlet 

velocity of model-scale flat plate simulation was set to 𝑉 = 2.435 𝑚/𝑠 (𝑅𝑛 = 2.8 × 106), which is one of the towing speeds of 

Demirel et al. (2017a), while the design speed of the KCS was used for the full-scale KCS hull simulation. The density and dynamic 

viscosity of fresh water at 15 °C and sea water at 20 °C were used for the model-scale flat plate simulation and the full-scale KCS 

simulation, respectively. The full-scale 𝐶𝑇  value used for the comparison were extrapolated using the frictional resistance 

coefficient, 𝐶𝐹, obtained from ITTC 1957 friction line (ITTC, 2011c) and the residuary resistance, 𝐶𝑅, obtained by Kim et al. (2011). 

As can be seen in Table 5, the model-scale flat plate and full-scale KCS hull simulation results show good agreement with the 

experimental results, showing relative errors of 0.38% and 0.54% respectively. 

Table 5 𝐶𝑇 values obtained from the CFD simulations and the experiments 

  𝐶𝑇  
 Simulation Experiment Relative error 

Model-scale flat plate 3.981E-03 3.397E-03a 0.38% 

Full-scale KCS hull 2.095E-03 2.083E-03b 0.54% 
a experimental data of Demirel et al. (2017a), b extrapolated using the experimental data of Kim et al. (2001) 

Figure 12 and 13 show the wave profiles obtained from the simulations and the experiment of Kim et al. (2001). To examine the 

scale effect together, the wave profiles obtained from model-scale simulations (𝐿𝑃𝑃 = 7.286𝑚) are also included in the figures. 

As can be seen from Figure 12, a good agreement was achieved between the wave profiles along the hull obtained from the 

current CFD models and the EFD data. On the other hand, as shown in Figure 13a , differences were observed from the full-scale 



wave profile along a line with constant 𝑦 = 0.1509𝐿𝑝𝑝. The wave profile of the full-scale simulation in smooth condition shows 

larger elevation at downstream region of the ship compare to those of the model-scale simulation and EFD data. Considering that 

the model-scale CFD simulation shows good agreement with the EFD data (Figure 13b), this difference can be most attributed to 

the different Reynolds numbers of the full-scale CFD and the model-scale EFD, as similarly observed by Castro et al. (2011) and 

Demirel et al. (2017b).  

3.2.2. Validation of the modified wall-function approach  

Figure 7 compares the 𝐶𝐹 values of model-scale flat plates in different fouling conditions computed from the CFD simulations 

with the experimental data of Demirel et al. (2017a). The horizontal axes of the figures indicate the corresponding roughness 

heights, 𝑘𝐺 , of the barnacle fouling conditions given in Table 1. It is evident from the figure that a good agreement is achieved 

between the current CFD model and the experiment of Demirel et al. (2017a). This suggests that the modified wall-function 

approach implemented in the CFD model can accurately represent the surface roughness of barnacle fouling. Therefore, it can 

be used to investigate the effect of barnacle fouling on the hydrodynamic characteristics of ships.  

 

Figure 7 𝐶𝐹 values of flat plates towed with different fouling conditions obtained from the simulations and the experiments by 
Demirel et al. (2017a), (a) 𝑉𝑖𝑛𝑙𝑒𝑡 = 1.5𝑚/𝑠, (b) 𝑉𝑖𝑛𝑙𝑒𝑡 = 2.435𝑚/𝑠, (c) 𝑉𝑖𝑛𝑙𝑒𝑡 = 3.591𝑚/𝑠 
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3.3. Roughness effect on full-scale ship resistance components 

Before investigating the roughness effect on the ship resistance components, it would be appropriate to re-state the major 

components. The total resistance, 𝑅𝑇, of a ship can be divided into two main components; the frictional resistance, 𝑅𝐹, and the 

residuary resistance, 𝑅𝑅, given by 

𝑅𝑇 = 𝑅𝐹 + 𝑅𝑅 (14) 

The frictional resistance arises from the friction between the fluid and the hull surface while the residuary resistance is pressure 

related resistance consisting of viscous pressure resistance, 𝑅𝑉𝑃, and wave making resistance, 𝑅𝑊, given by 

𝑅𝑇 = 𝑅𝐹 + 𝑅𝑉𝑃 + 𝑅𝑊 (15) 

The viscous pressure or also known as form drag is broadly assumed to be proportional to the frictional resistance (Lewis, 1988), 

with the use of form factor, 𝑘, as given 

𝑅𝑉𝑃 = 𝑘𝑅𝐹  (16) 

𝑅𝑇 = (1 + 𝑘)𝑅𝐹 + 𝑅𝑊 (17) 

The resistance components can be non-dimensionalized by dividing each term by the dynamic pressure, 
1

2
𝜌𝑉2, and the wetted 

surface area of the ship hull, 𝑆. The resistance coefficients can be defined as 

𝐶𝑇 = 𝐶𝐹 + 𝐶𝑅 
 

(18) 

𝐶𝑇 = 𝐶𝐹 + 𝐶𝑉𝑃 + 𝐶𝑊 
 

(19) 

𝐶𝑇 = (1 + 𝑘)𝐶𝐹 + 𝐶𝑊 
 

(20) 

where, 𝐶𝑇, 𝐶𝐹, and 𝐶𝑅 are the coefficients of total, frictional and residuary resistance, respectively. 

For the investigation into the effect of barnacle fouling on full-scale ship resistance and powering, full-scale flat plate CFD 

simulation and KCS hull simulation were conducted using the modified wall-function approach proposed in this study. The 

simulations were conducted at the design speed of 24 knots and slow steaming speed of 19 knots, whose corresponding Reynolds 

numbers are 2.7 × 109 and 2.1 × 109, respectively.  

3.3.1. Total resistance and effective power 

The total resistance coefficients, 𝐶𝑇 , were obtained from the full-scale KCS hull simulations in the surface conditions of varying 

sizes and coverage of barnacle fouling. As indicated in Table 6 the 𝐶𝑇 values show a significant increase due to the barnacle fouling. 

The increase in total resistance and the effective power of the ship was observed to be higher at 19 knots than 24 knots (by 73% 

and 60%, respectively). It can be attributed to the fact that the contribution of the frictional resistance becomes more dominant 

in the total resistance at lower speeds, and it is believed that the surface roughness mainly affects the frictional resistance rather 

than other resistance components. For these reasons, it appears that the effect of surface roughness on ship total resistance is 

more dominant at lower speeds. Therefore, it is worth investigating the effect of barnacle fouling on different resistance 

components.  

Table 6 𝐶𝑇 values obtained from full-scale KCS hull simulation 

   24 knots     19 knots   

Test Surface 𝑘𝐺  (μm) 𝐶𝑇 𝛥𝐶𝑇, 𝛥𝑃𝐸  𝐶𝑇 𝛥𝐶𝑇, 𝛥𝑃𝐸 

Smooth 0 2.095E-03 0%   1.803E-03 0% 

S10% 24 2.475E-03 18%   2.192E-03 22% 

S20% 63 2.691E-03 28%   2.419E-03 34% 



M10% 84 2.767E-03 32%   2.498E-03 39% 

S40% 149 2.936E-03 40%   2.670E-03 48% 

M20% 165 2.968E-03 42%   2.704E-03 50% 

B10% 174 2.985E-03 42%   2.724E-03 51% 

S50% 194 3.020E-03 44%   2.760E-03 53% 

M40% 388 3.265E-03 56%   3.018E-03 67% 

M50% 460 3.333E-03 59%   3.088E-03 71% 

B20% 489 3.358E-03 60%   3.114E-03 73% 

 

3.3.2. Frictional resistance and residuary resistance 

The frictional resistance coefficients and residuary resistance coefficients were directly computed from the full-scale KCS hull 

simulations and flat plate simulation. Additionally, the simulation results were compared with the 𝐶𝐹 values of flat plates with 

the same length as the KCS, extrapolated using Granville’s boundary layer similarity law scaling method (Granville, 1958; 1987). 

Figure 8 shows the frictional resistance coefficients, 𝐶𝐹, obtained from the two full-scale simulations and similarity law analysis 

at the design speed of 24 knots and slow steaming speed of 19 knots. In the figure, the 𝐶𝐹  values are plotted against the 

representative roughness heights, 𝑘𝐺 , of the corresponding fouling conditions. As can be seen in the figure, the frictional 

resistance coefficients obtained using the three different methods show excellent agreements in trends and with close values in 

magnitudes at both speeds. It appears that due to the three-dimensional effect, the 𝐶𝐹 values of the 3D KCS hull simulations are 

always higher than those of flat plate simulations. 

Table 7 compares the frictional resistance coefficients, the percentage of added resistance and the residuary resistance 

coefficients, 𝐶𝑅, obtained from the 3D full-scale KCS hull simulations with different fouling conditions at 24 knots and 19 knots. 

The increase in the 𝐶𝐹 values of KCS due to the fouling conditions was predicted to be up to 93% and 88% in the most severe 

fouled conditions (B20% case) at the design speed and slow streaming speed, respectively. It is notable that only with 10% 

coverage of small barnacle (S10% case) fouling can result in nearly 30% increase in the frictional resistance of KCS at the design 

speed. 

It is also not surprising that the 𝐶𝐹 values of the fouled cases (except S10%) remain rather consistent with the increasing speed 

(from 19 knots to 24 knots), while the smooth 𝐶𝐹 is decreasing. This is due to the fact that the 𝐶𝐹 starts to lose its dependency to 

the Reynolds number when it approaches to the fully rough regime (Moody, 1944). For the same reason, the percentage of the 

increased 𝐶𝐹 appear higher at 24 knots than 19 knots, as only 𝐶𝐹 in the smooth case decreases with the increase of Reynolds 

number while 𝐶𝐹 of rough surfaces remain relatively consistent. 

On the other hand, interesting features were observed in residuary resistance, 𝐶𝑅, between the two speeds. As can be seen in 

Figure 9, the 𝐶𝑅 values of the KCS at 24 knots showed decreasing trend with increasing fouling rate, while it tended to decrease 

as the roughness height increases at 19 knots. It appears that this difference arises from the different portions of viscous pressure 

resistance, 𝐶𝑉𝑃, and wave making resistance, 𝐶𝑊, at different speeds as firstly found in Demirel et al. (2017b). Further discussion 

of the roughness effect on 𝐶𝑉𝑃  and 𝐶𝑊 can be found in section 3.3.3.  



 

 

Figure 8 𝐶𝐹 values obtained by the proposed full-scale CFD simulations and Granville’s similarity law extrapolation at (a) 24knots 
and (b) 19knots 

 

Table 7 Comparison of the frictional resistance coefficients and the residuary resistance coefficients computed from the full-scale 
KCS hull simulations at 24 knots and 19 knots 

   24 knots     19 knots   

Surface 
condition 

𝑘𝐺  
(μm) 

𝐶𝐹 𝛥𝐶𝐹 𝐶𝑅 𝛥𝐶𝑅  𝐶𝐹 𝛥𝐶𝐹 𝐶𝑅 𝛥𝐶𝑅  

Smooth 0 1.415E-03 0% 6.792E-04 0.0%  1.446E-03 0% 3.565E-04 0.0% 

S10% 24 1.826E-03 29% 6.489E-04 -4.5%  1.829E-03 26% 3.632E-04 1.9% 

S20% 63 2.050E-03 45% 6.409E-04 -5.6%  2.049E-03 42% 3.697E-04 3.7% 

M10% 84 2.128E-03 50% 6.395E-04 -5.8%  2.126E-03 47% 3.716E-04 4.2% 

S40% 149 2.299E-03 62% 6.371E-04 -6.2%  2.294E-03 59% 3.766E-04 5.6% 

M20% 165 2.331E-03 65% 6.365E-04 -6.3%  2.326E-03 61% 3.779E-04 6.0% 

B10% 174 2.348E-03 66% 6.363E-04 -6.3%  2.345E-03 62% 3.791E-04 6.3% 

S50% 194 2.384E-03 68% 6.357E-04 -6.4%  2.380E-03 65% 3.799E-04 6.6% 

M40% 388 2.632E-03 86% 6.334E-04 -6.7%  2.628E-03 82% 3.906E-04 9.6% 

M50% 460 2.700E-03 91% 6.331E-04 -6.8%  2.693E-03 86% 3.943E-04 10.6% 

B20% 489 2.725E-03 93% 6.335E-04 -6.7%  2.718E-03 88% 3.956E-04 11.0% 
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Figure 9 Residuary resistance coefficients versus roughness heights, obtained from full-scale KCS hull simulations at 24 knots and 
19 knots 

 

3.3.3. Viscous pressure and wave making resistance 

To investigate the rationale behind the different trend of the residuary resistance at different speeds, the residuary resistance 

coefficients were divided into the viscous pressure resistance coefficients, 𝐶𝑉𝑃, and wave making resistance coefficients, 𝐶𝑊. To 

find the equivalent form factors, 𝑘, double-body flow calculation was conducted by modifying the CFD models. In the double-

body simulations, the free surface is replaced by a symmetry plane so that no wave can be generated and hence only the frictional 

resistance and the viscous pressure resistance exist (Raven et al., 2008). Table 8 shows the form factors, 𝑘, of the KCS obtained 

from the double-body simulations at the design speed (24 knots) and slow steaming speed (19 knots). As can be seen from the 

table, the 𝑘 values were observed to decrease as the surface roughness increases, and therefore the increase of 𝐶𝑉𝑃 due to the 

surface roughness is not proportional to 𝐶𝐹, which disagrees with the assumptions of Lewis (1988) and Demirel et al. (2017b).  

Figure 10 illustrates the values of 𝐶𝑅, 𝐶𝑉𝑃 and 𝐶𝑊  varying with the fouling rate. It is apparent that the wave making resistance, 

𝐶𝑊, of the KCS decreases as the level of hull fouling increases, whilst the viscous pressure resistance, 𝐶𝑉𝑃, increases with the 

increasing fouling rate. Since 𝐶𝑅 is sum of 𝐶𝑉𝑃 and 𝐶𝑊, 𝐶𝑅 can increase or decrease depending on the dominance of 𝐶𝑉𝑃 and 𝐶𝑊. 

Therefore, the full-scale 𝐶𝑅 values at 24 knots show decreasing trend with increasing surface fouling an due to the dominance of 

𝐶𝑊 while they show increasing trend at 19 knots due to the relatively small portion of 𝐶𝑊. 
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Figure 10 Comparison of the residuary resistance, viscous pressure resistance and wave making resistance versus the 
representative roughness height of the fouling conditions, (a) 24 knots, (b) 19 knots 

 

3.3.4. Contribution of resistance components 

Since it was found in the previous sections that the effect of surface roughness varies in each resistance component, it is worth 

investigating the change in the portions of resistance components due to barnacle fouling.  Figure 11 compares the percentages 

of the resistance components in different surface conditions at the two speeds. The portions of 𝐶𝐹 values increase from 68% to 

81% at 24 knots and from 80% to 87% at and 19 knots. On the other hand, the percentage of 𝐶𝑉𝑃 in total resistance tends to 

remain rather stable for both speeds, while the percentage of 𝐶𝑊 rapidly decrease from 24% to 11% at 24 knots, and from 10% 

to 4% at 19 knots. As discussed in section 3.3.1 the frictional resistance coefficients are more dominant at 19 knots, and result in 

larger increases in total resistance as the surface roughness increases. 

Table 8 Form factor calculation from the double-body simulations 

    24 knots     19 knots    

Surface 
condition 

𝑘𝐺  (μm) 𝐶𝑇 𝐶𝐹 𝑘 𝛥𝑘  𝐶𝑇 𝐶𝐹 𝑘 𝛥𝑘 

Smooth 0 1.511E-03 1.341E-03 0.1268 0%   1.547E-03 1.374E-03 0.1259 0% 

S10% 24 1.959E-03 1.759E-03 0.1137 -10%   1.965E-03 1.765E-03 0.1133 -10% 

S20% 63 2.194E-03 1.978E-03 0.1092 -14%   2.198E-03 1.981E-03 0.1095 -13% 

M10% 84 2.275E-03 2.054E-03 0.1076 -15%   2.278E-03 2.056E-03 0.1080 -14% 

S40% 149 2.452E-03 2.218E-03 0.1055 -17%   2.454E-03 2.220E-03 0.1054 -16% 

M20% 165 2.486E-03 2.250E-03 0.1049 -17%   2.488E-03 2.251E-03 0.1053 -16% 

B10% 174 2.504E-03 2.266E-03 0.1050 -17%   2.506E-03 2.268E-03 0.1049 -17% 

S50% 194 2.541E-03 2.301E-03 0.1043 -18%   2.543E-03 2.302E-03 0.1047 -17% 

M40% 388 2.800E-03 2.541E-03 0.1019 -20%   2.802E-03 2.542E-03 0.1023 -19% 

M50% 460 2.869E-03 2.605E-03 0.1013 -20%   2.871E-03 2.606E-03 0.1017 -19% 

B20% 489 2.895E-03 2.629E-03 0.1012 -20%   2.897E-03 2.630E-03 0.1015 -19% 
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Figure 11 Percentage bar diagram of the resistance components, at (a) 24 knots, (b) 19 knots 

 

3.4. Wave profile 

As it was found that the surface roughness of the KCS affects the wave making resistance, it is worth examining the roughness 

effect on wave profiles of the KCS. Figure 12 compares the wave profile along the hull of the KCS in the smooth case and the 

rough case (B20%), and it also includes the wave profiles obtained from model-scale simulations (𝐿𝑃𝑃 = 7.286𝑚). As illustrated 

in the figure similar wave profiles were recorded for different surface conditions in both scales. In contrast, differences were 

observed in the wave profile along a line with 𝑦 = 0.1509𝐿𝑝𝑝, as shown in Figure 13. In both scales, the wave profiles of the 

smooth and rough cases collapse on top of each other for 𝑥 > −0.25𝐿𝑝𝑝  and then deviate from each other in the region 

downstream of the ship. This observation suggests that the roughness effect on the ship wave is minor with the exception of the 

wake region where the viscous effects become important (Castro et al., 2011). The reduced wave elevation observed at the wake 

region by the roughness effect is in accordance with the finding of decreasing trend of 𝐶𝑊 with increasing fouling rate observed 

in Figure 10. 
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Figure 12 Wave profile along the hull for smooth and fouled (B20%) cases, (a) full-scale, (b) model-scale 

 

 

Figure 13 Wave profile along a line with constant 𝑦 = 0.1509𝐿𝑝𝑝 for smooth and fouled (B20%) cases, (a) full-scale, (b) model-

scale 
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3.5. Pressure distribution 

Figure 14 shows the pressure distribution along the KCS hull in the smooth and fouled (B20%) surface condition. It is clear from 

the figure that the surface roughness reduces the pressure recovery at the stern significantly, which increases the viscous pressure 

resistance, 𝐶𝑉𝑃  as observed from the previous section. It has been also observed that the surface roughness increases the 

pressure at the fore part of the rudder, which is believed due to the reduced flow velocity after the stern that can be seen in the 

following subsection. It is also notable that the pressure distributions of different surface conditions were similar from the bow 

to the middle of the ship. This finding denotes that the pressure distribution is not significantly affected by the surface roughness 

unless an adverse pressure gradient occurs, and hence it supports the assumption that the residuary resistance of the flat plates, 

which has zero pressure gradient, is not affected by the surface roughness (Schultz, 2007; Demirel et al., 2017a). 

Figure 15 illustrates the pressure contours at 𝑦 = 0.006𝐿𝑝𝑝,  downstream to the KCS in the smooth and fouled case (B20%) 

surface condition. It can be seen from the figure that the surface roughness decreases the magnitude of the pressure downstream 

to the hull. The significantly decreased pressure below the free surface behind the hull is in accordance with the reduce wave 

elevation after the stern in rough case as observed in Figure 13.  

 

Figure 14 Pressure distribution on the KCS hull, (a) smooth case, (b) fouled case (B20%), (c) difference (rough-smooth) 



 

 

Figure 15 Pressure distribution on the plane with constant 𝑦 = 0.006𝐿𝑝𝑝, (a) smooth case, (b) fouled case, at 24 knots 

 

3.6. Velocity distribution 

Figure 16 illustrates the boundary layer represented by the slices of axial velocity contours limited to 𝑉𝑥/𝑉𝑠ℎ𝑖𝑝 = 0.9 for smooth 

and rough cases. It can be seen that the surface roughness results in the increased boundary layer thickness along the hull, and 

thus increase in the skin friction. This finding is consistent with the experimental and computational data of other researchers 

(e.g. Schultz and Flack, 2005; 2007; Flack et al., 2005; Flack et al., 2007; Schultz, 2000; Demirel et al., 2017b).  

Figure 17 compares the mean axial velocity contours around the stern of KCS for both smooth and rough cases at 24 knots. The 

mean axial velocity was non-dimensionalized by dividing the velocity by the advance velocity of the ship. As visually evident from 

the figure, the surface roughness decelerates the flow velocity around the ship stern and hence enlarges the wake field. It is 

believed that this enlarged wake region interacts with the pressure distribution at the stern and brings an increase in the viscous 

pressure resistance. Another notable point is that the surface roughness decreases the velocity below the free surface behind 

the hull, and hence it is likely seen that this deceleration of the water particles causes the reduced wave elevation after the stern 

in rough cases as observed in Figure 13. 

The wake (velocity) contour plots at a plane with constant 𝑥 = 0.0175𝐿𝑝𝑝 at 24 knots are shown in Figure 18 for the smooth and 

rough hull surfaces on the port and starboard half, respectively . It is clearly seen that the wake contours are strongly affected by 

the surface roughness. The rough case, B20%, has slowed down the wake velocities and hence enlarged the wake region due to 

the surface roughness. The decelerated flow around the hull can affect not only the ship resistance but also the propulsion 

performance of the ship as it affects the wake fraction at the propeller section. 



 

Figure 16 Boundary layer represented by slices limited to 𝑉𝑥/𝑉𝑠ℎ𝑖𝑝 = 0.9, (a) smooth case, (b) fouled case 

(a) Smooth 

(b) B20% 



  

Figure 17 Contours of mean axial velocity at 𝑦 = 0.006𝐿𝑝𝑝, (a) smooth case, (b) fouled case, at 24 knots 

  

Figure 18 Contours of mean axial velocity at 𝑥 = 0.0175𝐿𝑝𝑝, (a) smooth case, (b) fouled case, at 24 knots 

 

3.7. Nominal wake  

The analysis of the wake flow velocity at the stern region indicated that the surface roughness increases the wake flow which can 

be best represented by the classical nominal wake fraction parameter. Figure 19 compares the distribution of the local wake 

fraction, 𝑤𝑥′ = 1 − 𝑉𝑥/𝑉𝑠ℎ𝑖𝑝, and the transverse velocity vector, 𝑉𝑥𝑦, at the propeller plane 𝑥 = 0.0175𝐿𝑝𝑝 at 24knots. The inner 

and outer circles denote the hub diameter, 𝐷𝐻, and the propeller diameter, 𝐷𝑃, respectively. As shown in the figure, it is evident 

(a) Smooth (b) B20% 



that the surface roughness of the hull increases the local wake fraction significantly. It was also observed that the surface 

roughness affects the direction and magnitude of the transverse flow at the propeller section. 

Table 9 compares the mean nominal wake fraction, 𝑤𝑛 , of the KCS in different surface conditions. The mean nominal wake 

fraction, 𝑤𝑛, was calculated by integrating the local wake fraction, 𝑤𝑥′, over the propeller disc. As indicated in the table, the 

increase in mean nominal wake fraction due to the barnacle fouling can be up to 47% and 44% at 24 knots and 19knots 

respectively. From this result, one may expect that the increase in wake fraction may compensate the negative effect of hull 

fouling in the resistance of the ship by increasing the hull efficiency, 𝜂𝐻. However, the decelerated inflow at the propeller section 

also affect the propeller efficiency, 𝜂𝑃 , by altering the propeller advance coefficient, 𝐽 . Therefore, in order to confirm the 

roughness effect on ship propulsion performance, a future work is needed using CFD simulations in self-propulsion conditions.  

 

 Figure 19 Nominal wake distribution, 𝑤𝑥′, and transvers velocity vector, 𝑉𝑥𝑦, at the propeller plane in smooth and fouled cases, 

at 24 knots 

 

Table 9 Comparison of the mean nominal wake fraction computed from the simulations 

     24 knots    19 knots  

 Surface condition  𝑘𝐺  (𝜇𝑚) 𝑤𝑛 𝛥𝑤𝑛  𝑤𝑛 𝛥𝑤𝑛 

 Smooth 0 0.1962 0%  0.2015 0% 

S 10% 24 0.2350 20%  0.2265 12% 

S 20% 63 0.2390 22%  0.2419 20% 

M 10% 84 0.2444 25%  0.2474 23% 

S 40% 149 0.2565 31%  0.2595 29% 

M 20% 165 0.2588 32%  0.2619 30% 

B 10% 174 0.2601 33%  0.2632 31% 

S 50% 194 0.2627 34%  0.2659 32% 

M 40% 388 0.2811 43%  0.2842 41% 

M 50% 460 0.2862 46%  0.2892 44% 

B 20% 489 0.2880 47%  0.2910 44% 

 

 

 



4. Concluding remarks 

CFD models for the prediction of the effect of barnacle fouling on ship hydrodynamics have been proposed. To represent the 

surface roughness of barnacle fouling in the simulation, the roughness function of barnacles obtained by Demirel et al. (2017a) 

was adopted and embedded into the wall-function of the CFD software so that the surface boundary condition of the hull can 

represent the barnacle fouling.  

For the validation of the modified wall-function approach, model-scale flat plate simulations representing different levels of 

barnacle fouling were modelled using the proposed approach. The simulation results showed excellent agreement with the 

experimental results of Demirel et al. (2017a).  

A verification study was also conducted to assess the numerical uncertainties of the proposed CFD models and to determine 

sufficient grid-spacings and time steps. Spatial and temporal convergence studies were performed using the Grid Convergence 

Index (GCI) method. 

Fully nonlinear unsteady RANS simulations of the full-scale flat plate representation of the KCS hull and the 3D representation of 

the same hull with rudder were performed to predict the effect of barnacle fouling on the resistance of this ship. The resulting 

frictional resistance coefficients were compared with each other, and also compared with the frictional resistance calculated by 

boundary layer similarity law scaling analysis and they all showed very good agreement in trends and magnitudes. It was observed 

that up to 93% and 88% of the frictional resistance increase at the design speed and the slow streaming speed can be experienced 

due to the barnacle fouling.  

An interesting finding is that the residuary resistance values of the full-scale KCS show decreasing trend with increasing fouling 

rate at 24 knots whereas they show an opposite trend at 19 knots.  The residuary resistance coefficients were separated into the 

viscous pressure resistance and wave making resistance coefficients, and it was observed that the wave making resistance 

decreases with increasing surface roughness while the viscous pressure resistance increases with the increasing fouling rate for 

both speeds. Therefore, it can be concluded that the residuary resistance can increase or decrease depending on the dominance 

of the wave making resistance and the viscous pressure resistance. 

Another interesting finding is that the form factor of the ship also decreases as the surface roughness increases. This finding 

reveals that the increase in the viscous pressure resistance due to the surface roughness is not proportional to the increase in 

the frictional resistance, which disagrees with the assumptions of Lewis (1988) and Demirel et al. (2017b).  

The roughness effect on the wave profile of the KCS was also examined by comparing those of smooth and rough simulation. As 

expected from the behaviour of the wave-making resistance coefficient, it has been found that the surface roughness results in 

smaller wave amplitude in the wake region.  

By comparing the pressure distributions along the KCS hull in smooth and rough cases, it was found that the surface roughness 

reduces the pressure recovery at the stern, which results in increased viscous pressure resistance. It is notable that the pressure 

distributions were observed to be similar from the bow to the middle of the hull. This finding shows that the surface roughness 

does not affect the residuary resistance unless an adverse pressure gradient occurs, which supports the assumptions made by 

Schultz (2007) and Demirel et al. (2017a). 

The effect of surface roughness on velocity distribution around the hull has also been explored. And it was observed that the 

surface roughness increases boundary layer thickness and enlarges wake region.  

Another important finding from this study is that the stern wake of the ship is significantly affected by the surface roughness. It 

was found that up to 47% increase in nominal wake fraction can occur due to the hull fouling, which is likely to affect the 

propulsion performance of the ship.  

This study has provided several important findings such as the roughness effect on the ship resistance, wave profile, pressure 

distribution along the hull, and the ship stern wake. Especially a notable increase in the nominal wake friction due to the surface 

roughness was observed. Therefore, future pieces of work may be the investigation of the roughness effect on ship propulsion 

performance. 
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