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Abstract 

Accelerated degradation tests (ADT) have been widely used to assess the reliability of prod-

ucts with long lifetime. For many products, environmental stress not only accelerates their 

degradation rate but also elevates the probability of traumatic shocks. When random traumatic 

shocks occur during an ADT, it is possible that the degradation measurements cannot be taken 

afterward, which brings challenges to reliability assessment. In this paper, we propose an ADT 

optimization approach for products suffering from both degradation failures and random shock 

failures. The degradation path is modeled by a Wiener process. Under various stress levels, the 

arrival process of random shocks is assumed to follow a non-homogeneous Poisson process. 

Parameters of acceleration models for both failure modes need to be estimated from the ADT.  

Three common optimality criteria based on the Fisher information are considered and com-

pared to optimize the ADT plan under a given number of test units and a pre-determined test 

duration. Optimal two- and three-level optimal ADT plans are obtained by numerical methods. 

We use the general equivalence theorems to verify the global optimality of ADT plans. A nu-

merical example is presented to illustrate the proposed methods. The result shows that the op-

timal ADT plans in the presence of random shocks differ significantly from the traditional ADT 

plans. Sensitivity analysis is carried out to study the robustness of optimal ADT plans with 

respect to the changes in planning input.  
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Acronyms and Abbreviations 

ADT Accelerated degradation test 

GET General equivalence theorems 

MLE Maximum likelihood estimation 

PF0 Proportion of failure under use condition 

PF1 Proportion of failure under the maximum stress  

RE Relative efficiency 

Notation 

ᵃ� (ᵅ�)  Degradation path of the test product 

ᵃ��  Lifetime of the test product 

ᵃ�  Degradation threshold 

ᵃ�(⋅)  Standard Brownian motion 

ℐᵊ�(ᵃ�, ᵃ�)  Inverse Gaussian distribution with mean ᵃ� and scale ᵃ�  

ᵳ�  True parameters 

ᵳ� ̂ MLE of ᵳ� 

ᵅ��  100ᵅ�-th lifetime percentile  

Δᵅ�  Inspection interval in the ADT 

ᵰ�(ᵅ�)  Drift parameter under standardized stress ᵅ� 

ᵃ�  Number of stress levels 

ᵃ�  Number of test units 

ᵅ��, ᵅ� = 1,… , ᵃ�  Level of the ᵅ�-th stress 

ᵰ��, ᵅ� = 1, … , ᵃ�  Proportion of test units allocated to the ᵅ�-th stress 

ᵃ��, ᵅ� = 1,… , ᵃ�  Number of test units allocated to the ᵅ�-th stress 

ᵀ�(ᵳ�)  Fisher information matrix 
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Φ(⋅), ᵱ�(⋅)  CDF and PDF of the standard normal distribution 

tr(ᵁ�)  Trace of matrix ᵁ� 

det(ᵁ�)  Determinant of ᵁ� 

E(X)  Expectation of random variable ᵃ� 

AVar(ᵃ�)  Asymptotic variance of ᵃ� 

ᵍ�,ᵍ�∗  Two-level test plan and optimal plan 

ᵍ�ᵍ��
∗  The optimal compromise plan 

  

1. Introduction 

Accelerated reliability tests are commonly used to assess the reliability of new products, 

especially those with extremely long lifespan under field use. In such tests, the products are 

exposed to elevated stress conditions, such as higher temperature, pressure, humidity, or a com-

bination of them. Data analysis and optimal planning of accelerated tests have drawn 

considerable attention from reliability researchers and engineers, who desire to predict the re-

liability as precise as possible through a more economical approach. Test information from a 

well-planned accelerated reliability test can provide useful guidance for maintenance 

scheduling and warranty prediction [1], [2].  For an overview, see Elsayed [3]. 

Inferences of lifetime distribution from accelerated life tests (ALT) is becoming very chal-

lenging because many highly reliable products have none or very few failures even under 

elevated stresses in a reasonable test duration. In such situations, we can resort to accelerated 

degradation tests (ADT) if the product has one or more measurable quality characteristics (QC) 

that can be modeled as degradation processes [4]. Instead of observing the failure times as in 

ALT, degradation levels of test units are measured periodically in ADT. The planning of ADT 

or other types of degradation test, such as step-stress ADT (SSADT) [5] and accelerated 

destructive degradation tests (ADDT) [6] have proved to be efficient in enhancing the accuracy 

of reliability assessment and saving experimental resources. The optimal ADT plans based on 

Wiener processes [7], [8], gamma processes [9]–[11] , and inverse Gaussian processes [12] 

have been intensely studied in the literature.  
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Most existing works on optimal ALT/ADT planning assumed that there was only one failure 

mode. However, many products have more than one failure modes. Neglect of any failure mode 

may significantly influence the optimality of reliability test plans and therefore the prediction 

accuracy of lifetime, thus it is necessary to consider multiple failure modes when planning 

accelerated tests. Bai and Chun [13] discussed the optimal simple step-stress ALT (SSALT) 

plans with independent competing causes.  Afterward, Pascual [14], [15] studied the ALT plan-

ning by considering independent Weibull or lognormal competing risks. For repairable sys-

tems, Liu and Tang [16] used a Bayesian D-optimality criterion to optimize ALT plans with 

independent risks, and an extension to SSALT can be found in Liu and Qiu [17]. Similar ideas 

have also been discussed for ALT with multiple stresses [18] and dependent failure modes 

[19].  

Although there are numerous studies on ALT planning with more than one failure modes, 

fewer studies have addressed the ADT modeling and planning with multiple failure modes. Ye 

et al. [20] developed a burn-in planning method by differentiating normal and mortality failure 

modes. The optimal two-variable ADT planning method for gamma processes was discussed 

in Tsai et al. [10]. Li and Jiang [21] proposed a SSADT planning method with independent 

stochastic degradation processes. Furthermore, SSADT planning problem with two dependent 

gamma processes was studied by Pan and Sun [22]. Haghighi and Bae modeled and analyzed 

linear degradation data and traumatic failures with competing risks in an SSADT experiment 

with the cumulative exposure model [23].  Nevertheless, to our knowledge, none of the studies 

in literature has considered both degradation and shock failures in the ADT planning problem, 

although the joint modeling of degradation and random shocks as well as related 

maintenance/warranty problems have been very popular in recent literature [24]–[26]. It is 

common that either performance degradation or random traumatic shocks could lead to fail-

ures. Generally, performance degradation is due to the natural aging and usage of a product, 

and if the performance degrades to an unsatisfactory level, the product is deemed failed alt-

hough it may still work. For example, an LED lamp are commonly regarded failed if its light 

intensity drops to a certain level. On the other hand, traumatic shocks are more likely to be 

caused by external events that influence the whole system, such as the sudden change in cur-

rency and voltage for electronic devices. The shocks lead to immediate product failures. During 

an ADT, the degradation measurability can be influenced by random shocks. Regarding the 

LED lamp example, if a lamp suddenly goes out during an ADT, its brightness cannot be 

tracked after the failure. In this situation, test planners need to consider the possibility that 
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increasing number of random shocks under elevated stress conditions significantly decreases 

the test information due to the partial missing of degradation measurements. Figure 1 shows 

an illustration of such cases, where each 10 test units are allocated to low- and high-level 

stresses, respectively. The measurements from high-level stress provide more information on 

the acceleration relationship of degradation, but the stress also leads to more shock failures 

during the test. As is shown there are only three test units that survive to the end of the test and 

provide full degradation information during the test. In contrast, there is no shock failure for 

the units under low-level stress, and the degradation measurements are complete, yet the deg-

radation increase is not significant so that the inference of the degradation rate can be greatly 

influenced by random noises. In previous ADT studies, test planners usually took full ad-

vantage of the highest possible stress to obtain measurements with high degradation rate as 

long as it is believed that the degradation mechanism remains the same for the highest stress 

[27]. However, if random shocks are taken into account, higher stress may lead to much more 

shock failures in the test process and the number of degradation measurements become con-

siderably less, which will cause loss in data to estimate unknown parameters and predict life-

time under use condition.  

 

Figure 1 Stress-related shocks in ADT experiment 

Considering the shock issue in ADTs, we propose an optimal ADT planning approach with 

competing failure modes in this paper. The product to be tested is assumed to suffer from both 

degradation and shock failures. Both failure modes are accelerated by a common experimental 
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factor during the test. If a test unit fails due to a shock, the degradation cannot be tracked 

afterward. The random shocks are assumed to be independent of the degradation levels and 

arrive by a Poisson process with intensity determined by the stress. The objective is to obtain 

the optimal ADT plans under three common optimality criteria. Our results show the necessity 

of incorporating random shocks into the model by investigating the optimal ADT plans under 

various failure assumptions. 

The rest of the paper is organized as follows. Section 2 presents the ADT modeling with 

competing failure modes and derives the expression of the lifetime distribution. Planning cri-

teria and optimization problem formulation are discussed in Section 3. In Section 4, a numerical 

example is provided to illustrate the application of the proposed planning method, followed by 

a sensitivity analysis in Section 5. Finally, Section 6 concludes the paper and discusses areas 

for future research. 

2. ADT modeling with competing failure modes 

2.1. Joint modeling of degradation and random shocks 

Stochastic models have been widely used to model degradations because of their clear phys-

ical explanations and tractable mathematical properties [28]. We use a Wiener process to model 

the degradation in this paper. The model proposed in this paper can also be applied to other 

degradation processes, such as gamma processes and inverse Gaussian processes. It is assumed 

that the product suffers from a measurable Wiener degradation, denoted by ᵃ� (ᵅ�). A degrada-

tion failure is deemed to occur when ᵃ� (ᵅ�) hits a pre-determined threshold ᵃ�, thus the failure 

time is the first passage time (FPT) of  ᵃ� (ᵅ�) to threshold ᵃ�, denoted by ᵃ��. The basic Wiener 

process is a drifted Brownian motion as follows: 

where ᵰ� > 0 is the drift parameter, ᵰ� is the diffusion parameter, ᵮ�(ᵅ�) is a time scale function 

to describe the nonlinearity degradation path, and ᵃ�(⋅) is the standard Brownian motion. As in 

many previous literature of reliability modeling and testing [7],  Λ(ᵅ�) = ᵅ� is assumed, i.e., the 

degradation path is linear with respect to time. Under this assumption, ᵃ�� follows an inverse 

Gaussian (IG) distribution with mean ᵃ� ᵰ�⁄  and scale ᵃ�� ᵰ��⁄ , that is, ᵃ��~ℐᵊ�(ᵃ� ᵰ�⁄ ,ᵃ�� ᵰ��⁄ ), 

of which the PDF is given by  

   ᵃ� (ᵅ�) = ᵰ�Λ(ᵅ�) + ᵰ�ᵃ��Λ(ᵅ�)� (1) 
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and the CDF is given by 

where Φ is the CDF of standard normal distribution. In addition to degradation risk, random 

traumatic shocks may also occur to the product of interest. As this type of failure is sudden and 

immediate, we call it a “shock failure”. We assume that shock failures are independent of deg-

radation failures. It is noted that the assumption of independency is valid if the two failure 

modes do not have interactive effect. Take LED lamps as an example, the natural internal per-

formance degradation in light intensity and sudden shocks caused by the voltage or currency 

have no direct correlation because the shocks are mainly due to external reasons, however, they 

may be both influenced by environmental stresses such as temperature and humidity. The time 

between random shocks can be modeled by an exponential distribution with mean 1 ᵰ�⁄ . Denote 

the time to a shock failure as ᵃ�� , of which PDF and CDF are given by  

The lifetime of the product, denoted by ᵃ� , is determined by either degradation failure or 

shock failure times, whichever comes first, i.e., ᵃ� = min{ᵃ��, ᵃ��}. We can derive the CDF of 

ᵃ�  as follows: 

and the PDF is given by 

   ᵃ���
(ᵅ�;ᵃ�, ᵰ�, ᵰ�) = � ᵃ��

2ᵰ�ᵰ��ᵅ��
�

� �⁄

exp�−(ᵰ�ᵅ� − ᵃ�)�

2ᵰ��ᵅ�
� (2) 

   ᵃ���
(ᵅ�;ᵃ�, ᵰ�, ᵰ�) = Φ �� 1

ᵰ��ᵅ�
(ᵰ�ᵅ� − ᵃ�)� + exp �2ᵰ�ᵃ�

ᵰ�� �Φ �− � 1
ᵰ��ᵅ�

(ᵰ�ᵅ� + ᵃ�)� (3) 

   ᵃ���
(ᵅ�; ᵰ�) = ᵰ� exp(−ᵰ�ᵅ�) , ᵃ���

(ᵅ�; ᵰ�) = 1 − exp(−ᵰ�ᵅ�) (4) 

   

ᵃ�� (ᵅ�;ᵃ�, ᵰ�, ᵰ�, ᵰ�) = Pr(min{ᵃ��, ᵃ��} ≤ ᵅ�)

= 1 − �1 − ᵃ���
(ᵅ�;ᵃ�, ᵰ�, ᵰ�)��1 − ᵃ���

(ᵅ�; ᵰ�)�

= 1

− exp(−ᵰ�ᵅ�)�1 − Φ �� 1
ᵰ��ᵅ�

(ᵰ�ᵅ� − ᵃ�)�

− exp�2ᵰ�ᵃ�
ᵰ�� � Φ�− � 1

ᵰ��ᵅ�
(ᵰ�ᵅ� + ᵃ�)�� 

(5) 
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where ᵱ�(⋅) is the PDF of standard normal distribution. 

2.2. ADT data modeling 

Suppose a total number of ᵃ�  test units are provided for the ADT and assume that there is 

only one stress factor in the test. Let ᵅ�� and ᵅ��  be the stress under use condition and maximum 

stress level allowed in the test, respectively. There are totally ᵃ�  stress levels in the test, denoted 

by ᵅ��,… , ᵅ�� . Let ᵃ�� be the number of test units allocated to the ᵅ�-th stress level, ᵅ� = 1, … , ᵃ� , 

and ∑ ᵃ�� = ᵃ��
�=� . We assume that the stress simultaneously influences the degradation rate 

and the intensity of random shocks. Firstly, we standardize ᵅ�� as follows:  

ᵅ�� =

⎩
�
�
�
⎨
�
�
�
⎧ ln ᵅ�� − ln ᵅ��

ln ᵅ�� − ln ᵅ��
        for the power law relation

1 ᵅ��⁄ − 1 ᵅ��⁄
1 ᵅ��⁄ − 1 ᵅ��⁄

       for the Arrhenius relation

ᵅ�� − ᵅ��

ᵅ�� − ᵅ��
                 for the exponential relation

 

For the details of the acceleration model and standardization, see Jakob et al. [29] and Lim 

and Yum [7, Sec. 3.1]. The standardization yields ᵅ�� = 0 and ᵅ�� = 1. Denote ᵰ�(ᵅ�) as the drift 

parameter of the Wiener degradation process under stress ᵅ�, and it is given by 

The shock failure rate ᵰ� is also influenced by the elevated stress. Let ᵰ�(ᵅ�) be the shock fail-

ure rate under stress ᵅ�. We have 

   

ᵃ�� (ᵅ�;ᵃ�, ᵰ�, ᵰ�, ᵰ�) = ᵱ�ᵃ�� (ᵅ�;ᵃ�, ᵰ�, ᵰ�, ᵰ�)
ᵱ�ᵅ�

= ᵰ� exp(−ᵰ�ᵅ�) �1 − Φ �� 1
ᵰ��ᵅ�

(ᵰ�ᵅ� − ᵃ�)�

− exp�2ᵰ�ᵃ�
ᵰ�� � Φ�− � 1

ᵰ��ᵅ�
(ᵰ�ᵅ� + ᵃ�)��

− exp(−ᵰ�ᵅ�)�− 1
2ᵰ�

� ᵰ�√
ᵅ�
+ ᵃ�√

ᵅ��
� ᵱ� �� 1

ᵰ��ᵅ�
(ᵰ�ᵅ� − ᵃ�)�

+ 1
2ᵰ�

exp �2ᵰ�ᵃ�
ᵰ�� � � ᵰ�√

ᵅ�
− ᵃ�√

ᵅ��
� ᵱ��− � 1

ᵰ��ᵅ�
(ᵰ�ᵅ� + ᵃ�)�� 

(6) 

   ᵰ�(ᵅ�) = exp(ᵯ�� + ᵯ��ᵅ�) (7) 
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The unknown parameters in the model are ᵳ� = (ᵯ��, ᵯ��, ᵰ�, ᵯ��, ᵯ��)�. We assume that the total 

number of test units ᵃ� , the test duration ᵅ�� , and the measurement time interval Δᵅ� are pre-

determined. Therefore, the decision variables in the problem are the stress levels and the pro-

portion of test units allocated to each level.  Due to the presence of shock failures, some deg-

radation measurements for a certain test unit cannot be obtained, i.e., the degradation measures 

are “censored” by a shock failure. Assume ᵅ�� = ᵃ�Δᵅ�, i.e., there are ᵃ� measurements for a 

test unit if it survives until the end of the test. The shock failure is not self-announcing and can 

only be revealed by inspection. As we only have interval inspections, the shock failures are 

interval censored. The probability that the ᵅ�-th test under stress ᵅ�� has a shock failure between 

measurement ᵅ� − 1 and ᵅ� (1 ≤ ᵅ� ≤ ᵃ�) is given by 

and the probability that the ᵅ�-th test unit under stress ᵅ�� survives from shock failures during the 

test is 

Denote ᵃ���(⋅) as the degradation process for the ᵅ�-th test units under stress ᵅ��. By the prop-

erties of Wiener process, the increment between the ᵅ� − 1 and ᵅ�-th inspection interval, ᵃ���� , 

follows a normal distribution. For ᵅ� = 1,… , ᵃ�: 

A realization of ᵃ���� is denoted as ᵅ����. Let ᵯ��� be the integer variables describing the occur-

rence of shock failures, for the ᵅ�-th test unit under ᵅ��, and 

ᵯ��� = �ᵅ� for 1 ≤ ᵅ� ≤ ᵃ� if the test unit fails between  ᵅ� − 1 and ᵅ�-th inspection
ᵃ� + 1 if the test unit survives through the test  

The likelihood function of ᵳ� is given by 

   ᵰ�(ᵅ�) = exp(ᵯ�� + ᵯ��ᵅ�) (8) 

   
ᵅ����

(�) = Pr[(ᵅ� − 1)Δᵅ� < ᵃ�� ≤ ᵅ�Δᵅ�]

= exp�−ᵰ��ᵅ���(ᵅ� − 1)Δᵅ�� − exp�−ᵰ��ᵅ���ᵅ�Δᵅ�� 
(9) 

   ᵅ���
(�) = Pr[ᵃ�� > ᵃ�Δᵅ�] = exp�−ᵰ��ᵅ���ᵃ�Δᵅ�� (10) 

   ᵃ���� = ᵃ���(ᵅ�Δᵅ�) − ᵃ����(ᵅ� − 1)Δᵅ��~ᵊ��ᵰ��ᵅ���Δᵅ�, ᵰ��Δᵅ�� (11) 
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where 1{⋅} is the indicator function. The log-likelihood function can be expressed as 

ℓ(ᵳ�) = ���1����=�� log ᵅ����
(�)

��

�=�

�

�=�

+ 1��≤���≤�� �log ᵅ������

(�) + � log 1
ᵰ�
√

Δᵅ�
ᵱ� �

ᵅ���� − ᵰ��ᵅ���Δᵅ�
√

ᵰ��Δᵅ�
�

���−�

�=�
�

+ 1����=�+�� �log ᵅ���
(�) + � log 1

ᵰ�
√

Δᵅ�
ᵱ��

ᵅ���� − ᵰ��ᵅ���Δᵅ�
√

ᵰ��Δᵅ�
�

�

�=�
�� 

= ���1����=�� log�1 − exp�−ᵰ��ᵅ���Δᵅ���
��

�=�

�

�=�

+ 1��≤���≤�� �log�exp�−ᵰ��ᵅ����ᵯ��� − 1�Δᵅ�� − exp�−ᵰ��ᵅ���ᵯ���Δᵅ���

−
ᵯ��� − 1

2
(log 2ᵰ� + log ᵰ�� + log Δᵅ�) − �

�ᵅ���� − ᵰ�(ᵅ��)Δᵅ���

2ᵰ��Δᵅ�

���−�

�=�
�

+ 1����=�+�� �−ᵰ��ᵅ���ᵃ�Δᵅ� − ᵃ�
2

(log 2ᵰ� + log ᵰ�� + log Δᵅ�)

− �
�ᵅ���� − ᵰ�(ᵅ��)Δᵅ���

2ᵰ��Δᵅ�

�

�=�
�� 

(13) 

The log-likelihood function can be maximized to obtain the MLE of unknown parameters, 

denoted by ᵳ�.̂ By plugging ᵳ� ̂into Eq. (5) or (6), we can obtain the maximum likelihood esti-

mated lifetime distribution for the product.  

   

ℒ(ᵳ�)

= ��

⎩
��
�
⎨
��
�
⎧

�ᵅ����
(�)�

�����=�� �ᵅ������

(�) � 1
ᵰ�
√

Δᵅ�
ᵱ� �

ᵅ���� − ᵰ��ᵅ���Δᵅ�
√

ᵰ��Δᵅ�
�

���−�

�=�
�

���≤���≤��

× �ᵅ���
(�) � 1

ᵰ�
√

Δᵅ�
ᵱ� �

ᵅ���� − ᵰ��ᵅ���Δᵅ�
√

ᵰ��Δᵅ�
�

�

�=�
�

�����=�+��

⎭
��
�
⎬
��
�
⎫

��

�=�

�

�=�
 

(12) 
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3. Optimization of ADT plans 

3.1. Planning criteria and the Fisher information 

To design a test with a relatively large sample size, test planners can adopt a particular 

asymptotic criterion based on the Fisher information of unknown parameters. Several common 

criteria include [30]:   

 [C1]: ᵃ�-optimality: to maximize the determinant of Fisher information matrix; 

 [C2]: ᵃ�-optimality: to minimize the trace of the first order approximation of variance-

covariance matrix of the MLEs of unknown parameters, which is equivalent to mini-

mizing the sum of the eigenvalues of the inverse Fisher information matrix; 

 [C3]: ᵃ� -optimality: to minimize the asymptotic variance of the estimated 100ᵅ�-th per-

centile of the lifetime distribution, i.e., AVar(ᵅ��̂).  

For convenience, we use [C1], [C2] and [C3] to represent ᵃ�-, ᵃ�- and ᵃ� -optimality crite-

rion, respectively. [C1] and [C2] concern more about the overall statistical variability of pa-

rameter estimates, whereas [C3] considers the accuracy of a specific lower lifetime percentile 

estimate that can be directly used to guide maintenance and warranty.  

The optimization through any of above criteria needs the derivation of Fisher information 

matrix, which can provide a good approximation for the inverse of the large-sample asymptotic 

variance-covariance matrix of ᵳ�. The Fisher information is obtained by taking the expectation 

of negative second derivatives of ℓ(ᵳ�). In our model, the Fisher information matrix ᵀ�(ᵳ�) can 

be expressed as  

 (14) 

ᵀ�(ᵳ�) = 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ E�−ᵱ��ℓ(ᵳ�)

ᵱ�ᵯ��
� � E �− ᵱ��ℓ(ᵳ�)

ᵱ�ᵯ��ᵱ�ᵯ��
� 0 0 0

E �− ᵱ��ℓ(ᵳ�)
ᵱ�ᵯ��ᵱ�ᵯ��

� E �− ᵱ��ℓ(ᵳ�)
ᵱ�ᵯ��

� � 0 0 0

0 0 E �−ᵱ��ℓ(ᵳ�)
ᵱ�ᵰ�� � 0 0

0 0 0 E �−ᵱ��ℓ(ᵳ�)
ᵱ�ᵯ��

� � E �− ᵱ��ℓ(ᵳ�)
ᵱ�ᵯ��ᵱ�ᵯ��

�

0 0 0 E �− ᵱ��ℓ(ᵳ�)
ᵱ�ᵯ��ᵱ�ᵯ��

� E �− ᵱ��ℓ(ᵳ�)
ᵱ�ᵯ��

� �
⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤
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For the term  E(−ᵱ��ℓ(ᵳ�) ᵱ�ᵯ��
�⁄ ) , after trivial derivations we have the expression of 

−ᵱ��ℓ(ᵳ�) ᵱ�ᵯ��
�⁄  as follows: 

The expectation can be calculated by 

E �− ᵱ��ℓ(ᵳ�)
ᵱ�ᵯ��

� � = ��E���

⎣
⎢
⎡E �1��≤���≤�� �

2ᵰ���ᵅ���Δᵅ� − ᵅ����ᵰ��ᵅ���
ᵰ��

���−�

�=�

��

�=�

�

�=�

+ 1����=�+�� �
2ᵰ���ᵅ���Δᵅ� − ᵅ����ᵰ��ᵅ���

ᵰ��

�

�=�
�

⎦
⎥
⎤ 

= ����Pr�ᵯ��� = ᵅ�� E ��
2ᵰ���ᵅ���Δᵅ� − ᵅ����ᵰ��ᵅ���

ᵰ��

�−�

�=�
�

�

�=�

��

�=�

�

�=�

+ Pr�ᵯ��� = ᵃ� + 1�E ��
2ᵰ���ᵅ���Δᵅ� − ᵅ����ᵰ��ᵅ���

ᵰ��

�

�=�
�� 

= ����Pr�ᵯ��� = ᵅ�� (ᵅ� − 1)
ᵰ���ᵅ���Δᵅ�

ᵰ�� + Pr�ᵯ��� = ᵃ� + 1� ᵃ�
ᵰ���ᵅ���Δᵅ�

ᵰ��

�

�=�
�

��

�=�

�

�=�
 

(16) 

As for ᵅ� = 2, … , ᵃ� , Pr(ᵯ��� = ᵅ�) = exp�−ᵰ��ᵅ���(ᵅ� − 1)Δᵅ�� − exp�−ᵰ��ᵅ���ᵅ�Δᵅ��  and also 

Pr(ᵯ��� = ᵃ� + 1) = exp�−ᵰ��ᵅ���ᵃ�Δᵅ��, thus following Eq. (16) we have, 

Similarly, the other elements in ᵀ�(ᵳ�) are given. The details are given in Appendix A. 

3.2. Optimization problem formulation 

In this subsection, we formulate optimization problems for the three criteria. With the Fisher 

information given analytically, optimization based on [C1] and [C1] can be easily 

   

−ᵱ��ℓ(ᵳ�)
ᵱ�ᵯ��

� = ���1��≤���≤�� �
2ᵰ���ᵅ���Δᵅ� − ᵅ����ᵰ��ᵅ���

ᵰ��

���−�

�=�

��

�=�

�

�=�

+ 1����=�+�� �
2ᵰ���ᵅ���Δᵅ� − ᵅ����ᵰ��ᵅ���

ᵰ��

�

�=�
� 

(15) 

   

E �− ᵱ��ℓ(ᵳ�)
ᵱ�ᵯ��

� � = �����exp�−ᵰ��ᵅ���(ᵅ� − 1)Δᵅ�� − exp�−ᵰ��ᵅ���ᵅ�Δᵅ���(ᵅ�
�

�=�

��

�=�

�

�=�

− 1)
ᵰ���ᵅ���Δᵅ�

ᵰ�� + exp�−ᵰ��ᵅ���ᵃ�Δᵅ�� ᵃ�
ᵰ���ᵅ���Δᵅ�

ᵰ�� � = �ᵃ��

�

�=�
ᵍ�� 

(17) 
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implemented. However, for [C3], we need to derive the asymptotic variance of the estimator 

of a certain lifetime percentile. To approximately evaluate the asymptotic variance by the 

Fisher information, we employ the delta method. Based on Eq. (5) and (6), the expression for 

AVar(ᵅ��̂) is given by 

where ᵆ�(ᵳ�) is the first derivative of ᵃ�� (ᵅ��) with respect to ᵳ�,  i.e.,  

ᵆ�(ᵳ�) = �
ᵱ�ᵃ�� (ᵅ��)

ᵱ�ᵯ��
,
ᵱ�ᵃ�� (ᵅ��)

ᵱ�ᵯ��
,
ᵱ�ᵃ�� (ᵅ��)

ᵱ�ᵰ�
,
ᵱ�ᵃ�� (ᵅ��)

ᵱ�ᵯ��
,
ᵱ�ᵃ�� (ᵅ��)

ᵱ�ᵯ��
� 

The detailed expression of ᵆ�(ᵳ�) is given in Appendix B.  

A test plan ᵍ� includes the setting of ᵅ�� and ᵰ��, that is, ᵍ� = (ᵅ��,… , ᵅ�� , ᵰ��,… , ᵰ��). In gen-

eral, the optimization problem is formulated as follows, 

3.3. General equivalence theorems to verify global optimality 

For a test with ᵃ�  stress levels, we have 2ᵃ� − 1 continuous variables between 0 and 1 to be 

optimized. As the objective function for each criterion is apparently nonlinear and difficult to 

evaluate the convexity, we have to resort to numerical optimization methods to solve the prob-

lem, which makes it important to verify the optimality of ADT plans. We use the Whittle’s 

general equivalence theorems (GET) [31] to verify the global optimality of the plans.  

   AVar�ᵅ��̂� = ᵆ�(ᵳ�)[ᵀ�(ᵳ�)]−�ᵆ�(ᵳ�)�

�ᵃ�� �ᵅ�����
 (18) 

Minimize 

 

 

−det�ᵀ�(ᵳ�)�      for [C1]  

tr�ᵀ�−�(ᵳ�)�        for [C2] 

AVar�ᵅ��̂�          for [C3]  

(19) subject to 0 ≤ ᵅ�� ≤ 1, ᵅ� = 1,… , ᵃ�  

�ᵰ�� = 1
�

�−�
 

ᵰ��ᵃ� = ᵃ�� 

ᵃ�� ∈ ℕ+, ᵅ� = 1, … , ᵃ�  
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The GET is commonly used to verify the global optimality of a given experimental design 

derived by the Fisher information matrix or its associated functions. Following the previous 

GET literature, we define the derivative function at a test plan ᵍ� and stress level ᵅ� as ᵃ�(ᵍ�, ᵅ�) 

under different criteria as,  

1. [C1]: ᵃ�-optimality: 

where ᵍ�� is the 1-level plan in which all the test units are allocated to stress level ᵅ�, 

ᵃ����  is the number of unknown parameters, i.e., the dimension of the Fisher infor-

mation. In our case, ᵃ���� = 5. 

2. [C2]: ᵃ�-optimality [32]: 

3. [C3]: ᵃ� -optimality: 

According to the GET theorem, ᵍ�∗ is globally optimal if and only if sup
�∈[���]

ᵃ�(ᵍ�∗, ᵅ�) = 0. 

To verify the optimality of ᵍ�∗, it is sufficient to show that ᵃ�(ᵍ�∗, ᵅ�) = 0 for all ᵅ� belonging to 

ᵍ�∗ and ᵃ�(ᵍ�∗, ᵅ�) < 0 otherwise. Therefore, plots of the derivative function against ᵅ� can be 

used to verify optimality.  

4. An application example 

4.1. Optimal ADT planning to test carbon-film resistor 

The example of carbon-film resistor [7] is modified and revisited to illustrate the proposed 

methods. The degradation characteristic of interest is the percentage increase in the resistance 

of the resistor. It is assumed that at the beginning of the test the resistance is zero and the 

degradation process is well modeled by a linear Wiener process, denoted by ᵃ� (ᵅ�). The domi-

nating factor that influences the degradation path was temperature, and higher temperature was 

proved to accelerate the degradation rate. The Arrhenius model is used to link the stress with 

model parameters. The maximum thermal environment that the test chamber can provide is 

   ᵃ�(ᵍ�, ᵅ�) = tr ��ᵀ�(ᵳ�; ᵍ�)�−�ᵀ�(ᵳ�;ᵍ��)� − ᵃ����  (20) 

   ᵃ�(ᵍ�, ᵅ�) = tr��ᵀ�(ᵳ�; ᵍ�)�−�ᵀ�(ᵳ�; ᵍ��)�ᵀ�(ᵳ�;ᵍ�)�−�� − tr��ᵀ�(ᵳ�; ᵍ�)�−�� (21) 

   ᵃ�(ᵍ�, ᵅ�) = ᵆ�(ᵳ�)[ᵀ�(ᵳ�; ᵍ�)]−�ᵀ�(ᵳ�;ᵍ��)[ᵀ�(ᵳ�;ᵍ�)]−�ᵆ��(ᵳ�)
�ᵃ�� �ᵅ�����

− AVar�ᵰ��̂; ᵍ�� (22) 
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173 ℃ and the temperature under use condition is 50 ℃. The resistor is considered to fail when 

there is a 5% increase in resistance, i.e., ᵃ� = 5. We assume that there are 200 test units for the 

experiment and the maximum test duration is 1500 hours with the inspection interval 75 hours, 

i.e., ᵃ� = 20, Δᵅ� = 75. 

The stress variable is standardized based on the Arrhenius relationship; denote ᵃ��  and ᵃ�� 

as the maximum and use temperature in the Kelvin scale, respectively. For this example, ᵃ�� =

446 K, ᵃ�� = 323 K. Denote ᵃ�� as the temperature of the ᵅ�-th stress, the standardized tempera-

ture ᵅ� is obtained as 

ᵅ�� = 1 ᵃ��⁄ − 1 ᵃ��⁄
1 ᵃ��⁄ − 1 ᵃ��⁄

= 3.6260 − 1171
ᵃ��

 

which satisfies ᵅ�� = 1, ᵅ�� = 0.  

Based on the pre-estimation and experts’ opinions, the pilot parameters for the degradation 

acceleration model is set as (ᵯ��, ᵯ��, ᵰ�) = (−8.3, 2.5, 0.027). For the traumatic shocks, we as-

sume that at the use condition, only 0.5% of the test units are expected to fail within the test 

duration 1500 hrs, and 30% of the test units fail under 173℃. Therefore, the additional pilot 

setting is (ᵯ��, ᵯ��) = (−12.61, 4.26), making ᵳ� = (−8.3, 2.5, 0.027, −12.61, 4.26)�. Figure 2 

shows an illustration of the behaviors of 20 simulated test units under the maximum stress 

levels.  As we can see there are 5 shock failures among the test units until the end of the test, 

and the degradation levels after the shocks are not observable.  
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Figure 2 An illustration of the ADT test from a sample of 20 under the maximum stress. 
Asterisks (*) corresponds shock failures. 

 

For [C3], we set ᵅ� = 0.1, that is, to minimize the asymptotic variance of estimated 0.1 quan-

tile of the lifetime. The objective values under various plans under [C1], [C2] and [C3] are 

plotted in contour plots in Figure 3.  By solving the optimization problems in Eq. (19), the two-

level optimal ADT plans are given in Table 1. For comparison, Table 2 lists the optimal ADT 

plans regardless of shock failures.  

 

 

Figure 3 Contour plot of objective value under different ᵅ�� and ᵰ�� for [C1]-[C3] 
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The contour plots intuitively show there is a unique local optimal plan that is also global 

optimal under each criterion. The optimal plan under [C1] is more sensitive to the change in 

ᵰ��, while the optimal plan under [C2] or [C3] is more sensitive to the change in ᵅ��. 

Table 1 Optimal 2-level ADT plans  

 Optimal 2-level plan Objective 

value Criterion  ᵅ�� temp℃  ᵰ�� 

[C1]  
Low  0.553 108.0  0.510 

det�ᵀ�(ᵳ�)� =9.27×10�� 
High  1 173.0  0.490 

[C2]  
Low  0.397 89.6.0  0.815 

tr�ᵀ�−�(ᵳ�)� = 2.25 
High  1 173.0  0.185 

[C3]  
Low 0.422 92.5  0.890 

AVar�ᵅ��̂��� = 2.87×10� 
High 1 173.0  0.110 

 

 

 

 

 

Table 2 Optimal 2-level ADT plans with only degradation failures 

 Optimal 2-level plan  

with only degradation failures Objective 

value Criterion  ᵅ�� temp℃  ᵰ�� 

[C1]  
Low  0.600 114.0  0.500 

det�ᵀ�(ᵳ�)� =8.45×10�� 
High  1 173.0  0.500 

[C2]  
Low  0.493 100.8  0.820 

tr�ᵀ�−�(ᵳ�)� = 0.039 
High  1 173.0  0.180 

[C3]  
Low 0.489 100.3  0.880 

AVar�ᵅ��̂��� = 1.54×10� 
High 1 173.0  0.120 

 

For all the three criteria, the optimal ADT plans with shock consideration have smaller lower 

stress level and more units allocated at lower stress compared with those regardless of shock 



18 

 

failures. This is because the presence of shock failures prevents the optimal plan from exploring 

more at the maximum stress due to the risk of information loss caused by shocks. In both cases, 

by comparison, for [C1] the optimal plans tend to allocate more test units at higher stress levels, 

while for [C2] and [C3] the optimal plans allocate significantly more units at the lower stress. 

It is interesting to observe that for [C2], the optimal lower stress in Table 1 is significantly 

smaller than Table 2, and the objective value also differs drastically. The reason behind this is 

that by considering shock failures, the variability of the two additional parameters contributes 

significantly to the sum of variance of all parameters because the information on shock failures 

is much less than degradation failures. Therefore, the optimization under [C2] is dominated by 

the shock model. It is also noted that even though there are considerable differences in optimal 

stress levels from Table 1 and Table 2, there is only very slight difference in optimal propor-

tions. 

As advised in Section 3.3, we should verify the global optimality of the ALT plans given in 

Table 1. By utilizing the GET, we plot the derivative functions against the lower stress level 

ᵅ�� under three criteria in Figure 4. The figure shows that the 2-level plans given in Table 1 are 

the globally optimal plans over the feasible temperature range in the experiment. It is noted 

that the GET ensures that the plans we obtained are optimal, but cannot ensure the uniqueness 

of these optimal plans. Nevertheless, the contour plots in Section 4.1 have supported that the 

optimal plans are unique within the feasible range of decision variables.  

  

 

Figure 4 Derivative function against lower stress level ᵅ�� under [C1], [C2], [C3] 
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4.2. Simulation study 

To investigate the possible outcomes of the experiment, we use Monte Carlo simulation to 

illustrate the sampling variability by assuming that the pilot parameters are true. A total of 1000 

sets of ADT data were generated under optimal plans, and we calculate the MLE for unknown 

parameters based on each sample. The average and standard deviation for each MLE under 

[C1], [C2] and [C3] are shown in Table 3. We can see that the simulated outcomes are quite 

close to the theoretical results. Moreover, under the current optimal plan setting for the pilot 

parameters, the precision of the estimated parameters is high. Therefore, the optimal plans 

should yield reasonable efficiency in most cases if the pilot parameters are reasonable.  

Table 3 A simulation study of optimal plans 

 Criterion  

 [C1]  [C2]  [C3]  True 

value ᵍ�∗ (0.553, 1, 0.51, 0.49) (0.397, 1, 0.82, 0.19) (0.422, 1, 0.89, 0.11) 

Avg(ᵯ��̂) -8.3112 -8.3107 -8.2999 -8.3 

sd(ᵯ��̂) 0.1599 0.1457 0.1317 

Avg(ᵯ��̂) 2.5096 2.5082 2.4975 2.5 

sd�ᵯ��̂� 0.1685 0.1605 0.1607 

Avg(ᵰ̂�) 0.0270 0.0270 0.0270 0.027 

Std(ᵰ̂�) 0.0003 0.0003 0.0003 

Avg(ᵯ��̂) -12.8589 -12.8594 -12.7381 -12.61 

sd(ᵯ��̂) 1.1581 1.0092 0.8044 

Avg(ᵯ��̂) 4.5037 4.4774 4.3320 4.27 

sd(ᵯ��̂) 1.2116 1.1209 1.1442 

Obj. value 1.28×10�� 2.322 2.91×10�  

Theoretical 

Obj. value 

9.27×10�� 2.245 2.87×10� 
 

 

4.3. 3-level compromise plans 

In Section 4.1, we have demonstrated that the 2-level test plans are optimal under the three 

criteria of interest. However, in practice, the 3-level compromise plans may be adopted to check 
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the validity of the acceleration regression model, especially in case of significant nonlinearity 

in the model in the experimental region. For the compromise plans, an extra stress level ᵅ�� is 

added to experiment, where ᵅ�� = (ᵅ��
∗ + ᵅ��

∗) 2⁄ . As in Tseng and Lee [33] three common rules 

for ADT compromise plans are as follows:  

 ᵁ��: The proportion of allocation is fixed at 4:2:1. The stress levels need to be optimized. 

 ᵁ��: The proportion of allocation of the added stress level is fixed at 10%. Other varia-

bles of the plan need to be optimized. 

 ᵁ��: The proportion of allocation of the added stress level is fixed at 20%. Other varia-

bles of the plan need to be optimized. 

The relative efficiency (RE) for each optimal compromise 3-level plan ᵍ�ᵍ��
∗ with respect to 

the 2-level globally optimal plan ᵍ��
∗ for ᵅ� = ᵃ�,ᵃ�, ᵃ�  representing the three optimality criteria 

is given as follows,  

 [C1]: RE = det�ᵀ�(ᵳ�; ᵍ�ᵍ��
∗)� det�ᵀ�(ᵳ�; ᵍ��

∗)�⁄ ; 

 [C2]: RE = tr�ᵀ�−�(ᵳ�; ᵍ��
∗)� tr�ᵀ�−�(ᵳ�; ᵍ�ᵍ��

∗)�� ; 

 [C3]: RE = AVar�ᵅ��̂;ᵍ��
∗� AVar�ᵅ��̂; ᵍ�ᵍ��

∗�⁄ . 

Based on the three planning rules, we derive the optimal compromise plans and compute 

the RE under each criterion respectively. The results are summarized in Table 4. 

Table 4 Optimal compromise ADT plans under [C1], [C2] and [C3] 

Criterion Rules 
Optimal 3-level compromise plan 

RE 
 ᵅ�� temp℃  ᵰ�� 

[C1] 

ᵁ�� 

Low  0.52 104.0  0.57 

0.270 Middle 0.76 135.6  0.29 

High  1.00 173.0  0.15 

ᵁ�� 

Low  0.52 104.0  0.43 

0.914 Middle 0.76 135.6  0.10 

High  1.00 173.0  0.47 

ᵁ�� 

Low  0.48 99.2  0.34 

0.844 Middle 0.74 132.8  0.20 

High  1.00 173.0  0.47 

[C2] Low  0.26 74.9  0.57 0.867 
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ᵁ�� 
Middle 0.63 117.9  0.29 

High  1.00 173.0  0.15 

ᵁ�� 

Low  0.37 86.6  0.72 

0.952 Middle 0.68 124.5  0.10 

High  1.00 173.0  0.19 

ᵁ�� 

Low  0.33 82.3  0.62 

0.907 Middle 0.66 121.8  0.20 

High  1.00 173.0  0.19 

[C3] 

ᵁ�� 

Low  0.34 83.4  0.57 

0.866 Middle 0.67 123.1  0.29 

High  1.00 173.0  0.15 

ᵁ�� 

Low  0.40 90.0  0.79 

0.947 Middle 0.70 127.2  0.10 

High  1.00 173.0  0.12 

ᵁ�� 

Low  0.37 86.6  0.69 

0.901 Middle 0.68 124.5  0.20 

High  1.00 173.0  0.12 

 

The REs shown in the table demonstrate that the performance of ᵁ�� and ᵁ�� is better than 

ᵁ�� under all the criteria. Nevertheless, ᵁ�� has reasonable REs that is over 85% under [C2] 

and [C3], but the RE of ᵁ�� is extremely low under [C1] because the 4:2:1 allocation rule is far 

from optimal allocations under [C1]. It is straightforward that the performance of ᵁ�� is better 

than ᵁ�� as it allocates less test units under the compromise additional stress level. However, 

this also weakens the statistical capability to validate the model, which is the main objective of 

the compromise. In general, ᵁ�� or ᵁ�� are recommended as the rules for compromise plans, 

based on the test planners’ confidence in the pilot acceleration regression model and the num-

ber of available test units. With the compromise plans, degradation and lifetime data from three 

stress levels are obtained in a test. Three-level data provide possibility to verify the acceleration 

regression models in Eqs. (7)-(8). For example, if the true model in Eq. (7) is a log-quadratic 

model rather than log-linear, i.e., ᵰ�(ᵅ�) = exp(ᵯ�� + ᵯ��ᵅ� + ᵯ��ᵅ��), we can fit the three-level 

data to the alternative model to verify if it is more appropriate, and it is noted that it is not 

applicable for two-level data. In practice, the compromise plans are suggested to be used if the 

prior information of the acceleration model is not believed to be very reliable [34], [35, p. 341].  
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5. Sensitivity analysis and robustness of the test plan 

As the robustness is of great importance in application of a test plan, in this section, we 

investigate the effects of various changes in test planning inputs on the optimal plans to explore 

the robustness of the proposed plans.  

5.1. A general sensitivity analysis 

The pilot model parameters are usually given by experts or preliminary estimation; thus they 

are subject to estimation errors. To study the influence of estimation errors on the optimal plans, 

we increase and decrease each parameter by 10% and obtain the optimal plans. We use a 

Taguchi orthogonal design ᵃ��� with 5 factors (parameters) and 3 levels, where +1 and -1 rep-

resents 10% increase and decrease in the pilot parameter and 0 stands for no change. The opti-

mal plans under each setting are given in Table 5. A summary is made to show the range and 

standard deviation of each optimal plan setting by varying the parameters under each criterion 

in Table 6. We notice that all the optimal plans have the high stress level at 1 and the variation 

of allocation proportions is slight, thus we concentrate on the changes in the optimal lower 

stress level ᵅ��
∗ . Table 7 shows the effect rankings on ᵅ�� for unknown parameters based on the 

analysis of the Taguchi design, and rank 1 represents the parameter with the largest effect.  

 

Table 5 Effects of parameter changes on the optimal 2-level ADT plans 

     Optimal 2-level plan 

     [C1] [C2] [C3] 

ᵱ�� ᵱ�� ᵱ�� ᵱ�� ᵱ�� ᵅ�� ᵅ�� ᵰ�� ᵰ�� ᵅ�� ᵅ�� ᵰ�� ᵰ�� ᵅ�� ᵅ�� ᵰ�� ᵰ�� 

-1 -1 -1 -1 -1 0.48 1 0.52 0.48 0.31 1 0.81 0.19 0.31 1 0.92 0.09 

-1 -1 -1 -1 0 0.50 1 0.53 0.47 0.36 1 0.81 0.20 0.36 1 0.90 0.11 

-1 -1 -1 -1 +1 0.50 1 0.55 0.46 0.40 1 0.79 0.22 0.38 1 0.89 0.12 

-1 0 0 0 -1 0.54 1 0.51 0.50 0.34 1 0.82 0.18 0.40 1 0.90 0.11 

-1 0 0 0 0 0.55 1 0.51 0.49 0.40 1 0.82 0.19 0.43 1 0.89 0.11 

-1 0 0 0 +1 0.57 1 0.52 0.49 0.44 1 0.81 0.19 0.45 1 0.88 0.12 

-1 +1 +1 +1 -1 0.57 1 0.50 0.50 0.34 1 0.83 0.18 0.49 1 0.88 0.13 

-1 +1 +1 +1 0 0.59 1 0.50 0.50 0.41 1 0.82 0.18 0.50 1 0.88 0.13 

-1 +1 +1 +1 +1 0.60 1 0.51 0.50 0.46 1 0.82 0.19 0.51 1 0.88 0.13 

0 -1 0 +1 -1 0.52 1 0.50 0.50 0.34 1 0.83 0.18 0.41 1 0.90 0.11 
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0 -1 0 +1 0 0.54 1 0.51 0.50 0.40 1 0.82 0.18 0.42 1 0.90 0.11 

0 -1 0 +1 +1 0.56 1 0.51 0.50 0.46 1 0.82 0.19 0.43 1 0.89 0.11 

0 0 +1 -1 -1 0.51 1 0.52 0.48 0.32 1 0.81 0.19 0.31 1 0.91 0.09 

0 0 +1 -1 0 0.52 1 0.53 0.47 0.37 1 0.80 0.20 0.36 1 0.90 0.11 

0 0 +1 -1 +1 0.52 1 0.55 0.46 0.40 1 0.79 0.22 0.39 1 0.88 0.12 

0 1 -1 0 -1 0.56 1 0.51 0.50 0.34 1 0.82 0.18 0.39 1 0.90 0.11 

0 1 -1 0 0 0.58 1 0.51 0.49 0.40 1 0.82 0.19 0.43 1 0.89 0.11 

0 1 -1 0 +1 0.59 1 0.52 0.49 0.44 1 0.81 0.19 0.46 1 0.88 0.12 

1 -1 +1 0 -1 0.51 1 0.51 0.50 0.35 1 0.82 0.18 0.36 1 0.91 0.10 

1 -1 +1 0 0 0.53 1 0.51 0.49 0.40 1 0.82 0.19 0.40 1 0.90 0.11 

1 -1 +1 0 +1 0.54 1 0.52 0.49 0.44 1 0.81 0.19 0.43 1 0.89 0.12 

1 0 -1 +1 -1 0.54 1 0.50 0.50 0.34 1 0.83 0.18 0.43 1 0.89 0.11 

1 0 -1 +1 0 0.56 1 0.51 0.50 0.41 1 0.82 0.18 0.45 1 0.89 0.12 

1 0 -1 +1 1 0.58 1 0.51 0.50 0.46 1 0.82 0.19 0.47 1 0.88 0.12 

1 +1 0 -1 -1 0.54 1 0.52 0.48 0.36 1 0.81 0.20 0.31 1 0.92 0.09 

1 +1 0 -1 0 0.54 1 0.53 0.47 0.40 1 0.80 0.20 0.36 1 0.90 0.11 

1 +1 0 -1 +1 0.54 1 0.55 0.46 0.42 1 0.79 0.22 0.39 1 0.89 0.11 

 

Table 6 Summary of the general sensitivity analysis 

Criterion 
Optimal 2-level plan 

range(ᵅ��) range(ᵰ��) std(ᵅ��) std(ᵰ��) 

[C1] 0.1173 0.0450 0.0301 0.0142 

[C2] 0.1440 0.0400 0.0436 0.0116 

[C3] 0.2086 0.0400 0.0558 0.0111 

 

Table 7 Effects ranking of parameters on the optimal lower stress level 

Criterion 
Ranks of effect on ᵅ��

∗  

1 2 3 4 5 

[C1] ᵯ��  ᵯ�� ᵯ�� ᵯ�� ᵰ� 

[C2] ᵯ�� ᵯ�� ᵯ�� ᵯ�� ᵰ� 

[C3] ᵯ�� ᵯ�� ᵯ�� ᵯ�� ᵰ� 
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The results show that optimal plans under [C3] are more sensitive to the variation of param-

eters than those under [C1] and [C2]. Nevertheless, as Table 5 shows, the optimal plans do not 

change drastically when the parameters are changed in the range of 10% unless several param-

eters are overestimated or underestimated simultaneously, which rarely happens in practice 

because the correlations of the parameters are generally negative. Under the three criteria, the 

shock model parameters show at least equal significant effects on the optimal plans as the 

degradation parameters. For [C2] and [C3], the shock model parameters have larger effects on 

the optimal plans. It is noted that the intercept of shock acceleration model ᵯ�� ranks highest 

under [C3]. This is due to the fact that [C3] concerns more on the accuracy of extrapolation of 

the lifetime, and the intercept parameter of shock models determine the shock failure rate under 

use condition, which is of great importance when test planners try to predict the field lifetime. 

The degradation diffusion parameter ᵰ� always exerts the least influence on the test planning.  

5.2. Effect of shock failure model 

The previous section has shown that the parameters on shock failures influence the optimal 

ADT plans in a more sensitive way, which motivates us to conduct a further sensitivity analysis 

on these parameters from a more intuitive perspective to the engineers. We change the propor-

tions of shock failures under use and maximum stress levels to see how optimal plans vary 

under [C1], [C2] and [C3]. Note that these proportions are set by test planners prior to the 

experiment based on their experience and preliminary estimation, and the settings directly 

change the parameters ᵯ��, ᵯ�� in the ADT model. The optimal plans are listed in Table 8-10 for 

[C1], [C2] and [C3], respectively. For convenience, we denote PF0 and PF1 as the proportions 

of shock failures use stress and maximum stress levels respectively. 

Table 8 Optimal ADT plans under [C1] (ᵃ�-optimaility) under different shock failure as-
sumptions.  

  PF1 

PF0 

  10% 30% 50% 70% 90% 

0.005% 
ᵅ�� 

ᵰ�� 

0.68, 1.00 

0.50, 0.50 

0.71, 1.00 

0.51, 0.49 

0.71, 1.00 

0.52, 0.48 

0.71, 1.00 

0.53, 0.47 

0.72, 1.00 

0.55, 0.45 

0.01% 
ᵅ�� 

ᵰ�� 

0.66, 1.00 

0.50, 0.50 

0.69, 1.00 

0.51, 0.49 

0.70, 1.00 

0.52, 0.48 

0.70, 1.00 

0.53, 0.47 

0.70, 1.00 

0.55, 0.45 
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0.1% 
ᵅ�� 

ᵰ�� 

0.58, 1.00 

0.50, 0.50 

0.62, 1.00 

0.51, 0.49 

0.64, 1.00 

0.52, 0.48 

0.64, 1.00 

0.53, 0.47 

0.64, 1.00 

0.55, 0.45 

1% 
ᵅ�� 

ᵰ�� 

0.45, 1.00 

0.50, 0.50 

0.51, 1.00 

0.51, 0.49 

0.54, 1.00 

0.52, 0.48 

0.55, 1.00 

0.53, 0.47 

0.55, 1.00 

0.55, 0.45 

 

Table 9 Optimal ADT plans under [C2] (ᵃ�-optimaility) under different shock failure as-
sumptions.  

  PF1 

PF0  

  10% 30% 50% 70% 90% 

0.005% 
ᵅ�� 

ᵰ�� 

0.66, 1.00 

0.80, 0.20 

0.70, 1.00 

0.80, 0.20 

0.72, 1.00 

0.80, 0.20 

0.73, 1.00 

0.78, 0.22 

0.73, 1.00 

0.75, 0.25 

0.01% 
ᵅ�� 

ᵰ�� 

0.63, 1.00 

0.81, 0.19 

0.68, 1.00 

0.80, 0.20 

0.70, 1.00 

0.79, 0.21 

0.71, 1.00 

0.78, 0.22 

0.71, 1.00 

0.76, 0.24 

0.1% 
ᵅ�� 

ᵰ�� 

0.45, 1.00 

0.82, 0.18 

0.56, 1.00 

0.80, 0.20 

0.59, 1.00 

0.80, 0.20 

0.61, 1.00 

0.79, 0.21 

0.62, 1.00 

0.76, 0.24 

1% 
ᵅ�� 

ᵰ�� 

0.01, 1.00 

0.82, 0.18 

0.28, 1.00 

0.83, 0.27 

0.34, 1.00 

0.81, 0.19 

0.42, 1.00 

0.79, 0.21 

0.47, 1.00 

0.78, 0.22 

 

Table 10 Optimal ADT plans under [C3] (ᵃ� -optimaility) under different shock failure as-
sumptions.  

  PF1 

PF0 

  10% 30% 50% 70% 90% 

0.005% 
ᵅ�� 

ᵰ�� 

0.49, 1.00 

0.88, 0.12 

0.48, 1.00 

0.88, 0.12 

0.47, 1.00 

0.87, 0.13 

0.46, 1.00 

0.86, 0.14 

0.43, 1.00 

0.85, 0.15 

0.01% 
ᵅ�� 

ᵰ�� 

0.49, 1.00 

0.88, 0.12 

0.48, 1.00 

0.88, 0.12 

0.47, 1.00 

0.87, 0.13 

0.46, 1.00 

0.86, 0.14 

0.43, 1.00 

0.85, 0.15 

0.1% 
ᵅ�� 

ᵰ�� 

0.48, 1.00 

0.88, 0.12 

0.49, 1.00 

0.88, 0.12 

0.48, 1.00 

0.87, 0.13 

0.47, 1.00 

0.88, 0.12 

0.44, 1.00 

0.85, 0.15 

1% ᵅ�� 0.07, 1.00 0.31, 1.00 0.39, 1.00 0.43, 1.00 0.45, 1.00 
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ᵰ�� 0.98, 0.02 0.92, 0.08 0.90, 0.10 0.88, 0.13 0.85, 0.15 

 

Under all the three criteria, as PF0 increases, the optimal lower stress gets lower and the 

respective allocation proportion gets larger. However, we see some differences in the change 

of optimal plans under different criteria. For [C1] and [C2], as PF1 increases, the optimal lower 

stress becomes larger and fewer test units are allocated to it. On the contrary, as PF1 increases 

under [C3], the optimal lower stress becomes lower and fewer test units are allocated to it for 

PH0 from 0.005% to 0.1%. For [C3], it is interesting to observe that when PF0 is large enough, 

such as 1%, the optimal stress lower stress increases as PF1 increases. In addition, when PF0 

and PF1 are relatively near, for example, when PF0= 1% and PF1= 10% or 30%, almost all 

test units are allocated to a very low stress level. Under this assumption, because the shock 

failures occur very early under normal stress, thus a slightly elevated lower stress can produce 

a reasonable number of shock failures. Moreover, when PF0 and PF1 are both large, the shock 

failure parameters play a more significant role in predicting lifetime. This is also the reason 

that we have seen a considerable difference in optimal plans under PF0=1% and other PF0 

settings. In practice, the test planners should be careful when estimating the pilot parameters 

of shock failure models. If the shock intensity is underestimated, the derived ADT plan may 

deviate significantly from the true optimal plan. The result of such parameter misspecification 

may lead to a significant reduce of information from the real test. 

5.3. Effect of percentile of interest 

Although engineers or managers usually concern about a lower percentile of lifetime for a 

product to support decision making, the specific value of ᵅ� may vary due to different needs. 

Because ᵅ� does not influence the optimal plans under [C1] and [C2], we change ᵅ� from 0.1 to 

0.9 to see the variation in optimal plans under [C3]. The optimal lower stress level and propor-

tion is shown in Figure 5 and the optimal asymptotic variance of  ᵅ��̂ is plotted in Figure 6.  
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Figure 5 Optimal test plans under [C3] when ᵅ� varies 

 

 

Figure 6 Minimized asymptotic variance of ᵅ���  when ᵅ� varies 

 

The optimal proportion allocated to lower stress almost remains unchanged when ᵅ� varies 

from 0.1 to 0.9, and the optimal lower stress level increases from 0.42 to 0.47. The reason of 

the increase in ᵅ�� is that more failures need to be observed for inference of a higher percentiles. 

The minimum AVar(ᵅ��̂) increases drastically with ᵅ�, but stays relatively small with a small ᵅ�. 

The change in optimal plans with various ᵅ� is not as significant as the change with the fluctu-

ated parameters, as shown in the previous two subsections. Due to the fact that the test planners 
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mostly wish to estimate lower percentiles, the test plan is relatively robust with respect to the 

change in ᵅ�. Therefore, the data from an optimally planned test with a small ᵅ� can be reasona-

bly reused to estimate other lifetime percentiles if ᵅ� remains relatively small. 

5.4. Effect of censoring time 

Censoring in a reliability test is necessary due to the constraint of time. If there is no limi-

tation on test time, one can test the units at use stress without extrapolation to make inferences 

of field reliability. By varying the right censoring time, we give the optimal ADT plans under 

different criteria in Table 11. 

Table 11 Optimal ADT plans for various censoring time 

 Optimal 2-level plan 

 [C1] [C2] [C3] 

ᵅ�� ᵅ�� ᵅ�� ᵰ�� ᵰ�� ᵅ�� ᵅ�� ᵰ�� ᵰ�� ᵅ�� ᵅ�� ᵰ�� ᵰ�� 

750hrs (1 mo.s) 0.56 1 0.50 0.50 0.40 1 0.82 0.18 0.43 1 0.89 0.11 

1500hrs (2 mo.s) 0.55 1 0.51 0.49 0.39 1 0.82 0.18 0.42 1 0.89 0.11 

7500 hrs (10 mo.s) 0.50 1 0.54 0.46 0.35 1 0.79 0.21 0.37 1 0.89 0.12 

750k hrs (8 yr.s) 0 1 0.60 0.40 0 1 0.60 0.40 0 1 1 0 

 

As expected, larger censoring time results in a reduced optimal lower stress. Furthermore, 

when the censoring time is extremely large, such as 8 years in the table, the optimal lower 

stress level is set at use stress. For [C1] and [C2], there are still a proportion of 40% test units 

allocated to the lower stress under a very large ᵅ��  because these criteria consider the variability 

of all parameters. In contrast, as [C3] concerns about the lifetime percentile at use stress, when 

the censoring time is large enough, all the test units are allocated to the lower stress in the 

optimal plan.  

6. Concluding remarks 

The paper has investigated the optimal constant-stress ADT plan for products subject to 

competing degradation and shock failures. During the test, it is assumed that traumatic shocks 

may occur and terminate the process of the degradation measurement. A novel ADT model 

based on competing failure modes is employed to derive the Fisher information for the un-

known parameters. Large sample approximation provides tractable ways to optimize ADT 
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plans easily by avoiding running computationally intense simulations to evaluate the plans. We 

use three common optimality criteria to optimize the ADT plans. A real example of LED lamps 

from previous literature is used to illustrate the method. The result shows that the presence of 

random shock failures considerably influences the optimal ADT plans under three criteria. The 

general equivalence theorems are used to verify the optimality of the 2-level plans. We also 

study different rules of three-level compromise plans, and we suggest 10% or 20% allocation 

rule to the middle stress in such problems. Furthermore, the general sensitivity analysis shows 

that the optimal plans are fairly robust under slight errors in pilot parameters. However, we 

have to emphasize that the parameters of shock failure models should be carefully specified.  

The ADT model described in the paper can also be extended to step-stress ADT (SSADT), 

which is more appropriate if the test units are very limited. In addition, models incorporating 

multiple dependent shocks and degradation failures could be adopted in the ADT planning 

framework, where copula function can be applied in model construction, and revealing 

asymptotic properties of unknown parameters are challenging and of interest to investigate. 

Appendix A: Elements of the information matrix 

Following Eq. (17), the other elements in the information matrix are given by 

E �− ᵱ��ℓ(ᵳ�)
ᵱ�ᵯ��ᵱ�ᵯ��
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�

�=�
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where 

ᵃ�� = exp�−2ᵰ��ᵅ���Δᵅ�� − exp�−ᵰ��ᵅ���Δᵅ�� + 2ᵅ� exp�−ᵰ��ᵅ���Δᵅ�� − ᵅ� exp�−2ᵰ��ᵅ���ᵅ�Δᵅ��

+ ᵰ��ᵅ���Δᵅ� exp�−ᵰ��ᵅ���ᵅ�Δᵅ�� − ᵅ� 

and 

E �− ᵱ��ℓ(ᵳ�)
ᵱ�ᵯ��ᵱ�ᵯ��

� = E�− ᵱ��ℓ(ᵳ�)
ᵱ�ᵯ��ᵱ�ᵯ��

� = �ᵃ��

�

�=�
ᵅ��ᵍ��

� 

E �− ᵱ��ℓ(ᵳ�)
ᵱ�ᵯ��

� � = �ᵃ��

�

�=�
ᵅ��

�ᵍ��
� 

(23) 

Appendix B: Elements of ᵆ�(ᵳ�) 

For an arbitrary time ᵅ�, we have 

ᵱ�ᵃ�� (ᵅ�)
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