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Abstract. This paper reports on the influence that a periodic microstructure has on the unconstrained flexural
vibration of geometrically similar but differently sized heterogeneous beam samples. A numerical investigation was
conducted by finite element analysis (FEA) incorporating the detailed heterogeneity to identify and quantify any effect
of beam size on the transverse modal frequencies when the microstructural scale is comparable to the overall size.
Finite element models of the macroscopic beam samples were created by firstly specifying microstructural scale unit
cells containing a single void or inclusion using ANSYS Mechanical APDL and then repeatedly regenerating these as
required. Four beam sizes consisting of one, two, three or four layers of unit cells were created while the length to
depth aspect ratio was kept constant for all sizes. Void or inclusion volume fraction was also altered while keeping the
homogenised mass and stiffness properties of each beam fixed. The influence of the beam boundary texture on the
results was also investigated. The ANSYS results were compared to the analytical solution for a conventional
Timoshenko beam and a nonlocal Timoshenko beam. Using the nonlocal Timoshenko analysis, the Eringen small
length scale coefficients were estimated but found to be size dependent. Numerical predictions obtained from a novel
control volume based finite element (CVFEM) procedure incorporating micropolar constitutive behaviour were
therefore matched to the ANSYS results and thereby used to identify the two additional constitutive parameters
featuring in planar micropolar elasticity theory, namely the characteristic length in bending and coupling number.

Keywords: Finite Element Analysis, Heterogeneous Material, Eringen's Micropolar Theory, Free Vibration, Modal
Analysis, Beams' Dynamics

1 Introduction

The technological advances in recent decades such as in the aerospace, biomedical, nanotechnology industries and so
forth, have created the need for the application of small-scale structures whose size is comparable to the
microstructural length scale of the materials from which they are manufactured. This has created a whole new era for
researchers to investigate the dynamic behaviour of structures where the classical theories of elasticity become
increasingly invalid such as in the case of the flexural or transverse vibration of small-scale heterogeneous beams.
Generally, heterogeneity is regarded as a discontinuity of physical properties of the material in either a specific
direction or multi-directionally. In the literature, homogenisation methods are sought to represent the properties of
materials comprised of periodic assemblies of a specified unit cell. Rabboh et al. [1] thus used the rule of mixtures to
calculate the elastic constants and Poisson’s ratio for functionally graded material sandwich beams and investigated
the effect of the functional grading on the beams’ dynamic behaviour. Della and Shu [2] used Eshelby’s equivalent
inclusion method to investigate the vibration of piezoelectric beams and their analytically obtained results indicate
that a size effect arising from the size of piezoelectric inclusions, their location in the structure of the beam and their
volume fraction is anticipated in their dynamic behaviour.

Homogenisation methods also become increasingly problematic when the size of constituent materials such as
inclusions and/or voids becomes comparable to the overall size of the beam structure. Modifications to classical
elasticity theories are only useful when the internal length scale parameters associated with the microstructure are
considered very small. The size-dependent behaviour of materials has been reported by many researchers such as in
the work by Groh & Weaver [3], Gherlone [4], and Schulze et al. [5] in laminated beams. The results presented by
Alghamdi and Dasgupta [6] in modelling active damping of adaptive structures show how the beam’s time to decay
varies as the device aspect ratio, inclusion shape, location and volume fraction is altered, and also show how changes



in host stiffness result in changes in time to decay and electrical field. Timoshenko beam theory is widely used by
researchers as it is able to account for rotary inertia and shear deformation and is therefore regarded as nonlocal if
Eringen’s small-scale effect [7] is incorporated in the governing equations. C M Wang et al. [8] used a finite segments
method to calibrate Eringen’s small length scale coefficient for initially stressed vibrating nonlocal beams and stated
that ‘eo does not depend on buckling or vibration modes’. Available results on the presence of size effects in the
deformation of heterogeneous materials reported by researchers show deviation from elastic theories in static
loading cases when the beam or plate L/h ratio reduces,e.g., [9]-[15]. Nakamura and Lakes [16] used a two
dimensional FE method and investigated the localised end loads applied on a strip sample and concluded that as the
characteristic length increases, the rate of decay of stress and strain energy reduces. The micropolar theory for
example incorporates additional couple stresses and an associated degree of freedom, a microrotation and thus
accounts for material size effects but requires the specification of additional constitutive parameters including a
characteristic length. A 2D micropolar strip loaded at one end was investigated by Nakamura & Lake [16], and the
influences of elastic constants especially characteristic length and coupling number were studied. They concluded that
for a significantly small characteristic length (in comparison with the strip’s width), the rate of stress/or strain energy
decreases as the characteristic length increases. In the dynamic case, this may be shown by wave dispersion. Their
work predominantly included studying the models for various characteristic lengths and coupling numbers, N, and
provides no method to determine them. However in other work by Lakes [17], an extensive comparison was made
between various theories, e.g. micropolar and Eringen’s nonlocal theories. This shows that the elastic constants can be
obtained by means of a dynamic wave propagation method. Nevertheless, in any field or wave based method that
relies on determining size effects, there are limitations concerning the smallest characteristic length. Also, caution is
required when the coupling number, N, is close to its lower and upper bound values of zero and one when performing
numerical analysis otherwise errors in computation may result.

Beveridge et al. [18] also studied the micropolar behaviour of perforated beams in the static 3 point bending case and
determined the micropolar constants using test results and a control volume based finite element technique.
Waseem et al. [14] investigated the influence of void size on the constitutive properties of circularly shaped models
containing voids (Perforated rings), and derived the final equation relating the stiffness to the specimen size by
relating the diametrical loads, displacement and stored strain energy. They concluded that in models with smooth
specimen surface (rings circumference), the stiffness changes linearly with sample size measure. McGregor [19]
provides the same conclusions.

Wheel et al. [16] studied the influence of model size in heterogeneous beams when loaded in 3 point bending. They
investigated size effects in beams with voids and showed that sample stiffness relates to the beam sample size, as
measured by the reciprocal of its depth squared, in a linear manner. They also reported that there are both negative
and positive effects of beam size depending on the beam boundary topology [15].

In section two of this paper, specific beam models with voids and inclusions of various volume fractions were modeled
using the finite element method to account for the beam surface conditions. Then the non-dimensional modal
frequencies (A) of beams with free-free boundary conditions, devoid of any external load, were investigated to
ascertain the influence of any size effect. The normalized frequencies (A) were also compared at each of the modal
frequencies for particular beam models and volume fractions. Two widely used theories,, Eringen’s non-local theory
and micropolar theory, were studied with the aim of identifying whether they could explain the influence of the size
effect seen in the dynamic behavior of non-homogeneous beams. These two theories incorporate length scale
parameters in their formulations. Therefore, in section three, the Eringen’s non-local theory was considered and
formulated for a Timoshenko beam with free-free boundary conditions. Then the results from ANSYS FE and Eringen’s
non-local Timoshenko beams were compared, and shortcomings of the non-local theory for the beam models were
highlighted. In section four, formulations based on micropolar theory was applied to the beam models, and a useful
equation was derived which helps to identify one of the micropolar constants, namely characteristic length of
bending, knowing the beams overall dimensions, and the primary modal frequency. Then an iteration method was
employed to identify the other micropolar constant, namely the coupling number. For this reason, the frequencies
from the CVFEM were compared with ANSYS finite element results and iterated upon to obtain the coupling number.
Section 5 was dedicated to the development of the CVFEM code for free vibration problem of beams incorporating
mass and micro inertia terms, and finally, micropolar beam models were modeled for further analysis. In section six,
the use of the CVFEM code, for identification of the coupling number was described in more details and the
shortcomings of this method for identifying the coupling number for some of the beam models were highlighted.
Finally, the CVFEM predictions were compared with ANSYS FE results and discussed.



2 Finite Elements Analysis of Beams with Periodic Heterogeneity

2.1. Finite Element Modelling

Three distinct types of 2D beams were modelled: those with perforations (voids), those with compliant inclusions and
those with a compliant matrix. ANSYS APDL version 16.2 was used to perform modal analysis on each beam type.
Figure 1 shows the two unit-cell configurations containing either voids or inclusions that were used to construct
individual beam models. The height of the modelled unit cell is 0.866 mm, and the length of the unit cells is 1mm
respectively. The void or inclusion centres are thus located on an equilateral triangular array. Models containing
various void/inclusion volume fractions were generated using parametric APDL codes. The unit-cells consist of two
isotropic materials so that inclusions are surrounded by matrix. Figure 1 shows unit-cells with inclusion of 0.2 mm in
radius. For the unit cells of the beam models with continuous boundaries as seen in see figure 1, left, a quarter unit
cell was first modeled and then reflected to produce a full unit cell. Therefore, all sides of the matrix section are
divided by 12 parts and mapped so that the sizes of elements decrease on approaching the inclusion’s border. The
circular area containing the inclusion incorporates a squared area which is divided into a 12 by 12 element mesh and
the remaining area is divided into two concentric rings. 8-node solid 183 elements were used for meshing the areas.
By reflecting the quarter unit cell in both x and y-directions, a complete unit cell was created which contained 1920
elements and 6068 nodes. To analyse the mesh convergence, beams with 28, 156, 528, 898, 1920 and 7680 elements
per unit cells were modelled by changing the number of line divisions, and it was observed that the average
percentage error of the frequencies of each model for the first ten modes compared with the next model refinement
in sequence are 0.5674, 0.0047, 0.0002, 0.0001 and 0.0000 percent. Therefore, beams with 1920 elements per unit
cell satisfied the requirements for mesh convergence for the beams with continuous boundaries. The beams with
textured boundaries were modeled so that inclusions or voids were located at the center of a hexagonal matrix. The
hexagon sides are divided into 12 equal parts. The diagonal lines connecting the hexagon’s vertices to the circle are
divided into ten parts. Such a mesh arrangement provides 1260 elements and 3925 nodes per unit cell. Beams with
textured boundaries and 108, 276, 1260 and 5040 element/Unit-Cell were modeled and the average percentage error
for the first ten modes reduced by 0.0078, 0.0021 and 0.0006 percent upon refinement. Therefore unit cells with 1260
elements have a 0.0006% different comparing with unit cells containing 5040 elements.

Void or inclusion radius was varied from 0.1 to 0.3 mm in 0.05 mm intervals. The corresponding void or inclusion
volume fractions are listed in table 1 along with the equivalent radius normalised with respect to the unit cell height
(V+/Sy), where V: is the void or inclusion radius, and Sy is the height of the unit cell. Throughout this paper, void or
inclusions radius, volume fraction and normalised radius are used interchangeably.

Table 1: Changes in void or inclusion volume fraction with radius and/or normalised radius of void or inclusion

Void/inclusion Void/inclusion volume Normalised
radius, r fraction void/inclusion radius,

% Vi/Sy

4% 0.12

8% 0.17
15% 0.23
23% 0.29
33% 0.35

In order to create the macroscopic scale beams, the unit cells were repeatedly regenerated to produce four different
beam sizes consisting of one, two, three or four layers of cells through beam depth. The length, L, to depth, d, aspect
ratio, (L/d) was kept constant at 10.4:1 so that all four sizes of the beam of a given volume fraction remained
geometrically similar. Two variants of each beam were created: those based on the first unit cell contained boundaries
comprised continuously of matrix material while those incorporating the second unit cell contained textured
boundaries, see figure 2-a to 2-d.

When changing the volume fraction of each material the homogenised mass and stiffness properties of the beam
were kept fixed. This enabled the size effect on the free vibration to be identified for various volume fractions when
the unit cell mass and overall homogenised properties were kept constant. The aim is to investigate the frequency



changes for various beam sizes and void/or inclusions volume fractions for lateral vibration modes. To achieve this,
the ratio of modulus of elasticity of matrix to inclusion was set at 10:1 for the beams with compliant inclusions and
1:10 for the beams with the compliant matrix. The modulus of elasticity at the macroscopic scale remained 70 GPa,
see appendix table 8. The matrix and inclusions densities were also altered according to the void or inclusion volume
fraction, as detailed in appendix table 9 while keeping the mass density of the unit cells constant at 2700 kg/m3.

The material parameters were obtained using ANSYS FE, and the modal analysis results based on ANSYS FE were used
as the basis for comparison in this paper. The ANSYS FE made it possible to easily model various beam types with the
volume fractions and material constants associated with the constituent unit-cells being altered while keeping the
properties of the equivalent homogenized beam unchanged. This approach resulted in identifying the influence of the
size effect in the beam models which was not possible with other approaches.

2.2. FE Results and Size Effect Predictions
2.2.1 Beams with continuous boundaries

The ANSYS finite element results which are presented in this section and shown in figures 3 to 6 and tabulated in
Appendix table 4 to 5 provide size effect information for beams with continuous surfaces. For this purpose, three
types of beams with such surfaces are modelled and analysed:

1) Beams with voids
2) Beams with compliant inclusions
3) Beams with compliant matrix

Modal frequencies are non-dimensionalised using the equation (1):
12p
A= L(21rf)1/2(ﬁ)1/4 (1)

where A is the non-dimensional frequency parameter, L is the beams length; f is the numerically predicted flexural
modal frequency in Hz; p is the mass density; E is the modulus of elasticity, and d is the depth of the beam. The values
for A for the first ten modal frequencies of homogeneous beams (V:/Sy=0) predicted using finite element analysis are
compared to the analytically derived values based on Timoshenko beam theory in table 2:

Table 2 : The non-dimensional modal frequencies (A) for homogeneous beams and with aspect ratio 10.4:1

. CVFEM
Mode ANSYS FEA Timoshenko (Ib=0, N=0, k=0)**
- 4.655455 4.653041 46305153
- 7.527076 7.516596 7.479576
- 10.194069 10.171415 10.119781
- 12.626892 12.590439 12.521737
- 14.84537 14.795647 14.705318
- 16.874623 16.813016 16.695666
- 18.739625 18.667635 18.518158
- 20.461702 20.380707 20.194872
- 22.057553 21.968693 21.743882
- 23.538186 23.441844 23.178677

"Ip is the characteristic length in bending, N is the coupling number, and k is micropolar constant, see section 4.2

The normalised values when presented in figures 3 onward were obtained by dividing the non-dimensional frequency
parameter (A) at each modal frequency by its corresponding non-dimensional frequency from column two of table 2,



that is the ANSYS FEA derived values for A. The A values in column 4 of table 2 derived by the CVFEM were used for
normalisation of subsequent frequencies obtained from CVFEM as shown in figures 12 and 13.

Figure 3 shows how the normalised frequencies (A) for the beams with voids and height of two unit-cells (Second
smallest beam sample) vary with mode number. This behaviour is highly size dependent as seen in figure 4 for mode
one. The homogeneous case is represented by the blue lines (dotted lines with solid square markers) and the FE
results show that in this case, the normalised modal frequency is size independent. Appendix table 4 provides non-
dimensional frequency parameters (A) information for the first ten transverse vibration modes of beams with voids.
For any given mode the size effect becomes more pronounced with diminishing beam size and is greatest for the
smallest size of beams. The size effect is also more pronounced for beams with a higher void volume fraction.
Interestingly, the size effect is apparently mode dependent; there is a distinct change in its nature such that after
mode three changes in void radius causes a decrease rather than an increase in normalised frequencies (A) as seen in
figure 3. Results in appendix table 5 show that beams with compliant inclusions behave similarly.

In figure 4, the variations in frequency with size measure for the primary modes (flexural mode 1) are displayed in
further detail. According to these results, it appears that variations in the normalised frequencies have an
approximately linear relationship with the inverse of the square of the depth of the beam (1/d?), except for the
smallest beam sizes where the ratio of the radius of void or inclusion to beam thickness reaches the maximum.

The results for specimens with stiff inclusions and continuous surfaces show an entirely different dynamic behaviour,
figure 5 shows changes in A with mode number for the beams with height of two unit-cells (Second smallest beam
sample). Here, a distinctly different size effect indicating that increasing volume fraction causes a decrease in A at a
given mode number for this sample size. Figure 6 shows the inverted size effect on normalised frequencies for the
primary mode when the inclusions have a higher modulus of elasticity than the matrix. The size effect although
inverted once more remains approximately linear across the three larger samples but again this does not extrapolate
to the smallest sample size.

2.2.2 Beams with textured boundaries

If the boundaries of the beams are not continuous but textured due to their intersection with the voids or inclusions,
there is a significant difference in dynamic behaviour. Beams with voids or compliant inclusions and textured
boundaries showed similar behaviour as the beams with compliant matrix and continuous boundaries described
already in section 2.2.1 and therefore are not discussed any further in this section.

Finally, beams with textured boundaries and a matrix comprised of compliant material with a lower modulus of
elasticity exhibit a more conventional size effect with normalised frequency increasing as beam size reduces, appendix
table 6.

In summary, the numerical results shown in figures 3 to 6 and provided in tables 4 to 6 indicate that the forecast size
effect depends on:

a) Beam depth

b) Void/inclusions volume fraction

c) The relative stiffness of matrix and inclusions

d) Beam surface topology
The remainder of this paper considers whether various analytical or numerical models incorporating size effects are
capable of predicting these numerical results.

3 An Analytical Nonlocal Timoshenko Beam Model

3.1 The Nonlocal Timoshenko beam Model

In this section, the nonlocal Timoshenko (NLT) beam model is used to study the size effect in a Timoshenko beam by
incorporating Eringen’s nonlocal theory. This approach has been widely used in nanotechnology because it can be
solved analytically for various boundary conditions, e.g., [7], [8], [20]. However, it must be noted that the Timoshenko
beam theory is one dimensional and Eringen’s small-scale coefficient is only really applicable to the longitudinal
direction.



The governing equations for nonlocal Timoshenko beam can be obtained by applying Hamilton’s principle and
incorporating Eringen’s small-scale coefficient epa into the Timoshenko beam model as defined by Wang et al.[7]:

a’¢ d _ a a2
El—— — KGA (¢ + d—:) + plw?p — (eya)? (psz % + plw? ﬁ) =0 2)

KGA (ﬂ + "’2—”2”) + pAw?w = 0 (3)
dx dx

where ¢ is the rotation, w is the transverse displacement, w is the circular frequency, k is the Timoshenko shear

correction factor, G is the shear modulus, A is the cross-section of the beam, | is the second moment of area, eo is a

constant specific to each material and a is the internal characteristic length in the NLT beam. In equation 17, eya can

be normalised and represented by a. After decoupling equations (2) and (3) and applying free-free boundary

conditions, the following equation may be derived:

[(H2H3)2-(H1HW)?] . , _
coshfcosy + (W) sinhfsiny =1 (4)
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were a, b and c are the usual quadratic formula constants and
2+A%20
Yy = _BT (13)
24220
Y, = % (14)
The parameters H1 to H4 are defined by C. M. Wang et al. [7] while the derivation of equation (4) is entirely new.
The non-dimensional parameters used in the above equations are:
A= wWYD(pAL*JED)M/* (15)
N = EI/(K,GAL?) (16)
a=eya/L (17)
§=1LA/DY? (18)

in which A is the dimensionless frequency parameter, Q is the shear deformation parameter, a is the scaling effect
parameter, a is the internal characteristic length, and finally, € is the slenderness ratio. x and w are displacements in
axial, x, and transverse, y, direction normalised with respect to length, L.

3.2 Comparison with ANSYS FE Results to Identify a

Equation (4) was solved by applying the bisection method to identify the normalised transverse modal frequencies for
the first 37 modes of a beam with aspect ratio L/d=10.4:1. The results are provided in figure 7-a. By comparing the



ANSYS finite element results and these analytical NLT results, it is possible to obtain Eringen’s scale parameter for
some of the heterogeneous beams models considered previously. Direct comparison between the results in figure 7-a
and the finite element results given in section 2.2 suggest that it is not always possible to determine a for all cases
considered. However, by applying a constant:

(A/20)2 = (A/20)1 = [C1 X (1 = (A/A0) moge_1)] (19)

the FE results for perforated beams with continuous boundaries could be compared with the results obtained from
solving the Eringen non-local theory.

In equation (19), (A/A,), is the normalised frequency parameter of the n mode after shifting, (A/A,); is the
normalised frequency parameter of the n'" mode from the ANSYS results and C; is an empirical constant for the beam
type and is equal to 1.2. The value of C; was obtained by curve fitting and changing the C; value until the NLT beam
results match the results obtained from ANSYS FE. Thus, by shifting the results below the line representing the
homogeneous case, obtaining a for beams with either voids or inclusions is possible.

The values for a obtained via this curve fitting method for beams with continuous surfaces show that for a given
volume fraction a is not size independent as illustrated in figure 7-b and therefore, it cannot be considered as a
unique property of the material. For the samples with textured boundaries, it is not possible to identify a because of
the inverted size effect.

4 An Analytical Micropolar Beam Model

4.1 2D Micropolar elastic beam model
In classical (Cauchy) elasticity the stress-strain relations are given by:
Ti]' = A*gkk 811 + Zﬂ*fi]' (20)

where A" and u* are the Lamé constants. However, in linear, three dimensional, micropolar elasticity the force
stresses, Ty, and couple stresses, m, are related to the deformations by equations 21 and 22 as defined by Lake [17]:
Tij = Vgl + QU + K7) gy + K e (0y — Dy) (21)
m,-j = a*(bk, Sij + B*Qi' +y* j» (22)

where @ is the microrotation and 6 is the conventional macro rotation. i,j,k = 1,2,3 and § is the Kronecker delta
which is equal to 1 if i = j otherwise it is zero and e,y is the permutation tensor. For even permutation of ijk, e;j, =
+1, for the odd permutation of ijk, e;;, = —1 and otherwise zero. a*, 8, y* and k™ are micropolar elastic constants.

Equation (23) defines the strain components, &, in terms of the displacements, u, and micro-rotations, @, by:
£ = uj, +eyy Oy (23)
Macro rotation and strain tensors are:

0, = (eyruy;)/2 (24)
&= (uj +u;;)/2 (25)

In equations (21) and (22), there are four additional elastic constants a*, 8*, y* and k*. However, in 2D Micropolar
elasticity the number of constants reduces to 4 independent engineering constants defined thus:

_ @urHr)BA 2" +K")

Em - A*+2u*+K*) (26)
A*

Vi = QA*+2u*+K*) (27)

lg — )4 (28)

2(2u*+K*)



*

2 _ K
N*= 2(u*+k*) (29)

where E,, is the micropolar modulus v,, is the micropolar Poisson’s ratio and [, is a length scale parameter termed
the characteristic length in bending that should reflect the microstructural scale. N is the coupling number that
quantifies the shear stress asymmetry.

In the dynamic case micro inertia also needs to be included according to:

Tiji = PUj, (30)

my;; + €y Tj = pJji Di (31)
where Jj; is the microinertia tensor, double dotted displacement and macro rotation with a comma sign indicate
second derivatives with respect to time. The value of 0.0325 mm? is chosen for microinertia [21].

According to equation (21) and the stiffness matrix provided by Lakes as detailed in reference [17], the shear stress
and strain relationship may be written in matrix form:

Tyx] _ [ G Gr2 ] Eyx
[Txy] = [ Gy Gay [fxy] (32)
Gi1 =Gy =p" + K" (33)
Gz =Gy =W (34)
Thus

1 (1-2N?)
Tyx] _ Em |2a-n82  201-N®)| [Eyx
[Txy] - (1+vm) | (1-2N?) 1 [Exy] (35)

2(1-N2) 2(1-N?2)
indicating that the asymmetric components of the shear stress are controlled by N according to:

Gsy = (G11 + Gpp) = 20" + K™ = T (36)
" E N?
Gasy = (Gll - G12) =K = T+vm (1—N2) (37)

this parameter can be identified from the higher order modes using an iteration method that will be described since
these involve increased shear deformation.

The solid must behave in a classical homogeneous manner if a*, 8%, y* and k* equal zero, while if N=1 and therefore,
microrotation and macrorotation are not kinematically distinct, implying that they are equal, such that ¢, = 6,

4.2 Identifying the micropolar elastic constants

4.2.1 Characteristic length in bending, 1,

E,, and vp,can be determined from static tensile tests where no size effect is anticipated while I, can be obtained
from mode 1 dynamic behaviour as outlined here.

In a slender beam where d/L < 1
Microrotation @, = Macrorotation 6,
The bending moment, M, is related to the internal force stress, t,4, and couple stress,m,,, thus:

M = fA(yTxx + my,)dA (38)
Also,

2
l=ﬁ=diz=_d1’; (39)
R dx dx dx

where R is the radius of curvature and W is the transverse displacement.

The in-plane couple stress my, and the normal stress T, are:

« 407

me = y dx

(40)

Ty = (41)



where E,, ¢ is the micropolar flexural modulus.

If @, =6, then:

My, = % (42)
The second moment of area is defined as:

I=[,y*dA (43)

where A is the cross-section of the slender beam:

A=[,dA (44)
N 1 d?w . . .
Substituting for =gz in the moment-curvature relationship:
2
T s e (45)
dx Emf1+}/ A D‘mf
Dy = Epgl + y*A (46)

where D, ¢ is the micropolar flexural rigidity

For an unloaded Euler-Bernoulli beam in the dynamic case:
Dy ¥ — p?w =0 47
mf e HO W = (47)

where W is the mass per unit length given by:

and

w=2 ’D—m‘z —w =N /M (49)
PAL PAL

Also,

D, =D = EI inabsence of any couple stress

The equations (43) and (44) may also be written as:

bd3
I = = (50)

A=hd (51)
By combining the equations (26) and (28):

* Emflg
== (52)

Note that parameter [ [18] differs from the conventional characteristic length in bending, [;,, by a factor of 24.

By substituting equations (50), (51) and (52) into equation (49):

2 _ Emgd* 5
W= 12pL% @+ 1) (53)

Rearrange the equation (53) regarding mass and frequency:

s =2 0 (11 () 0

12 L

Equation (54) thus relates the characteristic length, 1., non-dimensional frequency, A, micropolar flexural modulus,
Ens and beam dimensions, to the product of beam’s mass, m (m without subscript is scalar and stands for mass),



multiplied by squared frequency. Thus, if this product is determined for beams of various size and plotted against the
beam’s reciprocal size measure, (1/d?), then it is possible to obtain E¢ or A from the intercept and the characteristic
length from the slope. Since equation (54) assumes the beam is slender, it is only applied to mode one here where this
assumption is presumed valid.

Equation (54) was used to obtain the characteristic length of bending for the following beam types:

1) Perforated beams with continuous boundaries
2) Beams with compliant inclusions and continuous boundaries
3) Beams with compliant matrix and textured boundaries

Only the characteristic length for the above beam types are listed in table 3, and these values were subsequently used
to estimate the coupling number in section 6. Other beam types did not satisfy the micropolar theory.

The characteristic length does not vary with beam size and only depends on volume fraction. See table 3 below:

Table 3: Characteristic length changes with volume fraction

Void or . . . I for beams with textured
. . | for beams with continuous boundaries, mm .
inclusion vol. boundaries, mm
fraction
Perforated beams Beams with compliant inclusions Beams with compliant matrix
0.2717 0.2555 0.2218
0.4139 0.3612 0.3126
0.5432 0.4681 0.3829
0.6522 0.5621 0.4379
0.7334 0.6367 0.4759

4.2.2 Obtaining the coupling number

Equation (54) only facilitates the identification of the characteristic length parameter from the first flexural natural
frequency based on the assumption of slender beam behaviour for which shear deformation is negligible.

However, now that the characteristic length has been determined, the coupling number, N, may be estimated from
the ANSYS finite element results for the higher flexural frequencies using a numerical control volume finite element
method (CVFEM) which has been specifically developed in Matlab and incorporates micropolar theory. The CVFEM is
capable of modelling, meshing and performing both static deformation and dynamic modal analysis. The CVFEM is
used in combination with an iterative method to match or fit its predictions to the ANSYS results.

The iteration process is based on linear regression as described by Beveridge et al. [18] and fits the curves in the
graphs for m. w? vs mode numbers (or wavelength). The first two transverse modes are used in the process to iterate
for coupling number, N, which, as a constitutive property, should satisfy all modal frequencies and all model depths. A
second Matlab code is also developed which automatically estimates N by linear regression. The remainder of this
paper describes the development and utilization of the CVFEM code.

5 Development of the Numerical CVFEM Code Incorporating Micropolar Elasticity
5.1 Determination of Mass and Microinertia Matrices

Since an exact solution for the transverse vibration of a 2D micropolar beam is not available, a 2D numerical method
based on the CVFEM was developed. The Matlab CVFEM code incorporates a dual mesh of control volumes over a
finite element mesh. Thus control volumes are constructed around each node of six-node triangular finite elements.
Discrete equilibrium equations are developed for each control volume by integrating the stress resultants around each
control volume face to yield the stiffness matrix. The method was originally developed for predicting static
deformations by Beveridge et al.[9], [18]. This work exploits the method used to derive the stiffness matrix since it is
already validated for the static case by Beverage et al. However, the method has now been significantly enhanced
through the incorporation of mass and microinertia matrices to facilitate the dynamic analysis of micropolar media.

According to micropolar theory, each node can move in x and y directions and rotate about its centre.



A consistent mass matrix was obtained for the 6-node triangular element using equation (55):
Mc = [, p(N)"N dQ (55)
N is the shape function, and T stands for transposed.

Mc is the consistent mass matrix and is an integration of mass over the domain Q which is the area of a triangular
element within the mesh, figure 8.
A lumped mass matrix M; was also defined,

M, = diag[111..1]'8x18 (56)
then the template mass matrix obtained for each element within the mesh using the equation below:

6 is a scaling coefficient and set at 0.5 to count for both lumped and consistent mass matrix properties. Details of this
method is discussed by Felippa et al [22].

In equation (31), the microinertia tensor, J;; is considered as equal in all directions for simplicity. Therefore, in order to
include microinertia into the formulation, it must be assembled into the elements of an overall mass matrix that are
associated with the micro rotation. Thus, the microinertia matrix is incorporated into the overall mass matrix.

Having obtained stiffness and mass matrices for an element, assembly of global mass and stiffness matrixes can then
be carried out following standard finite element procedures. Finally, the eigenvalue equation below can be solved in
the absence of external loads:

K—w?M=0 (58)
to obtain the natural frequencies. Here K and M are the global stiffness and overall mass matrices respectively.

By solving the eigenvalue problem, equation (58), w? will be an array comprised of the diagonal elements of the
resulting matrix. The square root of the array elements provides frequency spectrum. Once the modal frequencies are
obtained the normalised displacements components can be extracted, and the mode shapes obtained.

5.2 CVFEM Modelling of Beam Samples

Straight sided and equal sized triangular elements were used for modelling all four sizes of beam. The CVFEM mesh
comprised of 4 and 20 element divisions through the depth and along the length respectively to give a model with
1107 degrees of freedom in total. Overall dimensions of each model correspond to the beam sizes used in ANSYS finite
element models. Figure 8 shows the mesh assembled from triangular elements by the CVFEM analysis. It is important
to note that since the CVFEM code incorporates micropolar rather than classical constitutive behaviour, it is capable of
automatically modelling and meshing the desired beams without having to incorporate the geometric details of the
voids or inclusions as was necessary in the ANSYS models.

6 CVFEM Results and Discussion
6.1 Approximation of the Coupling number, N

6.1.1 Estimation of N for beams with continuous boundaries

Using the CVFEM code and linear regression as described in section 4.2.2, unique values for N were identified. In
figures 9-a and 9-b, the ANSYS finite element results and the results predicted for mode one and two by the
micropolar CVFEM code are compared after convergence of the iteration process with mw? being obtained within the
range of N from 0 to 0.9. The first value represents the lower bound on N and corresponds to the classical case while
the second value is an approximation to the upper bound on N of 1 corresponding to the constrained micropolar or so
called couple stress elasticity case.Note that setting the upper bound for N at 1 would give rise to numerical error.

The linear regression method was applied to the first and second modal frequencies (obtained from ANSYS finite
element analysis) for all beam sizes and a void or inclusion volume fraction of 0.23. In theory, the more mode
numbers used for iteration, the more accurate the coupling number estimate will be, but as the frequency spectrum
identified by the CVFEM also includes longitudinal modes above mode 2, only the first two modal frequencies were
used in the iteration process. The unique value of N identified in this way was 0.054 for beams with voids and 0.053
for beams with compliant inclusions.



The iteration process was similarly performed for all other inclusion volume fractions from 4% to 33%. This revealed
that N changes only slightly with volume fraction, figure 10.

As a further verification, figure 11 shows the full-size effect across the first 8 modes forecast by the CVFEM using
various values on N for the second size of the beam with continuous boundaries and voids. The value of N identified
by the iterative procedure evidently provides the best forecast of the ANSYS results across this frequency range.

As with the characteristic length, when the boundary of the beam is intercepted by voids and inclusions, the coupling
number could also not be identified by the iterative method because the values of mw? obtained from the ANSYS
results exhibit a size effect that is not anticipated by the micropolar theory. This also applies to the case where the
matrix material, though continuous along the boundaries, is more compliant than the inclusions.

6.1.2 Estimation of N for beams with compliant matrix and textured boundaries

While the size effect in beams with compliant matrix and continuous surfaces contradicts the micropolar theory, when
the boundaries are textured by intersection with the stiffer inclusions the size effect is as expected. Thus for this type
of beam, a value for the coupling number can also be identified by the linear regression based iterative procedure.
Interestingly, a unique value of 0.05 is estimated in this case which is comparable to that obtained in the previous
cases considered.

6.2 Overall Comparison of CVFEM Predictions and ANSYS FE Results

Having quantified the characteristic length parameter using the analytical solution, equation (54), and the coupling
number numerically, the CVFEM procedure was used to predict the frequency spectrum for all sizes of beams with
inclusions and/or perforated by voids at all volume fractions considered. The frequency parameters (A) are provided in
Appendix table 7 and only include three modal frequencies parameters for three types of beams: beams with voids
and continuous boundaries, beams with inclusions and continuous boundaries, and finally beams with compliant
matrix and textured boundaries. It was realised that the normalised frequencies (A) approached one quickly and only
were pronounced for the first thee modal frequencies, see figure 12 for the micropolar beams corresponding to the
beams with voids and height of two unit-cells (Second smallest beam sample). When the CVFEM predictions are
compared to the results obtained from ANSYS finite element analysis, figure 3, a number of similarities and
differences are evident. The CVFEM results indicate that in the micropolar beam, the modal frequencies disperse
quickly and that means after the first few modes the size effect is rapidly suppressed which limits the utility of the
higher modes in the investigation of any size effect. On the other hand, the ANSYS results indicate that the size effect
remains more pronounced and may even change in nature. Furthermore, while the CVFEM forecasts are qualitatively
similar to the FE results for the low-frequency flexural modes there is some more quantitative discrepancy as seen
when figure 13, which illustrates the predictions for the first mode, is compared with figure 4. The size effect
predicted is decidedly more nonlinear than that observed in the detailed FE model results.

Comparable similarities and differences are seen in the cases where the beams contain compliant inclusions and
where inclusions, although more rigid, intersect the boundaries, appendix table 7.

7 Summary and Conclusions

ANSYS FE was used for creating beam models and generating modal frequencies and using them as the basis for
comparison. This approach is different from the usual techniques in the literature but has some benefits. First of all,
the analytical methods in the literature were not quite applicable to our beam models. Secondly, changing the volume
fraction in beam models with a periodic array of voids or inclusions required changing material constants such as
modulus of elasticity in order to keep the overall dimensions and the properties of the homogenized equivalent beam
unchanged. This was possible when performing tensile test using ANSYS finite element while keeping the cell’s mesh
configurations constant.

Geometrically similar beam samples of different sizes that contained periodic heterogeneities were modelled using
ANSYS, and modal analyses were performed to identify the unconstrained flexural natural frequencies. Contrary to the
homogeneous case where these frequencies are size independent, the ANSYS results indicate that in the



heterogeneous case they are size dependent. Moreover, this size effect depends on both the specification of the
periodic heterogeneity and its location relative to the sample boundaries. In some cases, the size effect appears to be
consistent with more generalised continuum descriptions of dynamic constitutive behaviour such as micropolar
elasticity in that an increase in frequency with reducing size is observed while in other cases the effect is
contradictory.

For cases where the ANSYS results exhibit a consistent size effect, Eringen’s Nonlocal Timoshenko beam (NLT) analysis
was considered in attempting to explain the dynamic behaviour observed. However, the NLT appears to have
shortcomings since the small-scale coefficient was not constant for all model sizes with equal aspect ratio. The size
dependency of the coefficient value thus implies that it cannot be interpreted as an independent constitutive
property.

An analytical solution for the unconstrained transverse vibration of a slender micropolar beam was then derived and
compared to the finite element results. This enabled the characteristic length parameter to be identified from the size
dependency of the first natural frequency. However, this approach did not permit the identification of the second
additional constitutive parameter, the coupling number, and therefore a numerical application of Eringen’s micropolar
theory in transverse vibration was investigated by developing a CVFEM code for modal analysis which can model,
mesh and perform both static and modal analysis using micropolar theory to account for microrotation and couple
stress. The coupling number was thus identified by an iterative approach based upon matching multiple flexural
frequency forecasts provided by the code to the ANSYS results. The coupling number values obtained are towards the
lower bound of the anticipated range and thus show some agreement with those obtained previously for similar
materials when undergoing static deformation. Nevertheless, when these values were subsequently employed within
the CVFEM code to predict the full range of frequencies covered by the FE results discernable differences were still
present with these becoming more marked as frequency increased. Thus while micropolar theory appears to have
some capacity to forecast the size effect at low frequencies, its predictive ability becomes progressively compromised
as frequency increases for the particular heterogeneous materials considered.

Appendix

The numerical results provided in this appendix provide the transverse modal frequency parameters (A). The results
include ANSYS finite element results, table 4 to 6, and CVFEM results in table 7 for the beams with aspect ratio of
10.4:1

Table 4 : ANSYS results for the first ten non-dimensional bending modal frequencies, A, of four beam sizes for beams with voids and
continuous boundaries.

Vr/Sr 1/d? Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 Mode 9 Mode 10

0.12 1.33 4.76955 7.68132 10.35591 | 12.76693 | 14.93788 | 16.88913 | 18.61605 | 19.99604 | 22.62761 23.77287

0.33 4.68729 7.57493 10.25310 | 12.69255 | 14.91404 | 16.94335 | 18.80583 | 20.52301 | 22.11161 23.58229

0.15 4.66959 7.54856 10.22110 | 12.65790 | 14.87917 | 16.91035 | 18.77657 | 20.49923 | 22.09501 23.57460

0.08 4.66333 7.53907 10.20920 | 12.64431 | 14.86449 | 16.89507 | 18.76115 | 20.48404 | 22.08054 23.56148

0.17 133 4.90166 7.84884 | 10.51240 | 12.87028 | 14.94866 | 16.75620 | 18.25124 | 19.27956 | 23.33800 24.05576

0.33 4.72757 7.63200 10.31759 | 12.75624 | 14.97082 | 16.98881 | 18.83670 | 20.53666 | 22.10554 23.55362

0.15 4.68756 7.57440 | 10.25109 | 12.68880 | 14.90873 | 16.93700 | 18.79930 | 20.51731 | 22.10779 23.58129

0.08 4.67318 7.55331 10.22584 | 12.66164 | 14.88138 | 16.91078 | 18.77521 | 20.49630 | 22.09079 23.56949

0.23 1.33 5.06288 8.02794 10.63599 | 12.87575 | 14.78071 | 16.35164 | 17.54079 | 18.26429 | 22.58100 22.85800

0.33 4.78076 7.70206 | 10.38746 | 12.81145 | 15.00121 | 16.98756 | 18.79922 | 20.45959 | 21.98596 23.38806

0.15 4.71149 7.60675 10.28491 | 12.71812 | 14.92935 | 16.94617 | 18.79525 | 20.49900 | 22.07450 23.53231

0.08 4.68620 7.57108 | 10.24467 | 12.67837 | 14.89384 | 16.91758 | 18.77564 | 20.48990 | 22.07746 23.54905

0.29 1.33 5.22486 8.15349 10.61435 | 12.65910 | 14.31213 | 15.59849 | 16.50500 | 17.02099 | 20.76968 21.14741

0.33 4.83872 7.76881 10.43623 | 12.82049 | 14.95620 | 16.87921 | 18.62170 | 20.20869 | 21.65796 22.97855

0.15 4.73769 7.63848 | 10.31101 | 12.72910 | 14.91850 | 16.90907 | 18.72915 | 20.40219 | 21.94600 23.37150




0.08 4.70036 7.58842 10.25926 | 12.68512 | 14.88911 | 16.89905 | 18.74183 | 20.44008 | 22.01115 23.46609

0.35 1.33 5.35391 8.14392 10.37197 | 12.11473 | 13.47552 | 14.48776 | 15.17417 | 15.55343 | 18.77221 19.31754

0.33 4.89192 7.80981 10.42461 | 12.72609 | 14.76084 | 16.57268 | 18.19838 | 19.66493 | 20.99083 22.18467

0.15 4.76152 7.65909 10.31068 | 12.69310 | 14.83683 | 16.77533 | 18.53948 | 20.15453 | 21.63943 23.00600

0.08 4.71287 7.59915 10.25851 | 12.66461 | 14.84301 | 16.82350 | 18.63439 | 20.29934 | 21.83652 23.25743

Table 5: ANSYS results for the first ten non-dimensional bending modal frequencies, A, of four beam sizes for beams with compliant
inclusions and continuous boundaries.

Vr/Sr 1/d? Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 Mode 9 Mode 10

0.12 1.33 4.75123 7.66769 10.35911 | 12.79741 | 15.00668 | 17.01499 | 18.84630 | 20.49177 | 22.19597 23.59273

0.33 4.68110 7.56720 | 10.24600 | 12.68789 | 14.91294 | 16.94646 | 18.81348 | 20.53531 | 22.12848 23.60351

0.15 4.66748 7.54630 10.21966 | 12.65800 | 14.88127 | 16.91468 | 18.78318 | 20.50804 | 22.10581 23.58711

0.08 4.66249 7.53830 | 10.20903 | 12.64515 | 14.86659 | 16.89853 | 18.76588 | 20.49005 | 22.08768 23.56959

0.17 1.33 4.84870 7.79438 | 10.48399 | 12.89362 | 15.05104 | 16.97843 | 18.66707 | 19.97418 | 22.70293 23.81555

0.33 4.71030 7.60966 10.29603 | 12.74053 | 14.96462 | 16.99474 | 18.85674 | 20.57241 | 22.15847 23.62528

0.15 4.68058 7.56559 10.24292 | 12.68337 | 14.90744 | 16.94082 | 18.80887 | 20.53297 | 22.12978 23.60976

0.08 4.66978 7.54912 10.22220 | 12.65969 | 14.88186 | 16.91418 | 18.78177 | 20.50613 | 22.10393 23.58594

0.23 1.33 4.96849 7.94033 10.61103 | 12.96234 | 15.02517 | 16.80993 | 18.27300 | 19.25911 | 23.40805 23.92484

0.33 4.74841 7.66251 10.35388 | 12.79499 | 15.00981 | 17.02668 | 18.87283 | 20.57082 | 22.13765 23.58338

0.15 4.69778 7.58987 10.27030 | 12.71048 | 14.93192 | 16.96124 | 18.82433 | 20.54298 | 22.13400 23.60783

0.08 4.67937 7.56279 10.23785 | 12.67553 | 14.89668 | 16.92727 | 18.79279 | 20.51494 | 22.11055 23.59024

0.29 1.33 5.09188 8.07596 10.70363 | 12.96512 | 14.89632 | 16.50033 | 17.72840 | 18.48490 | 22.82080 23.10764

0.33 4.78987 7.71682 10.40761 | 12.83679 | 15.03172 | 17.02332 | 18.84050 | 20.50669 | 22.03927 23.44780

0.15 4.71681 7.61537 10.29664 | 12.73282 | 14.94694 | 16.96665 | 18.81872 | 20.52549 | 22.10404 23.56488

0.08 4.69009 7.57735 10.25318 | 12.68902 | 14.90650 | 16.93228 | 18.79233 | 20.50866 | 22.09828 23.57190

0.35 133 5.19900 8.18027 10.75120 | 12.91266 | 14.70869 | 16.14526 | 17.19202 | 17.80838 | 21.86749 22.21757

0.33 4.82774 7.76310 10.44718 | 12.85702 | 15.02368 | 16.98069 | 18.75855 | 20.38153 | 21.86718 23.22472

0.15 4.73465 7.63768 10.31667 | 12.74478 | 14.94674 | 16.95144 | 18.78654 | 20.47502 | 22.03434 23.47507

0.08 4.70048 7.59047 10.26515 | 12.69652 | 14.90715 | 16.92448 | 18.77513 | 20.48139 | 22.06051 23.52323

Table 6: ANSYS results for the first ten non-dimensional bending modal frequencies, A, of four beam sizes with compliant matrix
and textured boundaries

Vr/Sr 1/d? Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7 Mode 8 Mode 9 Mode 10

0.12 1.33 4.72946 7.63167 10.31391 | 12.74914 | 14.96101 | 16.97705 | 18.82349 | 20.52080 | 22.08456 23.51864

0.33 4.67474 7.55630 10.23092 | 12.66928 | 14.89158 | 16.92312 | 18.78891 | 20.51027 | 22.10379 23.58024

0.15 4.66415 7.54046 | 10.21133 | 12.64735 | 14.86851 | 16.90006 | 18.76707 | 20.49073 | 22.08789 23.56936

0.08 4.66041 7.53475 10.20404 | 12.63884 | 14.85907 | 16.88991 | 18.75639 | 20.47983 | 22.07692 23.55855

0.17 133 4.79981 7.73649 10.44016 | 12.88522 | 15.09868 | 17.11120 | 18.95153 | 20.64153 | 22.19873 23.62610

0.33 4.69361 7.58611 10.26980 | 12.71521 | 14.94282 | 16.97809 | 18.84626 | 20.56862 | 22.16152 23.63539

0.15 4.67256 7.55394 10.22929 | 12.66920 | 14.89381 | 16.92850 | 18.79839 | 20.52477 | 22.12430 23.60763

0.08 4.66512 7.54233 10.21420 | 12.65134 | 14.87374 | 16.90666 | 18.77518 | 20.50069 | 22.09963 23.58306

0.23 1.33 4.86778 7.83361 10.54994 | 12.99331 | 15.19525 | 17.19013 | 19.00983 | 20.67820 | 22.21484 23.62362

0.33 4.71272 7.61511 10.30545 | 12.75433 | 14.98271 | 17.01645 | 18.88109 | 20.59805 | 22.18360 23.64764

0.15 4.68105 7.56693 10.24559 | 12.68764 | 14.91352 | 16.94881 | 18.81879 | 20.54492 | 22.14375 23.62573

0.08 4.66980 7.54951 10.22324 | 12.66163 | 14.88488 | 16.91839 | 18.78735 | 20.51312 | 22.11233 23.59574




0.29 1.33 4.92902 7.91767 10.63896 | 13.07209 | 15.25356 | 17.22171 | 19.01125 | 20.64896 | 22.15520 23.53770
0.33 4.73121 7.64217 10.33705 | 12.78652 | 15.01227 | 17.04078 | 18.89797 | 20.60541 | 22.17930 23.62915
0.15 4.68972 7.57979 10.26091 | 12.70387 | 14.92945 | 16.96357 | 18.83174 | 20.55554 | 22.15156 23.63006
0.08 4.67484 7.55698 10.23220 | 12.67124 | 14.89453 | 16.92768 | 18.79602 | 20.52104 | 22.11932 23.60152
0.35 1.33 4.97450 7.97691 10.69532 | 13.11107 | 15.26453 | 17.19681 | 18.94450 | 20.53606 | 21.99261 23.32542
0.33 4.74526 7.66210 10.35901 | 12.80674 | 15.02757 | 17.04848 | 18.89564 | 20.59065 | 22.14966 23.58161
0.15 4.69628 7.58920 10.27154 | 12.71418 | 14.93820 | 16.96979 | 18.83470 | 20.55444 | 22.14572 23.61878
0.08 4.67845 7.56215 10.23804 | 12.67693 | 14.89946 | 16.93139 | 18.79821 | 20.52143 | 22.11778 23.59761

Table 7: CVFEM results for the non-dimensional modal frequencies (A) of modes one to three of models with various beam depth
and void or inclusions radius.

Beam with voids and continuous

Beam with compliant inclusions and

Beam with compliant matrix and

boundaries continuous boundaries continuous boundaries
Vr/Sr 1/d"2 Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3 Mode 1 Mode 2 Mode 3
0.12 1.33 5.55048 7.93926 10.48025 5.49408 7.91719 10.46336 5.38661 7.86623 10.42483
0.33 5.19436 7.88419 10.43642 5.14068 7.85885 10.41906 5.05858 7.81050 10.38362
0.15 498113 7.80541 10.39748 4.94219 7.78019 10.38063 4.88770 7.73798 10.34900
0.08 4.86615 7.73972 10.36377 4.83879 7.71720 10.34784 4.80220 7.68259 10.32010
0.17 1.33 5.68121 7.95820 10.49617 5.61747 7.93569 10.47906 5.50346 7.88422 10.44059
0.33 5.42876 7.94097 10.46926 5.34149 7.91189 10.44894 5.23072 7.85958 10.41067
0.15 5.20517 7.89103 10.44088 5.12100 7.85607 10.41894 5.03132 7.80451 10.38242
0.08 5.04767 7.83712 10.41432 4.97748 7.79957 10.39155 4.90944 7.75156 10.35719
0.23 1.33 5.73075 7.96448 10.50144 5.67330 7.94297 10.48519 5.55134 7.89058 10.44605
0.33 5.55249 7.96269 10.48345 5.46755 7.93613 10.46412 5.32718 7.87986 10.42287
0.15 5.35917 7.93005 10.46195 5.26393 7.89744 10.44042 5.13061 7.83717 10.39878
0.08 5.19684 7.88978 10.44050 5.10667 7.85243 10.41761 4.99336 7.79093 10.37650
0.29 1.33 5.75314 7.96717 10.50370 5.70056 7.94631 10.48799 5.57569 7.89363 10.44864
0.33 5.61768 7.97255 10.49037 5.54080 7.94800 10.47215 5.38462 7.89020 10.42948
0.15 5.45414 7.94918 10.47319 5.36179 7.91960 10.45279 5.19809 7.85527 10.40823
0.08 5.30125 7.91787 10.45513 5.20666 7.88355 10.43323 5.05576 7.81461 10.38796
0.35 1.33 5.76408 7.96846 10.50478 5.71468 7.94799 10.48940 5.58828 7.89516 10.44993
0.33 5.65203 7.97737 10.49389 5.58251 7.95417 10.47651 5.41700 7.89556 10.43304
0.15 5.50881 7.95888 10.47925 5.42348 7.93165 10.45993 5.23936 7.86506 10.41353
0.08 5.36639 7.93277 10.46330 5.27535 7.90141 10.44256 5.09632 7.82805 10.39453




Table 8: Correction of modulus of elasticity of beams matrix by void or inclusions radius for various beam models

Void or inclusion The modulus of elasticity of matrix, MPa
radius, mm
Perforated beams Beams with compliant Beams with compliant matrix
inclusions
Continuous Textured Continuous Textured Continuous Textured
boundaries boundaries boundaries boundaries boundaries boundaries
0 7.000E+04 7.000E+04 7.000E+04 7.000E+04 7.000E+04 7.000E+04
0.1 7.796E+04 7.814E+04 7.590E+04 7.600E+04 6.679E+04 6.681E+04
0.15 8.892E+04 8.915E+04 8.382E+04 8.394E+04 6.292E+04 6.295E+04
0.2 1.064E+05 1.063E+05 9.600E+04 9.599E+04 5.775E+04 5.776E+04
0.25 1.338E+05 1.328E+05 1.139E+05 1.135E+05 5.142E+04 5.142E+04
0.3 1.796E+05 1.767E+05 1.404E+05 1.397E+05 4.412E+04 4.413E+04

Table 9: Correction of density by void or inclusions radius

Void or inclusion The mass density of matrix and inclusions, kg/m?
radius, mm
Perforated beams Beams with inclusions
For matrix For matrix For inclusions
0 2700.00 2700.00 N/A
0.1 2801.64 2546.94 6766.11
0.15 2939.97 2672.70 3007.16
0.2 3158.29 2871.18 1691.53
0.25 3491.67 3174.25 1082.58
0.3 4008.87 3644.43 751.79
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List of Figure

Figure 1: Unit cell consisting of two isotropic materials r = 0.2 mm; the unit cell on the left used in generating beams with
continuous surfaces and the unit cell on the right is used for when inclusions intercept the surface of the beam.
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Figure 2: Models showing the arrangement of unit cells in beams; a) Beam size 1 with 9 unit cells with continuous boundaries (top,
left); b) Beam size 2 with 18 unit cells in length with continuous boundaries (bottom, left); c) Beam size 1 with 9 unit cells with
textured boundaries (top, right); d) Beam size 2 with 18 unit cells in length with textured boundaries (bottom, right)
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Figure 3: First ten normalised bending modal frequencies of the second smallest beam sample with voids and continuous
boundaries.
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Figure 4: Normalised primary bending modal frequency of four beam sizes for beams with voids and continuous boundaries.
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Figure 5: First ten normalised bending modal frequencies of the second smallest beam sample with compliant matrix and
continuous boundaries.
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Figure 6: Normalised primary bending modal frequency of four beam sizes for beams with compliant matrix and continuous

boundaries.
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Figure 7: Results for perforated beam models with continuous boundaries and F-F boundary conditions using NLT beam theory; a)
Normalised non-local Timoshenko frequency parameters for various a's (graph on the left); b) Scale Coefficient 'a' (Alpha),
Obtained by curve fitting FE results with NLT and Vr/Sy is the normalised void radius changing from 0 to 0.35 (graph on the right).

Figure 8: Representation of CVFEM meshed beam model
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Figure 9: The variation of mw? with beam size for beams with compliant inclusions and continuous surface and volume fraction
equal to 0.23; a) The variation of mw? at flexural mode 1 (on the left); b) The variation of mw? at flexural mode 2 (on the right).
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Figure 11: Normalised flexural modal frequencies produced by ANSYS squared markers and CVFEM code shown in dotted line and
triangular markers. Ic = 0.6522 mm, N = 0.0538, d=1.732 mm and the void volume fraction is 0.23
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Figure 12: Normalised flexural modal frequencies of the second smallest beam sample with voids and continuous boundaries
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Figure 13: Normalised flexural modal frequencies of the first mode for beams with voids and continuous boundaries



