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ABSTRACT

This paper introduces a cost function for the smoothness of
a continuous periodic function, of which only some samples
are given. This cost function is important e.g. when associat-
ing samples in frequency bins for problems such as analytic
singular or eigenvalue decompositions. We demonstrate the
utility of the cost function, and study some of its complexity
and conditioning issues.

Index Terms— Analytic functions; Dirichlet interpola-
tion; approximation.

1. INTRODUCTION

For some problems, one particular, desired solution amongst
a manifold of others may be defined by its analyticity. This
is the case e.g. for the analytic eigenvalue decomposition
(EVD) A(ω) = Q(ω)Λ(ω)QH(ω) of a self-adjoint ma-
trix A(ω) : R → CM×M , ω ∈ R, s.t. A(ω) = AH(ω),
which can be accomplished with analytic factors Q(ω) and
Λ(ω) [1–3]. Similarly, a general matrix B(ω) : R→ CM×N
admits an analytic singular value decomposition (SVD)
B(ω) = U(ω)Σ(ω)V H(ω), with analytic unitary U(ω)
and V (ω), and analytic and diagonal Σ(ω) [4–8].

When moving from the dependence on a real-valued con-
tinuous variable ω ∈ R to a complex valued z ∈ C, then
similar interest has arisen for a parahermitian matrix R(z),
with the parahermitian conjugate RP(z) = RH(1/z∗) =
R(z) [9]. An analytic parahermitian matrix R(z) : C →
CM×M admits a parahermitian matrix EVD R(z) = U(z)Γ(z)UP(z)
in almost all cases [10, 11], with analytic paraunitary and
parahermitian diagonal factors U(z) and Γ(z), respectively.
On the unit circle, the parameterisation z = ejΩ leads to a
self-adjoint matrix similar to the analytic EVD in [1], which
however differs by a cyclic dependency on Ω ∈ R.

For iterative approximations of problems such as the
above factorisations, often choices other than the analytic
solution are possible. Algorithms such as sequential best ro-
tation (SBR2, [12–14]) and sequential matrix diagonalisation
(SMD, [15–17]) encourage or even guarantee [18] a spec-
trally majorised approximation [9] Γ̂(z) of Γ(z), which will
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Fig. 1. Selection of (a) spectrally majorised vs (b) analytic
functions.

violate analyticity if eigenvalues cross. An example of an an-
alytic versus a spectrally majorised solution for the functions
Fm(ejΩ), m = 1, 2, is given in Fig. 1. Analytic factors are
attractive because they can be approximated by lower order
polynomials compared to spectrally majorised ones, with a
direct impact on the implementation cost for applications
such as broadband beamforming [19–22], angle of arrival
estimation [23, 24], or source separation [25].

To enforce analyticity over spectral majorisaton in the
association across frequency requires a suitable cost func-
tion. An example for the arising challenge for the functions
in Fig. 1 sampled uniformly at N = 8 points in Fig. 2(a) is
shown in Figs. 2(b) and (c), where two interpolated curves
are woven through a unique and complete assignment of all
samples in every frequency bin. Since an analytic function is
infinitely differentiable, a smoothness criterion appears to be
a good approach to distinguish between the analytic solution
and e.g. the spectrally majorised one.

As a metric for smoothness, in [5] the arc length of a sin-
gular value is considered, which is related to its first deriva-
tive. In [26–28], a lack of smoothness (and therefore of an-
alyticity) of the eigenvalues translates into a discontinuity in
the eigenvectors, which can form a cost function, even though
this can lead to problems at or near an algebraic multiplicity
of eigenvalues that is greater than one. We therefore choose
to follow a different approach and directly evaluate a metric
that relates to the analyticity of eigenvalues, which is used for
the iterative extraction of analytic eigenvalues in [29].
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Fig. 2. (a) N = 8 sample points obtained from Fig. 1, with
(b) spectrally majorised and (c) analytic interpolations.

Below, we investigate the formulation of a cost function
based on the infinite differentiability of an analytic function
by measuring the power in its derivatives, in order to drive a
new set of DFT-based PhEVD algorithms [29].

2. DIRICHLET INTERPOLATION

2.1. Dirichlet Kernel

When describing a 2π-periodic function F (ejΩ) by N eq-
uispaced samples Fk = F (ejΩk), Ωk = 2πk/N that have
been obtained obeying the Nyquist theorem, the underly-
ing interpolation function is the Dirichlet kernel or periodic
sinc function, PN (ejΩ). This kernel arises as the discrete-
time Fourier transform PN (ejΩ) =

∑
n pN [n]e−jΩn (or

short PN (ejΩ) •—◦ pN [n]) of a rectangular window pN [n] of
lengthN , s.t. pN [n] = 1 for n = −LN . . . (N−LN−1) and
pN [n] = 0 otherwise, whereby we define LN = (N − 1)/2
for N odd, and LN = N/2 for N even.

For the Dirichlet kernel PN (ejΩ), we have, dependent on
N being odd or even:

PN (ejΩ)=


sin(N

2 Ω)
sin( 1

2 Ω)
=
N−LN−1∑
`=−LN

e−jΩ` N odd

e−j Ω
2

sin(N
2 Ω)

sin( 1
2 Ω)

=
N−LN−1∑
`=−LN

e−jΩ` N even,

(1)

where the latter expressions in each line are the Fourier series.

2.2. Interpolation

The kernel in (1) permits to express a 2π-periodic function
F (ejΩ) as

F (ejΩ) =
1

N

N−1∑
k=0

FkPN (ej(Ω−Ωk)) (2)

=
1

N

N−1∑
k=0

Fk

N−LN−1∑
`=−LN

e−j(Ω−Ωk)` . (3)

The interpolated expression in (3) can be further simplified to

F (ejΩ) =

N−LN−1∑
`=−LN

1

N

N−1∑
k=0

FkejΩk`e−jΩ`

=

N−LN−1∑
`=−LN

a`e
−jΩ` (4)

where al, l = 0 . . . (N −1) are the coefficients resulting from
an N -point inverse discrete Fourier transform (DFT) of the
sample points Fk, k = 0 . . . (N − 1).

3. POWER OF DERIVATIVES BASED ON A
COMPLETE SAMPLE SET

We first assume that a function F (ejΩ) is given by N equi-
spaced sample F (ejΩk), Ωk = 2πk/N , n = 0 . . . (N − 1)
along the unit circle.

3.1. Power of Derivatives

As a criterion for smoothness, we are interested in the power
of the pth derivative of F (ejΩ), which can be measured as

χp =
1

2π

π∫
−π

∣∣∣∣ dp

dΩp
F (ejΩ)

∣∣∣∣2 dΩ , (5)

and can provide a metric for the smoothness of F (ejΩ). Dif-
ferentiating F (ejΩ) p times w.r.t. the frequency parameter Ω
yields

dp

dΩp
F (ejΩ) =

1

N

N−1∑
k=0

Fk
dp

dΩP
PN (ej(Ω−Ωk)) (6)

=

N−LN1∑
`=−LN

(−j`)pa`e−jΩ` (7)

using (4).
Note that due to orthogonality of the complex exponential

terms and integration over an integer number of fundamental
periods, for a Fourier series with some arbitrary coefficients
b`,

1

2π

π∫
−π

∣∣∣∣∣∑
l

b`e
jΩ`

∣∣∣∣∣
2

dΩ =
∑
`

1

2π

π∫
−π

∣∣b`ejΩ`
∣∣2dΩ =

∑
`

|b`|2 .

Therefore, we can write

χp =

N−LN−1∑
`=−LN

|(−j`)
p
a`|

2
=

N−LN−1∑
`=−LN

`2p|a`|2 . (8)

3.2. Matrix Formulation

We denote an N -point DFT matrix by TN , and assumed that
it is normalised s.t. TNTH

N = I. With the samples points



Fk along the unit circle and their inverse DFT coefficients a`
organised into vectors,

f = [F0, F1, . . . , FN−1]
T (9)

a = [a0, a1, . . . , aN−1]
T
, (10)

they relate as a = 1√
N

TH
N f . Further,

D = diag{|−LN |, . . . , 1, 0, 1, . . . (N−Ln−1)} . (11)

Therefore,

χp = aHD2pa =
1

N
fHTND2pTH

N f . (12)

If power is accumulated across several derivatives up to order
P , then

χ(P ) =

P∑
p=0

χp =
1

N
fHTN

P∑
p=0

D2pTH
N f . (13)

This total power can therefore be measures as a weighted in-
ner product of f , fHCf , with

C =
1

N
TN

P∑
p=0

D2pTH
N . (14)

The matrix D2p is positive semi-definite, real, and of rank
(N − 1) for p > 0 by construction. The inclusion of D0 into
(14) makes C full rank. With its eigenvalues 1

N

∑P
p=0 D2p, it

condition number is γ =
∑P
p=0(N−Ln−1)2p, i.e. the matrix

becomes ill-conditioned quickly as higher order derivatives
are considered.

4. INCOMPLETE SAMPLE SET

If on a regular grid of N bins, not all sample points Fk, k =
0 . . . (N − 1) are available, the idea is to find a maximally
smooth interpolation based on an optimum positioning of the
missing sample points. Various approaches for this are sug-
gested below.

4.1. Schur Complement

It is assumed that on a grid of N equispaced bins, only K <
N samples are given. W.l.o.g. these are assumed to be adja-
cent1 and are contained in g ∈ CK . We want to select the
remaining N − K coefficient such that maximum smooth-
ness is attained for the interpolation. Packed into a vector
x ∈ CN−K , their optimum values can be found as

xopt = arg min
x

[
gHxH

]
C

[
g
x

]
. (15)

1Otherwise a permutation matrix can be defined, see [32].

With the partitioning of C into

C =

[
C1 CH

2

C2 C4

]
, (16)

where C1 ∈ RK×K and all other matrix dimensions as ap-
propriate, we have

xopt = −C−1
4 C2g . (17)

The smoothness metric for the extended vector [gT xT
opt]

T

can be measured as

χ = gH
(
C1 −CH

2 C−1
4 C2

)
g . (18)

4.2. Minimum Variance Distortionless Response

Based on the relation of the smoothness criterion in (12) to
the Fourier coefficients in a ∈ CN , we can formulate the
constrained optimisation problem

min
a

aH
P∑
p=0

D2pa s.t. TK
Na = g , (19)

where TK
N ∈ CK×N containing the appropriate K rows of

the N -point DFT TN . The constraint in (19) ensures that
the obtained response interpolates through the sample points
collected in g ∈ CK .

The formulation (19) is similar to a minimum variance
distortionless response problem, for which Lagrange optimi-
sation leads to

aopt = D(P ),†TK,H
N

(
TK
ND(P ),†TK,H

N

)−1

g . (20)

Since we are not interested in the coefficients aopt but in the
smoothness criterion χ, inserting (20) into (19) leads to

χ = gH
(
TK
ND(P ),†TK,H

N

)−1

g . (21)

5. IMPLEMENTATION AND RESULTS

5.1. Implementation Complexity

To calculate the metric χ for a full set of sample points
in f ∈ CN , it is possible to evaluate the matrix C =
TN

∑P
p=0 D2pTH

N . The smoothness metric is then given
as a weighted inner product χ = fHCf . A computationally
less expense alternative will evaluate TH

N f as in inverse fast
Fourier transform (IFFT) applied to f followed by a vector
norm, which results in an overall complexity of

Cfull = N(2 + log2N) (22)

multiply accumulates (MACs).
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Fig. 3. Complexity of Schur vs MVDR approach.

For a reduced set ofK out of possibleN equispaced sam-
ple points, the Schur approach in (18) requires

CSchur = (N −K)3 + (N −K)2K + (N −K)K2 (23)

MAC operations to calculate the K × K matrix that weighs
the inner product in (18). This assumes that the diagonal ma-
trix

∑
p D2p is precalculated or available via a look-up ta-

ble. The major component in (23) is the inversion of C4 ∈
C(N−K)×(N−K), which is assumed to cost (N−K)3 MACs.

For the MVDR method in (21), the cost for constructing
the matrix that weighs the inner product is

CMVDR = K3 +K2N +KN , (24)

where it is assumed that the inverse of the diagonal
∑
p D2p

is available, and that the inversion of the K × K matrix is
accounted by K3 MACs.

Due to the tabling of
∑
p D2p and its inverse, the com-

plexities in (23) and (24) are independent of the order p of the
derivatives, or of the accumulation up to order P . For N =
{32, 128, 512}, the computational costs CSchur and CMVDR

are displayed forK = 1 . . . N in Fig. 3. While the MVDR ap-
proach inverts a small matrix for small K, the opposite is true
for the Schur approach, where the dimension of the inverse
decreases as K → N . Therefore, the MVDR methods offers
generally advantages for K < N/2, while for K > N/2 the
Schur approach becomes preferable.

5.2. Conditioning

Sec. 3.2 stated the full-set matrix C as generally ill-conditioned
for large N and P , even though no matrix inversion is re-
quired for the evaluation of the smoothness metric. For the
evaluation of χ for an incomplete sample set however, both
Schur and MVDR approaches involve matrix inversions. For
the case of P = 5 and N = 32, Fig. 4 shows the condi-
tion numbers for the required matrix inversions. Generally,
the larger the matrix to be inverted — in the Schur case for
small K, in the MVDR case for large K — the worse the
conditioning, thus generally necessitating regularisation [30].
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Fig. 4. Conditioning of Schur vs MVDR approach for N =
32, P = 5, with variable K.

p K = 2 K = 4 K = 7 K = 8 σ2
p

1 0.0270 0.3773 0.4886 0.5000 0.5000
2 0.0564 0.4606 0.4989 0.5000 0.5000
3 0.0689 0.4900 0.4999 0.5000 0.5000
4 0.0722 0.4977 0.5000 0.5000 0.5000
5 0.0730 0.4995 0.5000 0.5000 0.5000

Table 1. Results for χp for various derivatives p and different
number of sample points K. The power of the pth derivative
of F (ejΩ), σ2

p is shown for comparison.

5.3. Accuracy

A raised cosine F (ejΩ) = 1 + cos Ω, with every derivative
having a power of σ2

p = 1
2 , is sampled at N = 8 equis-

paced bins. The first K of these sample points are used to
evaluate the proposed smoothness metric, with results sum-
marised in Tab. 1. For a sufficiently large K and p, the cor-
rect powers are attained. For lower values, an algorithm can
find an interpolation with a smaller metric, as demonstrated
for {N = 2, p = 4} and {N = 4, p = 2} in Fig. 5.

6. CONCLUSIONS

To measure the smoothness of a function associated with a
full or limited set of sample points on the unit circle, this pa-
per has suggested the power in the derivatives of the Dirichlet
interpolation through the given points. For incomplete sets,
also known as the ‘missing samples problem’ [31], a Schur
complement and an MVDR approach have been suggested,
whereby the latter works best for very sparse sets, while the
former operates best on nearly complete sets. Cost, condition-
ing and the accuracy of the metric have been explored, with
further evaluation and benchmarking left to [32].
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Fig. 5. Approximation of raised cosine for (a) N = 2, p = 4
and N = 4, p = 2.



7. REFERENCES

[1] F. Rellich, “Störungstheorie der Spektralzerlegung. I. Mit-
teilung. Analytische Störung der isolierten Punkteigenwerte
eines beschränkten Operators,” Mathematische Annalen, vol.
113, pp. DC–DCXIX, 1937.

[2] F. Rellich and J. Berkowitz, Perturbation Theory of Eigen-
value Problems, Gordon and Breach, New York, 1969.

[3] T. Kato, Perturbation Theory for Linear Operators, Springer,
1980.

[4] B.L.R. De Moor and S.P. Boyd, “Analytic properties of singu-
lar values and vectors,” Tech. Rep., KU Leuven, 1989.

[5] A. Bunse-Gerstner, R. Byers, V. Mehrmann, and N.K. Nicols,
“Numerical computation of an analytic singular value decom-
position of a matrix valued function,” Numer. Math, vol. 60,
pp. 1–40, 1991.

[6] K. Wright, “Differential equations for the analytic singular
value decomposition of a matrix,” Numerische Mathematik,
vol. 63, no. 1, pp. 283–295, Dec. 1992.

[7] L. Dieci and T. Eirola, “On smooth decompositions of matri-
ces,” SIAM Journal on Matrix Analysis and Applications, vol.
20, no. 3, pp. 800–819, 1999.

[8] E.S. Van Vleck, Numerical algebra, matrix the-
ory, differential-algebraic equations and control theory:
Festschrift in honor of Volker Mehrmann, chapter Continuous
Matrix Factorizations, pp. 299–318, Springer, 2015.

[9] P.P. Vaidyanathan, Multirate Systems and Filter Banks, Pren-
tice Hall, Englewood Cliffs, 1993.

[10] S. Weiss, J. Pestana, and I.K. Proudler, “On the existence and
uniqueness of the eigenvalue decomposition of a parahermi-
tian matrix,” IEEE Transactions on Signal Processing, vol.
66, no. 10, pp. 2659–2672, May 2018.

[11] S. Weiss, J. Pestana, I.K. Proudler, and F.K. Coutts, “Cor-
rections to on the existence and uniqueness of the eigenvalue
decomposition of a parahermitian matrix,” IEEE Transactions
on Signal Processing, vol. 66, no. 23, pp. 6325–6327, Dec
2018.

[12] J.G. McWhirter, P.D. Baxter, T. Cooper, S. Redif, and J. Fos-
ter, “An EVD Algorithm for Para-Hermitian Polynomial Ma-
trices,” IEEE Transactions on Signal Processing, vol. 55, no.
5, pp. 2158–2169, May 2007.

[13] S. Redif, J.G. McWhirter, and S. Weiss, “Design of FIR pa-
raunitary filter banks for subband coding using a polynomial
eigenvalue decomposition,” IEEE Transactions on Signal Pro-
cessing, vol. 59, no. 11, pp. 5253–5264, Nov. 2011.

[14] Z. Wang, J.G. McWhirter, J. Corr, and S. Weiss, “Multiple
shift second order sequential best rotation algorithm for poly-
nomial matrix EVD,” in 23rd European Signal Processing
Conference, Nice, France, Sep. 2015, pp. 844–848.

[15] J. Corr, K. Thompson, S. Weiss, J.G. McWhirter, S. Redif, and
I.K. Proudler, “Multiple shift maximum element sequential
matrix diagonalisation for parahermitian matrices,” in IEEE
Workshop on Statistical Signal Processing, Gold Coast, Aus-
tralia, June 2014, pp. 312–315.

[16] J. Corr, K. Thompson, S. Weiss, J.G. McWhirter, and
I.K. Proudler, “Maximum energy sequential matrix diagonal-
isation for parahermitian matrices,” in 48th Asilomar Confer-
ence on Signals, Systems and Computers, Pacific Grove, CA,
USA, Nov. 2014, pp. 470–474.

[17] S. Redif, S. Weiss, and J.G. McWhirter, “Sequential matrix
diagonalization algorithms for polynomial EVD of parahermi-
tian matrices,” IEEE Transactions on Signal Processing, vol.
63, no. 1, pp. 81–89, Jan. 2015.

[18] J.G. McWhirter and Z. Wang, “A novel insight to the SBR2
algorithm for diagonalising para-hermitian matrices,” in 11th
IMA Conference on Mathematics in Signal Processing, Birm-
ingham, UK, Dec. 2016.

[19] S. Redif, J.G. McWhirter, P.D. Baxter, and T. Cooper, “Ro-
bust broadband adaptive beamforming via polynomial eigen-
values,” in OCEANS, Boston, MA, Sep. 2006, pp. 1–6.

[20] S. Weiss, S. Bendoukha, A. Alzin, F.K. Coutts, I.K. Proudler,
and J.A. Chambers, “MVDR broadband beamforming using
polynomial matrix techniques,” in 23rd European Signal Pro-
cessing Conference, Nice, France, Sep. 2015, pp. 839–843.

[21] A. Alzin, F.K. Coutts, J. Corr, S. Weiss, I.K. Proudler, and
J.A. Chambers, “Adaptive broadband beamforming with ar-
bitrary array geometry,” in IET/EURASIP Intelligent Signal
Processing, London, UK, Dec. 2015.

[22] A. Alzin, F.K. Coutts, J. Corr, S. Weiss, I.K. Proudler, and
J.A. Chambers, “Polynomial matrix formulation-based Capon
beamformer,” in IMA International Conference on Signal Pro-
cessing in Mathematics, Birmingham, UK, Dec. 2016.

[23] M. Alrmah, S. Weiss, and S. Lambotharan, “An extension of
the MUSIC algorithm to broadband scenarios using polyno-
mial eigenvalue decomposition,” in 19th European Signal Pro-
cessing Conference, Barcelona, Spain, Aug. 2011, pp. 629–
633.

[24] S. Weiss, M. Alrmah, S. Lambotharan, J.G. McWhirter, and
M. Kaveh, “Broadband angle of arrival estimation methods in
a polynomial matrix decomposition framework,” in IEEE 5th
International Workshop on Computational Advances in Multi-
Sensor Adaptive Processing, Dec. 2013, pp. 109–112.

[25] S. Redif, S. Weiss, and J.G. McWhirter, “Relevance of poly-
nomial matrix decompositions to broadband blind signal sep-
aration,” Signal Processing, vol. 134, pp. 76–86, May 2017.

[26] M. Tohidian, H. Amindavar, and A.M. Reza, “A DFT-based
approximate eigenvalue and singular value decomposition of
polynomial matrices,” EURASIP Journal on Advances in Sig-
nal Processing, vol. 2013, no. 1, pp. 1–16, 2013.

[27] F.K. Coutts, K. Thompson, S. Weiss, and I.K. Proudler, “A
comparison of iterative and DFT-based polynomial matrix
eigenvalue decompositions,” in IEEE 7th International Work-
shop on Computational Advances in Multi-Sensor Adaptive
Processing, Curacao, Dec. 2017.

[28] F.K. Coutts, K. Thompson, J. Pestana, I.K. Proudler, and
S. Weiss, “Enforcing eigenvector smoothness for a compact
DFT-based polynomial eigenvalue decomposition,” in 10th
IEEE Workshop on Sensor Array and Multichannel Signal
Processing, July 2018, pp. 1–5.

[29] S. Weiss, I.K. Proudler, F.K. Coutts, and J. Pestana, “Iterative
approximation of analytic eigenvalues of a parahermitian ma-
trix EVD,” in IEEE International Conference on Acoustics,
Speech and Signal Processing, Brighton, UK, May 2019.

[30] G.H. Golub and C.F. Van Loan, Matrix Computations, John
Hopkins University Press, Baltimore, Maryland, 3rd edition,
1996.

[31] J. Selva, “FFT interpolation from nonuniform samples lying
in a regular grid,” IEEE Transactions on Signal Processing,
vol. 63, no. 11, pp. 2826–2834, June 2015.

[32] S. Weiss, I.K. Proudler, and M.D. Macleod, “Measuring
smoothness of real-valued functions defined by sample points
on the unit circle,” in Sensor Signal Processing in Defence
Conference, Brighton, UK, May 2019, submitted.


