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ABSTRACT

We present an algorithm that extracts analytic eigenvalues

from a parahermitian matrix. Operating in the discrete Fourier

transform domain, an inner iteration re-establishes the lost as-

sociation between bins via a maximum likelihood sequence

detection driven by a smoothness criterion. An outer iteration

continues until a desired accuracy for the approximation of

the extracted eigenvalues has been achieved. The approach is

compared to existing algorithms.

1. INTRODUCTION

A number of recent broadband array problems such as beam-

forming [1, 2], angle of arrival estimation [3, 4], blind source

separation [5], multichannel coding [6, 7], or MIMO system

design [8–11] have been successfully formulated and solved

using polynomial matrix algebra. Central to this has been the

McWhirter decomposition [12], which factorises a paraher-

mitian matrix R(z), i.e. a matrix that is equal to its paraher-

mitian conjugate RP(z) = RH(1/z∗) = R(z). Typically a

parahermitian matrix arises as a cross-spectral density (CSD)

matrix, i.e. the z-transform of a space-time covariance matrix.

The factorisation results in

R(z) ≈ U(z)D(z)UP(z) , (1)

where U(z) is paraunitary, i.e. U(z)UP(z) = UP(z)U(z) =
I. The parahermitian matrix D(z) = diag{d1(z), . . . , dM (z)}
is spectrally majorised, i.e.

dm(ejΩ) ≥ dm+1(e
jΩ), ∀Ω ∈ R,m = 1 . . . (M − 1) . (2)

Several algorithms exist that are proven to converge to a

diagonalised D(z), including the sequential best rotation

(SBR2, [7, 12, 13]) and sequential matrix diagonalisation

(SMD, [14–16]) families of algorithms. In general, spectral

majorisation is encouraged; SBR2 has even been shown to

converge to this solution [17].

This work was supported in parts by the Engineering and Physical

Sciences Research Council (EPSRC) Grant number EP/S000631/1 and the

MOD University Defence Research Collaboration in Signal Processing.

In [18,19], we have shown that for an analytic parahermi-

tian R(z), a parahermitian matrix EVD (PhEVD)

R(z) = Q(z)Λ(z)QP(z) (3)

exists with an analytic paraunitary Q(z) and an analytic diag-

onal Λ(z), unless R(z) emerges from multiplexed data [19].

The spectrally majorised solution arises from a permutation

of the analytic solution, as shown in the example in Fig. 1. As

a consequence, the factors in the McWhirter decomposition in

(1) may have to approximate non-differentiable functions in

case of the eigenvalues, and discontinuous functions in case

of the eigenvectors [18]. Therefore, much higher approxima-

tion orders are required to model the factors in (1) compared

to those in (3).

We are therefore interested in algorithms that can approx-

imate the analytic solution in (3). The only currently existing

attempt is by Tohidian et al. [20], who have chosen a DFT-

based approach over SBR2 and SMD algorithms, which oper-

ate in the time domain. The approach in [20] does not specify

how the DFT length is chosen, and drives the analyticity of the

solution by a condition on the eigenvectors. Below, in Sec. 2,

we summarise the main results of [18, 19], and present the

challenges of a DFT-based approach in Sec. 3: by losing the

coherence between frequency bins, an association of eigen-

values across bins must be established. We argue why the

reliance on the eigenvectors for an analytic solution in [20]

can be misleading, and therefore concentrate exclusively on

the eigenvalues. For the association, we derive a metric for an

optimum solution, which then drives an inner maximum like-

lihood search in Sec. 4. An outer, iterative scheme is outlined

and proven to converge in Sec. 5. Finally, simulation results

are presented in Sec. 6 and conclusions are drawn in Sec. 7.

2. PARAHERMITIAN MATRIX EVD

For the PhEVD in (3) with eigenvalues in the diagonal para-

hermitian Λ(z) and the eigenvectors as the columns of U(z),
we can state:

Theorem 1 (Existence and uniqueness.) Let R(z) : C →
C

M×M be a parahermitian matrix that is analytic in z in

at least an annulus containing the unit circle, that cannot
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Fig. 1. (a) spectrally majorised and (b) analytic eigenvalues

of a matrix R(z), evaluated on the unit circle, z = ejΩ.

be related to a block-circulant matrix by a suitable parau-

nitary similarity transform. Then there exists a PhEVD ac-

cording to (3) with unique analytic eigenvalues and analytic

eigenspaces, within which analytic eigenvectors can be deter-

mined up to an arbitrary phase response.

Proof. See [18, 19]. �

The factors Λ(z) and U(z) are generally transcendental.

Using a Laurent polynomial approximation of order N for the

factors Q̂(N)(z) and Λ̂(N)(z) we can state:

Theorem 2 (Polynomial approximation.) The best N th-

order approximation Λ̂(N)(z) of an analytic Λ(z) in the least

squares sense is obtained by truncating Λ(z) to the required

order.

Proof. We consider one eigenvalue λ(z) in Λ(z). Because of

its analyticity, we can write

λ(z) =

∞
∑

n=−∞

cnz
−n , (4)

with coefficients cn ∈ C. For its approximation λ̂(N)(z), we

use the Laurent polynomial of even order N

λ̂(N)(z) =

N/2
∑

n=−N/2

ĉnz
−n . (5)

For the least squares approximation error, the evaluation on

the unit circle, z = ejΩ, yields

ξ =
1

2π

π
∫

−π

|λ(ejΩ)− λ̂(N)(ejΩ)|2dΩ

=

N/2
∑

n=−N/2

|cn − ĉn|
2 + 2

∞
∑

n=N/2+1

|cn|
2 , (6)

where we have exploited 1
2π

∫ π

−π
ejΩndΩ = δ(n), ∀n ∈ Z,

and the parahermitian property of λ(z), s.t. c−n = c∗n. Hence,

min ξ ←→ ĉn = cn ∀ |n| ≤
N

2
, (7)
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Fig. 2. Eigenvalues λm(ejΩℓ), ℓ = 0 . . . (L − 1) over L = 8
DFT bins; algebraic multiplicities are indicated in brackets.

i.e. λ̂(N)(z) is indeed a truncation of λ(z). �

3. DISCRETE APPROXIMATION ON THE UNIT

CIRCLE

3.1. Evaluation on the Unit Circle

We evaluate R(z) on the unit circle, z = ejΩ, for a number of

discrete, equispaced frequency bins Ωℓ =
2π
L ℓ, ℓ = 0 . . . (L−

1), i.e. the set of matrices Rℓ = R(ejΩℓ) is obtained by an L-

point DFT from R[τ ]. In every bin, an EVD

Rℓ = QℓΛℓQ
H
ℓ (8)

is calculated. Since in the DFT domain we have lost coher-

ence between frequency bins, the question that now arises is

how to associate eigenvalues across successive bins, i.e. from

Λℓ−1 to Λℓ, ℓ = 1 . . . (L− 1).
Example. For the example of R(z) in Fig. 1, an 8-point

DFT followed by a bin-wise EVD yields the eigenvalues

λm,ℓ, m = 1, 2, 3, ℓ = 0 . . . 7 displayed in Fig. 2.

The challenge therefore is to assign the set of discrete

eigenvalues {λm,ℓ,m = 1 . . .M, ℓ = 0 . . . (L−1)} such that

the M extracted associations λm ∈ C
L are samples of the de-

sired analytic (and therefore by implication unique) solution.

In [20], the association is driven by the eigenvectors, which,

if permuted, will display a discontinuity that can be easily de-

tected. However, since in and near J-fold algebraic multiplic-

ities the eigenvectors are ill-defined within a J-dimensional

subspace [21], we here choose to rely entirely on the eigen-

values.

3.2. Smoothness Metric

Since analytic functions are infinitely differentiable, we aim

to measure the power in the derivatives of the continuous

λm(ejΩ) represented by their discrete samples in λm, m =
1 . . .M . Analogous to [22–24], the power in the pth deriva-

tive of all λm(ejΩ), m = 1 . . .M can be determined as

χp =
∑

m

λH
mCpλm , (9)

where Cp = TDTH, with T the L-point DFT matrix and

D = diag
{

. . . , 22p, 12p, 02p, 12p, 22p, . . .
}

.



3.3. Optimum Solution

Based on L frequency bins, the smoothest association across

these bins therefore will satisfy

min

M
∑

m=1

λH
mCλm , (10)

where C is a smoothness matrix which measures a particu-

lar derivative power (i.e. C = Cp), or the cumulative power

across derivatives via C =
∑P

p=1 Cp up to the P th deriva-

tive. To check all combinations across M channels and L
DFT bins requires the evaluation of (M !)L−1 possibilities,

which is unrealistic for even moderate values of M and L.

4. MAXIMUM LIKELIHOOD ESTIMATION FOR

SMOOTHEST DISCRETE APPROXIMATION

In order to create a tractable problem, the global search for

the minimisation of (10) is replaced by an iterative, bin-

wise, Viterbi-type maximum likelihood sequence estima-

tion approach. The coefficient vectors are grown iteratively:

at the ℓth iteration, a new element λµ,ℓ is attached such

that λ
(ℓ)
m,i ∈ R

ℓ+1. The process initialises with 1-d vectors

λ
(0)
m,i = λm,0. The subscript i is a path index, and in total I

paths are retained at every iteration.

The smoothness of a function associated with a particular

path that has the coefficient association in λ
(ℓ)
m,i at the ℓ iter-

ation, cannot be done via (10) since λ
(ℓ)
m,i only has (ℓ + 1)

coefficients. However the vector can be extended to dimen-

sion L by free variables, such that a resulting λm(ejΩ) would

be maximally smooth. This can be achieved by partitioning

C such that

C =

[

C1 C2

CH
2 C4

]

, (11)

with C1 ∈ R
(ℓ+1)×(ℓ+1) and all other matrix dimensions ac-

cordingly. Formulating the Schur complement

Cr = C1 −C2C
−1
4 CH

2 , (12)

the smoothness of the ith path up to bin ℓ can be calculated as

χi =
∑

m

λ
(ℓ),H
m,i Crλ

(ℓ)
m,i . (13)

Since C is rank deficient by construction, the inversion in

(12) generally requires regularisation. At the end of the ℓth
iteration, the I paths with the smallest metric χi in (13) are

retained. If any of the remaining paths has a value χi that ex-

ceeds that of the spectrally majorised solution, it can also be

pruned.

Once this algorithm has reached the last bin ℓ = (L− 1),
the path with the lowest metric (and therefore highest smooth-

ness of the associated function) is retained. In that case, let

the surviving coefficients be recorded in vectors λ(L)
m , m =

1 . . .M .

5. ITERATIVE ORDER INCREASE AND

CONVERGENCE

In an outer optimisation loop, we exploit analyticity of the ex-

tracted eigenvalues to drive the estimation of a suitable DFT

order. We start by setting L0 = 2⌈log2
(N+1)⌉ as the initial

DFT length, with N the order of R(z) and ⌈·⌉ the ceiling

operator, and evaluate (8) to obtain λ(L0)
m , m = 1 . . .M .

At the kth iteration, the DFT length is doubled to Lk =
2kL0, and the maximum likelihood sequence approach of

Sec. 4 returns λ(Lk)
m , m = 1 . . .M . Note that in going from

the (k − 1)st to the kth iteration, the EVDs in half of the

bins have already been calculated. According to Theorem

2, in the time domain, the N coefficients of a least squares

approximation should match the first N coefficients of the

analytic solution. However in the DFT domain, the multipli-

cation on the r.h.s. of (8) corresponds to a cyclic convolution

in the time domain [25], resulting in wrap-around. This also

impacts on the assignment of the bins values λ(Lk)
m . As

a coarse criterion on whether the DFT is sufficiently long,

we can therefore compare the assignment of bins between

subsequent iterations. The metric

E1 =
∑

m

‖λ(Lk−1)
m −Aλ(Lk)

m ‖2 , (14)

uses A = ILk−1
⊗ [1 0] ∈ Z

Lk−1×Lk , with ⊗ denoting

the Kronecker product, to perform a decimation by two. The

quantity E1 in (14) will be zero if the bin assigments are iden-

tical or permutations only affect eigenvalues at an algebraic

multiplicity, or a small value if very closely spaced eigen-

values are permuted. If E1 exceeds a threshold, then wrap-

around is deemed severe enough to merit a (k+1)st iteration.

Once E1 falls below a desired threshold, the accuracy of

the approximation is assessed in further detail by consider-

ing the time domain coefficients. As the DFT order increases,

the wrap-around error diminishes, and the difference between

the time domain cofficients at iterations k and (k − 1) should

become smaller. Based on TLk
being an Lk-point DFT ma-

trix, a measure for the approximation error in the time domain

therefore is

E2 =
∑

m

∥

∥

∥
TH

Lk−1
λ(Lk−1)
m

−

[

ILk−1/2 0Lk−1/20Lk−10Lk−1/2 ILk−1/2

]

TH
Lk

λ(Lk)
m

∥

∥

∥

∥

2

2

. (15)

The iteration continues until E2 falls below a desired thresh-

old E2,max, or until a maximum permissible DFT length

Lk,max is reached.

Conjecture 1 (Convergence.) If (10) is globally minimised,

then the overall algorithm as described above is guaranteed

to converge.
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Fig. 3. Approximated analytic eigenvalues using (a) Tohidian

et al. [20] and (b) the proposed approach.

Justification. Once the DFT length is sufficient to reduce

wrap-around below some level, a stable association of bin val-

ues is achieved. Since there is only one analytic solution for

the eigenvalues, this is where a stable association has to set-

tle. Therefore, the wrap-around is caused by truncated coef-

ficients, the truncation and therefore approximation error will

decrease with the increasing DFT length. Thus, E2 also pro-

vides a measure for the approximation error defined in (6).

6. SIMULATIONS AND RESULTS

We first focus on the example of an individual CSD matrix

R(z), that possesses the ground truth analytic eigenvalues

λ1(z) = −j
1
4z + 1 + j 1

4z
−1

λ2(z) =
1
4z

2 + 1
2 + 1

4z
−2

λ3(z) = −
1
4z +

1
2 −

1
4z

−1

as characterised in Fig. 1(b). While the approach in [20] of-

ten succeeds in extracting analytic eigenvalues if the DFT

length is selected sufficiently long, this is not guaranteed to

occur [26]. The association between bins is driven by the ex-

amination of the eigenvectors, and for the case in Fig. 3(a)

the algebraic multiplicity at Ω = π misleads the selection,

which results in two estimated eigenvalues λ̂′
m(z), m = 2, 3,

that approximate discontinuities at Ω = 2π. In contrast,

the proposed algorithm starts with L0 = 32, terminates with

L2 = 128 and an error E2 ≈ 10−14, and extracts the correct

analytic estimates λ̂m(z), m = 1, 2, 3, as shown in Fig. 3(b).

Secondly, the proposed algorithm is tested on an ensemble

of matrices R(z) : C → C
4×4 of order 30, which are gener-

ated by the randomised source model in [14]. In this case, the

ground truth eigenvalues are known, and are Laurent polyno-

mials of order 14. Over an ensemble of 105 realisations, the

analytic eigenvalues are extracted correctly in all cases, typi-

cally using two or three outer iterations of the algorithm, and

with an error E2 < 10−13.

For a third experiment, an ensemble R(z) = AP(z)A(z)
is based on a matrix A(z) : C→ C

4×4 of order 10, with ele-

50 100 150 200 250 300 350 400

20

30

40

50

Fig. 4. Order comparison of extracted eigenvalues comparing

the new algorithm with SBR2 [12] and SMD [14].

algorithm new SBR2 [12] SMD [14]

order 33.2±4.1 196.3±62.9 159.4±33.3

time /[s] 39.7±1.6 0.2±1.0 3.5±0.4

Table 1. Summary of experiment.

ments drawn from a circularly symmetric uncorrelated Gaus-

sian distribution. In this case, the ground truth eigenvalues

are not known, but are guaranteed to be analytic and most

likely transcendental, i.e. absolutely convergent but infinite

Laurent series. For the decomposition, we compare the pro-

posed (“new”) algorithm with a stopping criterion of either

E2,max = 10−4 or Lk,max = 210 to SBR2 [12] and SMD [14]

with a similarly set precision, for an ensemble of 100 random

realisations of R(z).
The algorithms converge in all cases with the orders of

the extracted eigenvalues compared in Fig. 4. In general, both

SBR2 and SMD require substantially higher order for the ap-

proximation despite internal trimming of the polynomial or-

ders of decomposition factors [12, 27–30], since they encour-

age (SMD) or are guaranteed to yield (SBR2, [17]) spectrally

majorised eigenvalues. Some mean and standard deviation

values of the experiment are summarised in Tab. 1, where it

is evident that the proposed algorithm currently takes signifi-

cantly more time to compute than the efficiently implemented

SBR2 and SMD. However, the strive for analyticity ensures

that the proposed method attains much lower order for its ex-

tracted eigenvalues.

7. CONCLUSIONS

This paper has presented an algorithm for the extraction of

analytic eigenvalues, which is based on the eigenvalues only,

therefore avoiding problems in the only currently existing

DFT-based polynomial matrix EVD algorithm [20]. If an

inner optimisation loop succeeds in associating eigenval-

ues across DFT-bins in a smooth fashion, the outer iteration

of the algorithm is conjectured to converge. The approach

still requires algorithmic improvements, but provides very

promising results in reducing the order of extracted eigenval-

ues compared to state-of-the-art methods of the SBR2 [7, 12]

and SMD [14] algorithm families.
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