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Abstract

This paper studies the wave diffraction problem of two-dimensional moonpools in a two-layer fluid by using

domain decomposition scheme and the method of eigenfunction expansion. Wave exciting forces, free surface

and internal wave elevations are computed and analyzed for both surface wave and internal wave modes. The

present model is validated by comparing a limiting case with a single-layer fluid case. Both piston mode and

sloshing mode resonances have been identified and analyzed. It is observed that, compared with the solutions in

surface wave mode, the wave exciting forces in internal wave mode are much smaller, and show more peaks and

valleys in low-frequency region. As the wave frequency increases, the bandwidth of sloshing mode resonances

decreases. Extensive parametric studies have been performed to examine the effects of moonpool geometry and

density stratification on the resonant wave motion and exciting forces. It is found that, for twin bodies with

deep draft in surface wave mode, the decreasing density ratio has little effects on the sloshing mode resonance

frequencies but can somehow suppress the horizontal wave exciting forces and surface wave elevations around

piston mode resonance region. In addition, the presence of lower-layer fluid can lead to the reduction of piston

mode resonance frequency.

1. Introduction

Moonpool is an opening through the deck of the hull or offshore platform, giving passage to the drilling

pipes, equipments and divers, etc. Two-dimensional moonpool can be adopted to model the gap between two

ships moored in side-by-side arrangement, or the open area between the individual hulls of a multi-hull vessel.

Exposed to incident waves or harmonic ship motions, the fluid inside moonpool domain can oscillate and suffer

large-amplitude resonant motions. Hence, hydrodynamic analyses and optimization of moonpool structure are

essential to the design and operation of ships or offshore structures.

Over the past few decades, moonpool resonance has received considerable attention. Molin (2001) and

McIver (2005) developed a theoretical model based on linearized water wave theory to study the moonpool

resonance. More recently, Molin et al. (2018) made an extension of the theoretical model to estimate the piston
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and sloshing mode resonance frequencies for moonpools in finite depth. The applications have been made for

the cases of three-dimensional circular moonpool, rectangular gap and moonpool. Zhang et al. (2019) developed

a theoretical model to predict the natural frequencies for two-dimensional asymmetric moonpool in finite water

depth.

Yeung and Seah (2007) applied an eigenfunction matching method to analyze the Helmholtz resonance mode

(also called piston mode) and higher-order symmetric sloshing modes of resonances for a moonpool formed by

twin rectangular boxes in finite water depth. Faltinsen et al. (2007) studied the piston-like wave motion inside

a two-dimensional moonpool based on the Galerkin method and compared the numerical solutions with the

experimental data.

Kristiansen and Faltinsen (2008) adopted a vortex-tracking method and found that the flow separation at

the bottom corner of the moonpool caused the discrepancies between the experimental measurements and the

results using potential flow theory. Later, Faltinsen and Timokha (2015) investigated the problem by modifying

the dynamic free surface condition inside moonpool domain through quantifying the pressure discharge to

account for the damping caused by vortex shedding. Fredriksen et al. (2015) compared two numerical hybrid

methods to investigate the resonant piston-mode motion in a moonpool and the rigid-body motions. Considering

that the two bodies are not always symmetric, i.e. two vessels with different dimensions, Jiang et al. (2018)

and Ning et al. (2018) investigated the surface wave elevation inside the moonpool formed by two rectangular

boxes with different geometries.

Most of the previous studies are focused on the moonpool resonances in a single-layer fluid. However,

stratified flow is also common in marine environment due to variation of water temperature and salinity with

respect to the water depth (Osborne et al., 1977; Simmons et al., 2011; Xu et al., 2013). The pycnocline,

separating two well-mixed fluid layers above and below, can be simply modeled by a two-layer fluid with

constant density in each layer.

The behavior of the moonpool resonance in a two-layer fluid could be quite different from the scenario in

a single-layer fluid. Yeung and Nguyen (1999) solved the wave radiation and diffraction problems for floating

bodies in a two-layer fluid based on boundary integral equation method. Zhang and Bandyk (2013) studied

the radiation problem for a symmetric moonpool in a two-layer fluid based on the method of eigenfunction

matching. Later, this method was extended to study interface and surface-piercing twin bodies (Zhang and

Bandyk, 2014). Recently, Zhang and Yeung (2016) studied the three-dimensional wave radiation problem of a

cylindrical moonpool with an entrapped two-layer fluid. In short, there are still few literatures on moonpool

resonance in a two-layer fluid, in particular for the wave diffraction problem.

The present paper aims to study the wave diffraction of a two-dimensional moonpool in a two-layer fluid

with finite depth. A semi-analytical model is developed based on the domain decomposition and the method

of eigenfunction expansion. The wave exciting forces on the twin bodies and wave elevations inside the moon-

pool are computed and analyzed. Both the piston mode and sloshing mode resonance behavior with physical

interpretation are discussed with parametric studies being performed.
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Figure 1: Sketch of the problem and coordinate system. WG denotes the numerical wave gauges placed to measure wave elevations.

The coordinates of the wave gauges are: WG1 (0, 0), WG2 (W −B, 0), WG3 (W +B, 0), WG4 (−W +B, 0), WG5 (−W −B, 0),

WG6 (0,−h1), WG7 (W −B,−h1), WG8 (W +B,−h1), WG9 (−W +B,−h1) and WG10 (−W −B,−h1).

2. Mathematical formulation

Wave diffraction by two rectangular boxes with identical geometry (twin bodies) in a two-layer fluid with

finite depth are studied. The sketch of the problem is illustrated in Fig. 1. The densities of the upper-layer and

lower-layer fluid are ρ1 and ρ2, respectively. The width of each rectangular body is 2B. The distance between

the centers of the twin bodies is 2W . The draft of each floating box is d. The total fluid depth is h, including

the upper-layer depth h1 and the lower-layer depth h2. The fluid is assumed to be incompressible and inviscid.

A fixed Cartesian coordinate system oxz is defined with origin o being located at the center of the moonpool.

The x-axis is along the calm water free surface and the z-axis points upwards. Note that the present model

only considers the case for d < h1, and it is assumed the twin boxes do not penetrate the interfacial surface at

z = −h1.

The diffraction problem is considered in the present study as the incident wave propagates through the

twin bodies. The velocity potential within the two-layer fluid can be written as

Φ(m) = Re
{
φ(m)e−iωt

}
, (1)

where φ(m) are the spatial velocity potentials with m = 1, 2 representing the upper-layer and lower-layer fluid,

respectively; ω is the angular frequency.

The velocity potentials of the incident wave with frequency ω can be written as

φ
(m)
0 (x, z) =

gAp

iω
Z(m)

(
k
(p)
0 , z

)
eik

(p)
0 x, (2)

where g is the gravitational acceleration; Ap is related with the incoming wave amplitude, with p = 1, 2

representing the surface wave mode and the internal wave mode, respectively; Z(m) are the eigenfunctions in

vertical direction; k
(p)
0 denote the wavenumbers corresponding to two incident propagating wave modes.

The values of k
(p)
n are evaluated based on the dispersion relations which can be derived by means of

separation of variables.
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For n = 0:
ω2

g
=

k
(p)
0

2(1 + γt1t2)

{
t1 + t2 + (−1)

p+1 ·
√
(t1 + t2)

2 − 4εt1t2(1 + γt1t2)

}
, (3)

with density ratio γ = ρ1/ρ2, ε = 1− γ, t1 = tanh k
(p)
0 h1, t2 = tanh k

(p)
0 h2. Yeung and Nguyen (1999) derived

the dispersion relation given in Eqn. (3) for outgoing waves.

For n > 0:
ω2

g
=

−k
(p)
n

2(1− γt1t2)

{
t1 + t2 + (−1)

p+1 ·
√
(t1 + t2)

2 − 4εt1t2(1− γt1t2)

}
, (4)

with t1 = tan k
(p)
n h1, t2 = tan k

(p)
n h2. Zhang and Bandyk (2013) gave the dispersion relation given in Eqn. (4)

for evanescent modes.

For either surface incident wave mode or internal incident wave mode, the scattered waves consist of two

modes. The velocity potentials of diffracted waves consist of both the surface wave mode
(
k
(1)
0

)
and the internal

wave mode
(
k
(2)
0

)
. The wavenumbers k

(q)
0 (q = 1, 2), corresponding to the outgoing wave, satisfy the dispersion

relation Eqn. (3), while wavenumbers k
(q)
n (q = 1, 2; n = 1, 2, ...,∞), corresponding to the evanescent modes,

satisfy the dispersion relation Eqn. (4).

The spatial velocity potential should satisfy the Laplace equation(
∂2

∂x2
+

∂2

∂z2

)
φ(m) = 0. (5)

The linearized free surface boundary condition is written as

φ(1)
z −Kφ(1) = 0, at z = 0, (6)

where K = ω2/g.

The boundary conditions at seabed and the bottom of the moonpool are written as

φ(2)
z = 0, at z = −h, (7)

φ(1)
z = 0, at z = −d. (8)

The vertical velocity and linear hydrodynamic pressure at the interfacial surface are continuous

φ
(2)
z = φ

(1)
z , at z = −h1, (9)

γ(φ
(1)
z −Kφ(1)) = φ

(2)
z −Kφ(2), at z = −h1. (10)

There is no horizontal velocity on the body surfaces, so that the body boundary conditions are written as

φ
(1)
x

∣∣∣
x=∓(W+B)

= 0, −d ≤ z ≤ 0, (11)

φ
(1)
x

∣∣∣
x=∓(W−B)

= 0, −d ≤ z ≤ 0. (12)
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2.1. Domain decomposition

The whole fluid domain is divided into five subdomains I (for x ≤ −W −B), II (for −W −B ≤ x ≤ B−W ),

III (for B − W ≤ x ≤ W − B), IV (for W − B ≤ x ≤ W + B), and V (for x ≥ W + B), as illustrated in

Fig. 1. The velocity potentials and the horizontal velocities of two adjacent subdomains should be matched at

the common boundaries, and can be written as follow

I − II :

 φI = φII

∂φI

∂x = ∂φII

∂x

, −h ≤ z ≤ −d, x = −W −B, (13)

II − III :

 φII = φIII

∂φII

∂x = ∂φIII

∂x

, −h ≤ z ≤ −d, x = −W +B, (14)

III − IV :

 φIII = φIV

∂φIII

∂x = ∂φIV

∂x

, −h ≤ z ≤ −d, x = W −B, (15)

IV − V :

 φIV = φV

∂φIV

∂x = ∂φV

∂x

, −h ≤ z ≤ −d, x = W +B. (16)

2.2. Solution in subdomain I

By applying the method of separation of variables, the velocity potentials in subdomain I can be written

as

φ
(m)
I =

Apg

iω

{
CI

1,0Z
(m)
(
k
(1)
0 , z

)
e−ik

(1)
0 (x+W+B) + CI

2,0Z
(m)
(
k
(2)
0 , z

)
e−ik

(2)
0 (x+W+B)

}

+
Apg

iω

{ ∞∑
n=1

CI
1,nZ

(m)
(
k(1)n , z

)
ek

(1)
n (x+W+B) +

∞∑
n=1

CI
2,nZ

(m)
(
k(2)n , z

)
ek

(2)
n (x+W+B)

}

+
gAp

iω
Z(m)

(
k
(p)
0 , z

)
eik

(p)
0 x,

(17)

where m = 1, 2 represent the upper-layer and lower-layer fluid, respectively; p = 1, 2 denote the surface wave

mode and the internal wave mode, respectively; Ap (p = 1, 2) are the known coefficients related with the

incident wave amplitude; CI
q,n (q = 1, 2; n = 0, 1, ...,∞) are the unknown coefficients which will be determined

by matching the velocities and the velocity potentials at the common boundary between subdomains I and

II; k
(p)
n are the eigenvalues defined by the dispersion relations (3) and (4); Z(m) are the eigenfunctions in the

vertical direction computed by Eqns. (18) and (19). It should be noted that the eigenvalues and eigenfunctions

are the same for subdomains I, III and V.

For n = 0:

Z(m)
(
k
(p)
0 , z

)
=



ω2

gk
(p)
0

sinh k
(p)
0 z + cosh k

(p)
0 z

α
(
k
(p)
0

) , m = 1,

ω2 cosh k
(p)
0 (z + h)

gk
(p)
0 sinh k

(p)
0 h2

, m = 2.

(18)

For n ≥ 1:

Z(m)
(
k(p)n , z

)
=



ω2

gk
(p)
n

sin k
(p)
n z + cos k

(p)
n z

α
(
k
(p)
n

) , m = 1,

ω2 cos k
(p)
n (z + h)

gk
(p)
n sin k

(p)
n h2

, m = 2,

(19)
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where the amplitude ratio α
(
k
(p)
n

)
are defined by

α
(
k(p)n

)
=


cosh k

(p)
0 h1

(
1− gk

(p)
0

ω2
tanh k

(p)
0 h1

)
, n = 0,

cos k(p)n h1

(
−1− gk

(p)
n

ω2
tan k(p)n h1

)
, n ≥ 1.

(20)

Since the eigenfunctions Z(m)
(
k
(p)
n , z

)
are orthonormal sets, the following inner product can be defined

for any combination of non-negative integers n and f .⟨
Z(m)

(
k(p)n , z

)
, Z(m)

(
k
(p)
f , z

)⟩
≡ 1

h

∫ 0

−h

w(z)Z(m)
(
k(p)n , z

)
Z(m)

(
k
(p)
f , z

)
dz = δn,fM

(p)
n , (21)

where δn,f is the Kronecker delta and M
(p)
n are defined as

M (p)
n =

1

h

∫ 0

−h

w(z)Z(m)
(
k(p)n , z

)
Z(m)

(
k(p)n , z

)
dz, (22)

with

w(z) =

 γ, −h1 ≤ z ≤ 0,

1, −h ≤ z ≤ −h1.
(23)

The coefficients Ap are given as follows

Ap =


a1α

(
k
(1)
0

)
, p = 1,

a2, p = 2,

(24)

where a1 and a2 are the amplitudes of incident surface wave (p = 1) and incident internal wave (p = 2),

respectively.

It should be noted that the two terms in the first brace in Eqn. (17) represent outgoing waves in surface

and internal wave modes, respectively. The two terms in the second brace in Eqn. (17) denote the evanescent

modes due to diffracted surface and internal waves, respectively. The last term in Eqn. (17) represents the

incident wave.

2.3. Solution in subdomain II

By applying the method of separation of variables, the velocity potentials in subdomain II can be written

as

φ
(m)
II =

g

iω
ZII

(m) (λ0, z)

[
CII

0 +DII
0

x+W

B

]
+

g

iω
Z

(m)
II (λ1, z)

[
CII

1

cos λ1(x+W )

cos λ1B
+DII

1

sin λ1(x+W )

sin λ1B

]
+

g

iω

∞∑
j=2

Z
(m)
II (λj , z)

[
CII

j

cosh λj(x+W )

cosh λjB
+DII

j

sinh λj(x+W )

sinh λjB

]
, (25)

where m = 1, 2 represent the upper-layer and lower-layer fluid, respectively; CII
j and DII

j (j = 0, 1, ...,∞) are

the unknown coefficients which will be determined by matching the velocities and the velocity potentials at the

boundary between subdomains I and II, and at the boundary between subdomains II and III; Z
(m)
II are the

eigenfunctions in the vertical direction computed by Eqns. (26), (27) and (28). It should be noted that the

eigenvalues and eigenfunctions are the same for subdomains II and IV.
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For j = 0:

Z
(m)
II =

 1, m = 1,

γ, m = 2.
(26)

For j = 1:

Z
(m)
II =


cosh λ1(z + d)

sinh λ1(d− h1)
, m = 1,

cosh λ1(z + h)

sinh λ1h2
, m = 2.

(27)

For j ≥ 2:

Z
(m)
II =


cos λj(z + d)

sin λj(d− h1)
, m = 1,

cos λj(z + h)

sin λjh2
, m = 2,

(28)

where the eigenvalues λj are defined as 
λ0 = 0, j = 0,

ω2 = (1−γ)gλ1

γT1+T2
, j = 1,

ω2 =
−(1−γ)gλj

γT1+T2
, j ≥ 2,

(29)

with

T1(λj) =

 coth λj(h1 − d), j = 1,

cot λj(h1 − d), j ≥ 2,

T2(λj) =

 coth λjh2, j = 1,

cot λjh2, j ≥ 2.

(30)

Since the eigenfunctions Z
(m)
II (λj , z) are orthonormal sets, the following inner product can be defined for

any combination of non-negative integers e and j.⟨
Z

(m)
II (λe, z), Z

(m)
II (λj , z)

⟩
≡ 1

h− d

∫ −d

−h

w(z)Z
(m)
II (λe, z)Z

(m)
II (λj , z)dz = δe,jNj , (31)

where Nj is defined as

Nj =
1

h− d

∫ −d

−h

w(z)Z
(m)
II (λj , z)Z

(m)
II (λj , z)dz. (32)

2.4. Solution in subdomain III

By applying the method of separation of variables, the velocity potentials in subdomain III can be written

as

φ
(m)
III =

gAp

iω
Z(m)

(
k
(1)
0 , z

)[
CIII

1,0

cos k
(1)
0 x

cos k
(1)
0 (W −B)

+DIII
1,0

sin k
(1)
0 x

sin k
(1)
0 (W −B)

]

+
∞∑

n=1

gAp

iω
Z(m)

(
k(1)n , z

)[
CIII

1,n

cosh k
(1)
n x

cosh k
(1)
n (W −B)

+DIII
1,n

sinh k
(1)
n x

sinh k
(1)
n (W −B)

]

+
gAp

iω
Z(m)

(
k
(2)
0 , z

)[
CIII

2,0

cos k
(2)
0 x

cos k
(2)
0 (W −B)

+DIII
2,0

sin k
(2)
0 x

sin k
(2)
0 (W −B)

]

+

∞∑
n=1

gAp

iω
Z(m)

(
k(2)n , z

)[
CIII

2,n

cosh k
(2)
n x

cosh k
(2)
n (W −B)

+DIII
2,n

sinh k
(2)
n x

sinh k
(2)
n (W −B)

]
,

(33)
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where CIII
q,n and DIII

q,n (q = 1, 2; n = 0, 1, ...,∞) are the unknown coefficients which will be determined by

matching the horizontal velocities and the velocity potentials at the juncture boundary shared by subdomains

II and III, and at the common boundary between subdomains III and IV; Z(m) are the eigenfunctions in the

vertical direction and can be computed by Eqns. (18) and (19).

2.5. Solution in subdomain IV

By applying the method of separation of variables, the velocity potentials in subdomain IV can be written

as

φ
(m)
IV =

g

iω
Z

(m)
II (λ0, z)

[
CIV

0 +DIV
0

x−W

B

]
+

g

iω
Z

(m)
II (λ1, z)

[
CIV

1

cos λ1(x−W )

cos λ1B
+DIV

1

sin λ1(x−W )

sin λ1B

]
+

g

iω

∞∑
j=2

Z
(m)
II (λj , z)

[
CIV

j

cosh λj(x−W )

cosh λjB
+DIV

j

sinh λj(x−W )

sinh λjB

]
, (34)

where CIV
j and DIV

j (j = 0, 1, ...,∞) are the unknown coefficients which will be determined by matching the

velocities and the velocity potentials at the boundary between subdomains III and IV, and at the boundary

between subdomains IV and V.

2.6. Solution in subdomain V

By applying the method of separation of variables, the velocity potentials in subdomain V can be written

as

φ
(m)
V =

gApC
V
1,0

iω
Z(m)

(
k
(1)
0 , z

)
eik

(1)
0 (x−W−B) +

gApC
V
2,0

iω
Z(m)

(
k
(2)
0 , z

)
eik

(2)
0 (x−W−B)

+

∞∑
n=1

gApC
V
1,n

iω
Z(m)

(
k(1)n , z

)
e−k(1)

n (x−W−B) +

∞∑
n=1

gApC
V
2,n

iω
Z(m)

(
k(2)n , z

)
e−k(2)

n (x−W−B),

(35)

where CV
q,n (q = 1, 2; n = 0, 1, ...,∞) are the unknown coefficients which will be determined by matching the

velocities and the velocity potentials at the boundary between subdomains IV and V.

2.7. Matching of solutions in the subdomains

The expansions of φI and φII can be introduced into the first equation in (13) to fulfill the matching

boundary condition of velocity potentials at x = −W −B. Facilitated by using the orthonormal condition (31),

it results in

CII
j −DII

j =
Ap

Nj

{
es

(p)
0 (W+B)L

(1)
j,0 +

∞∑
n=0

CI
1,nL

(1)
j,n +

∞∑
n=0

CI
2,nL

(2)
j,n

}
, j = 0, 1, ...,∞, (36)

with

s
(p)
0 = −ik

(p)
0 , (37)

L
(q)
j,n =

∫ −d

−h

w(z)Z
(m)
II Z(m)dz. (38)

For n ≥ 1, s
(p)
n = k

(p)
n . It should be noted that s

(q)
n (n ≥ 0) share the same definition as s

(p)
n .
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By substituting φI and φII into the second equation in (13), the horizontal velocities in subdomains I and

II can be matched at x = −W − B. After applying the orthonormal condition (21), it yields, for p = q and

n = 0

s
(q)
0 Ap

(
CI

q,0 − es
(q)
0 (W +B)

)
=

DII
0

B

L
(q)
0,0

M
(q)
0

+

(
CII

1 λ1 tan λ1B +
DII

1 λ1

tan λ1B

)
L
(q)
1,0

M
(q)
0

+
∞∑
j=2

λj

(
−CII

j tanh λjB +
DII

j

tanh λjB

)
L
(q)
j,0

M
(q)
0

,

(39)

for the other conditions

CI
q,nAps

(q)
n =

DII
0

B

L
(q)
0,n

M
(q)
n

+

(
CII

1 λ1 tan λ1B +
DII

1 λ1

tan λ1B

)
L
(q)
1,n

M
(q)
n

+

∞∑
j=2

λj

(
−CII

j tanh λjB +
DII

j

tanh λjB

)
L
(q)
j,n

M
(q)
n

, n = 1, 2, ...,∞.

(40)

The expansions of φII and φIII can be introduced into the first equation in (14) to fulfill the matching

boundary condition of velocity potentials at x = −W +B. By using the orthonormal condition (31), it results

in

CII
j +DII

j =
Ap

Nj

[ ∞∑
n=0

L
(1)
j,n

(
CIII

1,n −DIII
1,n

)
+

∞∑
n=0

L
(2)
j,n

(
CIII

2,n −DIII
2,n

)]
, j = 0, 1, ...,∞. (41)

By substituting φII and φIII into the second equation in (14), the horizontal velocities in subdomains II

and III can be matched at x = −W +B. After applying the orthonormal condition (21), it yields

Aps
(q)
n

[
−CIII

q,n tanh s(q)n (W −B) +
DIII

q,n

tanh s
(q)
n (W −B)

]

=
DII

0

B

L
(q)
0,n

M
(q)
n

−
(
CII

1 λ1 tan λ1B − DII
1 λ1

tan λ1B

)
L
(q)
1,n

M
(q)
n

+
∞∑
j=2

L
(q)
j,n

M
(q)
n

λj

(
CII

j tanh λjB +
DII

j

tanh λjB

)
, n = 0, 1, ...,∞.

(42)

By substituting φIII and φIV into the first equation in (15), the velocity potentials in subdomains III and

IV can be matched at x = W −B. After applying the orthonormal condition for Z
(m)
IV , it yields

CIV
j −DIV

j =
Ap

Nj

[ ∞∑
n=0

L
(1)
j,n

(
CIII

1,n +DIII
1,n

)
+

∞∑
n=0

L
(2)
j,n

(
CIII

2,n +DIII
2,n

)]
, j = 0, 1, ...,∞. (43)

By substituting φIII and φIV into the second equation in (15), the horizontal velocities in subdomains III

and IV can be matched at x = W −B. After applying the orthonormal condition (21), it yields

Aps
(q)
n

(
CIII

q,n tanh s(q)n (W −B) +
DIII

q,n

tanh s
(q)
n (W −B)

)

=
DIV

0

B

L
(q)
0,n

M
(q)
n

+

(
CIV

1 λ1 tan λ1B +
DIV

1 λ1

tan λ1B

)
L
(q)
1,n

M
(q)
n

+
∞∑
j=2

L
(q)
j,n

M
(q)
n

λj

(
−CIV

j tanh λjB +
DIV

j

tanh λjB

)
, n = 0, 1, ...,∞.

(44)
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By substituting φIV and φV into the first equation in (16), the velocity potentials in subdomains IV and

V can be matched at x = W +B. After applying the orthonormal condition for Z
(m)
IV , it gives

CIV
j +DIV

j =
Ap

Nj

[ ∞∑
n=0

CV
1,nL

(1)
j,n +

∞∑
n=0

CV
2,nL

(2)
j,n

]
, j = 0, 1, ...,∞. (45)

By substituting φIV and φV into the second equation in (16), the horizontal velocities in subdomains IV

and V can be matched at x = W +B. After applying the orthonormal condition (21), it yields

−ApC
V
q,ns

(q)
n =

DIV
0

B

L
(q)
0,n

M
(q)
n

+

(
−CIV

1 λ1 tan λ1B +
DIV

1 λ1

tan λ1B

)
L
(q)
1,n

M
(q)
n

+
∞∑
j=2

L
(q)
j,n

M
(q)
n

λj

(
CIV

0 tanh λjB +
DIV

0

tanh λjB

)
, n = 0, 1, ...,∞.

(46)

There are totally eight groups of unknown coefficients, CI
q,n, C

II
j , DII

j , CIII
q,n , DIII

q,n , C
IV
j , DIV

j and CV
q,n,

which can be determined from a solvable set of linear equations (36), (39), (40), (41), (42), (43), (44), (45) and

(46).

2.8. Expressions of wave exciting forces and wave elevations

Wave exciting forces on the twin bodies can be obtained by integrating the linear hydrodynamic pressure

over the wetted surface of the bodies. Based on the Bernoulli equation, the hydrodynamic pressure in the

upper-layer fluid can be evaluated by

p = −ρ1
∂Φ(1)

∂t
= ρ1iωφ

(1). (47)

The total horizontal wave exciting force acting on the bodies can be computed by

Fx =

∫ 0

−d

ρ1iωφ
(1)
I dz

∣∣∣∣
x=−W−B

−
∫ 0

−d

ρ1iωφ
(1)
IIIdz

∣∣∣∣
x=−(W−B)︸ ︷︷ ︸

Fxa

+

∫ 0

−d

ρ1iωφ
(1)
IIIdz

∣∣∣∣
x=W−B

−
∫ 0

−d

ρ1iωφ
(1)
V dz

∣∣∣∣
x=W+B︸ ︷︷ ︸

Fxb

,

(48)

where Fxa and Fxb denote the horizontal wave exciting forces acting on Body a and Body b, respectively.

The total vertical wave exciting force is computed by

Fz =

∫ −(W−B)

−(W+B)

ρ1iωφ
(1)
II dx

∣∣∣∣∣
z=−d︸ ︷︷ ︸

Fza

+

∫ W+B

W−B

ρ1iωφ
(1)
IV dx

∣∣∣∣∣
z=−d︸ ︷︷ ︸

Fzb

, (49)

where Fza and Fzb denote the vertical wave exciting forces acting on Body a and Body b, respectively.

The surface wave elevation can be computed by

ζS
∣∣
z=0

= −1

g

∂Φ(1)

∂t

∣∣∣∣
z=0

=
iω

g
φ(1)

∣∣∣
z=0

. (50)

The internal wave elevation can be evaluated by

ζI
∣∣
z=−h1

= −1

g

∂Φ(2)

∂t − γ ∂Φ(1)

∂t

1− γ

∣∣∣∣∣
z=−h1

=
iω

g

φ(2) − γφ(1)

1− γ

∣∣∣∣
z=−h1

.

(51)
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Figure 2: Convergence tests for total horizontal and vertical wave exciting forces. (a): variation of error with respect to truncation

order TJ ; (b): variation of error with respect to truncation order TN . p = 1, γ = 0.9, h1/h2 = 1, W/B = 3, B/d = 1, d/h1 = 0.5.

3. Results and discussion

The wave exciting forces (Fx, Fz) and wave elevations (ζS , ζI) are computed. |Fx|, |Fz|, |ζS |, |ζI | are the

moduli of the wave forces and elevations.

3.1. Convergence Tests

The infinite series in the eight sets of linear equations, Eqns. (36), (39), (40), (41), (42), (43), (44), (45)

and (46), should be truncated. TN represents the truncation order for k
(p)
n or k

(q)
n . TJ represents the truncation

order for λj . Convergence tests are presented in Fig. 2 for a typical moonpool configuration. In the convergence

tests, one of the truncation orders is varied while the other is fixed. Two wave frequencies are selected for the

convergence check in surface wave mode. KB = 0.25 corresponds to the piston mode resonance frequency and

KB = 0.83 is around the first asymmetric sloshing mode resonance frequency. The relative error ϵ is defined

as |FTN
(FTJ

)− Fmax| /Fmax, where F represents the total horizontal or vertical wave exciting force on the

twin bodies, and Fmax is the corresponding solution with the truncation order TN or TJ = 60. As shown in

the log-log plot, the error decreases with the increasing truncation orders, which confirms excellent truncation

characteristics of the infinite series. For truncation orders TN and TJ being 30, the relative errors are all less

than 0.7% and the accuracy is acceptable. By balancing the accuracy with the computing time, both truncation

orders are set to 30 for the following computations.

3.2. Validations

Validation of the present model is carried out by comparing the obtained wave exciting forces and surface

wave elevation of a limiting case with the results for a single-layer fluid case. The selected parameters for the

limiting case are p = 1, W = 0.275, B = 0.25, d = 0.252, h1 = 0.5, h2=0.05 and γ=0.05, so that it can be

compared with the numerical solutions of Ning et al. (2015a,b) for a single-layer fluid. As shown in Fig. 3, the

piston mode resonance can be identified at Kh = 1.56. As illustrated in Figs. 3(a) to (e), the predicted piston

mode resonance frequency agrees well with that by Ning et al. (2015a,b). The present wave exciting forces and

surface wave elevation in resonance region are a little bit larger, which is due to the fact that the present model
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Figure 3: Comparison of wave exciting forces and surface wave elevations for a moonpool with the solutions by Ning et al. (2015a,b).

p=1, γ=0.05, W=0.275, B=0.25, d=0.252, h1=0.5, h2=0.05. (a): horizontal force on Body a; (b): horizontal force on Body b; (c):

vertical force on Body a; (d): vertical force on Body b; (e): surface wave elevation at the WG1 (x = 0); (f): surface wave elevation

at three different numerical wave wave gauges (WG).

can not capture the vortex shedding at the keel of the twin boxes, while an artificial damping is adopted on

the free surface boundary condition in Ning’s model. In addition, as shown in Figs. 3(a) to (e), the surface

wave elevations, horizontal and vertical wave exciting forces by the two methods agree well with each other in

non-resonance region.

3.3. Wave exciting forces and wave elevations

A typical moonpool with W/B = 3.0 is selected for computations and analyses. The exciting forces and

wave elevations in surface wave mode are illustrated in Fig. 4. Of particular interest in this figure are the

three resonances around KB = 0.24, 0.83 and 1.57. To identify their corresponding resonance modes, the wave

elevations inside the moonpool in the neighborhood of these points are plotted in Fig. 5.

As can be seen in Figs. 5(a) and (b), the surface wave elevation inside the moonpool are relatively flat.

Hence, the resonance aroundKB = 0.24 can be identified as a piston mode resonance. As shown in Figs. 5(c) and

(d), the surface wave elevation is nil at the center of moonpool, while the maxima are reached at x = ±(W −B).

In addition, the wave profile inside the moonpool is in half sinusoidal form so that antisymmetric sloshing mode

can be identified around KB = 0.83. In contrast, for the third higher-order resonance, as shown in Figs. 5(e)

and (f), the surface wave elevation reaches the maxima at both the center of the moonpool and x = ±(W −B).

As shown, the modal shape is approximately in full sinusoidal form so that the resonance around KB = 1.57 is

of symmetric sloshing mode.
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The wavelengths λl for these sloshing mode resonances should meet

l

2
λl = 2(W −B), l = 1, 2, ...,∞. (52)

Based on the dispersion relation (3), an estimation formula of sloshing mode resonance frequencies in surface

wave mode (p = 1) can be derived

KB =
kB

2(1 + γt1t2)

{
t1 + t2 +

√
(t1 + t2)

2 − 4εt1t2(1 + γt1t2)

}
, (53)

where k = 2π/λl, (l = 1, 2, ...,∞), t1 = tanh kh1, t2 = tanh kh2. By using Eqn. (53), the predicted resonance

frequencies for the first two sloshing modes are KB = 0.78 and 1.57, respectively. The sloshing mode resonance

frequencies in high-frequency region can be estimated by using Eqn. (53), though resonance frequency of the

first sloshing mode is a little bit underestimated. The difference for the first sloshing mode resonance can be

attributed to the fact that the wavelengths at low-frequency are much larger than the draft of the twin bodies,

such that the side walls of the twin bodies can not be considered as deep vertical walls. As shown in Fig. 4(a),

the bandwidth of sloshing mode resonances decreases with the increasing wave frequency.

As shown in Fig. 4(a), around the piston mode resonance frequency, the non-dimensional free surface

elevation inside the moonpool and at the weather side of Body a (WG5) is around 1.8, while the free surface

elevation at the leeward side of Body b (WG3) is about 1.0. In Fig. 4(b), both antisymmetric sloshing mode and

symmetric sloshing mode resonances can be observed in internal wave elevation. In addition, distinct from the

surface wave elevation, the internal wave elevation reaches its maximum in low-frequency region, i.e. KB < 0.1.

Interestingly, in low-frequency region, the internal wave elevation can be larger than the surface wave elevation

in surface wave mode.

As shown in Fig. 4(c), the total horizontal force is nonzero around piston mode resonance frequency, and

smaller than the horizontal force components (Fxa and Fxb). As shown in Fig. 4(d), the total vertical force

around piston mode resonance is about the sum of the vertical force components (Fza and Fzb) on the two

bodies. As the wave frequency exceeds the piston mode resonance frequency, the vertical forces exhibit a sharp

drop, and the total vertical force reduces to almost zero.

Fig. 6 shows the wave exciting forces and wave elevations in internal wave mode with γ = 0.9. Different

from the case in surface wave mode, no obvious resonances can be observed. This is because when γ approaches

to 1.0, k
(2)
0 is much larger than k

(1)
0 . Consequently, the wavelength of internal wave is too small, compared to the

moonpool width, to trigger resonances. In addition, the wave exciting forces show more humps in low-frequency

area. As the wave frequency increases, both wave elevations and wave exciting forces attenuate very quickly.

For this moonpool configuration, as KB exceeds 0.2, the surface wave elevation, horizontal forces and vertical

forces diminish, whereas the internal wave elevation approaches to 1.0. This indicates that the incident internal

wave does not have significant impact on the wave exciting forces and wave motions inside moonpool domian

at high frequencies. As illustrated in Fig. 4(b) and Fig. 6(b), the internal wave elevation exhibits a few peaks

and valleys in both wave modes.
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Figure 4: Wave elevations and wave exciting forces in surface wave mode. γ = 0.9, h1/h2 = 1.0, W/B = 3.0, B/h1 = 0.5,

d/h1 = 0.5. (a): surface wave elevation; (b): internal wave elevation; (c): horizontal force; (d): vertical force.
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Figure 5: Modal shapes of piston and sloshing modes in surface wave mode (p = 1). γ = 0.9, h1/h2 = 1.0, W/B = 3.0, B/h1 = 0.5,

d/h1 = 0.5. (a): imaginary component for piston mode; (b): real component for piston mode; (c): imaginary component for

antisymmetric sloshing mode; (d): real component for antisymmetric sloshing mode; (e): imaginary component for symmetric

sloshing mode; (f): real component for symmetric sloshing mode.
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Figure 6: Wave elevations and wave exciting forces in internal wave mode. γ = 0.9, h1/h2 = 1.0, W/B = 3.0, B/h1 = 0.5,

d/h1 = 0.5. (a): surface wave elevation; (b): internal wave elevation; (c): horizontal force; (d): vertical force.

3.4. Parametric studies

3.4.1. Effects of density ratio

To study the effects of the density ratio, the solutions for γ = 0.3, 0.7, 0.9 and 1.0 are analyzed. When

γ = 1.0, the two-layer fluid becomes a single-layer fluid of depth h = h1 + h2. The predictions for γ = 1.0 are

computed by the code for solving the diffraction problem of moonpool in single-layer fluid. The details can be

referred to Yeung and Seah (2007). The draft of twin bodies is set to d/h1 = 0.9, so that the bottoms of the

bodies are close to the interfacial surface and the effects of internal waves on wave motions inside the moonpool

are examined. The wave exciting forces and wave elevations with different density ratios γ in surface wave mode

and internal wave mode are illustrated in Figs. 7 and 8, respectively. As can be seen from the plots, the density

ratio has little effects on the sloshing mode resonance frequencies in both surface and internal wave modes.

As shown in Fig. 7(e), in surface wave mode, as the density ratio decreases gradually from 1.0 to 0.7,

the piston mode resonance frequency increases slightly while the surface wave elevations around this resonance

region decrease a little bit. This means that the decreasing density ratio can somehow suppress the resonant

responses. However, in high-frequency region, the stratification has little effects on the sloshing mode resonance

frequencies.

As shown in Fig. 8, the decrease of density ratio can lead to remarkable increase in the magnitudes of

surface wave elevation and wave exciting forces. The reason is that, as density ratio decreases, the density of

the upper-layer fluid tends to be small so that the energy can be easily transferred from internal wave mode

to surface wave mode (Linton and McIver, 1995). As discussed previously, for γ = 0.9, no obvious sloshing
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Figure 7: Wave exciting forces and wave elevations for moonpools with different γ in surface wave mode. h1/h2 = 1.0, W/B = 3.0,

B/h1 = 0.5, d/h1 = 0.9. (a): horizontal force on Body a; (b): horizontal force on Body b; (c): vertical force on Body a; (d): vertical

force on Body b; (e): surface wave elevation at WG1; (f): internal wave elevation at WG6.

mode resonances can be observed in internal wave mode, and the effects of the internal waves are concentrated

within low-frequency region. However, when the density ratio decreases, the sloshing mode resonances become

evident and the resonant responses are amplified. The comparison of the Figs. 7 and 8 suggests that the

sloshing resonance frequencies in internal wave mode are consistent with those in surface wave mode. As shown

in Fig. 8(f), when wave frequency exceeds a critical value for each γ, the internal wave elevation tends to be

1.0 in internal wave mode. Furthermore, in internal wave mode, the frequency region where the internal wave

elevation can be affected becomes broader as the density ratio decreases.

3.4.2. Effects of depth ratio

To study the effects of the depth ratio, the solutions for h2/h1 = 0, 0.5, 1.0 and 2.0 are analyzed. When

h2/h1 = 0, the two-layer fluid becomes a single-layer fluid of depth h = h1. The predictions for h2/h1 = 0 are

computed by the code for solving the diffraction problem of moonpool in single-layer fluid. The wave exciting

forces and wave elevations for moonpool with respect to depth ratio h2/h1 in surface and internal wave modes

are presented in Figs. 9 and 10, respectively. In these cases, the depth of upper-layer fluid is kept the same.

As shown in Fig. 9(e), the piston mode resonance frequency increases with the rising of depth ratio in

surface wave mode, while there is no obvious variation in sloshing mode resonance frequencies. The reason is

that, based on dispersion relation (3), k
(1)
0 decreases as the depth ratio increases in low-frequency region, though

it is rarely affected in high-frequency region. Since k
(1)
0 is significant for moonpool resonance, the fluid inside

the moonpool with larger depth ratio reaches the natural frequency of moonpool at smaller ω, triggering the

piston resonance. The sloshing mode resonances which occur at relatively higher frequencies are rarely affected.
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Figure 8: Wave exciting forces and wave elevations for moonpools with different γ in internal wave mode. h1/h2 = 1.0, W/B = 3.0,

B/h1 = 0.5, d/h1 = 0.9. (a): horizontal force on Body a; (b): horizontal force on Body b; (c): vertical force on Body a; (d): vertical

force on Body b; (e): surface wave elevation at WG1; (f): internal wave elevation at WG6.

In addition, as shown in Fig. 9(e), around the piston mode resonance region, the depth ratio has little effects on

surface wave amplitude. However, as shown in Fig. 9(f), the resonant internal wave amplitude becomes larger

when the depth ratio increases. This is due to the fact that the amplitude ratio α
(
k
(1)
0

)
increases as the piston

mode resonance frequency ω increases while k
(1)
0 is kept the same (see Eqn. (20)).

Fig. 10 shows that, in general, for internal wave mode, the wave exciting forces and surface wave elevations

increase significantly with increasing h2/h1 at low-frequency region. This is due to the fact that, in low-frequency

region, the incident internal waves have more kinetic energy in deeper fluid depth, so that more energy can

be transferred from internal wave mode to the surface wave mode. Hence, the wave exciting forces and wave

elevations increase as the depth of lower-layer increases.

3.4.3. Effects of moonpool width

The variations of the wave exciting forces and wave elevations with respect to (W − B) are illustrated in

Figs. 11 and 12 for surface and internal wave modes, respectively. Fig. 11 shows that, in surface wave mode,

the moonpool width has significant effects on both piston and sloshing mode resonances. As can be observed in

Figs. 11(a) and (b), around the piston mode resonance frequency, the horizontal wave exciting forces decreases

with the increasing moonpool width. However, as shown in Figs. 11(c) and (d), the maximum vertical forces

on each body remain unchanged. In addition, as shown in the plots of wave exciting forces, the sloshing mode

resonances become more broad-banded as moonpool width increases.

Fig. 11 shows that as the moonpool width increases, both piston and sloshing mode resonance frequencies

are reduced. This can be attributed to the fact that the corresponding wavelength for each sloshing mode
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Figure 9: Wave exciting forces and wave elevations for moonpools with different h2/h1 in surface wave mode. γ = 0.9, W/B = 3.0,

B/h1 = 0.5, d/h1 = 0.5. (a): horizontal force on Body a; (b): horizontal force on Body b; (c): vertical force on Body a; (d): vertical

force on Body b; (e): surface wave elevation at WG1; (f): internal wave elevation at WG6.
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Figure 10: Wave exciting forces and wave elevations for moonpools with different h2/h1 in internal wave mode. γ = 0.9, W/B = 3.0,

B/h1 = 0.5, d/h1 = 0.5. (a): horizontal force on Body a; (b): horizontal force on Body b; (c): vertical force on Body a; (d): vertical

force on Body b; (e): surface wave elevation at WG1; (f): internal wave elevation at WG6.
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Figure 11: Wave exciting forces and wave elevations for moonpools with different (W − B)/d in surface wave mode. γ = 0.9,

h1/h2 = 1.0, B/h1 = 0.5, d/h1 = 0.5. (a): horizontal force on Body a; (b): horizontal force on Body b; (c): vertical force on Body

a; (d): vertical force on Body b; (e): surface wave elevation at WG1; (f): internal wave elevation at WG6.

resonance increases as the moonpool width increases. For piston mode resonance, as moonpool width increases,

the mass of fluid inside moonpool domain increases so that the natural frequency of moonpool decreases. The

variation of moonpool resonance frequencies with respect to moonpool width is consistent with that observed

by Zhang et al. (2019) (Fig. 14 therein) for the case of single-layer fluid. As shown in Figs. 11(e) and (f), the

piston mode resonant motions of surface and internal wave elevations are suppressed significantly as moonpool

width increases.

Fig. 12 suggests that the effects of moonpool width on the magnitudes of the wave exciting forces and

wave elevations are not significant in internal wave mode, but more humps can be observed with the increasing

moonpool width.

3.4.4. Effects of body width

The wave exciting forces and wave elevations for moonpools with different body widths B in surface and

internal wave modes are presented in Figs. 13 and 14, respectively. In these cases, the moonpool width (W −B)

is kept unchanged.

In surface wave mode, as shown in Figs. 13(e) and (f), the piston mode resonance frequency (with Kh1

close to 0.5) increases slightly as the body width decreases, while the sloshing mode resonance frequencies are

rarely affected due to the unchanged moonpool width. This phenomenon is consistent with that observed by

Zhang et al. (2019) (Fig. 16 therein) for the case of single-layer fluid. In addition, as shown in Fig. 13(e), the

wave motion around piston mode resonance region are suppressed as the body width decreases. As illustrated

in Figs. 13(a) and (b), the horizontal wave exciting force decreases in piston mode resonance region as the body

width reduces. As shown in Figs. 13(c) and (d), the vertical wave exciting forces decrease significantly near the
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Figure 12: Wave exciting forces and wave elevations for moonpools with different (W − B)/d in internal wave mode. γ = 0.9,

h1/h2 = 1.0, B/h1 = 0.5, d/h1 = 0.5. (a): horizontal force on Body a; (b): horizontal force on Body b; (c): vertical force on Body

a; (d): vertical force on Body b; (e): surface wave elevation at WG1; (f): internal wave elevation at WG6.

piston and sloshing mode resonance frequencies. One reason is that the wetted area (body width) is reduced.

Another reason may be that, as the piston mode resonance frequency increases, the fluid velocity attenuates

more quickly towards the negative direction of z-axis and the hydrodynamic pressure at the bottom of twin

bodies decreases.

In internal wave mode, as shown in Fig. 14, more peaks and valleys can be observed in wave exciting forces

and wave elevations as the body width increases. Meanwhile their maximum amplitudes in low-frequency region

increase.

3.4.5. Effects of draft

The wave exciting forces and wave elevations for moonpools with different body drafts in surface and

internal wave modes are presented in Figs. 15 and 16, respectively. Figs. 15(a) and (b) show that, in surface

wave mode, around the piston mode resonance region, the horizontal wave exciting forces increase with the rising

of the draft for the sake of larger wetted area. However, as illustrated in Figs. 15(c) and (d), the vertical wave

exciting forces decrease with the increasing draft in piston mode resonance region, because the hydrodynamic

pressure attenuates along the negative direction of z-axis.

As shown in Fig. 15(e), in surface wave mode, both the piston and sloshing mode resonance frequencies

reduce as draft increases. However, when the draft exceeds a critical value, the sloshing mode resonances seems

to keep the same. This phenomenon is consistent with that observed by Zhang et al. (2019) (Fig. 15 therein) for

the case of single-layer fluid. This can be attributed the fact that the fluid trapped in the moonpool increases

and the natural frequency of moonpool is reduced. In addition, as the body draft increases, the fluid can be
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Figure 13: Wave exciting forces and wave elevations for moonpools with different W/B in surface wave mode. γ = 0.9, h1/h2 = 1.0,

(W −B)/d = 2.0, d/h1 = 0.5. (a): horizontal force on Body a; (b): horizontal force on Body b; (c): vertical force on Body a; (d):

vertical force on Body b; (e): surface wave elevation at WG1; (f): internal wave elevation at WG6.
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Figure 14: Wave exciting forces and wave elevations for moonpools with different W/B in internal wave mode. γ = 0.9, h1/h2 = 1.0,

(W −B)/d = 2.0, d/h1 = 0.5. (a): horizontal force on Body a; (b): horizontal force on Body b; (c): vertical force on Body a; (d):

vertical force on Body b; (e): surface wave elevation at WG1; (f): internal wave elevation at WG6.
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Figure 15: Wave exciting forces and wave elevations for moonpools with different d/h1 in surface wave mode. γ = 0.9, h1/h2 = 1.0,

W/B = 3.0, B/h1 = 0.5. (a): horizontal force on Body a; (b): horizontal force on Body b; (c): vertical force on Body a; (d):

vertical force on Body b; (e): surface wave elevation at WG1; (f): internal wave elevation at WG6.

easily trapped inside the moonpool domain. Therefore, as observed in Figs. 15(e) and (f), the wave motions

around piston mode resonance region are intensified with the increasing d/h1. Moreover, both piston and

sloshing mode resonance regions become more narrow-banded as the draft increases.

In internal wave mode, as presented in Fig. 16, both the wave exciting forces and free surface wave elevations

are amplified as draft increases. Fig. 16(f) shows that, as the draft increases and the bottoms of the twin bodies

approach the interfacial surface, the frequency region where the internal wave elevation can be affected becomes

larger.

4. Conclusions

In this paper, the wave diffraction problems of two-dimensional moonpools in a two-layer fluid with finite

depth have been studied using the method of eigenfunction expansion and domain decomposition. The present

model is validated by comparing a limiting case with the single-layer fluid case. Parametric studies are performed

to investigate the effects of density ratio, depth ratio, moonpool width, body width and draft. Through extensive

computations and analyses, it is found that

1) Wave exciting forces in internal wave mode are much smaller than those in surface wave mode. In

addition, in internal wave mode, the wave exciting forces and wave elevations show more peaks and valleys.

The effects of internal waves are concentrated within low-frequency region. For twin bodies with deep draft in

surface wave mode, the presence of stratification can suppress the horizontal wave exciting forces and surface

wave elevations around piston mode resonance region.

2) As the wave frequency increases, the bandwidth of sloshing mode resonance decreases. The sloshing

22



0 0.1 0.2 0.3 0.4
KB

0

0.05

0.1

0.15

|F
x
a
|

ρ
1
g
h
1
a
2

(a)

0 0.1 0.2 0.3 0.4
KB

0

0.05

0.1

|F
x
b
|

ρ
1
g
h
1
a
2

(b)

0 0.1 0.2 0.3 0.4
KB

0

0.05

0.1

|F
z
a
|

ρ
1
g
h
1
a
2

(c)

0 0.1 0.2 0.3 0.4
KB

0

0.05

0.1
|F

z
b
|

ρ
1
g
h
1
a
2

(d)

0 0.1 0.2 0.3 0.4
KB

0

0.05

0.1

0.15

|ζ
S
|

a
2

(e)

d/h1 = 0.125

d/h1 = 0.25

d/h1 = 0.5

d/h1 = 0.75

0 0.1 0.2 0.3 0.4
KB

0.5

1

1.5

|ζ
I
|

a
2

(f)

Figure 16: Wave exciting forces and wave elevations for moonpools with different d/h1 in internal wave mode. γ = 0.9, h1/h2 = 1.0,

W/B = 3.0, B/h1 = 0.5. (a): horizontal force on Body a; (b): horizontal force on Body b; (c): vertical force on Body a; (d):

vertical force on Body b; (e): surface wave elevation at WG1; (f): internal wave elevation at WG6.

mode resonance frequencies can be estimated by an approximation formula, in particular in high-frequency

region.

3) In internal wave mode, as density ratio increases, the sloshing mode resonances become negligible and

the frequency region where the internal wave elevation can be affected becomes narrower.

4) In surface wave mode, larger moonpool width, smaller body width or draft induces less horizontal wave

exciting forces and surface wave elevation in piston mode resonance region. Smaller body width leads to less

vertical wave exciting forces. In internal wave mode, as density ratio increases or depth ratio, body width

or draft decreases, the maxima of wave exciting forces and wave elevations at the center of moonpool can be

reduced.

5) The piston resonance frequency reduces as depth ratio decreases, but increases as moonpool width, body

width or draft decreases. In addition, the sloshing mode resonance frequencies increase as moonpool width or

draft decreases, while density stratification and body width have little impact on sloshing mode resonances.
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Appendix A

Expressions for Nj :

Nj =



γ2h2 + γ(h1 − d)

h− d
, for j = 0

h2 + sinh(2λjh2)/2λj

2(h− d)sinh2λjh2

+ γ
h1 − d− sinh (2λj(d− h1)) /2λj

2(h− d)sinh2λj(d− h1)
, for j = 1

h2 + sin(2λjh2)/2λj

2(h− d)sin2λjh2

+ γ
h1 − d− sin(2λj(d− h1))/2λj

2(h− d)sin2λj(d− h1)
, for j ≥ 2

(A.1)

Expressions for M
(q)
n :

M (q)
n =



ω4

2h
(
gk

(n)
0

)2 1(
sinh k

(q)
0 h2

)2
[
h2 +

sinh 2k
(n)
0 h2
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For j = 1, n = 0:
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For j = 1, n ≥ 1:
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For j ≥ 2, n = 0:
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