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Abstract

In this paper, we describe novel techniques for automatic classification of the dominant scattering

mechanisms associated with the pixels of polarimetric SAR images. Specifically, we investigate two

operating scenarios. In the first scenario, it is assumed that the polarimetric image pixels locally share

the same covariance (homogeneous environment), whereas the second scenario considers polarimetric

pixels with different power levels and the same covariance structure (heterogeneous environment). In the

second case, we invoke the Principle of Invariance to get rid of the dependence on the power levels. For

both scenarios, we formulate the classification problem in terms of multiple hypothesis tests which is

addressed by applying the model order selection rules. The performance analysis is conducted on both

simulated and measured data and demonstrates the effectiveness of the proposed approach.
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I. INTRODUCTION

The use of Polarimetry in the context of Synthetic Aperture Radars (SARs) is gaining more and

more interest from the scientific community as well as from companies developing commercial products

using techniques exploiting this sensing mode. The main benefit of the use of polarimetry resides in

the provision of additional information about the scattering properties of the illuminated scene or target,

allowing for significant performance improvements in both civilian and military applications [1]–[5].

The exploitation of SAR polarimetry is of particular relevance in Remote Sensing. In this context,

extended area monitoring and target areas classification receive the widest attention by researchers. A non-

exhaustive list of applications of polarimetric SAR in remote sensing includes biomass estimation, rice

paddy monitoring, snow and ice analysis, oil spill detection and land-use classification. In [6] data from

both SIR-C and X-SAR sensors were used to estimate biomass characteristics with relatively small error.

The capability of polarimetric SAR data to provide information about rice phenology was demonstrated in

[7], where data from TerraSAR-X were used to assess test rice paddy in Spain. The problem of assessing

snow wetness was addressed in [8], in which the authors proposed a polarimetric model to obtain the

relationship between snow wetness and the polarization and demonstrated it through SIR-C/X-SAR data.

In [3], the problem of oil spill detection was addressed through the use of polarimetric covariance

symmetries, while in [9] a similar framework was used to define a novel polarimetric classification

method to support land-use analysis. In the classification context, the information extracted from the

polarimetric channels is typically used to characterize different zones of the acquired scene in an automatic

or semi-automatic way [9]–[13]. A common approach relies on the manipulation and decomposition of

the so-called Polarimetric Covariance Matrix (PCM) computed from the vectorized form of the Sinclair

matrix [10, pag. 63]. It contains hidden information to discriminate different [14]:

• areas in the SAR image, e.g., land vs sea, bare vs cultivated fields, buildings vs trees;

• categories of the same typology, e.g., small stem crops vs broad leaves crops;

• scattering mechanisms, e.g., dipole vs diplane vs trihedral, and so on.

Generally speaking, existing strategies for scene classification from SAR images can be grouped into two

main categories, namely unsupervised and supervised algorithms, and have been extensively investigated

[9], [15]–[24]. The former consists of clustering image pixels by means of common characteristics/features

and occurs in an automatic way without any kind of aid from the user. On the other hand, the latter

exploits training pixels, which are a-priori selected by the user to define the features identifying a specific

class. Now, image classification can be accomplished by means of PCM decomposition. In fact, several
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strategies have been proposed in scientific literature [10], [14], [25]. For example, in [12], a robust

framework for polarimetric SAR covariance symmetries classification was derived and applied to L-Band

data (Figure 1).

1 200 400 600 800 1000

range (pixels)

1

200

400

600

800

1000

1200

1400

1600

1750

a
z
im

u
th

 (
p
ix

e
ls

)

1

2

3

4

Fig. 1. L-Band polarimetric SAR data classified using the robust approach presented in [12].

The same principle has also been extended to the Polarimetric Interferometric SAR (PolInSAR) scenario

in [13], where the additional elevation information has been exploited to map the symmetries in 3D as

shown in Figure 2.

In addition, in [9] the polarimetric covariance symmetries after being classified are used to extend the

H/α Polarimetric Classification in the Symmetric H/α Polarimetric Classification method, as illustrated

in Figure 3.

Among the different PCM decomposition approaches, the eigendecomposition allows gathering infor-

mation about the scene reflectivity at different polarizations. Note that the PCM can be written as the

non-coherent sum of three rank-one matrices associated with each eigenvector whose intensity is ruled by

the corresponding eigenvalue (namely, each of them is characterized by a single scattering contribution)

[10], [14]. Now, if only one eigenvalue is non-zero, then the covariance is related to a single scattering
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Fig. 2. PolInSAR covariance symmetries classification of BioSAR II L-Band data [13].

mechanism (this is the case of a pure target). On the contrary, if all eigenvalues are non-zero and share

the same value, then the target corresponds to a non-polarized random scattering structure. Finally, other

cases are possible and represent the situations where partially polarized scatterers are present and the

resulting PCM exhibits non-zero and non-equal eigenvalues, i.e., two dominant eigenvalues or three
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Fig. 3. Results from [9] on L-Band AirSAR data with the H/α classification (left) and the symmetric H/α classification

(right) methods.

different eigenvalues. More details and insights can be found in [10], [14]. In [26], a recent work from

some co-authors of the present paper, the problem of estimating the number of dominant covariance

eigenvalues in polarimetric SAR images was investigated, focusing only on the heterogeneous scenario

wherein the polarimetric image pixels share the same covariance but different power levels. In this paper,

a more general framework is presented and assessed on different datasets. Specifically, given the pixel

under test, the number of dominant eigenvalues for the pixel under test is classified exploiting the pixels

in its neighborhood (i.e., looks) assuming that the same polarimetric covariance matrix is shared among

the pixels (homogeneous environment) or, due to reflectivity variations of the scene, the covariance matrix

exhibits different scaling factors from pixel to pixel (heterogeneous environment). These scaling factors

are representative of the power levels raising from different backscattering strength [12]. In the latter

case, original data are replaced by a Maximal Invariant Statistic (MIS) to remove the dependence on

the nuisance parameters. Moreover, the statistical characterization of the MIS is provided along with

suitable estimates of the unknown parameters. For both homogeneous and heterogeneous environment,

the classification problem is, then, formulated as a multiple hypotheses test with nested hypotheses [27].

It is important to observe that in the presence of nested hypotheses, the classical Maximum Likelihood

Approach (MLA) might return erroneous classifications. For this reason, the Model Order Selection

(MOS) rules are used to synthesize classification architectures. Finally, the illustrative examples, built up

using both simulated and measured RADARSAT-2 SAR data, show the effectiveness and usefulness of

the proposed algorithms.

The remainder of this paper is organized as follows: Section II provides some preliminary definitions,
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while Section III is devoted to problem formulation, covariance estimation under each hypothesis, and

the design of the MOS rules. In Section IV, the behavior of the proposed algorithms is assessed adopting

the probability of correct classification as the performance metric. Finally, Section V draws conclusions

and traces future researches.

A. Notation

The adopted notation uses boldface for vectors a (lower case) and matrices A (upper case). CN×M is

the set of complex matrices of size N×M (or vectors if M = 1). A diagonal matrix whose nonzero entries

are the components of a vector a is denoted by Diag (a). The transpose and the conjugate transpose are

denoted by (·)T and (·)†, respectively. tr {·} and det(·) are the trace and the determinant of the square

matrix argument, respectively. I denotes the identity matrix, whose size is determined from the context,

and ‖ · ‖ denotes the Euclidean vector norm.

II. PARAMETERS DEFINITION AND DATACUBE CONSTRUCTION

A multi-polarization SAR sensor, for each pixel of the image under test, measures N = 3 complex

returns for each range-azimuth resolution cell, which are collected from three different polarimetric

channels (namely HH, HV, and VV). The N returns associated with the same pixel are organized in the

specific order HH, HV, and VV to form the 3-dimensional vector xl,m ∈ C3×1, l = 1, . . . , L and m =

1, . . . ,M (L and M are the vertical and horizontal size of the image, respectively). Therefore, the sensor

provides a 3-D data stack X0 of size M ×L×N which is referred to in the following as datacube (see

Fig. 4). Starting from the datacube of the illuminated scene, for the generic pixel under test, a rectangular

neighbourhood A of size K = W1 ×W2 ≥ N is extracted. Finally, let X = [x1, . . . ,xK ] ∈ C3×K be a

matrix whose columns are the vectors of A.

III. PROBLEM FORMULATION AND CLASSIFICATION STRATEGIES

The polarimetric returns x1, . . . ,xK are modeled as zero-mean circularly symmetric complex Gaussian

vectors whose covariance matrix is σ2

kC, k = 1, . . . ,K [12]. Thus, the probability density function (pdf)

of xk can be written as

f(xk;σ
2

k,C) =
1

(πσ2

k)
3 det(C)

exp
{
−σ−2

k tr
[
C−1xkx

†
k

]}
. (1)

Observe that the above expression encompasses the homogeneous environment (when σ2
1
= . . . = σ2

K =

σ2) and the heterogeneous environment (when σ2

i 6= σ2

k, ∀i 6= k). In what follows, for the sake of

simplicity and without loss of generality, we assume that σ2 = 1.
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Fig. 4. Datacube for polarimetric images.

Before proceeding with the derivations, let C = UΛU † be the eigendecomposition of C, where

Λ = Diag ([λ1 λ2 λ3]
T ) is the diagonal matrix containing its eigenvalues arranged in decreasing order

(λ1 ≥ λ2 ≥ λ3), and U ∈ C3×3 is a unitary matrix containing the corresponding eigenvectors. Now, the

problem of eigenvalue pattern classification can be expressed as the following multiple hypotheses test:





H1 : λ1 = λ2 = λ3 = λ,

H2 : λ1 ≥ λ2 = λ3,

H3 : λ1 = λ2 ≥ λ3,

H4 : λ1 ≥ λ2 ≥ λ3.

(2)

Note that a “dominant” scattering behavior is associated with each image pixel on the basis of the

specific pattern of the covariance eigenvalues. Moreover, the covariance is estimated resorting to the

pixels belonging to A.

Problem (2) contains nested hypotheses and, hence, the MLA might fail since the likelihood function

monotonically increases with the number of unknown parameters. As a result, MLA would return always

H4, that is the hypothesis with the maximum uncertainty [28]. For this reason, the so-called MOS

rules [29], which moderate the overfitting inclination of the compressed likelihood in the case of nested

hypotheses, are involved in the design of classification architectures. Most of the MOS rules consist

of a fitting term plus a penalty term (a point better explained in the next section). The former is a

function of the compressed likelihood function, where the unknown parameters are replaced by their

Maximum Likelihood Estimates (MLEs). Thus, it is required to provide the MLE expression of C under

the considered hypotheses.
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The herein considered MOS rules are the Akaike Information Criterion (AIC), the Generalized Infor-

mation Criterion (GIC), and1 the Bayesian Information Criterion (BIC) [29]. The generic structure of the

MOS rules exhibits the following form

Hî = argmin
Hi

i=1,...,4

{
−2L

(
Ĉi;X

)
+ pi

}
, (3)

where pi = kp(i)η is the penalty term, with kp(i) the number of unknown parameters under the Hi

hypothesis, and Ĉi is the MLE of C under Hi. The factor η takes on the following values

η =





2, AIC,

1 + ρ, ρ ≥ 1, GIC,

logK, BIC.

(4)

A. Homogeneous Environment

As stated before, under the homogeneity assumption, the pixel belonging to the neighbourhood of that

under test share exactly the same covariance matrix. As a consequence, the resulting log-likelihood can

be written as

L(C;X) = −3K log π −K log det(C)− tr [C−1S], (5)

where S = XX†. Now, observe that classifier (3) exploits the compressed log-likelihood where C

is replaced by its MLE. To this end, in the proposition below the expressions of these estimates are

computed.

Proposition 3.1: The estimates of C under the Hi hypothesis, Ĉi say, and the resulting compressed

log-likelihoods can be computed as follows.

1) Under H1: it is not difficult to show that log-likelihood can be recast as

L(C;X) = c− 3K log λ− 1

λ
tr [S] = L(λ;X), (6)

where c is a constant. Setting to zero the first derivative of L(λ;X) with respect to λ leads to

d

dλ
[L(λ;X)] = −3K

1

λ
− 1

λ2
tr [S] = 0 (7)

1The Embedded Exponential Family (EEF) is another MOS rules useful to solve the nested hypotheses. In this paper, it

has been neglected because this decision criterion requires the computation of the Generalized Likelihood Ratio Test (GLRT)

implying that a suitable H0 hypothesis must be defined.
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namely

λ̂ =
1

3K
tr [S]. (8)

Thus, the compressed log-likelihood is given by

L(Ĉ1;X) = c− 3K log

{
tr [S]

3K

}
− 3K (9)

2) Under H2: let λ23 = λ2 = λ3 and recast the log-likelihood as follows

L(C;X) = c− 3K log(λ1λ
2

23)− tr
{
UDiag ([1/λ1, 1/λ23, 1/λ23])U

†S
}

(10)

= L(U , λ1, λ23,X). (11)

Thus, maximization over C is tantamount to the following problem

max
U

max
λ1,λ23

L(U , λ1, λ23,X). (12)

Now, exploiting Theorem 1 of [30], it can be shown that

argmax
U

L(U , λ1, λ23,X) = USe
jθ, (13)

where θ ∈ [0 2π] and US ∈ C3×3 is the unitary matrix containing the eigenvectors of S. As a

consequence, the partially compressed log-likelihood becomes

c−K log λ1 − 2K log λ23 − tr {Diag ([γ1/λ1, γ2/λ23, γ3/λ23])} = L(λ1, λ23;X). (14)

Finally, the estimates of λ1 and λ23 can be found setting to zero gradient of L(λ1, λ23;X) to

obtain

λ̂1 =
γ1
K

, (15)

λ̂23 =
1

2K

3∑

i=2

γi, (16)

where γi, i = 1, 2, 3, are the eigenvalues of S. Gathering the above results, the compressed log-

likelihood has the following expression

L(Ĉ2;X) = c−K log
{γ1
K

}
− 2K log

{
1

2K

3∑

i=2

γi

}
− 3K. (17)

3) Under H3: this case is analogous to the previous hypothesis with the difference that the first two
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eigenvalues of C are equal. Following the same line of reasoning as the previous case, it is possible

to show that

Û = USe
jθ (18)

λ̂12 =
1

2K

2∑

i=1

γi, (19)

λ̂3 =
γ3
K

, (20)

where λ12 = λ1 = λ2, and the resulting compressed log-likelihood can be recast as

L(Ĉ3;X) = c− 2K log

{
1

2K

2∑

i=1

γi

}
−K log

{γ3
K

}
− 3K. (21)

4) Under H4: following the lead of [31], it can be shown that the compressed log-likelihood is

L(Ĉ4;X) = c−K

3∑

i=1

log
{ γi
K

}
− 3K (22)

and the proposition is complete.

Finally, the number unknown parameters under each hypothesis for the homogeneous environment is

given by

kp(i) =





1, if i = 1,

6, if i = 2,

6, if i = 3,

9, if i = 4.

(23)

and the resulting decision statistics of the MOS rules are

• H1:

−2c+ 6K log

{
tr [S]

3K

}
+ 6K + η; (24)

• H2:

−2c+ 2K log
{γ1
K

}
+ 4K log

{
1

2K

3∑

i=2

γi

}
+ 6K + 6η; (25)

• H3:

−2c+ 4K log

{
1

2K

2∑

i=1

γi

}
+ 2K log

{γ3
K

}
+ 6K + 6η; (26)
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• H4:

−2c+ 2K

3∑

i=1

log
{ γi
K

}
+ 6K + 9η. (27)

The processing steps for the homogeneous environment case are shown in the flow diagram in Figure

5. Starting from the three polarimetric channels a sliding window of K samples is used to extract

the polarimetric returns needed to compute the sample covariance matrix S. A MOS rule (among

AIC/BIC/GIC) is then computed for each hypothesis using (24)-(27) and finally H
ĥ

is selected as:

H
ĥ
= argmax

i=1,...,4

{MOS(i)} .

Fig. 5. Processing steps for the selection of the dominant scattering mechanism in homogeneous environment.

B. Heterogeneous Environment

In this subsection, we assume that the scaling factors, σ2

k > 0, k = 1, . . . ,K, change due to the different

reflectivity strength of each pixel. The dependence on these parameters can be removed exploiting the

Principle of Invariance [32], and as shown in [12], [26] the MIS, in this case, is zk = xk/‖xk‖,

k = 1, . . . ,K. Note that zk, k = 1, . . . ,K, are statistically independent and identically distributed.

Indeed, their joint pdf is given by [33]

f(z1, . . . , zK ;C) =
1

[det (C)]K

K∏

k=1

{
tr
(
C−1Sk

)}−3
, (28)

with Sk = zkz
†
k. In the following, inference on the eigenvalues of C is performed in the invariant

domain.
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Now, in order to obtain the fitting term of the MOS rules, the MLE of C for each hypothesis of (2)

is required. However, when H2 or H3 holds, a closed-form expression for the MLE of C is difficult

to obtain. Nevertheless, the MLA paradigm can be still applied to find an estimate of C that somehow

optimizes the likelihood function of Z = [z1, . . . , zK ], whose expression is

l(C;Z) = f(z1, . . . , zK ;C). (29)

The expressions of the required estimates under each hypothesis of problem (2) for the heterogeneous

environment are provided by Proposition 1 in [26].

Finally, using the expression of L
(
Ĉi;Z

)
in the right-hand side of (3) and that

kp(i) =





0, if i = 1,

5, if i = 2,

5, if i = 3,

8, if i = 4,

(30)

we obtain the following decision statistics for each hypothesis

• H1:

0; (31)

• H2:

2K log(γ̂) + 6

K∑

k=1

log

[
z
†
k

(
I +

(
1

γ̂
− 1

)
û1û

†
1

)
zk

]
+ 5η; (32)

• H3:

2K log
(
ξ̂
)
+ 6

K∑

k=1

log

[
z
†
k

(
I +

(
1

ξ̂
− 1

)
û3û

†
3

)
zk

]
+ 5η; (33)

• H4:

2K log det
(
Ĉ
)
+ 6

K∑

k=1

log
(
z
†
kĈ

−1

zk

)
+ 8η. (34)

where γ̂ = λ̂1/λ̂2 ≥ 1 and ξ̂ = λ̂3/λ̂1 with λ̂i eigenvalues of Ĉ; û1 and û3 are the first and the third

eigenvector of Ĉ respectively [26].

The processing steps for the heterogeneous environment case are shown in the flow diagram in Figure

6. Starting from the three polarimetric channels a sliding window of K samples is used to extract the

polarimetric returns that are then normalised obtaining Z. The normalised observations are then used for
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the recursive estimation of the covariance matrix Ĉ under the four hypotheses. Then, Z and Ĉ are used

to evaluate equations (31)-(34) in order to obtain the MOSs for the four hypotheses and for one of the

criteria (AIC/BIC/GIC). The dominant scattering mechanism is then selected as H
ĥ

namely:

Hî = argmax
i=1,...,4

{MOS(i)} .

It is worth to highlight the difference between the processing steps, for the selection of the dominant

scattering mechanism, in the homogeneous and heterogeneous environments (this could be easily accom-

plished comparing Figures 5 and 6). This comparison permits to observe that the heterogeneous case, due

to the necessary recursive estimation for the covariance matrix Ĉ, requires a greater computational load

with respect to the homogeneous scenario, even though the estimation involves the eigendecomposition

for both cases.

Fig. 6. Processing steps for the selection of the dominant scattering mechanism in heterogeneous environment.

IV. ILLUSTRATIVE EXAMPLES AND DISCUSSION

The aim of this section is twofold. First, the nominal behavior of the proposed classification archi-

tectures is investigated over simulated data adhering the design assumptions. Then, the performance is

studied resorting to measured fully-polarimetric SAR data.

A. Analysis on Simulated Data

In this subsection, the analysis is conducted by means of simulated data and considering the probability

of correct classification, Pcc, as the performance metric. To this end, standard Monte Carlo counting
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techniques are exploited to estimate the Pcc over 104 independent trials. The nominal covariance matrices

associated with the considered four hypotheses are:

• C1 = Diag ([10 10 10]T ),

• C2 = Diag ([100 1 1]T ),

• C3 = Diag ([100 1 100]T ),

• C4 = Diag ([1000 100 10]T ).

1) Homogeneous Environment: In the homogeneous case, data are modeled as N -dimensional zero-

mean complex circular Gaussian vectors, with covariance matrix Ci, i = 1, . . . , 4.

In Figure 7 (a) and (b) the classification histograms are reported for K = 10 and K = 100 looks,

respectively. Each subplot refers to a specific hypothesis and the classification performance of the AIC,

BIC, and GIC with ρ = 3 are presented2. Comparing the two subplots for K = 10 and K = 100,

it is evident that the performance improves due to a higher number of looks in the evaluation of the

MOS rules. In fact, a high number of looks leads to better estimates of the polarimetric covariances. The

histograms also highlight that both BIC and GIC exhibit excellent classification capabilities overcoming

the AIC which tends to saturate its performance. Moreover, since BIC does not require any additional

tuning parameter as for GIC, it stands out as an effective means for eigenvalue pattern classification.

To further corroborate the obtained results, the values of Pcc at intermediate looks’ number are shown

in Figure 8 with focus on the BIC-based estimator. Each line in the plot refers to a different hypothesis.

As expected, it is clear that the performances improve as K increases.

Since Pcc is a synthetic figure of merit, in Table I, the number of decisions for each one of the

considered four hypotheses is also provided as a function of K. Inspection of the table makes clear

which hypothesis the algorithm chooses in the case of selection error. For instance, the H4 hypothesis is

never erroneously estimated as H1, but for the lowest value of K, it is erroneously classified as H2 and

H3, 568 and 413 times, respectively, over a total of 104 trials.

2The choice of the GIC parameter comes from the fact that it returns the best performance with respect to the cases where

1 ≤ ρ ≤ 3. Moreover, values of ρ greater than 3 could lead to worse classification performance since the penalty term becomes

more and more dominant with respect to the fitting term.
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Fig. 7. Homogeneous case performance analysis: Pcc (%) of the three MOS rules for a simulated scenario with K = 10 (a) and

K=100 (b) looks and 10
4 Monte Carlo trials. Subfigures from left to right and top to bottom refer to the different eigenvalues

patterns.
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Fig. 8. Homogeneous case performance analysis: Pcc (%) versus the number of looks K for the BIC selector, and 10
4 Monte

Carlo trials.

TABLE I

NUMBER OF DECISIONS FOR EACH HYPOTHESIS IN THE HOMOGENEOUS SIMULATED SCENARIO OF FIGURE 8 VERSUS THE

NUMBER OF LOOKS K FOR THE BIC SELECTOR AND 104
TRIALS.

true estimated
K

5 15 25 35 45 55 65 75 85 95

H1

H
1̂

4806 9310 9763 9881 9941 9962 9981 9980 9985 9986

H
2̂

1292 224 93 45 30 22 9 7 6 1

H
3̂

3754 466 144 74 29 16 10 13 9 13

H
4̂

148 0 0 0 0 0 0 0 0 0

H2

H
1̂

0 0 0 0 0 0 0 0 0 0

H
2̂

6200 9286 9715 9817 9888 9916 9942 9944 9958 9960

H
3̂

2 0 0 0 0 0 0 0 0 0

H
4̂

3798 714 285 183 112 84 58 56 42 40

H3

H
1̂

0 0 0 0 0 0 0 0 0 0

H
2̂

2 0 0 0 0 0 0 0 0 0

H
3̂

7474 9459 9737 9837 9889 9921 9930 9944 9960 9956

H
4̂

2524 541 263 163 111 79 70 56 40 44

H4

H
1̂

0 0 0 0 0 0 0 0 0 0

H
2̂

568 5 0 0 0 0 0 0 0 0

H
3̂

413 2 0 0 0 0 0 0 0 0

H
4̂

9019 9993 10000 10000 10000 10000 10000 10000 10000 10000
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2) Heterogeneous Environment: Data are modeled as N -dimensional (N = 3, in this case) Spherically

Invariant Random Vectors (SIRVs) [34], namely

xk =
√
τkgk, k = 1, . . . ,K, (35)

where gks are statistically independent N -dimensional zero-mean complex circular Gaussian vectors

with covariance matrix Ci, i = 1, . . . , 4. Moreover, τ1, . . . , τK , referred to as textures, are statistically

independent (also of xk) positive real random variables obeying the Gamma distribution with scale and

shape parameters µ and ν > 0, respectively (the considered setting assumes µ = 1/ν to have a Gamma

distribution with unit mean). In what follows, it is assumed ν = 2. Furthermore, the number of iterations

used to estimate the covariance structure is 5, that ensures a satisfactory convergence level as proved in

[12].

Figures 9 (a) and (b) show the classification histograms for K = 10 and K = 100 looks, respectively.

Again, as for the previous case, it turns out that a performance gain is achieved considering a higher

number of looks, and, also that both BIC and GIC performances overcome the AIC, which suffers

performance saturation effects instead.

In the next analysis, the Pcc is plotted versus the number of snapshots. The simulating environment

is the same as in Figure 9, but for different values of the shape parameter, i.e. ν = 0.5, 1, 2, 5, and with

focus on the BIC-based estimator. Again, each subfigure refers to a different hypothesis for the dominant

eigenvalues. From this analysis, it is clear that the classification performance is insensitive to variations

of ν, due to the fact that the architectures for heterogeneous environment work in the invariant domain.

Moreover, better performance can be obtained when K increases, since the covariance estimate becomes

more and more reliable.

As before, in Table II, the number of decisions for each hypothesis against K is also provided for the

scenario of Figure 10. without loss of generality, the results in Table II, refers to the case ν = 2 since

the performance is insensitive to the scale and shape parameters. Again, observing the values reported

in the table, it is evident the behavior of the algorithm also in terms of erroneous classification.
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Fig. 9. Heterogeneous case performance analysis: Pcc (%) of the three MOSs for a simulated scenario with K = 10 (subfigures

a) and K = 100 (subfigures b) looks and 10
4 Monte Carlo trials. Figures from left to right and top to bottom refer to the

different eigenvalues patterns.
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Fig. 10. Heterogeneous case performance analysis: Pcc (%) versus the number of looks K for the BIC selector in a SIRV

environment for different scale parameter values and 10
4 Monte Carlo trials.

TABLE II

NUMBER OF DECISIONS FOR EACH HYPOTHESIS IN THE HETEROGENEOUS SIMULATED SCENARIO OF FIGURE 10 VERSUS

THE NUMBER OF LOOKS K , FOR THE BIC SELECTOR AND 104
TRIALS.

true estimated
K

5 15 25 35 45 55 65 75 85 95

H1

H
1̂

5145 9349 9782 9891 9942 9958 9972 9985 9986 9987

H
2̂

1345 227 94 46 19 19 13 9 8 5

H
3̂

3121 423 124 63 39 23 15 6 6 8

H
4̂

387 1 0 0 0 0 0 0 0 0

H2

H
1̂

0 0 0 0 0 0 0 0 0 0

H
2̂

5592 9059 9576 9734 9813 9853 9902 9924 9923 9937

H
3̂

3 0 0 0 0 0 0 0 0 0

H
4̂

4405 941 424 266 187 147 98 76 77 63

H3

H
1̂

0 0 0 0 0 0 0 0 0 0

H
2̂

16 0 0 0 0 0 0 0 0 0

H
3̂

6721 9268 9629 9766 9820 9865 9892 9919 9933 9932

H
4̂

3263 732 371 234 180 135 108 81 67 68

H4

H
1̂

2 0 0 0 0 0 0 0 0 0

H
2̂

831 21 0 0 0 0 0 0 0 0

H
3̂

825 24 1 0 0 0 0 0 0 0

H
4̂

8342 9955 9999 10000 10000 10000 10000 10000 10000 10000
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B. Analysis on Measured SAR Data

In this subsection, the classification capabilities of the proposed methods are tested over a C-band

(5.405 GHz) polarimetric dataset3, acquired by the multiple polarization modes spaceborne SAR system

on-board the RADARSAT-2, launched in December 2007. Particularly, for the case at hand, the fine

quad-Polarization mode (Fine Quad-Pol) Single Look Complex (SLC) product data, characterized by a

nominal resolution of 5.2 m (range) × 7.7 m (azimuth), have been used [35].

The image, acquired on April 2008, represents a scene of the Vancouver area (western Canada)

containing a mixed urban, vegetation and water scene; the corresponding optical image, drawn from

SNAP - ESA Sentinel Application Platform [36], is shown in Figure 11 (the pixels of the quad-Pol SLC

RADARSAT-2 data are highlighted with a rectangular red box in the image). In Table III, the main

information regarding the SAR acquisition is summarized.

As it is possible to notice from Figure 11, this geographic location represents a valuable test for the

proposed procedure, since it offers varied terrain types ranging from the rugged mountains of the north

of Vancouver, to the flat, agricultural lands of the Fraser River Delta.

Given the satisfying performance of BIC on simulated data, its behavior is investigated here considering

a sliding window of K = 25 pixels and 5 iterations for the covariance structure estimation. In Figure 12,

the classification results and the Entropy Map (EM)4 are shown [10], [25]. Note that the latter ranges

from 0 (only one nonzero eigenvalue) to 1 (three equal nonzero eigenvalues). Figures 12(a) and (b) are

the results achieved using the homogeneous and heterogeneous classification rules, respectively. In both

subfigures, a specific color is associated with each of the possible classification outcomes according to

the following scheme: black for H1, red for H2, blue for H3, yellow for H4.

The comparison between Figures 11 and 12 highlights the effectiveness of the proposed approach.

In fact, the following considerations can help to interpret the achieved results: H1 means that three

scattering mechanisms sharing the same strength are identified; in the case of H2 two dominant scattering

mechanisms with different reflectivity are present; H3 can be interpreted as the action of two dominant

scattering mechanisms sharing the same power; and, for H4 there are no dominant structures that tend

to favor one polarization rather than another.

With this in mind, as expected, the forests are classified as the first three hypotheses and this behavior

3Sample data for RADARSAT-2 products supplied by MacDonald Dettwiler and Associates (MDA) can be found at:

https://mdacorporation.com/geospatial/international/satellites/RADARSAT-2/sample-data

4Note that the EM allows to measure the amount of effective scattering processes embedded in the polarimetric covariance

matrix without providing any additional information about the relationship among the polarimetric eigenvalues.

January 31, 2019 DRAFT



21

can be explained by the fact that, generally speaking, in forest areas, three kinds of scattering mechanisms

take place due to the presence of a mixture of vertical trunks, vertical and horizontal branches, and obliques

structures. Inspection of the EM confirms this result since it returns values greater than 0.5 in those areas.

The urban zones are classified as H3 due to the fact that buildings mainly respond approximately with

the same strength to both horizontal and vertical polarizations. The corresponding values of the EM,

which belong to [0.5, 0.9], corroborate this result. Finally, most of pixels associated with the water and

the cultivated fields are classified as H4 since, in this case, there are no dominant structures that tend to

favor one polarization rather than another. This behavior is in accordance with the values of the EM in

the same area.

TABLE III

METADATA INFORMATION REGARDING THE RADARSAT-2 DATASET

Product ID RS2-SLC-FQ2-DES-15-Apr-2008 14.38-PDS 05116980

Product Type SLC

Acquisition Mode Fine Quad-Pol

Time of orbit 15-APR-2008 14:38:07.763803

Pass Descending

Near incidence angle 19.78838974574827 deg

Far incidence angle 21.826735667462618 deg

Range sample spacing 4.73307896 m

Azimuth sample spacing 4.87164879 m

Pulse Repetition Frequency 2737.718017578125 Hz

Radar Frequency 5404.999242769673 MHz

Fig. 11. Optical image of the observed scene (drawn from SNAP - ESA Sentinel Application Platform [36]). The quad-Pol

SLC RADARSAT-2 image is highlighted with a rectangular red box and the point P1 is geolocated at the coordinates Datum

World Geodetic System (WGS)-84: 49◦13’17.0400”N, 123◦04’16.6800”W.
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Fig. 12. Detected dominant eigenvalues (subplot a and b) within the reference image with the BIC-based selector, K = 25.

Entropy map of the same scene (subplot c).

V. CONCLUSIONS

In this work, we have analyzed the problem of automatic classification of the dominant scattering

mechanisms associated with the pixels of polarimetric SAR images. At the design stage, we have assumed

that the polarimetric image pixels locally share the same covariance except for possible scaling factors

(homogeneous and heterogeneous environment). Then, the MOS rules have been applied to the original

data in the case of homogeneous environment, whereas the invariant domain has been exploited in the

heterogeneous case to get rid of the power variations. The performance analysis, conducted on both

simulated and measured data, have highlighted the effectiveness of the proposed classification rules.

Particularly, results on Monte Carlo simulations highlighted that BIC and GIC-based estimators can
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achieve better performance with respect to the AIC. Thus, since BIC does not require the additional

parameter as for the GIC, it represents the best solution at least for the considered parameter values.

Remarkably, the analysis on real polarimetric SAR data has further confirmed the classification capabilities

of the proposed solutions which arise as an effective means to build up automatic classification systems.

Future research might consider further investigation using SAR data with different radar frequency and

the identification of the specific polarimetric channel which generates the dominant eigenvalue.
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