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Abstract�This paper studies novel localization methods of 

multiple partial discharge sources in electrical substations. The 

three compressive sensing algorithms of Orthogonal Matching 

Pursuit (OMP), Homotopy technique, and Dichotomous 

coordinate descent (DCD) are presented. The simulation results 

demonstrate excellent performance with the compressive sensing 

methods. 

Keywords�partial discharge; localization; multiple sources; 

comprssive sensing 

I. INTRODUCTION 

Radio frequency (RF) measurements have been 
extensively applied in substations for in-service condition 
monitoring of partial discharge (PD) activity. A radiometric 
wireless sensor monitoring network has been presented to 
make the whole substation coverage for PD online 
measurement and control [1]. One of the main advantages of 
radiometric wireless sensor network (WSN) measurement is to 
implement PD localization at low cost in substation. The three 
methods of time-of-arrival (TOA), time-difference-of arrival 
(TDOA) and angle-of-arrival (AOA) have drawn considerable 
research attentions in PD location areas [2�4]. Unlike TOA, 
TDOA and AOA, the RSSI (received signal strength indicator) 
based source localization does not require time 
synchronization or use of an antenna array, and make it cost 
effective [5]. Antilog function is used to convert RSSI values 
to distance values. However, small RSSI variation in decibel 
form leads to large variation in estimated distance, and pass-
loss index may vary with electromagnetic environment in 
electrical substation. These localization methods are typically 
used to estimate a single PD location.  

In the paper, novel RSSI-based localization methods are 
presented for multiple PD sources using compressive sensing. 
The measured data of PD strength at radiometric wireless 
nodes (RNs) are collected to and to perform localization at the 
central controller. The localization estimates can be obtained 
by searching for the sparsest solution of an under-determined 
linear system of equations. 

 

II. LOCATION METHOD USING COMPRESSIVE SENSING 
The proposed radiometric WSN integrates RF monitoring 

technology into wireless sensor network to form a continuous 

real time condition monitoring system over coverage of the 
whole substation.  

The key idea of the proposed localization is to reconstruct 
a sparse signal from a set of appropriate RSSI measurements 
by applying compressive sensing. A grid based representation 
of the substation space is used to create a finite set of possible 
positions. The localization algorithms consist of two steps of 
calibration and runtime phase. During calibration phase, each 
RN acquires signal strength measurements from a RN for each 
cell of the grid in order to construct a map of signatures of the 
physical space in substation. In the runtime phase, each RN 
receives RSSI measurements in order to estimate the average 
received PD signal and sends it to the central unit. The central 
controller collects the RSSI fingerprints from the RNs and 
applies the Compressive sensing localization algorithms in 
order to estimate the position of PD sources.  
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Fig. 1. The layout of PD WSN at a substation: denotes PD 

electromagnetic signals,  - HV apparatus, - radiometric node 

 

We assume that there is M radiometric wireless nodes 
(RNs) used to monitoring the PD activities, and the whole two 
dimension substation space is discretized into N grid cells, 
which are potentially PD sources, shown in Fig. 1. By 
calibration phase, an observation matrix is formed as follows, 
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Where, Pi,j denotes the measured power at ith RN coming 
from the jth cell during calibration phase. x א RN×1 an 
unknown vector with k non-zero number (PD sources) that we 
would like to recover. y א RM×1 denotes the received power 
vector at RNs during runtime operation. We have to solve the 
underdetermined linear equation below, 

                                          y = Ax                                           (1) 

There are several approaches to solve the underdetermined 
system in (1): 1. Greedy selection algorithms such as 
Orthogonal Matching Pursuit (OMP) [6], 2. Homotopy 
technique [7], 3. Dichotomous coordinate descent (DCD) [8]. 

A. Greedy Algorithms / Orthogonal Matching pursuit 

Greedy algorithms are sub-optimal iterative algorithms 
that attempt to solve a under-determined matrix problem by 
successively adding new atoms into a sparse approximation 
with the objective of minimizing the new residual. Orthogonal 
Matching pursuit (OMP) is an iterative greedy algorithm that 
selects at each step the dictionary element best correlated with 
the residual part of the signal. Then it produces a new 
approximant by projecting the signal onto those elements 
which have already been selected [6]. Procedure of OMP is as 
follows: 

 
1. Initialize the residual r0 = y, the index set ȁ0 = [ ], and 

the iteration counter t = 1, ȁm contains m elements from {1, 
..., d}. 

2. Find the index Ȝt that solves the easy optimization 
problem 

                         
jt

Nj
t r ϕλ ,maxarg 1

,,1
−

=
=

A
                                 (2) 

If the maximum occurs for multiple indices, break the tie 
deterministically. 

3. Augment the index set and the matrix of chosen 

atoms:ȁt = ȁt−1 ׫ Ȝt and At = [At−1   
tλϕ ]. We use the 

convention that is A0 is an empty matrix. 
4. Solve a least squares problem to obtain a new signal 

estimate: 

                    
2

minarg xAyx t
x

t −=                                   (3) 

5. Calculate the new approximation of the data and the 
new residual 

                          
ttt xAyr −=                                            (4) 

6. Increment t, and return to Step 2 if t < m. 

B. Homotopy Based Location Technique  

By classical ideas in convex analysis, a necessary 
condition for x to be a minimizer of JĲ(x) is that [7] 

 xJĲ(x),i.e. the zero vector is an element of the∂א0
subdifferential of JĲ at x. 
                     ∂xJĲ(x) = −AT (y − Ax) + Ĳ∂צx(5)                       1צ 

A necessary condition for x to be a minimizer of ∂xJĲ(x) is 
that the subdifferential of JĲ(x) is zero. 
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Let I = {i : x(i) , 0} denote the support of x, and 

)( AxyAc H −=  denote the correlations between the dictionary 

matrix and the residue. Then equation (2.4) can be written 
equivalently as 

                                c(I) = Ĳ sign(x(I))                             (7) 
and  
                                     |c(Ic)| ≤ Ĳ                                     (8) 
In other words, the residual correlations on the support I 

must all have magnitude equal to Ĳ, while 
residual correlations off the support must have magnitude 

less than or equal to Ĳ. Hence, the active set I satisfies 
                         I = { j : |c( j)| = צcצ∞ = Ĳ}                       (9) 
The Homotopy algorithm starts with an initial solution x0 

= 0, and computes iterative solution estimate xl, l = 1, 2, ... 
                             xl = xl−1 + Ȗldl                                  (10) 
This magnitudes of residual correlations decline equally on 

the active set. We can find Ȗl by solving 
                    |A

T
l(y − AI(xI + Ȗldl))| = Ĳ − Ȗl                    (11) 

 

                             

lI

T

i

l
l

dAa

ic

±

±
=

1

)(τ
γ                                   (12) 

thus, smallest positive step is 
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a direction dl may be updated by solving 

     
T

IA (y − AI(xI + Ȗldl)) = (Ĳ − Ȗl)sign(xI + Ȗldl)        (14) 

thus 

                   
T

IA AIdl = sign(xI + Ȗldl)                            (15) 

sign(xl(i)) = sign(cl(i)) [6], so 

                       
T

IA AIdl = sign(cl(I))                              (16) 

 

C. DCD Algorithm 

When the sparse level is sufficient, Spars approximate 
problem can be expressed as, 

                  min צx1צ, subject to Ax = y                           (17) 
 
The above l1 problem leads to Basis Pursuit Denoising 

(BPDN) optimization problem, ie. the following Lagrangian 
formulation, also called LASSO problem, 

                      
1

2

2
2min xAxy τ+−                            (18) 

where τ ≥ 0 is a scalar regularization parameter, balancing 

the tradeoff between the two terms, namely, sparsity and 
residual error. The l2-term forces the residual y−Ax to be 
small, whereas the l1-term enforces sparsity of representation. 
To find x in (18), the following optimization problem is 
solved, 

                          )(minarg xJx
x

ττ =                               (19) 
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Where, for a positive scalar Ĳ, the cost function, )(xJτ
 is 

given by 
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Where AAR H= , yAb H= , H)(⋅ denotes Hermitian 

transpose and )(⋅ℜ real part of a complex number. The problem 

(20) is convex. DCD location algorithm [8] is summarized in 
TABLE 1. 

 
TABLE 1.   DCD ALGORITHM 

Step Equation 
 Initialization: x = 0, r = b, 

qq bmax=τ , 0=uc , 

1=γL , 
maxδδ = , Ȗ is empty 

1 Repeat until 
minττ < or 

uu Nc =  or 
maxLL =γ

 

2        βττ ← , m = 1, [ ]δδδδα jj −−= ,,,  

3        
qq bp ,maxarg γ=  

4         Repeat until m = Mb 

5           Flag = 0 

6           Repeat for k = 1, 2, 3, 4 

7        Compute ǻJ according to (6) and if ǻJ < 0 do

8  
kpp hh α+← , )( p

k Add α+← , )( pH

k AAbb α−←  

9   
qq bp ,maxarg γ= , Flag = 1, 1+← uu cc , break 

10            If Flag = 0, do 

11                m = m+ 1, λδδ ← , [ ]δδδδα jj −−= ,,,  

12           test on removing an element in Ȗ and 
update Ȗ and LȖ if required

13           test on adding an element in Ȗ and update Ȗ 
and LȖ if required 

 

III.   SIMULATION RESULTS 

In this section, we present experimental results that show 
the compressive sensing algorithms are powerful methods for 
multiple PD location in substation. Gaussian or sign sparse 
signals are generated as original sparse signals in dimension N 
= 256, namely grid cell number over substation space. Sign 
signals are generated by taking sign function of Gaussian 
distribution. We also used Gaussian measurement matrices 
with measurement length M = 128, namely RN number. 
Sparsity levels (nonzero number) are chosen from k = 1 to K = 
80, namely PD source number. We compare the supports 
between original signal and recovered signal by probability of 
recovery while the mean squared error (MSE) is used to 
evaluate the performance of the the proposed algorithm as 

                               [ ] [ ]
00

00

xx

xxxx
T

T
−−

=ξ                               (21) 

where x is recovered signal, x0 is ideal sparse signal. All 
results are obtained on average of 200 independent trials and 
plotted against sparse level.  

      
 
Fig. 2. Mean squared error for sign sparse signal 

 

      
 
Fig. 3. Probability of recovery for sign sparse signal 

 
Fig. 2 shows the misalignment performance of OMP, 

Homotopy method and DCD algorithm. Fig. 3 compares 
recovering probability of the three algorithms. We think that 
the recovery is successful if the maximum absolute value of 

difference between elements of x0 and x is less than 310− . All 

three algorithms demonstrate perfect performance for sparsest 
level. Along with the number of non-zeros increasing, OMP is 
getting worst and the DCD algorithm keeps best on both 
misalignment and recovering probability performance. When 
PD source number K is less than 10, all three compressive 
sensing algorithms have perfect performance. There is an 
acceptable performance for 10 < K < 20. 

IV.   CONCLUSION 

The proposed multiple localization method make good 
performance for PD monitoring of radiometric WSN over 
coverage of the whole substation by using compressive 
sensing technique. Due to complex electromagnetic 
environment in substation, interference noise should be 
included into the system evaluation for future further research. 
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