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Abstract: 

Mental models (i.e. a human’s internal representation of the real world) have an important role in the 
way a human understands and reasons about uncertainties, explores potential options, and makes 
decisions. However, they are susceptible to biases. Issues associated with mental models have not yet 
received much attention in geosciences, yet systematic biases can affect the scientific process of any 
geological investigation; from the inception of how the problem is viewed, through selection of 
appropriate hypotheses and data collection/processing methods, to the conceptualisation and 
communication of results. This article draws on findings from cognitive science and system dynamics, 
with knowledge and experiences of field geology, to consider the limitations and biases presented by 
mental models in geoscience, and their effect on predictions of the physical properties of faults in 
particular. We identify a number of biases specific to geological investigations and propose strategies 
for debiasing. Doing so will enhance how multiple data sources can be brought together, and minimise 
controllable geological uncertainty to develop more robust geological models. Critically, we argue that 
there is a need for standardised procedures that guard against biases, permitting data from multiple 
studies to be combined and communication of assumptions to be made. While we use faults to 
illustrate potential biases in mental models and the implications of these biases, our findings can be 
applied across the geoscience discipline. 
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What do you think of when you think of a geologist? In a study of the representations of scientists in 
222 Hollywood films, Weingart et al. (2003) found that scientists were predominantly white (96%), 
male (82%), American (49%), and middle aged (40% between 35 and 49 years old). They found 
interesting variations in the characters of scientists based on discipline. Medical researchers, 
physicists, chemists, and psychologists were most likely to be portrayed as ‘mad scientists’, whereas 
anthropologists, astronomers, zoologists, and geologists were more likely to be depicted as ‘good’ or 
‘benevolent’. Further, ‘benevolent’ scientists were often portrayed as naïve!  

The stereotypical portrayal of scientists in movies is an example of analogous thinking; that is, people’s 
‘mental models’, which are internal representations of something in the real world (Johnson-Laird 
1983). Such analogous thinking helps people to interact with and make sense of a (complex) external 
reality, often by allowing them to solve problems or make judgments quickly and efficiently. However, 
mental models are subject to cognitive biases and are inherently limited. This can be both beneficial 
and problematic.  

Every model is a simplification of reality and therefore every model is wrong (Sterman 2002; Poeter 
2007). Increasing the complexity of a mental model does not necessarily make the model more useful, 
however overly simplified models can omit key factors. For humans, models are the foundation of 
decision making, and so these models need to be useful – i.e. they must be a sufficient approximation 
to reality, striking a balance between simple and complex (Pidd 2009). 

Geological rock formations and the subsequent processes that happen to them are the result of 
complex dynamic systems that vary in space and time, and are formed over time frames that can range 
from tens of millions of years to essentially instantaneous events. Therefore, constructing a mental 
model of any geological process is challenging, particularly if we cannot observe that process in situ. 
This is due in part to difficulties traditionally encountered by individuals in trying to understand 
dynamic systems (Sterman 2008). It is compounded by the super-human timeframes separating 
geological processes of interest and human observations of them. Additionally, exposures are often 
limited to the near surface of the Earth and data often have to be extrapolated from a small sample. 
Geologists in the field are physically embedded within their research context, and as such geologists' 
perception and understanding are often tied in with sensorimotor experiences (Raab & Frodeman 
2002; Petcovic & Libarkin 2007). Further, geologists must often combine multiple studies, with 
differing perspectives and approaches, to create a fuller picture of geological processes that can 
advance geological understanding and result in robust, unified models. To do so successfully, the 
thinking, methodology, and critically the assumptions underpinning each model must be explicated, 
and the input and output information organised in a way that allows for model interconnectivity 
(Loudon 2012). This process should include recognising and accounting for different biases in each 
approach, since these biases will introduce artificial variation into the studies.  

In this paper, we draw on cognitive science and system dynamics research, and reflect on research 
and experiences within field geology, to highlight common biases that geologists and geological data 
may be subjected to, and how this may influence geological models of fault systems. First, we review 
the literature regarding mental models which are typically understood as internal representations of 
external events. We then consider key systematic biases in geological thinking, how the resulting 
uncertainties may be processed, and the impact on model outcomes. We close by recommending 
ways to manage these biases, and so to improve geological understanding and modelling of complex 
processes, such as fault seals. Faults and fault properties are an ideal topic to explore because faults 
are nearly ubiquitous in the Earth’s upper crust, have numerous impacts on the formation and 
utilisation of natural resources and are important controls on a number of natural hazards, yet they 
are complex, their exposures are limited, and there is a myriad of different approaches taken for 
gathering data on faults to elucidate and quantify their physical properties. 

 



Mental models and their application to Geosciences 

 

The construction and use of mental models is a psychological process that humans use to support 
decision making (Jones et al. 2011). In essence, a mental model internally represents ‘real-world’ 
events or processes; it replicates an event of interest, allowing one to make sense of it and to try out 
various scenarios (Craik, 1943). The model is a product of what an individual has experienced up until 
that point, but it is updated with new information and use (Jones et al. 2011). Like any model, mental 
models are simplified representations of some external event. Limitations of human’s cognitive ability 
(Pracht 1990) restrict their complexity. The nature of experiences, including those experienced in 
person and/or second hand, (e.g. read about in academic journals) will govern the variables in the 
model, their relationships, and the boundaries of the model (i.e. what is included or excluded, what is 
implicit or explicitly assumed). Thus, mental models are inherently limited in scope, which is not 
necessarily a problem for their application. Mental models are specifically what is held in the mind 
and so they cannot be reviewed by others (Jones et al., 2011). Doyle & Ford (1998) find that within 
the published literature the definition of mental models is contradictory and simplistic in nature and 
generally there are disagreements on whether mental models are: static or dynamic; held within the 
working memory or long-term memory; complex or highly simple. However, two types of mental 
models are widely accepted: logical or structural mental models represent the components of a 
problem or system and how they interact, whereas causal models represent the reasoning or rationale 
that underpin knowledge or theory (Johnson-Laird 1983, 2005; Markman & Gentner 2001; Callahan 
2013). Within a mental model, the logical model identifies a systems’ components and the causal 
model explains the function of these components (Tversky 2005). Causal mental models therefore 
represent an individual’s understanding about how the components of a system or problem interact.  

The construction of a person’s mental model is influenced by their educational and professional 
‘culture’ (Sterman 2002). This observation is an important one for the study of faults. Fault models are 
applied by ‘geoscientists’ with a range of backgrounds and training, for example a structural geologist 
may consider fault analyses quite differently to a geophysicist or a reservoir engineer. The variables 
included in their mental models could be very different if they hold different views of the problem. An 
‘us-versus-them’ perspective, in that one training or approach is better than another, can develop and 
foster a problematic divide between disciplines and professionals (Sterman 2002). This divide then 
serves to encourage the belief that one’s own practices are better than that of someone outside their 
group. These beliefs are critical to what is selected and placed in a mental model and how model 
components are derived. Further issues of academic and professional boundaries are the assumptions 
and omissions that individuals implicitly make (Sterman 2002), in that a person may have automated 
the process to the degree that they are unaware of their own procedure. The variation in approaches 
by different individuals is a source of artificial variation.  

To construct certain mental models, and particularly scientific mental models, quantitative input 
values are required. However, selecting quantitative values is not necessarily straightforward; 
probabilistic assessments and handling uncertainty are particularly challenging. As such, quantitative 
assessment is prone to cognitive biases or ‘heuristics’ (mental shortcuts). Tversky & Kahneman’s 
research on judgement and decision making under uncertainty (see Kahneman & Tversky 1972; 
Kahneman & Tversky 1973; Tversky & Kahneman 1973; Tversky & Kahneman 1974 for more detail) 
identifies three systematic biases or shortcuts employed by individuals when providing probabilistic 
assessments: an availability heuristic, an anchoring and adjustment heuristic and a representative 
heuristic (Tversky & Kahneman 1974). Subsequently, many more biases have been identified, 
including an overconfidence effect (Lichtenstein & Fischhoff 1977) and a confirmation bias (Nickerson 
1998). As such, not only will heuristics influence and systematically bias the construction of the mental 
model, they will bias how information will be interpreted, and thus how the mental model evolves. 



See Table 1 for definitions and examples of these biases and a full list of known biases can be found 
in Montibeller & von Winterfeldt (2015).  

Given that mental models are limited (being finite in size and incomplete, subject to biases, bounded 
by culture, and limited by how complexity and uncertainty is handled by the brain), it is crucial that 
when they are externally represented, the associated documentation and reporting allows for 
scrutiny, interrogation and appropriate use by others (Sterman 2002) (i.e. biases are recognised and, 
where possible, accounted for in data analysis or data transfer). Generally, humans are not consciously 
aware of the mental processes that underlie their experience of the world (Bargh & Morsella 2008), 
and thus extracting mental models, particularly without affecting them, is impossible. Lessons can be 
drawn from system dynamics, where research has found that when eliciting mental models from 
experts or laypersons it is best to follow a structured process that is designed to limit common or 
known biases (Vennix et al. 1992; Hall et al. 1994; Ford & Sterman 1998). 

In geosciences, mental models have been used to examine decision making associated with risk, risk 
communication and education (Gibson et al., 2016 and references therein). Geological hazards 
including flash floods and landslides (Wagner 2007; Morss et al. 2015; Lazrus et al. 2016), subsurface 
geological engineering hazards (Gibson et al. 2016), radon gas hazard (Atman et al. 1994), sea-level 
change (Thomas et al. 2015) and broader issues of climate change (Bostrom et al. 1994; Read et al. 
1994; Leiserowitz 2006; Sterman & Sweeney 2007; Sterman 2008) are all examples of the application 
of mental models in geological risks. In particular, mental models have been used to inform risk 
communication, often by eliciting and identifying inconsistencies between mental models of risk held 
by experts (or scientific literature) and publics, for examples see Morgan et al. 1992, Thomas et al. 
(2015) and Wagner (2007). Pedagogical studies have examined differences in how novices and experts 
create geological maps and the cognitive processes involved, and find that experts develop and test 
mental models of the subsurface much more rapidly, and naïve mental models can interfere with the 
ability to reason (e.g. Petcovic & Libarkin 2007; Petcovic et al. 2009; Bond et al. 2011). However, to 
date, the approach has not been applied to highlight uncertainties of data collection, synthesis and 
communication within the geoscience discipline, nor for geologists to gain introspective insight so as 
to improve their most important tool – their mind. 

  

Systematic biases in models of fault architecture 

 

Fault zones are composed of many heterogeneously distributed deformation-related elements. Low 
permeability features include regions of intense grain-size reduction, pressure solution features, 
neomineralization due to hydrothermal interactions, cementation and shale smears. High 
permeability elements are open fractures and breccias. The highly variable nature of (1) the 
architecture of faults and (2) the properties of deformation-related elements, demonstrates that 
there are complex controls on the physical, chemical, and thermal evolution of fault zones. There is 
no simple way of deterministically predicting the bulk hydraulic and mechanical properties of faults. 
Field observations of fault zones are essential to understand fault growth processes and to make 
predictions of fault zone mechanical and hydraulic properties at depth. Mapping of fault structure and 
observation of deformation features is important to unravel geological and tectonic histories, and 
understanding the internal architecture of faults is important for a wide variety of applications (ref 
papers in this volume?). Here we are particularly concerned with how geologists develop mental 
models of fault architecture, and the role of field observations in developing these models. Bond et 
al. (2007) and Torvela & Bond (2011) discussed uncertainties in interpreting fault and basin models, 
and Polson et al. (2012) discuss uncertainties in identifying locations of faults at depth within seismic 
data.  



Models of fault architecture are important to make process-based predictions of fault properties at 
depth, such as the sealing or mechanical properties of the fault. The properties of faults that control 
fluid flow are key in applications such as hydrocarbon exploration and production, waste water 
disposal, geological storage of CO2, the occurrence of groundwater, geothermal resources, and 
radioactive waste disposal. Faults and fault systems also serve as the locus of several important 
mineral deposit types. Similarly, predictions of the mechanical properties of faults are key for 
understanding induced and triggered seismicity, mining-induced rock bursts and the properties of 
earthquake ruptures. Such models are routinely applied within industry and academic research by 
end-users who are not either the originators of the data or the originators of the models of fault 
architecture: for instance, a reservoir engineer may be relying on the observations of years of field 
geology by multiple geoscientists, to develop simplified models that predict fault hydraulic properties 
(ref paper in this volume?). In a similar way, a mining engineer trying to predict rockburst or slope 
failure in a mine, will do so by constructing models based on structural data gathered from the mine 
tunnel, and, where available, results from rock deformation experiments. Such models can be updated 
with results from in situ stress monitoring, seismic and CO2-CH4 monitoring. These data may be 
collected by different subcontractors, and results must be communicated to the mining engineer to 
inform models of rock stability. 

Integrating datasets from multiple studies and sites is required for robust understanding of fault zone 
properties and processes. However, these datasets contain important biases, which affect our ability 
to combine them effectively. In the following section we outline potential sampling and cognitive 
biases that must be considered when (a) gathering and interpreting data and (b) translating mental 
models into predictive models.  

 

Size bias – outcrop scale vs human scale  

 

A typical human has a volume of 66.4 L (0.066 m3). A geologist trying to understand the processes that 
have developed our planet is trying to understand something 1023 larger in volume than themselves1. 
The limitation of our size means that we are generally restricted to making field observations at length 
scales of millimetres to tens of meters, which are then aggregated via maps to larger length scales. Air 
photos, remote sensing (e.g. LiDAR), and more recently remotely controlled drones (Jordan 2015), 
have allowed us to examine geology from a greater distance, thereby sampling the Earth’s 
heterogeneity at longer length scales, albeit often at lower resolution. However, field studies of fault 
zones, and therefore our mental models, may still be biased towards features that are both exposed 
and visible at a scale that humans can realistically observe and measure. 

Studies of fault architecture are significantly biased towards normal faults (Childs et al. 2006). Even a 
simple search using Google Scholar2 finds at least twice, and up to ten times as many, papers on the 
architecture, hydrology, and petrophysics of normal faults compared with strike-slip and reverse 
faults. This bias probably occurs because fault offset is a key determinant of fault architecture and so 
studies tend to focus on faults where the offset can be quantified. To quantify offset, markers must 
be exposed or visible. It tends to be more difficult to determine offset for strike-slip faults and low 
angle faults - i.e. the majority of thrust faults - because a large horizontal section needs to be exposed 
to be able to make correlations across the fault (unless the strike slip fault is in a deformed basin, or 
cuts steeply dipping dykes, so that markers are not sub-horizontal). Similarly, our human size 

                                                           

1Assuming that a geologist represents a typical human. 

2Google Scholar search (excluding patents) using terms: “fault zone” + [term] + [type]. Where term = 
architecture, properties, or mechanics; type = normal, strike slip, reverse, or thrust. July 2018.  



limitations also likely favour smaller faults where cross-fault stratigraphic correlations can be more 
easily made from limited outcrop. 

Fault architecture has repeatedly been shown to be highly variable along strike (see Caine and Minor, 
2009; Sosio de Rosa et al., 2018; and references therein). However, the tendency to examine a limited 
number of relatively small outcrops of a fault risks biasing the mental models that can be developed 
from those exposures. In particular, if there exist relatively infrequent types of fault rock, these will 
rarely be sampled by typical human-scale exposures such as road or stream cuts. Sosio de Rosa 
examined a 100m long section of the Jalan Mukah fault (Malaysia) exposed in a platform of rock that 
had been cleared for the building of a water tank. While 96.5% of the fault was characterised by the 
type of fault rocks that were very well recorded in neighbouring (and commonly visited) road cuts 
(Urai & van der Zee, 2005), 3.5% of the fault was characterised by a type of fault rock that had not 
previously been reported by any geologist working in this very commonly visited area. Fault rocks that 
are rare along-strike may have unique properties that change the fault behaviour; in the case of the 
Jalan Mukah fault, the rare fault rocks that Sosio de Rosa identified represented areas of relatively 
high permeability in an otherwise sealing fault. Similarly, differences in strength between rare and 
common fault rocks could cause heterogeneities that affect how an earthquake rupture propagates. 

Field geoscientists are limited to studying the outcrops that have been made available by nature 
(stream sections, beach sections, recently de-glaciated pavements) and human-made exposures such 
as road cuts and tunnels. Both natural and human-made exposures create a bias. Faults are often 
characterised by grain size reduction and chemical alteration that commonly, but not always, makes 
them weaker than the rocks that surround them; i.e. unless artificially exposed, faults tend to be 
preferentially eroded out or obscured. Indeed, it is common practice to use fault ‘gullies’ or alignments 
of vegetation, to map faults in air photos. As such, where faults are exposed and observable via natural 
processes, it is interesting to consider if these exposures are representative of ‘typical’ fault rocks. 
Even in human-made exposures, the geotechnical instability represented by faults means that faulted 
rocks more often have to be supported by shotcrete or other slope stability measures than non-faulted 
rocks (e.g. Barton et al. 2017), meaning that they also are not accessible for study. 

Figure 1 shows several natural and human-made exposures of faults cutting granite gneiss at 
Grimselpass in the Swiss Alps. At this location faults are typically localised along mafic dykes 
(Schneeberger et al. 2016), and can be traced across the landscape in air photos for 4.6 km (Belgrano 
et al. 2016). Figure 1a & b show two contrasting ways that the faults are exposed depending on the 
slope that they cut. In Figure 1c we see a very rare example of an exposure of fault rock: in two days 
of fieldwork explicitly looking for fault exposures, only this example was recorded, and the rocks were 
only exposed due to human-made excavation (a section of footpath had been carved into the 
mountainside by blasting). A far better place to observe the faults is within the network of tunnels 
drilled by NAGRA for the Grimsel Test Site (Fig. 1. d&e). The tunnels were cut by a tunnel boring 
machine and are therefore almost completely cylindrical and smooth walled. One of the principal fault 
strands has been entirely shotcreted for stability, but the others are exposed in the surface of the 
tunnel walls. Figure 1d shows a photomontage of the tunnel wall that has been ‘unwrapped’ in much 
the same way as a borehole image log, showing the exceptional level of detail that can be gleaned 
about fault architecture from these tunnel exposures. Without these human-made exposures, very 
little would be known about the Grimsel Faults. It is also interesting to note that the fabric of the 
ductiley-deformed dykes that are overprinted by the brittle deformation is almost impossible to pick 
out in the tunnel walls (though it can be observed in thin section; Schneeberger et al. 2016), but is 
beautifully picked out in the blasted and weathered footpath section. Observable features are hence 
also biased by the nature of the exposure.  

In a study of a fault that had hosted reservoir-induced seismicity in Brazil, Kirkpatrick et al. (2013) and 
Soden et al. (2014) examined along-strike exposures of a fault cutting Archaean gneiss in a river 
section. The fault runs at least 150 km along the base of the Rio Piranhas valley which is filled by the 
reservoir at its northern end. The Jucurutu River flows to the south from the reservoir and follows the 



base of the valley. The river has an unusually straight trace in the same orientation as the fault, 
suggesting that the river has been ‘captured’ by the fault, presumably because the fault rock is weaker 
than the surrounding rocks. The fault is therefore not exposed in the valley. However, at one location 
(-6.074756, -37.064272) the river takes a bend and the fault zone is exposed, allowing the fault to be 
mapped in detail by Kirkpatrick et al. (2013) and Soden et al. (2014). But why is there a bend in the 
river at this location? Are the fault rocks at the bend locally harder than the rest of the fault? And so 
how representative of the whole fault is this single, unique, exposure? 

 

 

Interest bias – what is the data for? 

 

Generally speaking, when studying fault rocks and rock deformation processes, geologists tend to be 
interested in the subsurface, and so consider the implications of their surface observations for rock 
properties and behaviour in the subsurface. Indeed, geologists are trained to ‘look beneath’ the effects 
of erosion, weathering or excavation on a given outcrop. Anyone who has taught geology students in 
the field will recall patiently encouraging students to ignore uplift-related joints in order to see the 
layers of bedding or structures that they cut. However, a professional hydrogeologist visiting the same 
outcrop and wishing to study modern fracture-controlled groundwater flow in the shallow subsurface 
would focus preferentially on the joint networks. The purpose of the study, therefore, affects the 
features observed and the data collected. While it is necessary, particularly in the interests of 
efficiency, to limit the scope of field studies, ‘interest bias’ can lead to scientifically important features 
being scoped out of the complex information that can be gleaned, even from a single outcrop. 

This is different from motivational bias (in which judgments are influenced by the desirability of 
events, consequences, outcomes, or choices), because in this case it is the observations of geological 
features that are biased by the geologist’s interests, rather than the findings or results. 

For example, McCay et al. (in press) found that a fluid flow network within low permeability shales 
was facilitated by a combination of bedding-orthogonal fractures and very thin sandstone beds. A 

 



structural study could easily have considered only the fractures in the shale, disregarding the small 
sedimentological features which McCay finds to significantly affect the fluid flow network. Similarly, 
at a study of CO2 seepage from sandstones and shales in Victoria (Australia) Roberts et al. (in review) 
found that at the Earth’s surface, the fissile and fractured shales were more permeable to CO2 flow 
than the cohesive sandstones that the shale was interbedded between. Though the shales are less 
permeable than the sandstones at depth, the response of the shale rock to unloading significantly 
enhances its permeability. Results from McCay and Roberts have implications for risk management of 
engineered geological stores, such as for CO2 storage or radioactive waste disposal. For example, if it 
was assumed that CO2 leakage through low permeability rocks such as shales would only occur via 
connected fractures, a shale rock close to the surface might erroneously be deemed to be sealing. 
Likewise, if it was assumed that CO2 leakage to surface would not occur through shales, the monitoring 
strategy would focus on non-shale rocks and would not detect CO2 degassing from shales. 

Interest bias can also affect the features that are reported. For example, a series of papers in the mid 
2000’s discussed the apparent rarity of pseudotachylytes and the implications for the physics of 
earthquake slip (Sibson & Toy 2006; Kirkpatrick et al. 2009). When one of the authors discussed this 
issue with an experienced field geologist specialising in Archean tectonics, with long experience of 
working at the margins of the Antarctic ice sheet, he replied that in his experience pseudotachylytes 
were really quite common in these rocks, but that he never recorded them because he was looking at 
other aspects of the geology (S. Harley pers. comm., 2018).  

Interest bias occurs even when different geologists are looking at a single fault, but with different 
motivations. The well-documented exposure at the entrance to Arches National Park (Fig. 2a) has been 
visited by hundreds of geologists on university and industry fieldtrips, as the fault is considered a 
classic example of a fault analogous to those in hydrocarbon reservoirs. Figure 2b-e shows four 
interpretations of the exposure shown in Fig 2a, all made by experienced field geologists interested in 
examining fault architecture. These four studies are very different, not only in scale of observation, 
but also in the geological processes and features they focus on.  

Davatzes and Aydin (2005)  aim to identify the key geological processes responsible for the formation 
of fault rocks and fault architecture along the Moab fault  (Fig. 2b). Consequently, they highlight 
multiple short, and unconnected slip surfaces within the fine-grained fault rocks, and discuss the rock 
mechanics processes responsible for such fault architecture. In contrast, Jolley et al. (2007) report the 
outcrop as one of three examples of a shale smear, and annotate a photograph of the outcrop (Fig. 
2c). Interestingly, nowhere in Jolley et al. (2007) does it explain what the white dotted lines in Figure 
2c are picking out, but we interpret that they are intended to pick out the fabric in the fault zone. 
Foxford et al. (1998) examine along-strike variations in fault architecture to test existing industry 
algorithms for the prediction of fault seal. They present 32 simplified cross sections across the fault at 
15 different locations, including that reproduced in Figure 2d. Kremer et al.’s (in press) study (Fig. 2e) 
is motivated by understanding the hydraulic properties of the fault zone and consequently, 
concentrates on mapping areas of the fault deemed most likely to affect fluid flow (e.g. shale smears 
as barriers, slip surfaces as pathways). The four studies present distinctly different maps (models) of 
fault architecture that depend in part on the assumptions that were made about what ‘mattered’ to 
the authors of the maps, and any preconceived ideas that they hold. This, and the fieldwork budget, 
will influence the time spent at the outcrop, and what was being focussed on. Consequently, each 
study highlights very different features of the same fault outcrop. Logged transects of the Moab fault 
from Foxford et al. (1998) were later used by Yielding et al. (2002) to calibrate their shale gouge ratio 
against field data. If observations from all four studies were used, the differences in the field 
sketchs/maps would result in variable upscaled shale gouge ratio. 

 



 

 

 

Terminology bias – the words and classification systems we use 

 



Geoscientists have developed a specific language, methodologies, and techniques to describe and 
represent fault zones (e.g., Childs et al. 2004) and spatial and temporal relationships within them 
(Shipley et al. 2013). However, the terms we use to describe observations and processes can lead to 
ambiguities and uncertainties. Ideally the language we use to report our field observations 
descriptively should not imply a genetic origin. We should also use terms to describe things that can 
be distinguished in the field – i.e. without lab-based observations. However, many phrases imply a 
specific conceptual model or process, or have slightly misleading meanings. ‘Melange’ originated from 
the French word ‘to mix’ to describe a rock unit, but now the term melange implies specific geological 
processes and tectonic settings (Festa et al. 2010). Further, a number of phrases in geology that refer 
to mixing, such as melange or fault mixed zones (Rawling & Goodwin 2006), describe simply the 
presence of multiple features (e.g. rocks, minerals, fabrics); they do not necessarily imply the degree 
to which the components are mixed, nor whether the components are chaotic or ordered. In some 
cases, the term origin becomes outdated; for instance, mylonites are now known to be formed by 
solid-state crystal-plastic deformation mechanisms, but the Greek root of the word (mylon = mill) 
suggests clastic milling and comminution (Higgins 1971; Wise et al. 1984). Some geological words that 
do not explicitly have genetic origins can be loaded with implicit origins (Schmidt & Handy 1991). For 
instance, the word ultramafic describes the chemical composition (low silica, high magnesium and 
iron) of an igneous rock. However, as the Earth’s mantle is composed of ultramafic rocks, they are 
mostly preserved or exposed as a result of processes such as orogenic and ophiolite emplacement. As 
such the term ‘ultramafic’ is implicitly tied to the processes that generate or expose those rocks, and 
will affect the mental models of the rocks being studied. In fault studies there are two distinct usages 
of the term membrane seal: some authors use it to mean a fault rock that seals due to capillary forces, 
others to refer to any sealing fault that seals due to a process other than juxtaposition. Table 2 
presents 20 publications from a simple Google Scholar query for journal publications and book 
chapters that use the term “membrane seal fault seal” grouped by their definition of membrane seal. 
Historically, where terms are known to be ambiguous or are commonly used wrongly, there have been 
efforts to define their usage (e.g. Wise et al. 1984; Wang & Dixon 2004; Childs et al. 2009), but many 
issues of ambiguity and misuse remain. 

Two further examples of terminology bias, and the challenges it presents, are the different approaches 
to classifying fault rocks (e.g. Sibson 1966; Schmidt and Handy 1991; Woodcock and Mort 2008).  There 
is a similar variation in the terms used to describe fault structure (Caine et al 1996; Childs et al. 2009). 
It could be argued that the Caine et al 1996 model is the most useful when you start at outcrop scale 
and work upwards – i.e. concentrating on what’s inside a fault strand – whereas the Childs et al model 
is what you get when you start from the seismic scale and work downwards – concentrating on the 
architecture of multiple fault strands in a zone. Finally, ambiguities in the definition of terms such as 
fault width summarised in Bond et al. (2007), effect our understanding of the relationship between 
fault width and displacement (Figure 3).  

 

  



 

  

 

 

   

Ultimately, ambiguous terminology or classification bias not only affects the mental models of fault 
processes, it also affects how data are communicated and represented. Particular problems related 
to data description and terminology biases will arise when end users of field structural geology try to 
apply models to general cases, without understanding that the results of field data collection (field 
maps, cross sections, notebooks) are simplified models. For example, when a simplified geological 
section (like the one in Chester and Logan 1986) gets projected infinitely into the third dimension to 
define the structure along a fault the scale of the San Andreas, or Shale Gouge Ratios are applied to 
an Allen diagram without recognising that sub-seismic scale relays may provide "hidden" 
juxtapositions that cause fluids to bypass low permeability fault cores. All too often end users use 
phrases like “low-permeability fault core and high-permeability damage zone” without fully 
appreciating complex along-strike relationships, or the likelihood of temporal variations in fault 
hydraulic properties. Indeed, even though fault classifications (be they of Caine et al. 1996 or Childs 
et al. 2006) do not exclude such heterogeneity, they may implicitly simplify or homogenise the fault 
zone, so that the mental model that the user constructs is simplistic. 

Ambiguous or misleading terminology can impede the development and use of conceptual models 
(Ilgen et al. 2017), and make it challenging to compile and compare data, for example to compile 
studies of fault zone thickness (Shipton et al. 2006). In the modern world of data repositories, archives 
and sharing these issues become particularly relevant. Appropriate documentation of how data are 
collected and processed is important to enable data combination or metadata production (Bond et al. 
2007). As articulated by Loudon (2012) with regards to systems geology, effective data pooling or 
metadata complication requires an overall review of the geological thinking and methodology, and an 
organised, interconnected set of widely accepted geological concepts. Recognising this, a particularly 
comprehensive catalogue of recent definitions can be found in a recent IEAGHG report on faults 
(2016).  

Experience bias – the very essence of being a geologist 

Most geological knowledge, and the suite of skills developed, is held unrecorded in the collective 
human memory as background acquired by training, education and experience (Loudon 2012). This 
knowledge sets geologists apart from non-specialists, and affects the mental models that geologists 
construct and use. The knowledge obtained is more than simply domain-specific knowledge, that is, 
the specific content knowledge of experts beyond common geoscience concepts such as Earth 
materials, Earth processes, and Earth history (Petcovic & Libarkin 2007). One can be extremely 
knowledgeable about a subject without wide ranging experience. Instead, the knowledge and skills 



gained through experience develops a more nuanced form of expertise. First, geological training 
transforms the mental models in the brain, or how the mental models are used by the brain. For 
example, when constructing mental models of complex systems, long time delays between cause and 
effect tend to prove challenging for the human brain, and lead to key cause-effect relationships being 
omitted (Sterman 2002). However, geologists grow into to thinking over particularly long and abstract 
time periods, and to thinking of low-frequency, high-impact events (Kastens et al. 2009). Structural 
geology in particular requires particularly intensive spatial and temporal thinking and through 
experience, geologists learn to organize spatial problems in ways that allow optimal processing 
(Shipley et al. 2013). Research indicates how the brain gathers and collates data, as well as how these 
data are used, changes with experience (Chase & Simon 1973). Indeed, experienced geologists 
approach outcrops differently to novices (Callahan et al. 2010; Baker & Petcovic 2016), and Petcovic 
et al. (2009) and Bond et al. (2011) find that expert geologists develop and test mental models of the 
subsurface much more rapidly than novices. We refer to this as ‘experience bias’. 

While experience bias clearly brings advantages, it may also bring limitations. Experts are not immune 
to cognitive biases (see the rigorous procedures developed for eliciting expert judgement for example 
in O’Hagan et al. 2006) and indeed can be more prone to some, than non-experts. It is well 
documented that when required to make an assessment, experts may make different prior 
assumptions resulting in radically different assessments. These assumptions can be tested using, for 
example, structured elicitation, but otherwise it is possible that in real-life interpretations, 
assumptions and misunderstandings commonly occur in expert judgements but remain undetected 
(Polson & Curtis 2010).  

An example could be how structural geologists gather outcrop data. There are many different methods 
for fracture data collection, each of which has its own advantages and disadvantages (Watkins et al. 
2015). Some schools of geology favour particular mapping techniques over others, but ultimately 
decisions about what approach to apply are aided by experience. It is not clear how data collected by 
novices and experts compare for the same sampling area and approach, but Raab and Frodeman 
(2002) point out that geologic methods, much as any intellectual labour, tend to be become intuitive 
and automatic (and therefore less ‘visible’ to our awareness) with growing expertise, much like driving 
a car. This could make experienced geologists more susceptible to the ‘interest bias’ identified above. 
Further, with experience, geologists may become more aware of, or more comfortable with, the 
subjective aspects of field sciences – with positive or negative implications. For example, decisions 
such as selecting the ‘appropriate’ specimen or approach for gathering certain structural data, or how 
to determine fracture aperture, which are highly subjective, can lead to uncertainty, and ultimately 
can bias the resultant models of the field area. An experienced geologist may approach an outcrop 
‘how they always have’ because ‘everyone knows’ ‘that’s how to do it’, and so may lack the awareness 
to prevent expertise bias from affecting the mental models they develop. In fact, they may simply be 
adapting a pre-existing mental model of one fault zone to another, and in doing so omit key and unique 
fault properties such as the rare fault rocks reported by Sosio de Rosa (this issue). Alternatively, their 
experiences may aid their decision making, and prevent the mind from jumping to conclusions (that 
we often have to coax geology students away from) and becoming vulnerable to anchoring bias. 
Indeed, Callahan et al. (2013) found that, while undertaking a mapping exercise, more experienced 
geologists pay more attention to uncertainty and how to test their mental models than novices 
(students). Similarly, Bond et al. (2011) found that more experienced geologists are more comfortable 
with interpretative reasoning and hypothesis-testing than novices interpreting a seismic dataset.  

On a side note, an experienced field geologist will know that field conditions (e.g. poor weather, 
difficult terrain, lighting), personal circumstances (e.g. hunger, extreme cold or heat) and the fieldwork 
timeframe (a couple of very focussed days, or several weeks) hugely influences the the field approach, 
the quality and quantity of the data they collect, and the quality of their notebook. They will have 
learnt, first hand of the difficulties that arise when, back in the office, they must attempt to use data 
from, or revisit, a poor quality field notebook. In short, their experience will have made them better 



field geologists, both in terms of the data they collect and its useability. These attributes have 
important implications for recent use of digital data collection devices and the kinds of biases that 
may be incorporated into field data collection and its compilation once back at the office. 

How the outcomes of field studies are used ties-in to experience bias and data description bias. 
Experienced field geologists are comfortable knowing that if they walk along strike or up dip of a fault 
zone they will find variations in fault rock type, number and orientations of slip surfaces, variations in 
fracture density, relays, asperities, variable juxtaposition relationships etc. The user of the fault model 
does not necessarily know this.  

 

Discussion  

 

Geological interpretation is by nature uncertain: geologists strive to reconstruct the most probable 
sequence of events producing features that are currently exposed at the Earth's surface with limited 
exposure and time indicators. Biases in the mental models of fault zones, and the limitations that arise 
from this with regards to how data are gathered, interpreted and used, lead to uncertainty or errors 
in the understanding of fault zone processes that these data inform. Further, a naïve or incorrect 
mental model can interfere with an individual’s ability to reason, or to respond to new information or 
data (Petcovic & Libarkin 2007).  

We have identified three principal categories of biases that affect how geologists construct and use 
mental models of subsurface processes:  

Outcrop bias: Observation-based field research often relies on outcrops. The availability and 
accessibility of outcrop, and what they can tell us are affected by how the rock was exposed/the 
outcrop orientation (exposure bias), and the size of the outcrop versus the size of the process being 
studied (size bias).  

Geologist bias: How we approach an outcrop, the data we gather and the approaches we use to collect 
it will be affected by (i) what processes we are most interested in or are the focus of the study (interest 
bias) and (ii) what we are familiar with (terminology bias and experience bias). The latter is a product 
of how we were trained, who we have worked with in the field, and where and how long we have 
worked.  

User/communication bias: How the data are described and communicated (terminology/data 
description bias) will affect how the data are then used, and how well the data outcomes can be 
pooled or compared with other works.  

Given the breadth of the geoscience discipline there inevitably will be other biases that we have not 
discussed here. Our mental models of fault zones will be influenced by many other factors than those 
we identify here. These three biases  are science-focused and systematic. However, Schein (1984) 
argues that the selection processes that contribute to what we perceive are also highly influenced by 
be highly individual factors regarding our social, cultural, and spiritual environment.  Therefore, these 
factors will not systematically affect the mental models of fault zones, but may significantly affect 
individuals’ mental models and their decision-making process. However, for the least-biased science, 
systematic biases that we identify must be reduced or minimised where possible.  

Research has been conducted by decision and risk analysts to reduce or eliminate (debias) results, for 
example Fischhoff (1982) and Montibeller & von Winterfeldt (2015). How a bias is identified, managed 
and reduced depends on the category to which it belongs, and some biases are more difficult to 
correct than others. We know from substantial work to tackle unconscious bias that the starting point 
is to simply raise awareness of the presence of, and effect of, these biases. Indeed, for some biases, 
just explaining potential bias to individuals, thereby raising their awareness of bias into conscious 



thought, can reduce the bias, though may not remove it entirely. For example, for previously 
documented biases (Table 1) Polson et al. (2010) report that motivational bias could be overcome by 
stressing the importance of unbiased results, and that availability bias is harder to reduce, but 
directing experts to think of all relevant similar situations throughout their career, rather than focusing 
on the most memorable or recent example, can reduce its impact. 

The biases we identify in this paper are new, and some are specific to field geology. Acknowledging 
that these biases exist is the first step to reducing them among Earth scientists and in Earth Science. 
For each of the biases we identify in this work, we propose a number of additional approaches to 
reduce or eliminate them, summarised in Table 4. These approaches are adapted from the debiasing 
literature but there is significant scope for further work to test and refine them. 

 

What then for the future? 

 

We argue that the field geology community needs to consider ways to (a) communicate our 
uncertainties better to users and (b) make sure that we educate end-users to consider appropriate 
and cautious approaches to make best use of the data we provide, and gain an appreciation of the 
uncertainties inherent in our limited ability to characterize 4D, largely inaccessible tectonic structures, 
at the same time as understanding the value of carefully collected and representative field data. 

Ultimately, we challenge the adage that ‘the best geologist is the one who has seen the most rocks’ 
and instead argue that ‘the best geologist is the one who is the most prepared to challenge their own 
biases’, but this is much harder to measure or brag about! Really, the best geologist is a member of a 
team, with mixed skills and experience, who are open to scrutinising one another’s thought processes. 
It is someone who has the ability to think over long time periods to understand the potential processes 
that could have caused the geological feature being studied, who follows a standardised, yet flexible 
and open minded procedure to avoid common biases, who thinks broadly and is willing to look to 
other facets of geology to understand and explain the object of study (i.e. does not overly narrow the 
bounds of their mental and/or conceptual models), who maintains integrity in not being driven to 
produce results motivated by publishing or client goals, and who thoroughly documents their 
modelling process to allow interrogation/inspection/reproducibility from other geologists. 

Finally, the workflow for geologists collecting geological data, or users of geological data, can be 
interrupted or manipulated to improve the geologist’s performance. For example, Macrae et al. (2016) 
found that when data users interpreting 2D seismic sections were explicitly asked to consider the 
temporal sequence of events, their interpretation quality was statistically significantly improved. 
There is great scope to introduce such processes to improve how geologists operate in the field. We 
recommend that further work should aim to investigate similar approaches to de-biasing field 
observations and the transfer of field observations into models.  

 

Conclusion  

 

A mental model is a person’s internal representation of an external system, and is the basis for how a 
conceptual or numerical model of a system is defined and parameterised. Mental models are 
constructed on the basis of a person’s experience of the external system, and that experience is by its 
very nature incomplete and partial when compared to the complexity in the real world. The mental 
model, and biases in the input data to these models, will be specific to the individual, and will affect 
how data are collected, analysed, represented and communicated. These biases need to be 
acknowledged to improve the predictive capability of such models and guide future research to fill 



gaps. Faults and fault zones are specifically addressed here, but the concepts presented apply to many 
other Earth structures and features. ‘End-users’ of fault-related information, such as petroleum 
reservoir engineers, mining geologists, and seismologists of course have their own mental models of 
what a fault looks like and how its physical properties affect Earth processes. Arguments over the 
details of terminology baffle the ‘end users’ of fault studies and can dilute the importance of the 
research. 

We identify and articulate several systematic biases introduced by geologists that may affect the 
quality of field investigations, how the data are reported, and how the data are used, using fault zones 
as a case study. Some of these biases are physical, and others are a product of how we were trained, 
who we have worked with in the field, and where we have worked. The identified biases include (i) 
outcrop bias: where geological information is affected by how the rock was exposed/the outcrop 
orientation (exposure bias), and the size of the outcrop vs the size of the process being studied (size 
bias); (ii) geologist bias: where geological information is affected by the focus of the work (interest 
bias), prior experiences (experience bias) and the terms or classification systems they adopt 
(terminology bias); and (iii) communication bias: how the data are described and communicated 
(terminology bias) will affect how the data are then used, and how well the data outcomes can be 
pooled or compared with other works.  

We recognise that our work is not comprehensive; further biases will exist, including our own. We 
build on research by decision and risk analysts to reduce or eliminate (debias) bias in results and we 
suggest approaches to reduce bias in geological field data collection and communication. The first step 
is acknowledging which biases may be affecting your work. Then, other approaches to de-bias; 
processes through which to guide the rational development of our mental models. These include 
working groups in which individuals are encouraged to break down the rationale for their judgement, 
since by explicating their thought process, their results and their mental model is less likely to be 
affected by bias. Following from this, clearly outlining the process, the rationale and the scope of the 
work (that is, what is and isn’t being noted) are important steps to aid end users, and the move 
towards open data, data archiving, and data collection method files, encourage such reporting. Finally, 
there is scope to introduce processes to improve how geologists validate their models in the field, and 
this is an important subject for future interdisciplinary work in the Earth sciences and beyond. 
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Figure captions  

Fig. 1. Exposure of fault zones at Grimselpass, Swiss Alps. (a) Typical vegetated fault gully on a 
mountain ridge. Note the gullies can be traced across the valley and into the hillside in the far distance. 
(b) Typical deeply eroded exposure of a fault on the mountain flank viewed up a steep slope. (c) Rare 
exposure of fault rocks along a footpath that had been blasted with explosives. (d) ‘unwrapped’ 
photomontage of a typical fault cutting the tunnels (also shown in (e) drilled by NAGRA at the Grimsel 
Test Site). The tape measure in (d) is 7 m. Photos taken by Shipton and Kremer. 

Fig 2. Four interpretations of the same exposure of the Moab fault, Utah. (a) Outcrop photograph with 
the outlines of the different maps in blue. (b) shows a map of part of the exposed fault zone by 
Davatzes and Aydin (2005), (c) shows an annotated photo from Jolley et al. (2007), (d) shows a 
structural log of the outcrop modified from Foxford et al (1998) and (e) shows a map of the full width 
of the fault zone by Kremer et al. (2018). 

Fig 3. Adapted from Bond et al., 2007, Childs et al 2009 and Caine et al 1996. Each panel shows a 
schematic fault zone, and different ways in that the fault architecture might be described using fault 
core/damage zone approach. Without common criteria for property measurements, or appropriate 
documentation of the field observations, data description bias will become problematic when 
compiling or comparing data with other studies or sites. 

  



Table 1. Key biases made by individuals during probabilistic assessments 

 Bias Definition/Example 

C
o

gn
it

iv
e 

B
ia

s 

Availability bias A short cut that humans use to assess the probability of an event. 
Events are perceived as more likely to occur if they are memorable to 
the individual and less likely to occur if the event is difficult to 
remember (i.e. people tend to use ease of recollection as a short-hand 
for frequency) (Montibeller & von Winterfeldt 2015). For example, it 
has been found that individuals overestimate the probability of an 
airplane crash and underestimate the probability of a car crash. 

Example: A basin analyst who has been working on a series of normal 
fault systems may be more likely to interpret normal faults from a 
seismic section than a different fault type.  

Anchoring / 
adjustment bias  

This is the tendency for individuals to ‘anchor’ on an initial numerical 
judgement. The anchor value is insufficiently adjusted for the specific 
event of interest (Montibeller & von Winterfeldt 2015). For example, 
when given new information, the individual then adjusts this starting 
value, but does not update their judgement sufficiently. This leads to a 
systematic bias towards the initial value (Tversky &Kahneman 1974). 

Example: From their background reading, a geologist knows that the 
Morrison Formation is approx. 20 meters thick. Later, when making a 
field sketch a cliff section in which the Morrison Formation is exposed, 
they judge that the unit is ~20 meters thick, and use this for scale. The 
unit is in fact 40 m thick at the cliff outcrop. 

Representative 
bias 

The tendency for individuals to predict the outcome which is most 
similar to that described (Kahneman & Tversky 1973).  

Example: A field geologist observes a fine-grained rock within a fault 
zone and describes in their field notebook it as a fault gouge even 
though they have no grain size data to back up this interpretation.   

Overconfidence 
bias 

The tendency for individuals to be overconfident in their judgements 
when compared to the objective reality. Experts often exhibit an 
overconfidence bias, which means that when asked to provide 
probabilistic judgements, the confidence bounds that they provide are 
too narrow and fail to appropriately account for uncertainty or their 
estimate is greater than in actuality (Montibeller & von Winterfeldt 
2015).  

Example: A geologist is 90% sure that an earthquake above magnitude 
7 will occur on the Definite Fault within the next 2 years, even though 
they know that predicting earthquakes is highly uncertain. 

M
o

ti
va

ti
o

n
al

 Motivational bias The tendency for an individual’s judgement to be influenced by some 
conflict of interest. 

Example: Not wanting to come across as undecided or uncertain to 
their boss, a junior geologist looks briefly at a fine-grained grey 
limestone and states with confidence that the rock is a volcanic sill. 



Confirmation bias The tendency for an individual to more readily reject information that 
does not support their belief or hypothesis, and more readily accept 
information that does (Montibeller & von Winterfeldt 2015).  

Example: A petroleum geologist has a hunch that the Bias Basin in the 
North Sea is a prospective discovery. The geologist interprets a range 
of subsurface data on the field and finds evidence of hydrocarbons. The 
well, when drilled, is dry. 

 

Table 2. Examples of different usages for one geological term: membrane seal  

Seal controlled by capillary 
entry pressure 

Seal formed by properties of fault 
rock in contrast to juxtaposition 

Text fitting both 
interpretations 

Bretan, Yielding, Jones (2003) Childs et al. (1997; 2009) Hesthammer & Fossen (2000) 

Brown (2003) Doughty (2003) Manzocchi (1999) 

Cerveny et al. (2004) Faerseth (2006); Faerseth et al. 
(2007) 

 

Eichubl (2005) Foxford et al. (1998)   

Fisher & Knipe (1998) Grant (2016)   

Fristad (1997) Jones & Hillis (2003)   

Gibson (1994) Manzocchi, Childs and Walsh (2010)   

Unterschultz (2007)    
Yielding et al. (1997)   

 

 

Table 3. List of geological biases and proposed means for debiasing 

Bias Approach to remove/reduce bias 

Outcrop Biases The nature and extent of rock outcrops is difficult to change without involving 
a lot of heavy engineering (!). However, by being aware of potential size bias 
or exposure bias, field geologists can train themselves to interrupt and revise 
the mental models they form.  

For outcrop bias, the geologist must be aware of, and account for, the fact that 
the constraints on your “sample” size might be correlated to the physical 
property of what you are trying to measure. Ideally such potential correlations 
should be captured and communicated to the end-user of the data. 

Outcrop bias is only relevant to field observation. The study of fault zones can 
be complemented by non-field geological techniques. Indeed, remote imaging 
is a large and highly used field of research, particularly in Earth science because 
so little of the Earth is exposed/visible or can be studied by eye. Therefore, 
data pooling is an important tool for reducing outcrop biases, but we do note 
that this is challenged by and susceptible to terminology bias, and requires 
clear communication of the key assumptions and the data collection and 
analysis process. 

Size bias Be aware that the sample size is constrained by outcrop, budget, field 
conditions, health and safety (e.g. long periods of detailed fracture mapping 



may be unsafe in cold wet conditions), geologists’ own abilities to access 
difficult outcrops (e.g. a kyaker will be able to better access coastal outcrops, 
a capable climber might access outcrops with the aid of ropes). 

Exposure bias  Seek out different types of exposure of the same rock, e.g. natural and man-
made 

Recognise, and be open minded about what might be behind the outcrop – 
consciously avoid infinite projections.  

Geologist Bias Some biases may be alleviated, or exacerbated, by collective or group working. 
Geologist bias should be the former, and so reduced by working in groups, 
particularly groups with different disciplines and training, or that know the 
limits of each other’s’ knowledge, and where the geologists are encouraged to 
question and challenge each other. As long as the group operates supportively, 
such that emotional factors such as personality and seniority do not inhibit 
communication.  

Actively encouraging multiple working hypotheses was first suggested by 
Chamberlin in 1890, where he stated that “with this method the dangers of 
parental affection for a favourite theory can be circumvented”. While 
Chamberlin later revised his article to be specific to geology, in his 1890 article 
he finished by stating that he believed “that one of the greatest moral reforms 
that lies immediately before us consists in the general introduction into social 
and civic life of that habit of mental procedure which is known in investigation 
as the method of multiple working hypotheses”. 

Structured intervention by logic and decomposition are a common way to 
eliminate correctable biases; i.e. by encouraging the individual to break down 
the rationale for their judgement, their thought process (or mental model) is 
less likely to be affected by bias (Montibeller & von Winterfeld 2015). The 
rationale is that the articulation of a thought process allows for interrogation 
of a thought process (Macrae et al. 2016). Such intervention could be an 
effective measure for geologist bias, and particularly experience bias. 
Geologists are trained to make a note of their thought processes and rationale 
in their field notebooks in addition to collecting quantitative data or 
observations. However, even if this practice is performed routinely, a geologist 
doing it alone may not be challenged to think alternatively. Working together 
or alone, geologists should be encouraged to ‘think out loud’, which forces 
articulation and thus introspection of one’s own thought process. 

Interest Bias We can’t, and don’t want to, eliminate interest bias. If a client is interested in 
shallow hydrogeology there is no point recording the mid-crustal mylonite 
fabrics. However there may be merit in ensuring that it is standard practice to 
state what geological features are not being recorded as well as what is being 
recorded. The introduction of field work methodology papers is likely facilitate 
this. 

Data pooling and compiling metadata of the same area would reduce interest 
bias. There is great merit in this work, although unfortunately working with 
secondary data are not currently deemed to be ‘high impact’, thus there may 
be a pressure for academics and students to steer clear of this approach. 



Communication 
Bias 

Outcrop and geologist bias and affect the data collected and therefore the data 
that is communicated to a data user. Communication bias can therefore be 
minimised by the above suggested approaches. Communication bias can be 
reduced by…better communication! That is, by clearly outlining the process, 
rationale, the scope of the work (that is, what is and isn’t being noted).  

As with interest bias, the rise in open data, data archiving, and methods files 
may to some extent reduce communication bias, as details about the fieldwork 
are provided outside of the generally length-limited peer reviewed publication 
of the results of the work. 

Terminology 
bias 

Clearly define any terms that used. Use existing terms consistently, and 
acknowledge where there might be conflict in the chosen terminology. 

 

 

 


