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Abstract: This paper describes a key element of any modern wireless sensor system: data processing. We describe a system 

consisting of a wireless sensor network and algorithmic software for condition-based monitoring of electrical plant in a live 

substation. Specifically, the aim is to monitor for the presence of partial discharge using a matrix of inexpensive radio 

sensors with limited processing capability. A low-complexity fingerprinting technique is proposed, given that the sensor 

nodes to be deployed will be highly constrained in terms of processing power, memory and battery life. Two variants of 

artificial neural network (ANN) learning models (multilayer perceptron and generalised regression neural network) that use 

regression as a form of function approximation are developed and their performance compared to k-nearest neighbour and 

weighted k-nearest neighbour models. The results indicate that the ANN models yield superior performance in terms of 

robustness against noise and may be particularly suited for PD localisation. 

 

1. Introduction 

Wireless Sensor Networks (WSN) and their associated 

systems are now mature technologies. They provide the 

capability for both remote and distributed sensing operations 

in applications as diverse as human health monitoring [1] [2], 

animal health monitoring [3], turbine monitoring [4], and 

condition-based monitoring [5]. 

In this paper we describe the use of a low cost WSN 

for condition-based monitoring of electrical substation 

equipment. As such this represents a highly industrially 

focused application. The overall wireless sensor system 

(WSS) developed, consists of a WSN (including customised 

hardware) and the necessary software and data processing 

components. 

Specifically, the WSS being developed is designed to 

monitor for the presence of partial discharge (PD) which is a 

well-known forerunner to asset failure in substations. It is 

caused by localized insulation defects such as the existence 

of voids, and other impurities in an electrical insulation 

system be it solid, liquid or gas [6] [7].  Early detection of PD 

permits preventative maintenance to be employed and/or fault 

diagnose and repair avoiding catastrophic failure which may 

result if the asset is not serviced. Timely intervention reduces 

the costs attributable to unplanned outages and permits 

conditioned-based maintenance. 

In order to determine which asset within a substation 

is exhibiting PD, its location must be estimated. Given that 

the discharges themselves give rise to electromagnetic pulses, 

they can be detected using appropriate radios. Thus in this 

application, we use the WSN radios as sensors. In fact, 

radiolocation of an electromagnetic source can be 

accomplished using a variety of techniques that often include 

time difference of arrival (TDoA), angle of arrival (AoA), or 

received signal strength (RSS) [8] [9] [10] [11] [12] [13]. It 

has been established that these parameters (TDoA, AoA and 

RSS) are location dependent and can be used to locate PD 

sources. 

TDoA and AoA methods are computationally 

expensive and have energy-hungry signal processing costs. 

RSS-based approaches are more appropriate to low-

complexity implementations but at the cost of reduced 

localization accuracy [14] [15]. The reduced accuracy of 

purely RSS-based methods is attributable to their 

susceptibility to interference due to multipath propagation, 

path loss attenuation and/or signal shadowing. Approximate 

RF propagation models from literature are not suitable for PD 

source location due to the complexity of real-life radio 

environments in which PD occurs. This motivates an 

investigation into the feasibility of using machine learning 

based fingerprinting technique for PD localization. This 

method not only obviates the need for estimating radio 

channel parameters but also uses multipath to its advantage to 

provide robust PD localization. It learns the unique spatial 

signatures created by PD signal strength to estimate PD 

locations.   

Our low cost/complexity solution is to deploy a WSN 

based on off-the-shelf commercial radio nodes to monitor PD 

radio emissions with some bespoke hardware [16] [17]. The 

wireless nodes will be deployed in an approximately regular 

grid topography across the substation. The inexpensive 

solution proposed permits the deployment of a permanent 

substation-wide continuous monitoring system in real-time. 

With this solution, the network built autonomously a 

fingerprint map with the following process: each sensor node 

emits an emulated PD pulse of known transmission power in 

a round-robin fashion. Each RF emission is monitored by the 

other wireless nodes. This permits each node to build a path 

loss map of the substation from its unique perspective.  Real 

PD emissions will have an unknown transmission power, and 
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this motivates the use of relative (ratios) RSS between nodes 

to define a fingerprint. When true PD occurs, the ratio of RSS 

at the various nodes can be used to infer location via machine 

learning based interpolation. Thus, our WSN and associated 

system components perform distributed sensing. High 

location accuracy is required if the system is to be effective. 

Accordingly applying a simple path loss model to infer 

location is not appropriate, rather sophisticated machine 

learning algorithms are required. It is this latter aspect of a 

WSS that is the prime focus of this paper. 

An advantage of a software-based machine learning 

approach is that the model can be retrained to accommodate 

changes in the substation topology by rebuilding the 

fingerprint map as described above. This retraining could be 

initiated manually or periodically. Given that PD pulses are 

impulsive and have a duration in the order of picoseconds, the 

network could be retrained within seconds of a change in 

topography. 

The rest of the paper is organized as follows. Section 

2 presents the description of the PD localization problem. 

Section 3 describes the experimental procedure. Section 4 

describes the location fingerprinting technique. Section 5 

provides the formulation of the localization algorithms. In 

section 6, experimental results are presented and discussed 

with conclusions drawn in section 7.  

2. Problem Description 

The key problem of PD localization is how to effectively 

estimate of the function: 

                       ݂ǣ ܴெ ՜ ܴ௡                   (1) 

 

which relates the mapping of PD fingerprints from ܯ distinct 

sources onto their locations in n-dimensional coordinate 

space.  

In this work, the PD localization problem is considered in a 

2-dimensional space. The locations and characteristics of the 

PD pulses are not known a priori. The electromagnetic signals 

generated by the sensor nodes can be captured and recorded 

by appropriate wireless sensors positioned in the vicinity of 

the discharge source. The radio environment is modelled as a 

finite location space },...,{ 1 mllL   of m  discrete locations, 

where ),( iii yxl   is the coordinate of a PD source. 

 

Suppose r denotes an observed RSS ratios recorded by a 

sensor nodes placed in the area of interest to capture the RF 

signals. If there are P sensor nodes and M distinct PD 

sources, then the location fingerprint f  is given as an M × 

P matrix:     
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The columns of the matrix in (2) represent RSS ratio vectors 

recorded by a sensor node from all the M, PD sources. The 

major challenge is to estimate as accurately as possible the 

PD location from location fingerprint (RSS ratios). The PD 

sources and receiving nodes are assumed to be static during 

measurement.  

3. Experimental Procedure 

3.1. Measurement Setup 
 

In order to evaluate the feasibility of deploying a WSN sensor 

array for PD monitoring and localisation, PD data was 

collected in a 19.20 m × 8.40 m laboratory at the University 

of Strathclyde. The measurement campaign took place over a 

two-week period in the evenings so as to minimize the effects 

of people interruption. The environment is characterized by 

multipath propagation which is a result of cluttered objects 

including metallic ones. Fig. 1 shows the floor map of the 

laboratory with all the RF signal sampling points indicated by 

the red dots. In all there are 144 sampling points located on a 

uniform grid with spacing of 1m. A picosecond pulse 

generator was used to generate emulated PD traces at each of 

the sampling points, 20 pulses were generated at each location 

providing an overall sample set of 2880 pulses. As a proof of 

concept, three RF sensors positioned at predefined locations 

in the laboratory were connected to a multichannel digital 

oscilloscope to capture and record PD measurements. The 

experiments utilized commercial-off-the-shelf antennas: ¼ 

wavelength antennas operating at 173MHz. The true 

frequency response of the antenna is depicted in Fig. 2. The 

maximum gain of the antennas is in fact 200.7 MHz.  

 

AІ 

AЇ  

AЈ  

 

Fig. 1. Measurement grid for measurement campaign 

 

 
   

Fig. 2. Antennas frequency response 

 

Where deployed as part of an industrial solution, the sensors 

would be deployed as part of an Internet of Things platform 

consisting of onboard processing and a WirelessHART radio. 

Embryonic trials have already taken place to determine the 

applicability of this technology [5]. Fig. 3 shows samples of 

the captured PD traces. The PD data acquired from 
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measurement were sampled at 2 GS/s. This sampling rate 

allows the signals to be captured with high resolution. 

 

3.2. Data Collection 
 

For the purposes of modeling, a PD dataset was gathered from 

the measurement setup described above via the three sensors. 

At each location, 20 consecutive RF measurements were 

made, giving a total, 2880 RF samples. A second, 

independent, test set was gathered in the same way but at 32 

distinct locations (the inter-grid black squares in Fig. 1). The 

first dataset was further divided into training and validation 

subsets, which were used to train and optimize the models as 

described in section 5.1. The independent test set was 

subsequently used to benchmark the performance of the 

models. The averages of the signal strength ratios of the RF 

samples collected were computed and used as fingerprint 

input vectors to the localization algorithms. Fig. 4 shows PD 

signal strength pattern in the radio environment for each of 

the three sensors. The figures reveal the unique spatial 

signatures created by PD signal strength at different locations 

which facilitate the application of learning models. 
 

 

Fig. 3. Recorded PD signals 

 

Fig. 4. Spatial Pattern for antennas 1, 2, 3 

4. Location Fingerprinting 

Location fingerprinting (LF) takes advantage of multipath 

propagation [18] since this contributes significantly in 

creating the needed spatial patterns for localization. The LF 

approach maps RF patterns (in this case RSS) to known 

spatial locations, then uses this mapping to infer previously 

unknown locations from RF patterns. The underlying 

assumption is that at every point in the propagation space PD 

exhibits distinct signal features. 

The procedure is divided into two phases: a database 

construction phase and location estimation phase [19] [20] 

[21]. The database construction phase involves building a 

table of fingerprints (features) associated with a set of known 

locations using emulated PD pulses with known transmission 

power. Raw RSS measurements are frequently used as a 

fingerprint for radio beacons that are characterized by 

constant transmission powers [22]. However, given that the 

energy emitted by each PD event may be different due to 

progressive nature of PD severity as deterioration continues 

and the fact that different types of PD occur in nature, 

absolute RSS is not well suited to this problem. A more robust 

fingerprint is the ratio of RSS components received by the 

multiple receivers.  In this paper, the signal strength ratios 

(SSR) between pairs of wireless sensor nodes are used as the 

location fingerprint. 

 

 
 

Fig. 5. Location Fingerprinting System 

During the localization phase, the location of a PD source is 

estimated by comparing the fingerprints in the database with 

the real-time RSS. Fig. 5 shows the framework of the location 

fingerprinting system used for this application.  

Assuming },...,{ 1 nppP   is a set of nodes deployed in the 

substation and },...,{ 1 mllL   represents the finite location 

space. Each location feature space, il  can then be represented 

by a pair of nodes Pp  and a measured signal strength 

value Rr  where },...,{ 1 prrR  . The signal strength ratio 

(SSR) is defined at each location for a unique node pair 

PPpp ji   with the constraint ji  for uniqueness. The 

SSR for receiver ip  and jp  can be computed for an 

observation measured at location )],(),,[( jjii rprpl   as 

follows;  
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5. PD Localization Models 

5.1.  Model validation procedure 
 

The overall goal of modelling is to make accurate predictions. 

In this work, the cross validation method is used for 

estimating the accuracy of PD localisation model’s 
predictions on unseen cases. The optimised model is the one 

that makes the most accurate predictions. The general idea of 

cross validation is to divide the data sample into a number 

randomly drawn, disjointed sub-samples/segments otherwise 

known as v-folds. And for a fix value of any parameter, the 

model under consideration is applied to make predictions on 

the ݄ݐݒ segment (i.e, use the ݒ െ ͳ segment as examples) and 

evaluate the error (mean squared error). This procedure is 

then applied successively to all possible choices of the 

parameter under consideration. At the end of the folds, the 

computed errors are averaged to yield a measure of stability 

of the model. These steps are then repeated for various values 

of the parameter and the value with the lowest error is then 

selected as the optimal value. This procedure is used to 

optimise the PD localisation models developed in this paper. 

 

 

5.2. K Nearest Neighbour 
 

K-nearest neighbour (KNN) [19] [23] is one of the best-

known machine learning algorithms used for function 

approximation which smoothly interpolates between known 

samples. It is an intuitive fit with the problem of inferring the 

propagation environment between arrays of sensor nodes. In 

the context of PD localization, KNN regression consists of 

mapping RSS inputs onto dual output corresponding to PD 

location in 2-dimensional space. The underlying assumption 

is that all samples in a ‘local’ region within the location space 
have similar location fingerprints. In its simplest form, KNN 

computes the location of a real-time PD as the arithmetic 

average of the coordinates of K nearest neighbours. The 

nearest neighbours of any real-time PD RSS are determined 

by means of distance similarity metric in feature space. The 

most commonly used distance metric is the Euclidean 

distance [19]. Suppose there are N location fingerprints (SSR) 

in the database expressed as },...,{ 1 mrrR   and a real-time 

SSR vector, 
T

pssS ),...,( 1  is collected from p receiving 

nodes. The Euclidean distance between real-time sample is  

and fingerprint ir  in feature space is given as follows; 

                       
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Another distance metric that can be applied to the KNN 

regression algorithm is the Mahalanobis distance [24]. Given 

the location fingerprint (SSR) vector R in the database, a 

real-time SSR vector S  and a covariance matrix  , the 

Mahalanobis distance is:  
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1

RSRSRSd
Tm
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The Mahalanobis distance is often preferred because it 

accounts for the variance of each feature and the covariance 

between features. KNN localisation of PD sources incudes 

database construction and the location estimation phases. 

Database construction comprises the collection and storage of 

known examples. Each example consists of a data point 

having PD fingerprint (i.e SSR from a source) labelled with 

its physical location coordinate. In the location estimation 

phase, KNN finds K examples in the database whose SSR 

values are closest (most similar) to the new PD observation 

in feature space (of fingerprint). In the nearest-neighbour 

calculations each fingerprint is represented as a vector of 

average SSR with entries for each receiver sensor. KNN 

prediction of PD location is based on averaging the physical 

location coordinates of the selected closest examples 

otherwise known as K-nearest neighbours. The estimated PD 

location is given by: 

 ሺݔොǡ ොሻݕ ൌ ଵ௞ σ ሺݔ௜ ǡ ௜ሻ௞௜ୀଵݕ                         (6) 

                                                                   

where ݔො  and ݕො  are the estimated coordinates. ݔ௜ ǡ ௜ݕ  are the 

coordinates of the kth nearest neighbour. 

The value of the parameter K has an impact on the 

performance of the KNN localization model. The optimal 

value of K is obtained through Cross validation described in 

section 5.1.  

The basic KNN regression described above allows all the K 

nearest neighbours in the feature space to contribute 

uniformly to PD location estimation regardless of their 

distances from the real-time sample in the coordinate space. 

The algorithm can be improved upon by using a scheme 

which weights each of the K neighbours such that nearer 

neighbours contribute more to the final location estimate than 

neighbours faraway. The weight of each neighbour is 

determined by taking the inverse square of the neighbour’s 
similarity distance from the new observation. One advantage 

of the improved KNN algorithm is its ability to smooth out 

the impact of noisy training data by taking the weighted 

average of the nearest neighbours. This enhances localization 

accuracy. The improved algorithm, called the weighted K-

nearest neighbour (WKNN), replaces (6) with: 

 ሺݔොǡ ොሻݕ ൌ σ ௜ሻ௄௜ୀଵݕ௜ݔ௜ሺݓ σ ௜௄௜ୀଵΤݓ            (7) 

where  

                                   
),(

1
2

i
i rrd

w                                (8) 

Equation (8) is the weight of each neighbour and d is the 

fingerprint similarity distance. 

 

Despite the advantages of the KNN algorithm such as 

simplicity of implementation and the facility to trade-off 

accuracy and computational complexity, issues have been 

revealed that can adversely affect its performance in PD 

localization. KNN is based on a smoothing approximation. In 

reality the locations in physical space do not perfectly 

correspond to locations in the fingerprint, or signal, space. 

Since the estimates are a function of the grid point’s position 

localization accuracy is dependent on the resolution of the 
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grid points. Unfortunately, the PD signal measured by the 

sensor nodes represents a complex, nonlinear surface which 

cannot be captured by KNN algorithm. This has motivates the 

use of an artificial neural network (ANN) due to its ability to 

accommodate highly nonlinear relationships. 

  

5.3. Artificial Neural Network 
 
Artificial neural networks (ANNs) [25] are the most 

commonly used computational learning techniques for 

solving function approximation problems. They essentially 

imitate the learning process of biological neural networks 

through the use of interconnected nodes, often called neurons. 

In its basic form, a neuron computes its output using a 

weighted sum of its inputs and its activation function. The 

activation function introduces non-linearity and robustness. 

Each connecting link between nodes is associated with a 

weight that can be tuned based on experience, making the 

neural network adaptive and capable of learning. Given 

sufficient neurons and a set of input-output data, the ANN can 

be trained to approximate any continuous function arbitrarily 

well. The inherent noise immunity of ANNs and their ability 

to learn, and subsequently recognize complex and non-linear 

relationships between input and output vectors without any 

prior knowledge of the relationship make them attractive for 

these applications. Two variants of the ANN; the multilayer 

perceptron [26] [27] and generalized regression neural 

network [28] have been developed to estimate PD source 

locations given the received signal strength of the PD traces. 

 

5.2.1 Multilayer Perceptron: The multilayer perceptron 

(MLP) is the most popular, and widely used, feedforward 

neural network [25] model for any kind of input-output 

mapping problem. In the context of PD localization, it 

consists of a nonlinear mapping of the PD RSS input onto the 

dual output variables representing the source location 

coordinates. The MLP network consists of an input layer, a 

hidden layer and an output layer as shown in Fig. 6.  
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Fig. 6. MLP model for PD localization 
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Fig. 7. MLP training procedure 

A linear activation function in the input and output layers and 

a sigmoidal activation function is used in the hidden layer to 

provide robustness against extreme values. MLP is based on 

the back propagation training algorithm [26]. During the 

training phase, the network is trained to form a set of SSR 

values as a function of PD locations.  The inputs to the 

network are the SSR values and network outputs are the 

corresponding location coordinates. Each sample is presented 

to the input and the error between the network outputs and the 

desired outputs is obtained. The neuron weights are then 

adjusted to minimize the error. The MLP training scheme is 

as shown in Fig. 7. This is an iterative non-linear optimization 

technique with an initialization stage. ݒ-fold cross-validation 

is used to determine the optimal configuration of the network. 

The original training data is randomly divided into ݒ equal-

size subsets (the folds). In each case, one of the ݒ subsets is 

used as validation data and the remaining are used for 

training. The cross-validation process is repeated ݒ  times. 

The average of the ݒ results from the folds represents the test 

accuracy of that particular network. In this work a 10-fold 

cross-validation is used. From all the networks tested by 

cross-validation the feedforward 3-4-2 structure of the neural 

network with four neurons in the hidden layer has the best 

accuracy. The Bayesian Regularization algorithm is used to 

perform weight selection and optimization. The trained 

network is employed to simulate the test (unseen) data. The 

network uses the knowledge acquired during training to 

provide interpolated values for the location coordinates of the 

test data.  

 

5.2.2 Generalized Regression Neural Network: Given 

that only a limited number of sensors will be deployed in the 

substation, then only a small training set will be available. 

This motivates the use of a probabilistic neural network, 

consequently a generalized regression neural network 

(GRNN) is proposed. This network uses a one-shot learning 

algorithm [28] [29] that, unlike MLP, does not require an 

iterative procedure for training. It is based on kernel 

regression and can approximate an arbitrary function. In this 

study, GRNN carries out a nonlinear mapping between the 

PD RSS and PD source location, drawing the function 

directly from the training data. It is consistent and its estimate 

always converges to a global minimum. The GRNN is related 

to the radial basis network and has a fixed structure with an 

input layer, a hidden (pattern) layer, a summation layer and 

an output layer that are fully connected as shown in Fig. 8.  
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Fig. 8. GRNN model for PD localization 

During training, the relationship between the fingerprints and 

the PD location coordinates is memorized and stored. In 

contrast to the MLP model, weight initialization is not 
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required. Once the inputs are presented to the GRNN the 

weight parameters are determine instantly.  The weights 

between the input and each pattern neuron are set to unity.  In 

each pattern unit, a radial (Gaussian) basis function is used as 

an activation function to calculate the output value such that 

the output from the pattern layer is given by 

 

                           ]
2

)()(
exp[ 2 i

T
i

ffff 
                    (9) 

 

where f and if  are the PD fingerprints and   is the spread 

or the smoothing parameter.  

The summation layer is subdivided into S-summation neuron 

(summation units) and D-summation neuron (a single 

division unit). The S-summation neuron determines the sum 

of the weighted outputs of the pattern layer. The D-

summation neuron determines the unweighted outputs from 

the pattern layer such that the estimated output to an unknown 

input vector is: 
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where l̂ represent the GRNN estimated ),( yx  coordinates 

of PD location associated with the observation fingerprint f

, 
il
 are the training target (location coordinates coordinates) 

and n is the number of training samples.  

The weights of the pattern neuron to D-summation neuron 

connections are set to unity, while weights of the pattern 

neurons to S-summation neuron connections are set to the 

output value of the training samples. 

The smoothing parameter  is the only free parameter in 

the GRNN network that needs to be determined. This is not 

trivial however. Too large a value of smoothing parameter 

can result in loss of detailed information in the estimated 

density. Too small a value of the smoothing parameter 

introduces disturbance caused by localized features or noise 

in the estimated density. The optimal value of the smoothing 

parameter (  = 0.14) is obtained by ݒ-fold cross-validation. 

The original training data is randomly divided into ݒ 

segments (folds). In each case, one of the ݒ subsets is used as 

validation data and the remaining are used for training. This 

process is then successively applied to all choices of ݒ 

segments and the computed errors are averaged to yield a 

measure of the performance of the model. The above steps 

are repeated for various   and the value achieving the lowest 

average error is selected as the optimal value. In this work, a 

10-fold cross-validation is used. 

 

6. Results and Discussions 

In order to validate the proposed PD localisation technique, 

the proposed technique is analysed and compared with the 

well-known techniques often used for fingerprinting 

applications: KNN and WKNN technique. The independent 

dataset collected from 32 distinct locations as described in 

section 3.2 was used to evaluate the location determination 

performance of the models. The evaluation was performed as 

emulated localisation. This means the fingerprints (ratios of 

RSS) are presented to the trained/optimised models as inputs 

and the returned location ሺݔǡ ሻݕ  estimates are compare to 

ground truth locations. Accuracy, precision and 

computational complexity were used to analyse and compare 

the models developed.  

 

6.1. Location Estimation Accuracy and Precision 
 

Results of emulated localisation of the models are given in 

Table 1. Accuracy here is given in terms of root mean squared 

error (RMSE) of location error. In this result, it was observe 

that the proposed GRNN model provides the highest accuracy 

which can be attributed to the fact that GRNN always 

converges to global minimal. GRNN model achieves RMSE 

of 1.81 m, compare to 2.12 m for KNN and 2.06 m for 

WKNN models.  ANN models (MLP and GRNN) are shown 

to be robust against noise with lower standard deviation (1.04 

and 1.07) and maximum error (3.92 and 4.38) compare to 

KNN models.  

     

Models RMSE (m) Standard 

deviation 

(m) 

75th 

percentile 

(m) 

Maximum 

error 

(m) 

KNN 2.12 1.25 2.77 5.59 

WKNN 2.06 1.29 2.95 4.67 

MLP 2.07 1.04 2.86 3.92 

GRNN 1.81 1.07 2.44 4.38 

Table 1. Model location accuracy 

 

To provide a more detailed analysis, error distributions of the 

models performance is given in Fig. 9. This result is used to 

explain the precision performance of the PD localisation 

models.  In these results, MLP and GRNN provide the highest 

precision performance, achieving approximately 83% and 87% 

location precision within 3 m respectively.  This implies that 

87 out of 100 PD locations were estimated with error distance 

not greater than 3 m. KNN and WKNN models show lower 

location precisions of 78% and 77% within 3m. Moreover, 

when the 75% of location error is considered as shown in 

Table 1, GRNN has error not more than 2.44 m. 

 

Fig. 9. CDF of model localization errors 

The boxplot in Fig. 10 reveals the variation of localization 

error across the models. GRNN model shows a lower 

interquartile range with its localization errors skewed to the 

lower error bound, compared to KNN, WKNN and MLP 

models.  
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Fig. 10. Boxplot of model localization errors. 

 

The application of KNN to PD location using radio 

fingerprinting limits the accuracy of the location estimate to 

the resolution of the grid points and the size of the area 

considered. It performs well for small areas, but for larger 

grids, the computational burden grows with size and the 

accuracy is often compromised. 

 

6.2. Computation Complexity 

 
The computational complexity of the localisation models is 

assessed based on the dimension of the SSR vectors ሺܲሻ, the 

number of training or reference points (M) and the parameters 

of the algorithms used. KNN model creates a database of all 

training samples and in the localisation phase, it searches for 

nearest neighbours by comparing the distances between the 

test point and all training data. For every request of 

localisation, the computational complexity is therefore ܱሺܯܲܭሻ. Given the number of hidden layers ሺܪሻ, number of 

neurons for each hidden layer ሺܨሻ  of ANN and with the 

assumption that the evaluation of the activation function is 

negligible, the computational complexity for the generalisati

on of artificial neural network, is ܱሺ݉ܽݔ ሼܪǡ ܲሽଶ ൈ  ሻ. It canܨ

be seen that the computational complexity of the KNN-based 

localisation model grows with increase in ܲ ܯ ,  and ܭ . 

However, the complexity of our proposed model grows with 

only an increase in ܲ since it has a fix structure. Therefore, 

our GRNN model is of low complexity compare to KNN 

models especially in cases where ܯ ب ܲ. 

 
     6.3. Impact of Number of Antennas  
 

Radio fingerprinting technique relies on the unique RF 

signature created at each location in the propagation space. 

The number of possible unique signatures in turn depends on 

the number of receiving antennas. In order to evaluate the 

impact of number of antennas on the localisation accuracy, 

the data collected as describe in section 3.2 is used. First, SSR 

values on one antenna was used to infer PD locations using 

each model developed in this work. We then used SSR values 

on two antennas and finally SSR values on the three antennas. 

Fig. 11 (a-d) shows the impact of the number of receiving 

antennas on PD localization accuracy with each of the 

algorithms used in this paper.  It was found that for each 

algorithm, there is a steady improvement in localization 

accuracy as the number of antennas increases from 1 through 

3. In GRNN model the median and the 75th percentile 

localization error were reduced by 42 % and 34 % 

respectively when 3 antennas were used instead of 2. This 

indicates that in practical reality where a concentration of 

sensors would be deployed in electrical substation for PD 

localisation there would be a corresponding increase in 

localization accuracy. 

 
(a)  KNN 

 
(b)  WKNN 

 
(c)  MLP 
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(d)  GRNN 

Fig. 11. Location error with varying number of antennas 
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8.   Conclusion 

A proof of concept WSS for condition-based monitoring 

in an electrical substation has been described. Specifically, 

we focus on the performance of machine learning algorithms 

to improve the performance of this distributed sensing 

application.  The proposed algorithm is based on the use of 

PD signal strength ratio as location fingerprint rather than the 

absolute RSS. Two variants of the ANN learning algorithm 

(MLP and GRNN) are used to model the nonlinear 

relationship between the location fingerprints and the location 

coordinates of the PD source. The performance of the MLP 

and GRNN models have been evaluated and compared to the 

KNN models. Results show that MLP and GRNN models 

yield superior performance. The performance of the GRNN 

model (RMSE of 1.81 m) is of particular interest since it can 

function with a relatively small training set; and does not 

require computationally expensive training (iterative back 

propagation). As such particularly suitable for this 

application which uses computationally constrained hardware. 

Furthermore, it fits well with contemporary trends in Internet 

of Things (IoT) and Big Data towards edge processing. The 

algorithm’s performance demonstrates that PD localization 
with adequate accuracy at reduced computational cost is 

indeed achievable. The results presented in this paper were 

obtained using only signal strength measurements recorded 

by 3 antennas. Future work will exploit and integrate other 

signal parameters for improved PD localization. 
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