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Abstract

In this paper, we use the truncated Euler-Maruyama (EM) method to study the finite time strong
convergence for SDEs with Poisson jumps under the Khasminskii-type condition. We establish
the finite time L' (r > 2)-convergence order when the drift and diffusion coefficients satisfy the
super-linear growth condition and the jump coefficient satisfies the linear growth condition. The
result shows that the optimal £"-convergence order is close to 1. This is significantly different
from the result on SDEs without jumps. When all the three coefficients of SDEs are allowing to
grow super-linearly, the £7(0 < r < 2)-convergence results are also investigated and the optimal
L"-convergence order is shown to be not greater than 1/4. Moreover, we prove that the truncated
EM method preserves nicely the mean square exponential stability and asymptotic boundedness
of the underlying SDEs with Piosson jumps. Several examples are given to illustrate our results.

Keywords: Stochastic differential equations, local Lipschitz condition, Khasminskii-type
condition, truncated EM method, Piosson jumps.

1. Introduction

Due to the broad applications in modeling uncertain phenomenon, stochastic differential e-
quations (SDEs) driven by Brownian motions have been attracting lots of attentions [} 2} [3].
When some unexpected events happen, some jumps may be needed to model the effects of those
events. For example, a breaking news after the close of the stock market may lead to a huge
difference between today’s closing price and tomorrow’s opening price. To take both the con-
tinuous and discontinuous random effects into consideration, SDEs driven by both Brownnian
motions and Poisson jumps are often employed as a generalisation of the SDEs only driven by
Brownian motions.

Despite the wide applications, the explicit solutions to SDEs are hardly found. Therefore,
to construct some efficient numerical methods is of extremely important. The series works of
Higham and Kloeden [4} 3, [6]] studied some implicit methods for SDEs with Poisson jumps.
In their papers, the strong convergence, the convergence rates and stability of different implicit
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methods were proposed and investigated for some SDEs, whose drift coefficient satisfies non-
global Lipschitz condition, and both the diffusion coefficient and the coefficient for the Poisson
jumps are global Lipschitzian. When the global Lipschitz condition on the diffusion coefficient
is disturbed, the tamed EM and the tamed Milstein methods were proposed for SDEs driven
by the more generalised process, Lévy process [7, 8]. The taming techniques were original
proposed in [9] for the construction of explicit methods for SDEs with non-globally Lipschitz
continuous coefficients. As indicated in [[10], explicit methods have their own advantages on the
relatively simple structure and the avoidance of solving some nonlinear systems in each iteration.
Therefore, the studies on explicit methods for SDEs with non-globally Lipschitz coefficients have
been blooming in recent years. Sine and cosine functions were employed in [11] to construct
some explicit methods for SDEs with both the drift and diffusion coefficients growing super-
linearly. The taming techniques were modified and generalised in [12] and [13]]. The truncated
EM method was proposed in [14} [15]. The partially truncated EM scheme can be found in [16]]
and [[17].

In this paper, we borrow the truncating idea to propose the truncated EM method for SDEs
with Poisson jumps. The main contributions of this work are twofold. Firstly, all the drift
coeflicient, the diffusion coefficient and the coefficient for Poisson jumps are allowed to grow
super-linearly. To our best knowledge, this is the first work to study an explicit numerical method
for SDEs with all the three coefficients that can grow super-linearly. Secondly, both the finite time
convergence and asymptotic behaviours of the method are investigated.

It should be noted that the truncated EM scheme for SDEs with the global Lipschitzian pure
jumps was studied in [18]. Other numerical methods for SDEs with Poisson jumps or Lévy
process were also proposed and investigated in [19, 20} 21,22] 23]], we just mention some of them
here and refer the readers to the references therein. For the detailed and systemic introductions
to numerical methods for SDEs and SDEs with jump, we refer the readers to the monographs
[24] and [25].

This paper is constructed as follows. In Section[2] we introduce some necessary mathematical
preliminaries. Section 3 contains the main results on the finite time convergence. The asymptotic
behaviours, stability and boundedness, of the numerical solutions are presented in Section 4.
Several examples are given in the Section 5. Section [6] concludes the paper and points out some
future research.

2. Mathematical Preliminaries

Throughout this paper, unless otherwise specified, let (Q,F,[P) be a complete probability
space with a filtration {F;},>¢ satisfying the usual conditions (i.e., it is increasing and right con-
tinuous while 7 contains all P-null sets). Let E denote the probability expectation with respect
to P. Let B(r) be an m-dimensional Brownian motion defined on the probability space and is
ﬁ—adapt_gd. N(2) is a scalar Poisson process independent of B(¢) with the compensated Poisson
precess N(f) = N(t) — At, where the parameter A is the jump intensity. If A is a vector or matrix,
its transpose is denoted by A”. If x € R?, then |x] is the Euclidean norm. If A is a matrix, its trace
norm is denoted by |A| = /(AT A). For two real numbers a and b, we use a V b = max(a, b) and
aAb = min(a, b). For a set G, its indicator function is denoted by I;. Moreover, £ = L"(Q, 7, P)
denotes the space of random variables X with a norm [x|, := (E|X [ < oo, for r > 0. In what
follows, for notational simplicity, we use the convention that C represents a generic positive
constant, the value of which may be different for different appearances.
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Consider a d-dimensional SDE with Piosson jumps:

dx(t) = f(x(2))dt + g(x())dB(t) + h(x(t"))dN(t), t=>0. 2.1)
with the initial value x(0) = x, € R?, where x(+") denotes lim,_,,- x(s). Here, f : R¢ — R? is the
drift coefficient, g : RY — R is the diffusion coefficient, 1 : R — R is the jump coefficient.
3. Finite time convergence

3.1. Convergence rate of the partially truncated EM method in L' (r > 2)

In order to discuss the convergence order of the truncated EM method in £ for r > 2. We
assume that f and g can be decomposed as f(x) = Fi(x) + F(x) and g(x) = G{(x) + G(x), where
Fi,F:RY - R? and G,G : RY — R™". Moreover, the coefficients F, G, F; ,G and h satisfy
the following conditions.

Assumption 3.1. There exist constants Ly > 0 and y > 0 such that

IF1(x) = FiO)I V G1(x) = GiO)| V 1h(x) = h(y)| < Lilx =)l,  Vx,y € RY, (3.1
IF() = FOIV IG(x) = GO < Li(1 + " + yM)Ix =, Y,y € RY, (3.2)

where the parameter y is called the super-linear growth constant. By Assumption [3.I] we can
derive that there exists a positive constant K| such that

IF10 V1G] V (0] < Ki(1 +1x]),  Vx € R, (3.3)
which implies that Fj, G| and & satisfy the linear growth condition. Similarly, we have

IFQOIV IG)| < QL1 +FO)] + GO, Vx| = 1. (3.4)

Assumption 3.2. There exists a pair of constants ¥ > 2 and L, > 0 such that
T r-1 2 2 d
(X =) (FX) = FO) + ——=160) - GOI" < Lolx =, ¥ x.y €R% (3.5
By Assumption[3.2] we can derive that for any r € (2,7)

-1
x=WI(fx) = fO) + FT|g<x> - g < Lylx -y (3.6)

L+(r=1)(F-1)
F-r

where [y = 2L, + L, + (see [16]).

Assumption 3.3. (Khasminskii-type condition) There exist constants p > 7 and K, > 0 such that

p—1
xTF(x) + ”T|G(x)|2 <K(1+x%), VxeR% (3.7)
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By Assumption [3.3] we also have that for any p € (2, p)

p

-1
X f(x) + 5 lg(O”* < K3(1 + |x), (3.8)

where K3 = 2K; + K> + w (see [16]).

The truncated idea is to deal with super-linearly growing coefficients. In the viewpoint of
the finite time convergence, the linearly growing coefficient does not cause any problem to the
EM scheme and hence there is no need to truncate it [16]]. In our truncated EM method, we only
truncate the super-linearly growing terms, that is /" and G. To define the truncated EM scheme,
we first choose a strictly increasing function u : R* — R* such that u(n) — o0, as n — oo and

sup |F(x)| V|G(x)| < u(n), Vn=>1. (3.9

|x|<n

The inverse function of u is denoted by u~!. For some & € (0, 1/4], we define a strictly decreasing
function ¢ : (0, 1] — (0, c0)

@A) =hA™, YA€ (0,1], (3.10)
where & > 1 is a constant. Hence, we get

lim ¢(A) = oo and AYo(A) < h, VYA€ (0,1]. (3.11)

For a given step size A € (0, 1], let us define a mapping m, from R to the closed ball {x € R? :
xl < ' (p(A))} by

7 = (ol A A
We set x/|x| = 0 when x = 0. We then define the partially truncated functions:
Fa() = F(ra(x),  Ga(x) = G(na(x)), Vx e R
fa) = Fi(x) + Fa(x) and  ga(x) = Gi(x) + Fa(x), VYxeR"
It is useful to see that
IFA(X)| V [Ga(®)] < @(A), VxeRY, (3.12)

which means that F5 and G, are bounded while F and G may not. The following lemma shows
that the truncated functions maintain the Khaminskii-type condition nicely (see Lemma 2.5,

126]).
Lemma 3.4. Let Assumption[3.3|hold. Then, for all A € (0, 1],

xTFa(x) + I%HGA(x)P S2K[1 A T/ @)L + [x%),  Vx e RY

For any p € (2, p) , we also have

p—1

3 lga(O? < Ka(1 + [x?),  VxeRY, (3.13)

4

x! fu(x) +




2 4 (1)
where K; = 2K; + 2K>[1 A 1/~ (@(1))] + %1;@1) (see [16]). From now on, we will fix
T > 0 arbitrarily. Let M be a positive integer. We take step size A = T/M € (0, 1]. For any

0 <t<T,wedefine
k(1) = [t/AJA,

where [7/A] denotes the integer part of //A. Then we form the discrete-time truncated EM
solutions Xa(#;) = x(#;), for t; = kA by setting XA(0) = xo and computing

Xa(tie1) = Xa(t) + faXa)A + gaXa(G)AB + M(XA(G)AN;, 0<k<M -1, (3.14)

where AB; = B(tyy1) — B(ty), AN, = N(tx+1) — N(t;). For O <t < T, it is consentient to use the
continuous-time step process ¥ (f) which is defined by

M-1
FA0) = ) Xat) Ty (0, (3.15)
k=0
where I is an indicator function. The other continuous-time process is defined by

xat) = %o + fo Fa(Ea(s)ds + fo ¢a(Ra()dB(s) + fo h(EA()AN(S). (3.16)

It is easy to see that xa(f;) = Xa(tx) = Xa(fx). Moreover, xa(f) is an Itd process satisfying Itd
differential

dxa(t) = fa(Xa(D))dt + ga(Xa(D))dB(1) + h(Xa(17))dN(2).
We first state a known result (see [7]]) as a lemma.

Lemma 3.5. Let Assumption[3-1|and[3.3|hold. Then the SDE (2.1 has a unique global solution
x(t). Moreover, for any p € (2, p),

sup E|x(®)]P < oo, VT >0.
0<t<T

In order to bound the p-th moment of the truncated EM solution, we need the following lemma.

Lemma 3.6. Forany A€ (0,11and0<t<T,
E(lxa() = TP [Fa) < C((@Q)P AP + A)1 +1Ta@P). p =2, (3.17)
E(|xa(t) = RO |Fan) < Clp(M)PAPP(1 + %2 (07), 0 < p<2. (3.18)
Proof. Fix any p > 2. By Assumption[3.1]and (3:12)), we have

E(1xa(t) = 2| Faan) (3.19)

= (| f faGEa(s)ds + f ga(Ea()dB(s) + f h(Ea()ANG)| |Facr)
(1) (1) (1)

IA

C(E(i f( )fA<xA(s>)ds|ﬁlm)+E(| f( )gmA(s))dB(s)l’j Feaw) + | f( )h()"CA(s))dN(s)|ﬁ

Tm)))

< c((so(A»ﬁ)Af’/2 + APP(1 + 50 (017) + | f h(Ea(s)AN(s)|” |m)),
(1)
5



where C is a generic constant, the value of which may change between occurrences.

characteristic function’s argument [27]], for A € (0, 1], we have
EIANi? < coA,

where ¢ is a positive constant which is independent of A. Therefore,

E(| f( r’) hGEAGHANS)| [Fran) = E(xakODAN [ Frqr)
= [hCa(KODIPEIANI? < C(1 + [ZaDI)A.
Inserting this into (3.19) and combing with A?/? < A gives
E(Ixa(t) = Fa0P [F) < C@(A)PAP? + CAL + (%2 (0)1P)
< C((@(A)P AP + A)(1 + [ZA(DIP).

When 0 < p < 2, the Jensen inequality gives

E(1xa(t) — 0P |[Frn) < [E(ra0) = P |F0)|
< (@A + A" (1 + 1m0
< C((@(A)P AP + APPY(1 + 54 (1)IP)
< Cp(A) NP1 + 17 (O1).
Thus, we complete the proof. O

Lemma 3.7. Let Assumption[3.1|and[3.3| hold and let p € (2, p) be arbitrary. Then

sup sup Elxa()lP <C, VT >0,
0<A<1 0<t<T

Proof. Fix any A € (0,1] and T > 0. By the It6 formula and (3.13), we have

p—1

Elxa@I” = Ixl” < E fo Plra@P (x5 () a(Ea(9)) +

+ AR( fo ¥a(s7) + GEAGI = Ixa(s)IP )ds

p

<E fo Pla@P 2 (E1 () fa(Ea(s)) +
+E fo Plxa()IP 2 (xals) = Xa(5))” fa(Xa(s))ds

# AB( [ ) + hE GO = (6O s

Sll+12+13+14,

Iga(Ea()I)ds

-1
S lea@a(s)F)ds

By the

(3.20)

(3.21)

(3.22)



where
L =E fo PRAxA()IP (1 + [Za(8)P)ds,
L=E fo PIa()IP21xa(s) = Ea(SIIF1(Ea(s)ds,

I; = E]; Plxa()IP2xa(s) = Fa(S)IFa(Ea($))lds,

and
3
1o = ([ Ias7) 4+ MGG = (s WP
0
By the Young inequality
-2 2
a’ b < p—a” + —=bP, Va,b>0,
p
we have

I < C(1 + f Elxa(s)P + ]E|xA(s)|P)ds).
0

Similarly, we can show that

L=C(1+ f (Elxa(s)I” + ElZa(s)l)ds).
0

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

By Assumption 3.1} it is not difficult to prove that there exists a positive constant ¢; such that

lxa(s™) + M(Xa(NI = lxa(sIP < er(1 + Ixa(sOIP + [xalsIP).

Hence, we have
!
L<c(l+ f Elxa()l + Elxa(s)|)ds).
0
Moreover, the triangle inequality gives
!
I3 = Ef PIxa($)P?|xa(s) = Xa(IIFa(Xa()lds
0

< CE]; XA 2 |xa(s) = Za()IIFA(Ra(s))lds

+ CEfo 1xa(8) = Za()IP~*[xa(s) = Xa(SIIFa(Ea(s))lds

=: [31 + 132.

(3.29)

(3.30)

(3.31)



Due to Lemma[3.6] (312) and A'/4¢(A) < h, we have
Iy = CE fo A 2xas) — Ea(MFACEA(s)lds
<C fo E [IEa ()P IF A (DIE(1xa(s) = £a(9)[Faco)| ds
< Co(d) fo ' E(1Za ()" )p(MA(1 + |Za(5))ds
< Clp(n)y’A'? fo 1+ Bl s
< CA05-29) fo t(l + E|Za ()P Dds
< Cfot(l + E|xa()|P)ds.
By (312), we get
Iy = CE fo ' 4a() = B bxa(s) — EaOIEAGA()s

!
< o) [ Eixats) - 5a(o)ds.
0
It is easy to deduce that when p > 2, we have
pe < (p—-1J/2,
for € € (0, 1/4]. This means
AP=D/2-pe <1.
For 2 < p < 3, Lemma[3.§ gives
E(jxa(5) = S [Fag) < Co@)P ™ APV2(1 4+ [7o(5)1P 7).
Hence, by (333), (3:34) and (3.33), we obtain

I3z < C(@(A)P AP D21 + Elza(s)P™)
< CAPDIZPe(] 4 BIzp(s)Ph)
< C(1 + E[ZA(s)IP).

Similarly, for p > 3, we have

E(|xa(s) = Ea ()" [Fac) < Co@)P T AP 4 YT+ ()P,

Substituting this into (3.33) and using (3:39), we also have

o < C(@(A)P APV 4 o(A)AY(1 + EIZA(s)IP)
< C(1 + E|xa()IP).

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

(3.37)



Hence, by (331), (3:32), (3:36) and (3-37), we have

I < C(l + f E|%a(s)l"ds). (3.38)
0

Substituting (3:27), (3:28), (3:30) and (3.33)) into (3:22), we get

!
Elal” < ¢( f (1 + Elxa(s)I” + Elza(s)|")ds)
0
3
< C(l +f sup EIxA(u)Ipds).
0 O<u<s
Then, we have
!
sup Elxa(w)l” < C(1+ f sup Elxa(u)l’ds).
O<u<t 0 O<u<s
The Gronwall inequality yields
sup Elxa(m))” < C.

0<u<T
75 As this holds for any A € (0, 1] and C is independent of A, we obtain the required assertion. O
The following lemma shows that xx(¢) and XA (¢) are close to each other in the sense of £7.

Lemma 3.8. Let Assumption[3-1|and[3.3|hold . Then, for all A € (0, 1] and t € (0,71,
Elxa(t) - 50l < C((@A)Y AP +A), 2<p < p, (3.39)
Elxa(f) — 20O < C(p(A)PAP?, 0< p<2. (3.40)
Consequently, for any p > 0,
EE(I) Elxa(t) — xa@IP = 0. (3.41)

Proof. For any p > 2, by Lemma[3.7} we have
sup sup Elxa(0)f < C. (3.42)

0<A<1 0<t<T

Inserting (3:42) into (3.17) gives (3:39). For any p € (0, 2), the Holder inequality implies

Elxa() - a0 < (Blea() - 5a0?)”
< (@A + A)" < C((AY AP + APP)< Clo(A)) A",

Thus, we obtain (3.41)) from (3:39) and (3.40). O
Let us propose two lemmas before we state our main results in this paper.

Lemma 3.9. Let Assumption[3.1|and[3.3|hold. For any real number n > |xo|, define the stopping
time

T, = inf{r > 0 : |x(¢)| = n}.
Then
C
P(r, <T) < —. (3.43)
n
9
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Proof. The proof is given in the Appendix. O

Lemma 3.10. Let Assumption[3.1|and[3-3]hold. For any real number n > |xo|, define the stopping
time,

Pan =1inf{t > 0 : |xp(6)| = n}.
Then

C
Plopn <T) < o (3.44)

Proof. The proof is given in the Appendix. O
Now, we show one of our main results in our paper. The proof is similar to that of Theorem
3.6 in [28]], we only highlight the different parts.

Theorem 3.11. Let Assumption 31| 3-2] and [3-3] hold and assume that there exists a number
p € (2, p) such that

p>{+yr (3.45)
Let r € [2,F) be arbitrary. Then for any A € (0, 1],
Elx(T) = xa(T)I" < C((u (@(A) P~ 4 (M) AP + AP7IP) (3.46)
and
Elx(T) = (1) < C((u (p(2)) ™7™ 4 (p(A)" A2 + APIP), (3.47)
In particular, we define
u(n) = Lyn™, n>1, (3.48)

with Ly = 2Ly + |F(0)| + |G(0)| and let

@(A) = hA™®,  for some &€ (0,1/4] (3.49)
to obtain
Elx(T) — xa(T)|" < CAlEP=U+YIN/(LPIAI(1-2€)2]A[(p=yr)/ P] (3.50)
and
Elx(T) — Zo(T)|" < CAE@=0+nn/AIAr(=26)21A[(p=yn)/p] (3.51)

forall A € (0,1].

Proof. Let A € (0, 1] be arbitrary. Let ex(f) = x(t) — xa(?) for t > 0. Fix a number g € (r,7),
(3:43) means p > (1 + y)q. For any integer n > |xo|, define the stopping time

o, =inf{t > 0 : |x(®)| V |xa(?)| = n}.
10



By the It6 formula, we get that for0 <¢ < T

Elea(t A op)I"

1T r=2( T - r—1 - 2
<E rlea() 2 (eR(X(s) = faFal) + ——18(x(s)) =~ ga(Ta(s))F s
0
tAC,
+ A f (lea(s) + (h(x(s7)) = W(Ea(sIDI = leals)I")ds
0

= Ji+J. (3.52)

Let us estimate J, first. Using Assumption [3.1] gives

(™) = xa(s) + A7) = h(Ea(s)I
< 277 (x(s7) = xa ()l + (7)) = h(Ea()I)
< 277N (x(s7) = xa()" + Lilx(s7) = Ea(o))")

< ea(|x(s7) = xa($)I" + [xa(s) = X)),
where ¢; = 2"71(1 + L{2"~") > 1. Hence, by Lemma we have
: T
Jr < Aer — l)f Elea(s A op)|"ds + Acy f Elxa(s) — xa(s)|'ds
0 0
!
<Acr-1) f Elea(s A o)l'ds + C(A72(@(8)) + A). (3.53)
0

By the elementary inequalty, J; can be decomposed into two parts denoted by J; = J3 + Ja,
where

J3=E fo n rea(s) (e ()(F(x(s) = Fxa(5))
-1
+ Lo lg(x(s) = glra(s)))ds (3.54)
and

A,
Ji=E fo rlea(s) 2 (en((F(xa(s) = falFa(5)))

(r—=D(g-1)

S 8 = gal(sIP)ds: (3.55)

By (3.6), we have

INO),
J3 < rLgf Elea(s)|"ds. (3.56)
0

11



The elementary inequality gives

5 <E [ el o)) = falrs )

(r—1(g-1)
" (g-1r

+E fo " Heal) (€S fa(xals)) — faEa(s))

—D(g-1
L DD a5 - gaGia(o)P)ds
(@-—r)

=: J41 + J42. (357)

lgCxa(s) = gaxa(s)F ds

In the same way as Theorem 3.6 in [28]] was proved, we can show that

Jn < C( f " Blea(ds + (u” @Ay 17 (3.58)
0

and

(p-ynlp

A, T
s [ Bleatoras+ € [ (Bl - sl )
0 0

(p—ynlp

tAC,
<C f Elea(s)"ds + C((@(A)yP" P70 AO3Pr0m 4 )
0

e
<C f Elea(s)lds + C((@(A)) A7 + AP7/P), (3.59)
0
where we use Lemma[3.8] and the fact that
pr_ r p > 2.

p—yr p-vyr
Inserting (3:38)) and (3.39) into (3.57), we have

Jy < C( f Elea(s A o)l'ds + (™ (@A)~ 4 (&) A2 + APTIP). - (3.60)
0

Combing (3:53), (3:36) and (3.60), we have

Eleatt A o)l < C( fo " Elea(s A clfds + - p(a) -1
+(@(A) A2 + A(p—w)/p)_
The Gronwall inequality implies
Elea(T A ou)l” < C((u™ (@A) 717 4 (&))" A" + AT7),

Using Lem and 3.10] and letting n — oo gives the desired assertion (3:46). By (3.46)

s and Lemma 3.8 gives the another assertion (3.47). Recalling (3-48)), then ! (x) = (x/Ls)"/*7.
Substituting this and (3:49) into (3.46) gives (3:30). Similarly, we can get (3.31)). Thus, the proof
is complete. O

The following corollary reveals the optimal £"-convergence rate of truncated EM method.
12
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Corollary 3.12. Let Assumption [3.1] [3.2] hold and suppose that Assumption [3.3] holds for all
D € (F,00). Let u and ¢ be defined in (3.48) and (3.49). Then, for any

rel2,7), pe(+yrvVvrp) and ec(0,1/4], (3.61)
E|x(T) — xa(T)|" < CAU=28)/2]Al(p=yr)/p] (3.62)

and
EIx(T) — xA(T)" < CAUU=26)/21A(p=yn)/p] (3.63)

Proof. We choose p sufficiently large such that

(I +yr
2

b (3.64)

which means
ep-+y)n/(A+y)=r(l-2g)/2.

By and (3:37)), we obtain and (3.63). O

Remark 3.13. Replacing condition (3.43), that is p > (1 +y)F, by a weaker one p > (1+y)r VvV r
does not affect the results in Theorem[3.11} But, this small change will make the choice of p more
flexible in simulation.

Remark 3.14. The Corollary B12] shows that the order of L'-convergence of truncated EM
method for SDE @) namely [r(1 —2&)/2] A [(p — yr)/p], is close to 1. This is almost optimal
L"-convergence rate, if we recall that under the global Lipschitz condition the classical EM
method has order 1 of L"-convergence. It should be mentioned that this is significantly different
from the result on SDEs without jumps. We already known that for any r > 2 (see [28]])

EIx(T) — xa(T)" < CA™ 72972,

which means that the L"-convergence order is close to r/2 when there is no jumps in SDE 2]).
In fact, this difference is caused by the following reason: all moments of the Poisson increments
ANy = N((k + 1)A) — N(kA) have the same order A (see @)}, while the Brownian increments
ABy = B((k + 1)A) — B(kA) have different orders, namely E|AB;|*" = o(A") and E|AB*™' = 0.
These properties eventually lead to the differences in the convergence order between SDEs with
and without jumps.

3.2. Convergence and convergence order of the truncated EM method in L7(0 < r < 2)

In this subsection, we discuss the convergence and convergence rate in L (0 < r < 2) un-
der the assumption that the drift, diffusion and jump terms behave like a polynomial. For this
purpose, we first impose the following assumptions.

Assumption 3.15. There exists a positive constant K, such that

LFO) = FOIV 1) = gV h(x) = h(D] < Kylx =), Y,y € R MV Ii<n  (3.65)
13
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Assumption 3.16. There exists a constant K > 0 such that
2xT F(x) + 1801 + A2xTh(x) + h(x)?) < K1 + |x?), Vx e R (3.66)
We also give a known result as a lemma (see [7]).

Lemma 3.17. Under Assumption[3.13|and[3.16} the SDE (2.1)) has a unique global solution x(t),
moreover,

sup Elx(1)? < 0o, YT > 0. (3.67)

0<t<T

In this subsection, all the three coeflicients of the SDE are allowed to grow super-linearly. Hence,
we have to truncate the three coefficients. Similarly, we first choose a strictly increasing function
u: R — R* such that yu(n) — oo, as n — oo, and

sup [f(0)] V 1g(0l V [A(x0)] < p(n),  Yn = 1. (3.68)

|x|<n

The inverse function of u is denoted by u~!. We choose a strictly decreasing function ¢ : (0, 1] —
(0, o) such that

lim o(A) = co  and Oo(MAY* <1, YA€ (0,1]. (3.69)

For a given step size A € (0, 1], the truncated functions are defined as below
fa() = fra(x),  ga(x) = g(ra(x)) and  ha(x) = h(xa(x), VxeR,
where 7, is defined as the same as before. It is useful to note that
[faGI V Iga(l V [ha(0)] < @(d),  Vx € RY. (3.70)

The following lemma also shows that the truncated functions preserve the Khaminskii-type
condition. The proof is given in the Appendix.

Lemma 3.18. Let Assumption[3.16|hold. Then, for all A € (0,1],
2xT fa(x) + 1ga (O + A2xT ha(x) + 1ha()?) < 2K(1 + |x]?), VxeR? (3.71)
where K = K[1 A 1/u~ (o(1))].

Let M, XA(0), AB;, , AN, and xx(7) be the same as before. We now define the discrete-time
truncated EM scheme

Xa(trr1) = Xa(t) + fAXA@)A + gaAXa@))ABy + ha(Xa(G))AN,, 0<k<M-1. (3.72)

The continuous-time form is defined by

xA(t)=xO+f0fA(J‘CA(S))dS+f0gA()?A(S))dB(SHfOhA(XA(S_))dN(S)- (3.73)

In order to state our main results, we first give some useful lemmas.
14
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Lemma 3.19. Forany A € (0,1] and t > 0. Then

Elxa(t) = XA < Cple(A)PA,  p>2, (3.74)
Elxa(d) = Fa(0)IP < Cp(p(A)PAP2, 0 < p<2. (3.75)

Consequently,
iirr(l) Elxa(d) — xa(OIP =0, V> 0. (3.76)

Proof. Fix any A € (0,1], r > 0 and p > 2. There is an integer k > O such that #; < ¢ < #;,;. By
Assumption [3:T]and (370), we have

Elxa(f) — Za()I? (3.77)
p p ﬁ)
)

< E

)
>

+E +E

f ha(Za(s7))dN(s)

Ik

f ga(xa($))dB(s)

73

f Sa(Ea(s))ds

IN
)
>

f ha(Xa(s™))dN(s)

Ir

t t
AIE f FaEa(o)P ds + APDPE f lga(Ea(s)IP ds + E
1y Ik

)

where C; is a generic constant. The property of Poisson increments implies

APP(p(A)Y + E

IN
)
>

f ha(Ea(s™)AN(s)

Tk

b

E f ha(Za(s NAN(s)| < (@(A)PEIANI?

I

< co(p(M)) A
Inserting this into (3-77)) and recalling p > 2 gives
Elxa(n) = a0 < Cplp(A)"A.

Noting from (3:10) that (p(A))?A = (p(A))PAY2AV? < Al/2 we obtain (3.76) form (3.74).
For 0 < p < 2, we have

Elxa(f) — 220 < (Ele(t) - xA(;)|2)ﬁ/2
< (Cate@a)” = Cotganar.

Thus, the proof is complete. O
The following lemma reveals the boundedness of the second moments for the truncated EM
solutions.

Lemma 3.20. Let Assumption and[3.16|hold. Then

sup sup Elxa(0)*> <C, VT >0. (3.78)
0<A<1 0<t<T

15
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Proof. Fix any A € (0, 1] and T > 0. By the It6 formula and Assumptionrf_EL we have
Elxa(f® < Elxol* + E fo t (228 () a(Ea(s) + Iga(Ea(s)P)ds
+ AR fo t (2xa()" ha(Ea(s)) + Iha(Rals™)P)ds
<Elxf +E fo t (228 () fa(Ea () + Iga(Ea(s)P)ds
+AE fo l (225 (A (Ea(s7)) + ha(Ea(s )P )ds + Jy
< Elxol* + 2K fo l (1 +El=a())ds + Ji, (3.79)
where
i =E fo t (20xa(5) = %a() fa(Fa(8)) + 2A(xa(5) = Za(5))" ha(Fa(s7))ds.

By Lemma[3.19] (3.68) and (3.69), we have

J1 <2(2+ Dp(A) f Elxa(s) — Xa(s)lds
0
<2+ DTC(e(A))AY? < C.

Inserting this into (3.79) and using Lemma [3.19] gives
!
Elxa(0)]* < C + 2K f E|xa(s)[*ds.
0
Hence, we have
_ 15
sup Elxp(u)]* < C +2K f sup Elxa(u)’ds.
0<u<t 0 O<u<s

The Gronwall inequality yields
sup Elxa(u)® < C.

0<u<T

Thus, we complete the proof. O
As the proof is in a similar way as Lemma [3.10] and 3.T1] were proved, we also have the
following Lemma.

Lemma 3.21. Let Assumption[3.15|and[3-16| hold. For any real number n > |xol, then

C C
P(r,<T)<— and P(pp,<T)<—, (3.80)
n n

where T, and pp,, is the same as before.

Now, let us discuss the convergence of the truncated EM method for SDEs with Poisson jumps.
16
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Theorem 3.22. Let Assumption[3.13and[3.16 hold. Then, for any r € (0,2)

iing) Elx(T) = xa(T)" =0 (3.81)
and
iin(l) Elx(T) — xA(T)|” = 0. (3.82)

Proof. Let 7,,, pa . and e () be the same as before. We set 0, = 7, A pa,. Applying the Young
inequality, we have that for any § > 0,

Elea(T)" = E(lea(T)I g, 7)) + E(lea(T)I g, <1 )

A 70 2 2-r
< E(lea(T A a0)") + FEea(P + 5= POan < T). (3.83)
By Lemma[3.17]and 3.20] we have
Elea(T)P* < 2E|X(T)I? + 2E[xA(T)” < C. (3.84)
Using Lemma[3.21] we obtain
C
POpn <T)<P(r, <T)+Ploan <T) < . (3.85)
n

Inserting (3.84) and (3.83) into (3.83), we get

) . Cr6 C2-p
Elea(T)I" < Elea(T A Ol + - topgian

Now, let £ > 0 be arbitrary. We can choose ¢ sufficiently small such that
Cro ¢
—_ S -
2 3
and then choose n sufficiently large such that

C2-r) <8

25r/@n < 3
We may assume that A* is sufficiently small for ' (¢(A*)) > n. In the same way as Theorem 3.5
in [14] was proved, we can show that for all A € (0, A*]

Elea(T)I* < CA,

which implies
r &
E(lea(T A Oa)l") < 3

Hence, we obtain the required assertion (3.8T). Combining this with Lemma (3:.19) gives (3-82).
Thus, the proof is complete. O
For the purpose of getting the convergence order at time T, we need some additional condi-
tions.
17



Assumption 3.23. There exists a constant Ly > 0 such that

20x =N (Fx) = fO)) + Ig(x) — g
+24(x = )" (h(x) = h(y)) + Ah(x) — h)I* < Lilx - yI, (3.86)

for any x,y € R%.
Assumption 3.24. There exist constant L, > 0 and 0 < ¥ < 1 such that
f@) = FOIV 1h(x) = k)| < Lo(1 + 12" + )lx =yl Vx,y € RY. (3.87)
Obviously, this condition implies
FOIV ()] < Lsld™*7, (3.88)
where L3 = 2L, + | £(0)| + [1(0)].

Lemma 3.25. Let Assumption[3.13] [3.76| B.23|and[3.24) hold. Let n > |xo| be a real number 1,
and pp,, be the same as before. Set

Orn =Tu Apan and ep(t) = x(f) — xa(?), Vi>0.
Assume that A € (0, 1] is sufficiently small such that u~"(¢(A)) > n. Then
Elea(T A 6an) < Clp(A))°A.

Proof. We write 6, = 6 for simplicity. By the It6 formula and Assumption [3.23] we get that for
0<t<T,

Elea(t A O)

<E fo " (2eX()F(x(9)) = fa(Eals) + g(x(5)) = ga(Ra()))ds
AR fom (lea(s) + (h(x(s)) = ha(Ea(sOMP ~ leals)P)ds
=k fomg (20x(5) = Ea() (F((5)) = fa(Fa() + 18(x(5) = ga(Za(s)P)ds + T
+E fo "o (z/l(x(s) — Fa()T (h(x(57)) = ha(Fa(s7))) + Ah(x(s7)) = hA(ch(s‘))Iz)ds +J5
<L fotlElx(s AB) — Ta(s A O)Pds + T + Js, (3.89)
where
Jr=2E fome [xa(s) = Za(IIF(x(5)) = fa(Ea(s))lds,

7\
J3 = 2/1]Ef0 1xa(s) = Xa(IIA(x(s7)) = ha(Xa(s™))lds.

18



By the condition ! (¢(A)) > n and the definition of the truncated functions fx and g, we have
that

fa(xa(s)) = f(Za(s)) and  ga(Xa(s)) = g(Fa(s)), for 0 < s <t A 6.

Hence, by Assumption [3.24] and the Holder inequality as well as Lemma [3.19] and [3.20} we get
that

tAG
Jy <2E f xas) = TaIF(s)) — FGEa()Ids
0
B tAG - -
<20LE f [xa(8) = ZA(OIIL + [x(SI” + [Za( N|x(5) — Xa($)lds
0
_ 1AQ tAO B ~
<@, f Elx(s) - Ta(s)Pds + C f E(1 4 (&P + [Xa()PP)lxa(s) — Ea(s)dls
0 0
!
<L f Elx(s A 6) — %a(s A O)[ds
0
T - .
+C f (1 +Elx(P + Efa(s)2) (Eleals) - B 7) s
0
!
<L f Elx(s A 0) — Za(s A 0)ds + C(p(A))*A, (3.90)
0
where condition 0 < ¥ < 1 has been used. Similarly, we have
!
J3 <ALy f Elx(s A 6) — Ea(s A 0)*ds + C((A))*A. (3.91)
0

Inserting (3:90), (3:91) into (3:89) and combining Lemma[3.19] we have

Elea(t AO)* < C f Elea(s A 0)]*ds + C(p(A))*A.
0

The Gronwall inequality complete the proof. O

Theorem 3.26. Let Assumption[3.13|[3.16] [3.23|and[3.24) hold. Let r € (0,2). If

P(8) = p(L 7 (p(a)y a?)y71e) (3.92)
holds for all sufficiently small A € (0, 1], then for every such small A,
Elx(T) - xa(T)I" < C(@(A))' A" (3.93)
and
Elx(T) = Xa(T)I" < C(p(A)) A2, (3.94)

forany T > 0.

19
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Proof. Let 7,, pan» Or, and ex(?) be the same as before. By (3:83)-(3.83)), inequality

. _crs Cc-n
Elea(D)I" < Elea(T A Oa0)l" + =t yp57an

holds for any A € (0,1], n > |xo| and 6 > 0. We can therefore choose 6 = (go(A))’A’/ 2 and
n= i;(l+7)((¢(A))rAr/2)—l/(2—r) to get

Elea(T)" < Elea(T A an)l" + C(@(A) A2,
By condition (3:92)), we have
1 @) = L (@A) AT = g,
Using Lemma[3.23] we have
Elea(T)I" < (Elea(T))"* < C((p(8))*A)"? = Clp(A)) N>
Combining this with Lemma (3.19) gives (3.94). Thus, the proof is complete. O

Corollary 3.27. Let Assumption[3.13] [3.16 [3.23|and[3.24) hold. Define

un) = Lsn'?, n>0. (3.95)

LetO<r<2/2+7%y)and

e(d) =47, e [% %] (3.96)
Assume that (3:.92) holds for all sufficiently small A € (0, 1] . Then,
E|x(T) — xp(T)|" < CAT1=9/2 (3.97)
and
Elx(T) = Xa(T)" < CA™7972, (3.98)
Proof. Applying Theorem [3.26]along with (3.93) and (3.96) gives the required assertion (3.97)
and (398). O
Remark 3.28. Substituting (3.93) and (3.96) into (3.92)) gives
A8 > ATUR2UINIE2D - pamely & > M
4 +2ry
But, condition (3:.96) means
% < %, namely rs%s 1.

Hence, we have to force r to be not greater than 2/(2 + ) in the corollary[3.27]

20



130

135

Remark 3.29. Fixing 0 <y < 1, by (3:.96) and (3.97), we can conclude that convergence order
is increasing in . Hence, substituting

r(1+79)
E =
4 +2ry
into r/2(1 — 2¢&) obtains the optimal L"-convergence order, that is
r2-r) 2
R:=——, 0 < , 3.9
2wy Vs (399)

which means that convergence order R increases as r increases. In other words, the higher
moment has a better convergence order for SDEs with jumps when 0 < r <2/(2 +%¥). If we take

2

r=——

2+75’
then (3:99) becomes
1
R= ,
4 +2y
this is the maximum of optimal L"-convergence order. In particular, if y = 0, i.e. the drift and
the jump coefficients grow linearly, then convergence order is equal to 1/4 by choosing r = 1.

4. Asymptotic behaviours

4.1. Stability

In this subsection, we show that the partially truncated EM method can preserve the mean
square exponential stability of the underlying SDE (2:1)). For the purpose of stability, we also
assume that

f(0) =g(0) = h(0) =0, (4.1)
which means
IFI] VG|V h(0)] < Ky, Vx e RY. (4.2)
We first impose the following assumption.

Assumption 4.1. Assume that there exist constants 6 > 0 and ay,a; > 0 satisfying a; > ay +
AK(2 + K,) such that

2xTFi(x) + (1 + 0)|Gi(0)] < —aq|x?, VxeRY,
and
2xTF(x) + (1 + 0 HGW)P < anlx?, VxeRY

If there is no super-linearly growing term G(x), we set § = 0 and #~!|G(x)*> = 0. Similarly,
when the linearly growing term G;(x) is absent, we set § = oo and 0|G(x)|> = 0. Moreover, this
assumption means

2x7 F(x) + 1801 + AT h(x) + |h(x)P) < —(@) — @2 — AK 2 + K))IA?,  xe R4 4.3)

It is therefore known that the SDE (2.1)) is exponentially stable in the mean square sense. We
state the following lemma.
21



Lemma 4.2. Let Assumption and 4.1\ hold. Then for any initial value xy € RY, the
solution of the SDE 2.1)) satisfies

Elx(t)]* < |xofe™ @ a2 KGHEDY gy >

The following theorem shows that the truncated EM method preserves the mean square ex-
ponential stability perfectly. We employ the technique due to Guo et al. [16] to prove our results.

Theorem 4.3. Let Assumption[3.1| 3.2 B-3|and @1\ hold. Then for any € € (0, a; —as — AK; (2 +
K1), there exists a A € (0, 1] such that for all A € (0,A] and any initial value x, € R? the
truncated EM solutions satisfy

EIXA() < |xgfPe (@702 K@=y > 0, (4.4)
Proof. Fix A € (0, 1]. In the same way as Theorem 4.3 in [16] was proved, we have
22" fu(x) + g < —(a1 — a)lxP’,  VxeRY 4.5)

From (3.14), we have
EIXa(te)P = E(IXa(@)P + | £a(Xa(@))PA? + |ga(Xa(te)ABL
+ 2Xa ()" FaXa))A + [h(XA (1) AN
+ 2Af (Xa(t )X A1) AN + ZXA(fk)Th(XA(f;:))ANk), (4.6)
for 0 < k < M — 1. The property of Brownian increments implies
Elga(Xat))ABI* = AElga(Xa ().

But, the Poisson increments satisfy EAN;, = AA and E(ANy)? = AA(1 + AA). Hence, using the
independence of the increments and @.2)), we find that

2EIXA(t)R(XA()AN,] < 2K EIXa(8)PEIAN,| = 2K AAEI X ()17, 4.7

Elh(Xa(t; VAN < KFEIXA(1)PEIAN
< KEAA(L + ANE[XaA ()]
= K{AAEIXa (1) + K{ A A’EIXa (1) 4.8)

and

2EIAfA(Xa(EOVRXAG))AN] < 2K  AE(XA (1) fa (Xa(6))EIAN, |
< K AN EXa ()P + ElfaXat))P). (4.9)

Substituting @.7)-@.9) into {@6) gives
EIXa(te)l? < B(Xa(@)P + 2Xa(t0) fAXa(@)A + 1ga(Xa(t))A)
+ AK (2 + KDAEXA()P + (1 + Ky DA E| fa(Xa )

+ (KT + KL DA EIXA (1) (4.10)
22
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By (@.3)), we have

EXa(ti: D < [1 = (@) — an — AK1(2 + KD)AIEIXA (1)
+ (1 + Ky DAEfA(Xa () + (KTA2 + KL DATEIXA (1) 4.11)

By (3.1) and (@-1)), we have
|FA()* < 4Ly |x%, if [x] < 1,
and
IFAOP < (@(A))* < (@A) IxP, if ] > 1.
Hence, we have
Alfa(P < 2(KT + 4Ly + (p(A)H)Alx]?

< (K7 +4L)A + AP

for all x € RY, where (3.10) has been used. For any € € (0,a; — a2 — 1K;(2 + K})), there is a
A € (0, 1] sufficiently small such that for all A € (0, A], (@ —az — AK1(2 + K1))A < 1 and

2(1 + Ky )((K3 + 4L)A + AV2AP-2IP) < 0 5e, 12
(K222 + K1 DA < 0.5€. '
For each such A, we have
(1 + KON EIfaXat) + (K727 + KT DAEIXA ()P < eAEIXA(1)I
Inserting this into @.11)), we yield
EXa(tee )l < [1 = (@1 — a2 — AK; (2 + K7) — ©AIEIXaA (1)
< |xoP[l = (a1 — a2 — AK (2 + K) — )AL (4.13)
By the elementary inequality
1 — (@) — a2 — K12 + K)) — €)A < el AK@HK)—elA
we have
ElXa(tie )P < |xoffetn oo tKi@ Ko el (4.14)

Thus, the proof is complete. O

4.2. Asymptotic boundedness

In this subsection, we show that the truncated EM method maintains the asymptotic bound-
edness of the underlying of SDE (Z.I). The additional assumption is the following one.
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Assumption 4.4. Assume that there exist constants @ > 0 and @y, @, 1,5, > 0 satisfying 1 >
B> + max(A(4K? + 1),2AK/(2 + K1)) such that

2xTFi(x) + (1 + OIGI (0 <@ —Bilaf*, VYxeRY,
and
2XTFx)+ (1 + 0 HG)P <@ +Balxf>, VxeRY

When there is no super-linearly growing term G(x), we set @ = 0 and 6~'|G(x)]> = 0. Sim-
ilarly, if the linearly growing term G1(x) is absent, we set § = oo and 6lG1(x)* = 0. Moreover,

(3:3) implies
AQ2xTh(x) + |h(x)) < A(xP + 21(x)]*) < 4AKT + A4K; + D|x?, VxeRY
Hence, by Assumption[4.4] we have
2xT £(x) + |g(0)* + A2xT h(x) + [h(x)]) < & - Blx?, Vx e RY, (4.15)
where & = @ + @ +4AK? and B = B — Br — A(4K? + 1).

Theorem 4.5. Let Assumption and hold. Then for any initial value xy € R?, the
solution of the SDE (2. satisfies

. 5 a) +ap + 4-/1](12
lim sup E[x(?)|” < =

100 Bi =B —A4K? + 1) (4.16)

Proof. Let 7, , &, and B be the same as before. Set o, = t A 7,,. For any t > 0, the It6 formula
gives that

E[é# ()] = ol + E foa " (247 () f(x(5)) + [g(x(s))P
+ 207 ()h(x(s)) + [h(x()P + Blx(s)1)ds.
By @.13)), we have
B[P (o)) < 1o + & f Hds = 1xoP + L~ 1),
0 B
Letting n — oo, we have
E[e™|x(0)]| < Ixo + %(eﬁf )

which implies

2 A
X (04
B < 200 4+ &
e’ B

Thus, the proof is complete. O
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Lemma 4.6. ForO <A <1landB>0. If

Dy <ADy_ +B, k=12,---. (4.17)
Then
li D, < . 4.18
1£rls;lp kST (4.18)

15 Proof. The proof is given in the Appendix. O

Theorem 4.7. Let Assumption and hold. Then for any € € (0,8) — B2 —
max(/l(4K12 + 1),24K,(2 + K}))), there is a A € (0, 1] such that for every A € (0,A) and any
initial value xg € R4, the truncated EM solutions satisfy

Y+ @+ 20K 2+ K
lim sup EX, (2 < A2+ 24KiC+ KD+ e
k— o0 ﬁ] _ﬂz - 2/1K1(2 + K]) — €

(4.19)

Proof. Fix £ € (0,3 — B,). In the same way as Theorem 5.3 in [16] was proved, we have
24T fa(x) + lga(OP < @1 + @ — (B1 — B2 — 0.5¢)|x*, VxeRY, (4.20)
as long as A € (0, Al], where Al € (0, 1] is sufficiently small and satisfies
Q—ZA <0.5¢
(™ (p(AD)))?
Using the independence of the Poisson increments and (3:3)) as well as Lemma[3.7] we have
EIRXaG)DANE < 2KTE(L + 1Xa(10) ) EIAN
< 2KIAA(1 + ANE( + [Xa (1))
< 2KIAAEIXA (1)l + 2K7AA + CA?, (4.22)

4.21)

2EIXA ()X (E))ANL] < 2K E(1XA 1)1 + 1Xa (1)) EIAN
<AK AAE(L + [XA(t0)))
< 4K\ AAE|XA (1)) + 4K, AA (4.23)
and
2EIA fa(Xa G ))RXA ) AN < 2K AE((1 + 1XA @)D fa (XA (t)DEIAN|
< K AN B + [X2(10)P) + Elfa(Xa@))
< K\ ANE|fa(Xa(t))* + CA®. (4.24)

Fix xo € R? arbitrarily. For any A € (0, A)), substituting @#22)-(@24) into [@.6) gives

EIXa ()P < B(IXa(t)P + 2Xa(t0)” fa(Xa(t))A + [8a(Xa(te)A)
+ 24K (2 + KDAEXA(t) + (1 + Ky DAE| fa(Xa ()
+ 22K (2 + KA + CA?
< (1= (B = B2 — 22K (2 + K1) — 0.5)A)E|X (1)
+(@) + @ + 2AK(2 + K1)A + CA?
+ (1 + KL DAE| faXa(t)P, (4.25)
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where has been used. By (3:3) and (3-12)), we have
AP < 2IF1 (0P + 2/F()P < 4K7(1+ 1x?) + 2(p(4))%,  Vx € RY.
Hence, by (3:10), we get
Alfa)? < 4KTAQ + |x?) + 24122/ 1y e RY.

Consequently, there is a Ae (0, Al) sufficiently small such that for any A € (0, A), A(ﬁl —[32 —€) <
1 and

CA + (1 + KL DAIfA(Xa(@)]* < &+ 0.5€[Xa (1) (4.26)

Thus, fix any A € (0, A). Inserting into (4.23) yields
ElXa(tir )PP < (1= (B1 = B2 — 24K (2 + K1) — ©MEIXa (1)
+ (@) + @ + 24K, (2 + K1) + €)A. “4.27)

Applying Lemma4.6]to (#@.27) gives the required assertion @.19). O

5. Examples
Example 5.1. Consider the scalar power logistic model in a population system with jumps
dx(t) = x()[(5 — 10x%(1))]dt + xX*()dB(t) + x(r")AN(7), (5.1)

with the initial value x(0) = 1, where B(t) is a scalar Brownian motion and N(t) is a scalar
Poisson process with intensity A = 0.25. Letting h(x) = x, we decompose f(x) = 5x — 10x> and
g(x) = x% into two parts denoted by f(x) = F1(x) + F(x) and g(x) = G(x) + G(x) with

Fi(x) =5x, F(x)=-10x", G,(x)=0, G(x) =, (5.2)

respectively. We now demonstrate the process of implementing the truncated EM and show the
convergence rate of this method for this system.

Step 1. Verify the assumptions.

Obviously, (3.1) is satisfied. It is easy to see that

IF(x) — FO)| VIGx) — GO < 15(1 + 2 +y))lx =y, Vx,yeR.

Thus, Assumption 3.1 is satisfied with y = 2. Similarly, we can deduce that Assumption[3.2) and
B3lis also fulfilled for 7 = 3 and p = 21, respectively.

Step 2. Choose u(+) and ¢(-).

By (B.2), we have

sup(F(x)| V IG(x))) < 10n°, VYn>1,

|x|<n

which means u(n) = 10n°. Setting r = 2, then condition (B61), namely, 1 +y)r Vi < p < p,
becomes 6 < p < 21. If we let p = 20 and choose a parameter € € (0, 1/4], say € = 1/6, then
@&, namely, p > 22, holds. Hence, according to BI0), we can choose

©(A) = 10A71/8,
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Fig. 1. The £'-convergence order of truncated EM scheme for SDE (G.1)

Step 3. Define fx(x) and ga(x).
From Step 2, we define the truncating factor 1~ (¢(A)) = A™V13. The truncated functions fa(x)
and ga(x) are defined by

X

fao) = Fi(x) + F(Ix| A A™Y ”‘)ﬁ) and  ga(x) = G1(x) + G((Ix| A A*‘/“‘>| -
X X
Step 4. Calculate X}, in each iteration.
For the given step size A, the time T and Xy = 1, the Xy is calculated by
Xir1 = X + faXOA + ga(Xp)AB + W(X)AN, 0<k<T/A-1. (5.3)

Forp=20,y=2,r=2ande = 1/6, we compute e(p—(1+y)r)/(1+y) =7/9, (p—yr)/p =4/5
and r(1 — 2¢)/2 = 2/3, respectively. By Theorem[B.11} we have

EIxX(T) - xa(T)* < CA*?,

which implies that the truncated EM method for SDE (B.1) has the order 2/3 of L*-convergence
or the order 1/3 of L'-convergence.

As the SDE (5.1)) does not have any explicit solutions, the scheme (5.3) with step size 2714
is treated as the true solution of SDE (3.1) in the numerical experiments. Fig. [I| shows the
L2-errors, which are defined by

12 1000

(Bl - xa(D) ~ (ﬁ Zl )1 = eaI)

with step sizes 271, 2719, 27° 278 and 277 at time T = 3. For each step size, 1000 sample paths
are simulated. The numerical simulation shows that the L'-convergence order of the partially
truncated EM method for SDE (5.1)) is approximately 1/2, which is close to the theoretical result
obtained in this paper, see Fig. 1 for illustration.
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Example 5.2. Consider the following scalar SDE with jumps
dx(f) = —(x(t) + X (0))dt + X>(H)dB(t) + x(: )dN(?), (5.4)

with the initial value x(0) = 0.5, where B(t) is a scalar Brownian motion and N(t) is a scalar
Poisson process with jump intensity A = 0.5. Obviously, we have

Fi(x)=-x, Fx)=-x, Gi(x)=0, Gx) =x* hx) =x, (5.5)
and

IF1(0) VG ()] V h(0)| = |xl,  with Ky =1,
|F(x) = F)I VIG(x) = G| < Li(1 + x* +y*)x = yl,

where Ly is a constant. This means that Assumption [3.1|is satisfied with y = 4. Setting 6 = co
gives
2xF1(x) + (1 + O)|G1(x)]> = =242,

and

e 1, 1
20F () + (1 + OGP = -2x° + x* < 22 Z)Z o <o

Hence, Assumption[d.1|is satisfied with a; = 2 and a, = 1/8. Moreover, for any T, we have

= = _ 2
(=@ = Fo + 60 - 600 < (14 T ey, vxeR

which means that Assumption [3.2)is satisfied. Also, we can check that Assumption 3.3 holds for
any p (see [[I6]]). By Theorem the SDE[5.4)is stable exponentially in the mean square sense
for any initial value xo € R and the solution x(t) of SDE|5.4| satisfies

IEIx(t)|2 < |X0|2 —(a1—a =K 2+K )t _ = |xo |Ze—0.375r, V> 0.
From @, we can choose u(n) = n® such that

sup(IF(0)] V IG())) = sup(°| V X)) < n’, V> 1.

|x|<n |xl<n

Letting r = 2, 7 = 3,y = 4, p = 40 and ¢(A) = A8, Then we choose u'(p(A)) = A~V

By Corollary - 3.12} the numerical solutions converge strongly to the true solution in L* with
convergence order [r(1 —2e)/2] A [(p yr)/pl =3/4AN4/5=3/4. Fmally, by Theorem
for any € € (0,0.375), there exists a A € (0, 1] such that for all A € (0,A] and any initial value
xo € R, the solutions of the truncated EM method (3.14)) satisfy

EIXa(@)f < e @702 ARGHRD=I — | 2= O0377 k> 0.

Figs. Pland[3|demonstrate the mean square exponential stability of the truncated EM method.

Example 5.3. Consider the following scalar SDE with jumps

dx(t) = (x(r) — X>(0))dt + x()dB(t) + x(:")dN(?), (5.6)
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Fig. 2. A sample path of x5 (7) for (54) by  Fig. 3. Sample average of x3(7) for (Z-4) by
truncated EM truncated EM with 1000 sample paths

with the initial value x(0) = 0.5, where B(t) is a scalar Brownian motion and N(t) is a scalar
Poisson process with jump intensity A = 0.1. We decompose the drift and diffusion coefficient in
the form with

Fi(x)=-2x, F(x)=3x-x, Gi(x)=x, Gx)=0, hx) =nx, 5.7
which means
[F1(0)l VG0l V |h(x)] = 2|xl,  with Ky = 2.

Setting 0 = 0 gives
2xF1(x) + (1 + 0)|G1(0)]> = =322,

and
2xF(x) + (1 + 0 HG)P = 2x(Bx — x%) = =2(x* — 1.5)> + 4.5 < 4.5.

Hence, Assumption[d.4|is satisfied with
(_111 = 0, Bl = 3, (_12 = 4.5, and Bz =0. (58)

It is easy to check that coefficients of the SDE [5.6] with their decompositions in (3.7) satisfy
Assumption 3.1) 3.2) and [3.3] for any p > 2. Using Theorem i3] gives that for any initial value
xo € R, the solution x(t) of SDE 3.6 satisfies

2 . ay +ap + 4-/11(12
lim sup E|x(#)|]” <

o Bi-Pr- QK+ 1) 69

Moreover, taking r = 2,y = 2, ¥ = 3 as well as p = 50, we can choose u(n) = 43 and
o(A) = 4A73P% and to a’eﬁne the numerical solutions Xa(t;) by the partially truncated EM
method. By Theorem this solutions of truncated EM converge to the true solution in L£*
with convergence order [r(l - 28)/21 AN [(p —yr)/p] = 22/25 A 23/25 = 0.88. Finally, by The-
orem for any € € (0, 1.3), there exists a Ae (0, 1] such that for all A € (0, A] and any initial
value xy € R, the numerical solutions satisfy

+a, +24K2+ K)) + 6.1 +

lim sup EfXa(r)2 < LT 2K+ Ky te 6lte

koo Bi—PBr—2AK2+K)—-€ 1l4-€
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Fig. 4. A sample path of x5 (7) for (5:6) by  Fig. 5. Sample average of x3(7) for (Z-6) by
truncated EM truncated EM with 1000 sample paths

s The asymptotic boundedness of the numerical method is shown in Figs. @land

6. Conclusions and future research

In this paper, the truncated EM method is investigated for SDEs driven by both Brownian
motions and Possion jumps. Both the finite time convergence and asymptotic behaviours of the
method are studied. The L"(r > 2) strong convergence is proved when the drift and diffusion

10 coefficients satisfy super-linear growth condition and the coefficient for Possion jumps satisfies
linear growth condition. When 0 < r < 2, we are able to prove the L -convergence of the
methods to SDEs with all the three coefficients allowing to grow super-linearly.

In the future works, we will report on the SDEs driven by Lévy process and the £L"-convergence

for SDEs whose all the three coefficients can grow super-linearly.
s Appendix A. Proof of Lemma[3.9]
Proof. By the Itd formula and (3.8)), we have

ATy
Elx(t A t)l> < |xo> + E f Ks5(1 + |x(s)|P)ds
0
+ AE f K Qx(s)" h(x(s)) + [h(x())*)ds
0

< |xol* + (K3 + 22K, + K})) fo l E(1 + |x(s A 7)I)ds,
for any O < ¢t < T. The Gronwall inequality shows
ElX(T At)* < C,
which implies
P(r, <T) < r%

Thus, the proof is complete. O
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Appendix B. Proof of Lemma 3.10]

Proof. We write py., = p for simplicity. For 0 < ¢ < T, the It formula gives
Elxa(t A p)* = Ixol* + E fo h (223 () fa(Ea(9)) + Iga(Fa()))ds
+ AR fo v (223 (Vn(Ea(s7)) + Ih(Ea(s )P )dls
= ol + E fo " (251 (5)fa(Ra(9)) + Iga(Fa ()P )ds
+E fo " 2a(9) - AN FaEal)ds
+AE fo " (223 ()(Ea(57)) + [h(Ea(s DI )ds.
By (3.3), we obtain
E | " (L HEats) + IhEas NP s
<E fo " (Ixa(s)P + 2Ma(Ea(s)P)ds

<E f ’ (Ixa()P + 4KT(1 + |Za(5)))ds
0

AP

tAD
<4KIT + (8KIT + DE fo Ixa(s)[*ds + 8KITE fo Ixa(s) — Za(s)[ds.

Substituting this into (B:I) and applying (3:13), we have
tAD
Elxa(t A p)/* < |xol? + f 2K4(1 + |Ea($)P)ds + 4AKPT
0

tAD
+E fo 2(xa(s) = %a(8))" fa(Xa(s))d's

tAD

tAD
+ ABKIT + DE f [xa(s)ds + ASKITE f Ixa(s) — Ea(s)Pds
0 0

!
< (Ixol* + 2K4T + 4AL3T) + (4Ky + ABKIT + 1)) f Elxa(s A p)Pds
0

T
+ (4K4 + 8AK3T) f El|xa(s) — Ea(s)*ds
0
tAD
+2E f |xa(s) = Xa ()l fa(Xa(s))ds.
0
By Lemma[3.6 we have

T
f Elxa(s) — Xa(s)]?ds < C.
0
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By (3:3), we have
tAD
B [ (o) - a0 lfa(a(o)ids
0
tAD
<K [ la(9) = B0 + [Ea(o)hds + 1
0
tAD '
< C(Ef [xa(s) — }_CA(S)|2dS + f Elxa(s A p)lzds + 1) + I (B.4)
0 0
where
T
Is = Ef IXa(s) — Xa(SIIFa(Xa(s))lds.
0
Using Lemma|[3.8] condition (3:10) and (3:12) gives
T 2
<o) [ (B - 5a0P) ds
0

< Clp(A)*A? = Cp(A)AT? < C.

Hence, we have

!
Elxa(t Ap)? < C(1+ f Elxa(s A p)/ds).
0

The Gronwall inequality gives
Elxa(T Ap)P < C,

which implies (3.80). Thus, the proof is complete. O

Appendix C. Proof of Lemma[3.18|
Proof. Fix any A € (0, 1], we have

1 1
@)~ m @)

For x € RY with |x] < ,u’1(<p(A)), by the definition of the truncated function, we obtain the
required assertion (3.7T). For the case that |x| > p~(¢(A)), Assumptionm gives

27 () + 1ga (O + A2xT ha(x) + [ha(x)1%)
= 2(x — A ()" fa(x) + 24(x = A (X)) ha(x)
+ 27 (0)T fa(x) + lga(x)* + 2Ama () ha(x) + Alha(x)]

< (;% — 1)(27a ) fra(0) + 24ma (0 hGa () + R(1 + s (o)
< (ﬁ% = )R + ra@) + (1 + ra(0)

32



170

175

180

185

190

_
1 (D))
= I_(IXI(

K+ (AP

1 -1
— A
Tyt W)
1
< K(m v 1)lxd(1+ )

_ 1 5
< 2K(m V) + ).

Thus, we complete the proof. O

Appendix D. Proof of Lemma [4.6]

Proof. {#.T7) is equivalent to the following expression

D+B
KT A

1SA(Dk_1+ ), for k=0,1,2,---.

B
A-1

Hence, we have

B
Dk+A s

<Ak(D0+ )
1 A-1

It follows

B B
DkSAk(DQ+—)+ .
A-1 1-A

Recalling 0 < A < 1 and taking k — oo, we obtain the required assertion @.18). O
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