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Abstract

In this paper, we use the truncated Euler-Maruyama (EM) method to study the finite time strong
convergence for SDEs with Poisson jumps under the Khasminskii-type condition. We establish
the finite time Lr(r ≥ 2)-convergence order when the drift and diffusion coefficients satisfy the
super-linear growth condition and the jump coefficient satisfies the linear growth condition. The
result shows that the optimal Lr-convergence order is close to 1. This is significantly different
from the result on SDEs without jumps. When all the three coefficients of SDEs are allowing to
grow super-linearly, the Lr(0 < r < 2)-convergence results are also investigated and the optimal
Lr-convergence order is shown to be not greater than 1/4. Moreover, we prove that the truncated
EM method preserves nicely the mean square exponential stability and asymptotic boundedness
of the underlying SDEs with Piosson jumps. Several examples are given to illustrate our results.

Keywords: Stochastic differential equations, local Lipschitz condition, Khasminskii-type
condition, truncated EM method, Piosson jumps.

1. Introduction

Due to the broad applications in modeling uncertain phenomenon, stochastic differential e-
quations (SDEs) driven by Brownian motions have been attracting lots of attentions [1, 2, 3].
When some unexpected events happen, some jumps may be needed to model the effects of those
events. For example, a breaking news after the close of the stock market may lead to a huge5

difference between today’s closing price and tomorrow’s opening price. To take both the con-
tinuous and discontinuous random effects into consideration, SDEs driven by both Brownnian
motions and Poisson jumps are often employed as a generalisation of the SDEs only driven by
Brownian motions.

Despite the wide applications, the explicit solutions to SDEs are hardly found. Therefore,10

to construct some efficient numerical methods is of extremely important. The series works of
Higham and Kloeden [4, 5, 6] studied some implicit methods for SDEs with Poisson jumps.
In their papers, the strong convergence, the convergence rates and stability of different implicit
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methods were proposed and investigated for some SDEs, whose drift coefficient satisfies non-
global Lipschitz condition, and both the diffusion coefficient and the coefficient for the Poisson15

jumps are global Lipschitzian. When the global Lipschitz condition on the diffusion coefficient
is disturbed, the tamed EM and the tamed Milstein methods were proposed for SDEs driven
by the more generalised process, Lévy process [7, 8]. The taming techniques were original
proposed in [9] for the construction of explicit methods for SDEs with non-globally Lipschitz
continuous coefficients. As indicated in [10], explicit methods have their own advantages on the20

relatively simple structure and the avoidance of solving some nonlinear systems in each iteration.
Therefore, the studies on explicit methods for SDEs with non-globally Lipschitz coefficients have
been blooming in recent years. Sine and cosine functions were employed in [11] to construct
some explicit methods for SDEs with both the drift and diffusion coefficients growing super-
linearly. The taming techniques were modified and generalised in [12] and [13]. The truncated25

EM method was proposed in [14, 15]. The partially truncated EM scheme can be found in [16]
and [17].

In this paper, we borrow the truncating idea to propose the truncated EM method for SDEs
with Poisson jumps. The main contributions of this work are twofold. Firstly, all the drift
coefficient, the diffusion coefficient and the coefficient for Poisson jumps are allowed to grow30

super-linearly. To our best knowledge, this is the first work to study an explicit numerical method
for SDEs with all the three coefficients that can grow super-linearly. Secondly, both the finite time
convergence and asymptotic behaviours of the method are investigated.

It should be noted that the truncated EM scheme for SDEs with the global Lipschitzian pure
jumps was studied in [18]. Other numerical methods for SDEs with Poisson jumps or Lévy35

process were also proposed and investigated in [19, 20, 21, 22, 23], we just mention some of them
here and refer the readers to the references therein. For the detailed and systemic introductions
to numerical methods for SDEs and SDEs with jump, we refer the readers to the monographs
[24] and [25].

This paper is constructed as follows. In Section 2, we introduce some necessary mathematical40

preliminaries. Section 3 contains the main results on the finite time convergence. The asymptotic
behaviours, stability and boundedness, of the numerical solutions are presented in Section 4.
Several examples are given in the Section 5. Section 6 concludes the paper and points out some
future research.

2. Mathematical Preliminaries45

Throughout this paper, unless otherwise specified, let (Ω,F ,P) be a complete probability
space with a filtration {Ft}t≥0 satisfying the usual conditions (i.e., it is increasing and right con-
tinuous while F0 contains all P-null sets). Let E denote the probability expectation with respect
to P. Let B(t) be an m-dimensional Brownian motion defined on the probability space and is
Ft-adapted. N(t) is a scalar Poisson process independent of B(t) with the compensated Poisson50

precess Ñ(t) = N(t) − λt, where the parameter λ is the jump intensity. If A is a vector or matrix,
its transpose is denoted by AT . If x ∈ Rd, then |x| is the Euclidean norm. If A is a matrix, its trace
norm is denoted by |A| =

√
(AT A). For two real numbers a and b, we use a ∨ b = max(a, b) and

a∧b = min(a, b). For a set G, its indicator function is denoted by IG. Moreover,Lr = Lr(Ω,F ,P)
denotes the space of random variables X with a norm |x|r := (E|X|r)1/r < ∞, for r > 0. In what55

follows, for notational simplicity, we use the convention that C represents a generic positive
constant, the value of which may be different for different appearances.
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Consider a d-dimensional SDE with Piosson jumps:

dx(t) = f (x(t))dt + g(x(t))dB(t) + h(x(t−))dN(t), t ≥ 0. (2.1)

with the initial value x(0) = x0 ∈ Rd, where x(t−) denotes lims→t− x(s). Here, f : Rd → Rd is the
drift coefficient, g : Rd → Rd×m is the diffusion coefficient, h : Rd → Rd is the jump coefficient.

3. Finite time convergence60

3.1. Convergence rate of the partially truncated EM method in Lr(r ≥ 2)
In order to discuss the convergence order of the truncated EM method in Lr for r ≥ 2. We

assume that f and g can be decomposed as f (x) = F1(x) + F(x) and g(x) = G1(x) + G(x), where
F1, F : Rd → Rd, and G1,G : Rd → Rd×m. Moreover, the coefficients F, G, F1 ,G1 and h satisfy
the following conditions.65

Assumption 3.1. There exist constants L1 > 0 and γ ≥ 0 such that

|F1(x) − F1(y)| ∨ |G1(x) −G1(y)| ∨ |h(x) − h(y)| ≤ L1|x − y|, ∀x, y ∈ Rd, (3.1)

|F(x) − F(y)| ∨ |G(x) −G(y)| ≤ L1(1 + |x|γ + |y|γ)|x − y|, ∀x, y ∈ Rd, (3.2)

where the parameter γ is called the super-linear growth constant. By Assumption 3.1, we can
derive that there exists a positive constant K1 such that

|F1(x)| ∨ |G1(x)| ∨ |h(x)| ≤ K1(1 + |x|), ∀x ∈ Rd, (3.3)

which implies that F1, G1 and h satisfy the linear growth condition. Similarly, we have

|F(x)| ∨ |G(x)| ≤ (2L1 + |F(0)| + |G(0)|)|x|1+γ, ∀|x| ≥ 1. (3.4)

Assumption 3.2. There exists a pair of constants r̄ > 2 and L2 > 0 such that

(x − y)T (F(x) − F(y)) +
r̄ − 1

2
|G(x) −G(y)|2 ≤ L2|x − y|2, ∀ x, y ∈ Rd. (3.5)

By Assumption 3.2, we can derive that for any r ∈ (2, r̄)

(x − y)T ( f (x) − f (y)) +
r − 1

2
|g(x) − g(y)|2 ≤ L3|x − y|2. (3.6)

where L3 = 2L1 + L2 +
L2

1+(r−1)(r̄−1)
r̄−r (see [16]).

Assumption 3.3. (Khasminskii-type condition) There exist constants p̄ > r̄ and K2 > 0 such that

xT F(x) +
p̄ − 1

2
|G(x)|2 ≤ K2(1 + |x|2), ∀x ∈ Rd. (3.7)
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By Assumption 3.3, we also have that for any p ∈ (2, p̄)

xT f (x) +
p − 1

2
|g(x)|2 ≤ K3(1 + |x|2), (3.8)

where K3 = 2K1 + K2 +
K2

1 +(p−1)(p̄−1)
p̄−p (see [16]).

The truncated idea is to deal with super-linearly growing coefficients. In the viewpoint of
the finite time convergence, the linearly growing coefficient does not cause any problem to the
EM scheme and hence there is no need to truncate it [16]. In our truncated EM method, we only
truncate the super-linearly growing terms, that is F and G. To define the truncated EM scheme,
we first choose a strictly increasing function µ : R+ → R+ such that µ(n)→ ∞, as n→ ∞ and

sup
|x|≤n
|F(x)| ∨ |G(x)| ≤ µ(n), ∀n ≥ 1. (3.9)

The inverse function of µ is denoted by µ−1. For some ε ∈ (0, 1/4], we define a strictly decreasing
function ϕ : (0, 1]→ (0,∞)

ϕ(∆) = ĥ∆−ε, ∀∆ ∈ (0, 1], (3.10)

where ĥ ≥ 1 is a constant. Hence, we get

lim
∆→0

ϕ(∆) = ∞ and ∆1/4ϕ(∆) ≤ ĥ, ∀∆ ∈ (0, 1]. (3.11)

For a given step size ∆ ∈ (0, 1], let us define a mapping π∆ from Rd to the closed ball {x ∈ Rd :
|x| ≤ µ−1(ϕ(∆))} by

π∆ =
(
|x| ∧ µ−1(ϕ(∆))

) x
|x|
.

We set x/|x| = 0 when x = 0. We then define the partially truncated functions:

F∆(x) = F(π∆(x)), G∆(x) = G(π∆(x)), ∀x ∈ Rd

f∆(x) = F1(x) + F∆(x) and g∆(x) = G1(x) + F∆(x), ∀x ∈ Rd.

It is useful to see that

|F∆(x)| ∨ |G∆(x)| ≤ ϕ(∆), ∀x ∈ Rd, (3.12)

which means that F∆ and G∆ are bounded while F and G may not. The following lemma shows
that the truncated functions maintain the Khaminskii-type condition nicely (see Lemma 2.5,70

[26]).

Lemma 3.4. Let Assumption 3.3 hold. Then, for all ∆ ∈ (0, 1],

xT F∆(x) +
p̄ − 1

2
|G∆(x)|2 ≤ 2K2[1 ∧ 1/µ−1(ϕ(1))](1 + |x|2), ∀x ∈ Rd.

For any p ∈ (2, p̄) , we also have

xT f∆(x) +
p − 1

2
|g∆(x)|2 ≤ K4(1 + |x|2), ∀x ∈ Rd, (3.13)
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where K4 = 2K1 + 2K2[1 ∧ 1/µ−1(ϕ(1))] +
K2

1 +(p−1)( p̄−1)
p̄−p (see [16]). From now on, we will fix

T > 0 arbitrarily. Let M be a positive integer. We take step size ∆ = T/M ∈ (0, 1]. For any
0 ≤ t ≤ T , we define

κ(t) = bt/∆c∆,

where bt/∆c denotes the integer part of t/∆. Then we form the discrete-time truncated EM
solutions X∆(tk) ≈ x(tk), for tk = k∆ by setting X∆(0) = x0 and computing

X∆(tk+1) = X∆(tk) + f∆(X∆(tk))∆ + g∆(X∆(tk))∆Bk + h(X∆(t−k ))∆Nk, 0 ≤ k ≤ M − 1, (3.14)

where ∆Bk = B(tk+1) − B(tk), ∆Nk = N(tk+1) − N(tk). For 0 ≤ t ≤ T , it is consentient to use the
continuous-time step process x̄∆(t) which is defined by

x̄∆(t) =

M−1∑
k=0

X∆(tk)I[tk ,tk+1)(t), (3.15)

where I is an indicator function. The other continuous-time process is defined by

x∆(t) = x0 +

∫ t

0
f∆(x̄∆(s))ds +

∫ t

0
g∆(x̄∆(s))dB(s) +

∫ t

0
h(x̄∆(t−))dN(s). (3.16)

It is easy to see that x∆(tk) = x̄∆(tk) = X∆(tk). Moreover, x∆(t) is an Itô process satisfying Itô
differential

dx∆(t) = f∆(x̄∆(t))dt + g∆(x̄∆(t))dB(t) + h(x̄∆(t−))dN(t).

We first state a known result (see [7]) as a lemma.

Lemma 3.5. Let Assumption 3.1 and 3.3 hold. Then the SDE (2.1) has a unique global solution
x(t). Moreover, for any p ∈ (2, p̄),

sup
0≤t≤T

E|x(t)|p < ∞, ∀T > 0.

In order to bound the p-th moment of the truncated EM solution, we need the following lemma.

Lemma 3.6. For any ∆ ∈ (0, 1] and 0 ≤ t ≤ T,

E
(
|x∆(t) − x̄∆(t)| p̂

∣∣∣Fκ(t)) ≤ C
(
(ϕ(∆))p̂∆ p̂/2 + ∆

)
(1 + |x̄∆(t)| p̂), p̂ ≥ 2, (3.17)

E
(
|x∆(t) − x̄∆(t)| p̂

∣∣∣Fκ(t)) ≤ C(ϕ(∆))p̂∆p̂/2(1 + |x̄∆(t)| p̂), 0 < p̂ < 2. (3.18)

Proof. Fix any p̂ ≥ 2. By Assumption 3.1 and (3.12), we have

E
(
|x∆(t) − x̄∆(t)| p̂

∣∣∣Fκ(t)) (3.19)

= E
(∣∣∣ ∫ t

κ(t)
f∆(x̄∆(s))ds +

∫ t

κ(t)
g∆(x̄∆(s))dB(s) +

∫ t

κ(t)
h(x̄∆(s))dN(s)

∣∣∣p̂∣∣∣Fκ(t))
≤ C

(
E
(∣∣∣ ∫ t

κ(t)
f∆(x̄∆(s))ds

∣∣∣p̂∣∣∣Fκ(t)) + E
(∣∣∣ ∫ t

κ(t)
g∆(x̄∆(s))dB(s)

∣∣∣p̂∣∣∣Fκ(t)) + E
(∣∣∣ ∫ t

κ(t)
h(x̄∆(s))dN(s)

∣∣∣p̂∣∣∣Fκ(t)))
≤ C

(
(ϕ(∆)) p̂)∆ p̂/2 + ∆p/2(1 + |x̄∆(t)| p̂) + E

(∣∣∣ ∫ t

κ(t)
h(x̄∆(s))dN(s)

∣∣∣ p̂∣∣∣Fκ(t))) ,
5



where C is a generic constant, the value of which may change between occurrences. By the
characteristic function’s argument [27], for ∆ ∈ (0, 1], we have

E|∆Nk |
p̂ ≤ c0∆, (3.20)

where c0 is a positive constant which is independent of ∆. Therefore,

E
(∣∣∣ ∫ t

κ(t)
h(x̄∆(s))dN(s)

∣∣∣p̂∣∣∣Fκ(t)) = E
(
|h(x∆(κ(t)))∆Nk |

p̂
∣∣∣Fκ(t))

= |h(x∆(κ(t)))| p̂E|∆Nk |
p̂ ≤ C(1 + |x̄∆(t)| p̂)∆.

Inserting this into (3.19) and combing with ∆p̂/2 ≤ ∆ gives

E
(
|x∆(t) − x̄∆(t)| p̂

∣∣∣Fκ(t)) ≤ C(ϕ(∆))p̂∆ p̂/2 + C∆(1 + |x̄∆(t)| p̂)

≤ C
(
(ϕ(∆))p̂∆ p̂/2 + ∆

)
(1 + |x̄∆(t)| p̂).

When 0 < p̂ < 2, the Jensen inequality gives

E
(
|x∆(t) − x̄∆(t)| p̂

∣∣∣Fκ(t)) ≤ [
E
(
|x∆(t) − x̄∆(t)|2

∣∣∣Fκ(t))] p̂/2

≤ C
(
(ϕ(∆))2∆ + ∆

) p̂/2
(1 + |x̄∆(t)| p̂)

≤ C
(
(ϕ(∆))p̂∆ p̂/2 + ∆ p̂/2

)
(1 + |x̄∆(t)|p̂)

≤ C(ϕ(∆))p̂∆p̂/2(1 + |x̄∆(t)| p̂).

Thus, we complete the proof. 2

Lemma 3.7. Let Assumption 3.1 and 3.3 hold and let p ∈ (2, p̄) be arbitrary. Then

sup
0≤∆≤1

sup
0≤t≤T

E|x∆(t)|p ≤ C, ∀T > 0, (3.21)

Proof. Fix any ∆ ∈ (0, 1] and T > 0. By the Itô formula and (3.13), we have

E|x∆(t)|p − |x0|
p ≤ E

∫ t

0
p|x∆(t)|p−2

(
xT

∆(s) f∆(x̄∆(s)) +
p − 1

2
|g∆(x̄∆(s))|2

)
ds

+ λE
( ∫ t

0
|x∆(s−) + h(x̄∆(s−))|p − |x∆(s−)|p

)
ds

≤ E
∫ t

0
p|x∆(t)|p−2

(
x̄T

∆(s) f∆(x̄∆(s)) +
p − 1

2
|g∆(x̄∆(s))|2

)
ds

+ E
∫ t

0
p|x∆(s)|p−2(x∆(s) − x̄∆(s))T f∆(x̄∆(s))ds

+ λE
( ∫ t

0
|x∆(s−) + h(x̄∆(s−))|p − |x∆(s−)|p

)
ds

≤ I1 + I2 + I3 + I4, (3.22)
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where

I1 = E
∫ t

0
pK4|x∆(s)|p−2(1 + |x̄∆(s)|2)ds, (3.23)

I2 = E
∫ t

0
p|x∆(s)|p−2|x∆(s) − x̄∆(s)||F1(x̄∆(s))|ds, (3.24)

I3 = E
∫ t

0
p|x∆(s)|p−2|x∆(s) − x̄∆(s)||F∆(x̄∆(s))|ds, (3.25)

and

I4 = λE
( ∫ t

0
|x∆(s−) + h(x̄∆(s−))|p − |x∆(s−)|p

)
ds. (3.26)

By the Young inequality

ap−2b2 ≤
p − 2

p
ap +

2
p

bp, ∀a, b ≥ 0,

we have

I1 ≤ C
(
1 +

∫ t

0
(E|x∆(s)|p + E|x̄∆(s)|p)ds

)
. (3.27)

Similarly, we can show that

I2 ≤ C
(
1 +

∫ t

0
(E|x∆(s)|p + E|x̄∆(s)|p)ds

)
. (3.28)

By Assumption 3.1, it is not difficult to prove that there exists a positive constant c1 such that

|x∆(s−) + h(x̄∆(s−))|p − |x∆(s−)|p ≤ c1(1 + |x∆(s−)|p + |x̄∆(s−)|p). (3.29)

Hence, we have

I4 ≤ C
(
1 +

∫ t

0
(E|x∆(s)|p + E|x̄∆(s)|p)ds

)
. (3.30)

Moreover, the triangle inequality gives

I3 = E
∫ t

0
p|x∆(s)|p−2|x∆(s) − x̄∆(s)||F∆(x̄∆(s))|ds (3.31)

≤ CE
∫ t

0
|x̄∆(s)|p−2|x∆(s) − x̄∆(s)||F∆(x̄∆(s))|ds

+ CE
∫ t

0
|x∆(s) − x̄∆(s)|p−2|x∆(s) − x̄∆(s)||F∆(x̄∆(s))|ds

=: I31 + I32.
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Due to Lemma 3.6, (3.12) and ∆1/4ϕ(∆) ≤ ĥ, we have

I31 = CE
∫ t

0
|x̄∆(s)|p−2|x∆(s) − x̄∆(s)||F∆(x̄∆(s))|ds

≤ C
∫ t

0
E

[
|x̄∆(s)|p−2|F∆(x̄∆(s))|E

(
|x∆(s) − x̄∆(s)|

∣∣∣Fκ(s)

)]
ds

≤ Cϕ(∆)
∫ t

0
E
(
|x̄∆(s)|p−2

)
ϕ(∆)∆1/2(1 + |x̄∆(s)|)ds

≤ C(ϕ(∆))2∆1/2
∫ t

0
(1 + E|x̄∆(s)|p−1)ds

≤ C∆(0.5−2ε)
∫ t

0
(1 + E|x̄∆(s)|p−1)ds

≤ C
∫ t

0
(1 + E|x̄∆(s)|p)ds. (3.32)

By (3.12), we get

I32 = CE
∫ t

0
|x∆(s) − x̄∆(s)|p−2|x∆(s) − x̄∆(s)||F∆(x̄∆(s))|ds

≤ Cϕ(∆)
∫ t

0
E|x∆(s) − x̄∆(s)|p−1ds. (3.33)

It is easy to deduce that when p ≥ 2, we have

pε ≤ (p − 1)/2,

for ε ∈ (0, 1/4]. This means

∆(p−1)/2−pε ≤ 1. (3.34)

For 2 ≤ p < 3, Lemma 3.6 gives

E
(
|x∆(s) − x̄∆(s)|p−1

∣∣∣Fκ(s)

)
≤ Cϕ(∆)p−1∆(p−1)/2(1 + |x̄∆(s)|p−1). (3.35)

Hence, by (3.33), (3.34) and (3.35), we obtain

I32 ≤ C(ϕ(∆))p∆(p−1)/2(1 + E|x̄∆(s)|p−1) (3.36)

≤ C∆(p−1)/2−pε(1 + E|x̄∆(s)|p−1)
≤ C(1 + E|x̄∆(s)|p).

Similarly, for p ≥ 3, we have

E
(
|x∆(s) − x̄∆(s)|p−1

∣∣∣Fκ(s)

)
≤ C(ϕ(∆)p−1∆(p−1)/2 + ∆)(1 + |x̄∆(s)|p−1).

Substituting this into (3.33) and using (3.34), we also have

I32 ≤ C((ϕ(∆))p∆(p−1)/2 + ϕ(∆)∆)(1 + E|x̄∆(s)|p−1) (3.37)
≤ C(1 + E|x̄∆(s)|p).
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Hence, by (3.31), (3.32), (3.36) and (3.37), we have

I3 ≤ C
(
1 +

∫ t

0
E|x̄∆(s)|pds

)
. (3.38)

Substituting (3.27), (3.28), (3.30) and (3.38) into (3.22), we get

E|x∆(t)|p ≤ C
( ∫ t

0
(1 + E|x∆(s)|p + E|x̄∆(s)|p)ds

)
≤ C

(
1 +

∫ t

0
sup

0≤u≤s
E|x∆(u)|pds

)
.

Then, we have

sup
0≤u≤t

E|x∆(u)|p ≤ C
(
1 +

∫ t

0
sup

0≤u≤s
E|x∆(u)|pds

)
.

The Gronwall inequality yields
sup

0≤u≤T
E|x∆(u)|p ≤ C.

As this holds for any ∆ ∈ (0, 1] and C is independent of ∆, we obtain the required assertion. 275

The following lemma shows that x∆(t) and x̄∆(t) are close to each other in the sense of Lp.

Lemma 3.8. Let Assumption 3.1 and 3.3 hold . Then, for all ∆ ∈ (0, 1] and t ∈ (0,T ],

E|x∆(t) − x̄∆(t)|p ≤ C
(
(ϕ(∆))p∆p/2 + ∆

)
, 2 ≤ p < p̄, (3.39)

E|x∆(t) − x̄∆(t)|p ≤ C(ϕ(∆))p∆p/2, 0 < p < 2. (3.40)

Consequently, for any p > 0,

lim
∆→0

E|x∆(t) − x̄∆(t)|p = 0. (3.41)

Proof. For any p ≥ 2, by Lemma 3.7, we have

sup
0≤∆≤1

sup
0≤t≤T

E|x∆(t)|p ≤ C. (3.42)

Inserting (3.42) into (3.17) gives (3.39). For any p ∈ (0, 2), the Hölder inequality implies

E|x∆(t) − x̄∆(t)|p ≤
(
E|x∆(t) − x̄∆(t)|2

)p/2

≤ C
(
(ϕ(∆))2∆ + ∆

)p/2
≤ C

(
(ϕ(∆))p∆p/2 + ∆p/2

)
≤ C(ϕ(∆))p∆p/2.

Thus, we obtain (3.41) from (3.39) and (3.40). 2
Let us propose two lemmas before we state our main results in this paper.

Lemma 3.9. Let Assumption 3.1 and 3.3 hold. For any real number n > |x0|, define the stopping
time

τn = inf{t ≥ 0 : |x(t)| ≥ n}.

Then

P(τn ≤ T ) ≤
C
n2 . (3.43)

9



Proof. The proof is given in the Appendix. 2

Lemma 3.10. Let Assumption 3.1 and 3.3 hold. For any real number n > |x0|, define the stopping
time,

ρ∆,n = inf{t ≥ 0 : |x∆(t)| ≥ n}.

Then

P(ρ∆,n ≤ T ) ≤
C
n2 . (3.44)

Proof. The proof is given in the Appendix. 280

Now, we show one of our main results in our paper. The proof is similar to that of Theorem
3.6 in [28], we only highlight the different parts.

Theorem 3.11. Let Assumption 3.1, 3.2 and 3.3 hold and assume that there exists a number
p ∈ (2, p̄) such that

p > (1 + γ)r̄. (3.45)

Let r ∈ [2, r̄) be arbitrary. Then for any ∆ ∈ (0, 1],

E|x(T ) − x∆(T )|r ≤ C
(
(µ−1(ϕ(∆)))−(p−(1+γ)r) + (ϕ(∆))r∆r/2 + ∆(p−γr)/p

)
(3.46)

and

E|x(T ) − x̄∆(T )|r ≤ C
(
(µ−1(ϕ(∆)))−(p−(1+γ)r) + (ϕ(∆))r∆r/2 + ∆(p−γr)/p

)
. (3.47)

In particular, we define

µ(n) = L4n1+γ, n ≥ 1, (3.48)

with L4 = 2L1 + |F(0)| + |G(0)| and let

ϕ(∆) = ĥ∆−ε, for some ε ∈ (0, 1/4] (3.49)

to obtain

E|x(T ) − x∆(T )|r ≤ C∆[ε(p−(1+γ)r)/(1+γ)]∧[r(1−2ε)/2]∧[(p−γr)/p] (3.50)

and

E|x(T ) − x̄∆(T )|r ≤ C∆[ε(p−(1+γ)r)/(1+γ)]∧[r(1−2ε)/2]∧[(p−γr)/p] (3.51)

for all ∆ ∈ (0, 1].

Proof. Let ∆ ∈ (0, 1] be arbitrary. Let e∆(t) = x(t) − x∆(t) for t > 0. Fix a number q ∈ (r, r̄),
(3.45) means p > (1 + γ)q. For any integer n > |x0|, define the stopping time

σn = inf{t ≥ 0 : |x(t)| ∨ |x∆(t)| ≥ n}.

10



By the Itô formula, we get that for 0 ≤ t ≤ T

E|e∆(t ∧ σn)|r

≤ E
∫ t∧σn

0
r|e∆(s)|r−2

(
eT

∆(s)( f (x(s)) − f∆(x̄∆(s))) +
r − 1

2
|g(x(s)) − g∆(x̄∆(s))|2

)
ds

+ λE
∫ t∧σn

0

(
|e∆(s) + (h(x(s−)) − h(x̄∆(s−)))|r − |e∆(s)|r

)
ds

=: J1 + J2. (3.52)

Let us estimate J2 first. Using Assumption 3.1 gives

|x(s−) − x∆(s) + h(x(s−)) − h(x̄∆(s))|r

≤ 2r−1(|x(s−) − x∆(s)|r + |h(x(s−)) − h(x̄∆(s))|r)

≤ 2r−1(|x(s−) − x∆(s)|r + Lr
1|x(s−) − x̄∆(s)|r)

≤ c2(|x(s−) − x∆(s)|r + |x∆(s) − x̄∆(s)|r),

where c2 = 2r−1(1 + Lr
12r−1) > 1. Hence, by Lemma 3.8, we have

J2 ≤ λ(c2 − 1)
∫ t

0
E|e∆(s ∧ σn)|rds + λc2

∫ T

0
E|x∆(s) − x̄∆(s)|rds

≤ λ(c2 − 1)
∫ t

0
E|e∆(s ∧ σn)|rds + C

(
∆r/2(ϕ(∆))r + ∆

)
. (3.53)

By the elementary inequalty, J1 can be decomposed into two parts denoted by J1 = J3 + J4,
where

J3 = E
∫ t∧σn

0
r|e∆(s)|r−2

(
eT

∆(s)( f (x(s)) − f (x∆(s)))

+
q − 1

2
|g(x(s)) − g(x∆(s))|2

)
ds (3.54)

and

J4 = E
∫ t∧σn

0
r|e∆(s)|r−2

(
eT

∆(s)( f (x∆(s))) − f∆(x̄∆(s)))

+
(r − 1)(q − 1)

2(q − r)
|g(x∆(s)) − g∆(x̄∆(s))|2

)
ds. (3.55)

By (3.6), we have

J3 ≤ rL3

∫ t∧σn

0
E|e∆(s)|rds. (3.56)
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The elementary inequality gives

J4 ≤ E
∫ t∧σn

0
r|e∆(s)|r−2

(
eT

∆(s)( f (x∆(s))) − f∆(x∆(s)))

+
(r − 1)(q − 1)

(q − r)
|g(x∆(s)) − g∆(x∆(s))|2

)
ds

+ E
∫ t∧σn

0
r|e∆(s)|r−2

(
eT

∆(s)( f∆(x∆(s))) − f∆(x̄∆(s)))

+
(r − 1)(q − 1)

(q − r)
|g∆(x∆(s)) − g∆(x̄∆(s))|2

)
ds

=: J41 + J42. (3.57)

In the same way as Theorem 3.6 in [28] was proved, we can show that

J41 ≤ C
( ∫ t∧σn

0
E|e∆(s)|rds + (µ−1(ϕ(∆)))−(p−(1+γ)r)

)
(3.58)

and

J42 ≤ C
∫ t∧σn

0
E|e∆(s)|rds + C

∫ T

0

(
E|x∆(s) − x̄∆(s)|pr/(p−γr)

)(p−γr)/p

≤ C
∫ t∧σn

0
E|e∆(s)|rds + C

(
(ϕ(∆))pr/(p−γr)∆0.5pr/(p−γr) + ∆

)(p−γr)/p

≤ C
∫ t∧σn

0
E|e∆(s)|rds + C

(
(ϕ(∆))r∆r/2 + ∆(p−γr)/p

)
, (3.59)

where we use Lemma 3.8 and the fact that
pr

p − γr
= r

p
p − γr

> 2.

Inserting (3.58) and (3.59) into (3.57), we have

J4 ≤ C
( ∫ t

0
E|e∆(s ∧ σn)|rds + (µ−1(ϕ(∆)))−(p−(1+γ)r) + (ϕ(∆))r∆r/2 + ∆(p−γr)/p

)
. (3.60)

Combing (3.53), (3.56) and (3.60), we have

E|e∆(t ∧ σn)|r ≤ C
( ∫ t

0
E|e∆(s ∧ σn)|rds + (µ−1(ϕ(∆)))−(p−(1+γ)r)

+ (ϕ(∆))r∆r/2 + ∆(p−γr)/p
)
.

The Gronwall inequality implies

E|e∆(T ∧ σn)|r ≤ C
(
(µ−1(ϕ(∆)))−(p−(1+γ)r) + (ϕ(∆))r∆r/2 + ∆(p−γr)/p

)
.

Using Lemma 3.9 and 3.10 and letting n → ∞ gives the desired assertion (3.46). By (3.46)
and Lemma 3.8 gives the another assertion (3.47). Recalling (3.48), then µ−1(x) = (x/L4)1/(1+γ).85

Substituting this and (3.49) into (3.46) gives (3.50). Similarly, we can get (3.51). Thus, the proof
is complete. 2

The following corollary reveals the optimal Lr-convergence rate of truncated EM method.
12



Corollary 3.12. Let Assumption 3.1, 3.2 hold and suppose that Assumption 3.3 holds for all
p̄ ∈ (r̄,∞). Let µ and ϕ be defined in (3.48) and (3.49). Then, for any

r ∈ [2, r̄), p ∈ ((1 + γ)r ∨ r̄, p̄) and ε ∈ (0, 1/4], (3.61)

E|x(T ) − x∆(T )|r ≤ C∆[r(1−2ε)/2]∧[(p−γr)/p] (3.62)

and

E|x(T ) − x̄∆(T )|r ≤ C∆[r(1−2ε)/2]∧[(p−γr)/p]. (3.63)

Proof. We choose p sufficiently large such that

p ≥
(1 + γ)r

2ε
, (3.64)

which means
ε(p − (1 + γ)r)/(1 + γ) ≥ r(1 − 2ε)/2.

By (3.50) and (3.51), we obtain (3.62) and (3.63). 2

Remark 3.13. Replacing condition (3.45), that is p > (1 + γ)r̄, by a weaker one p > (1 + γ)r∨ r̄90

does not affect the results in Theorem 3.11. But, this small change will make the choice of p more
flexible in simulation.

Remark 3.14. The Corollary 3.12 shows that the order of Lr-convergence of truncated EM
method for SDE (2.1), namely [r(1 − 2ε)/2] ∧ [(p − γr)/p], is close to 1. This is almost optimal
Lr-convergence rate, if we recall that under the global Lipschitz condition the classical EM
method has order 1 of Lr-convergence. It should be mentioned that this is significantly different
from the result on SDEs without jumps. We already known that for any r ≥ 2 (see [28])

E|x(T ) − x∆(T )|r ≤ C∆r(1−2ε)/2,

which means that the Lr-convergence order is close to r/2 when there is no jumps in SDE (2.1).
In fact, this difference is caused by the following reason: all moments of the Poisson increments95

∆Nk = N((k + 1)∆) − N(k∆) have the same order ∆ (see (3.20)), while the Brownian increments
∆Bk = B((k + 1)∆) − B(k∆) have different orders, namely E|∆Bk |

2n = o(∆n) and E|∆Bk |
2n+1 = 0.

These properties eventually lead to the differences in the convergence order between SDEs with
and without jumps.

3.2. Convergence and convergence order of the truncated EM method in Lr(0 < r < 2)100

In this subsection, we discuss the convergence and convergence rate in Lr(0 < r < 2) un-
der the assumption that the drift, diffusion and jump terms behave like a polynomial. For this
purpose, we first impose the following assumptions.

Assumption 3.15. There exists a positive constant Kn such that

| f (x) − f (y)| ∨ |g(x) − g(y)| ∨ |h(x) − h(y)| ≤ Kn|x − y|, ∀x, y ∈ Rd, |x| ∨ |y| ≤ n. (3.65)
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Assumption 3.16. There exists a constant K̄ > 0 such that

2xT f (x) + |g(x)|2 + λ(2xT h(x) + |h(x)|2) ≤ K̄(1 + |x|2), ∀x ∈ Rd. (3.66)

We also give a known result as a lemma (see [7]).

Lemma 3.17. Under Assumption 3.15 and 3.16, the SDE (2.1) has a unique global solution x(t),
moreover,

sup
0≤t≤T

E|x(t)|2 < ∞, ∀T > 0. (3.67)

In this subsection, all the three coefficients of the SDE are allowed to grow super-linearly. Hence,
we have to truncate the three coefficients. Similarly, we first choose a strictly increasing function
µ : R+ → R+ such that µ(n)→ ∞, as n→ ∞, and

sup
|x|≤n
| f (x)| ∨ |g(x)| ∨ |h(x)| ≤ µ(n), ∀n ≥ 1. (3.68)

The inverse function of µ is denoted by µ−1. We choose a strictly decreasing function ϕ : (0, 1]→
(0,∞) such that

lim
∆→0

ϕ(∆) = ∞ and ϕ(∆)∆1/4 ≤ 1, ∀∆ ∈ (0, 1]. (3.69)

For a given step size ∆ ∈ (0, 1] , the truncated functions are defined as below

f∆(x) = f (π∆(x)), g∆(x) = g(π∆(x)) and h∆(x) = h(π∆(x)), ∀x ∈ Rd,

where π∆ is defined as the same as before. It is useful to note that

| f∆(x)| ∨ |g∆(x)| ∨ |h∆(x)| ≤ ϕ(∆), ∀x ∈ Rd. (3.70)

The following lemma also shows that the truncated functions preserve the Khaminskii-type105

condition. The proof is given in the Appendix.

Lemma 3.18. Let Assumption 3.16 hold. Then, for all ∆ ∈ (0, 1] ,

2xT f∆(x) + |g∆(x)|2 + λ(2xT h∆(x) + |h∆(x)|2) ≤ 2K̂(1 + |x|2), ∀x ∈ Rd (3.71)

where K̂ = K̄[1 ∧ 1/µ−1(ϕ(1))].

Let M, X∆(0), ∆Bk , ∆Nk and x̄∆(t) be the same as before. We now define the discrete-time
truncated EM scheme

X∆(tk+1) = X∆(tk) + f∆(X∆(tk))∆ + g∆(X∆(tk))∆Bk + h∆(X∆(t−k ))∆Nk, 0 ≤ k ≤ M − 1. (3.72)

The continuous-time form is defined by

x∆(t) = x0 +

∫ t

0
f∆(x̄∆(s))ds +

∫ t

0
g∆(x̄∆(s))dB(s) +

∫ t

0
h∆(x̄∆(s−))dN(s). (3.73)

In order to state our main results, we first give some useful lemmas.
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Lemma 3.19. For any ∆ ∈ (0, 1] and t > 0. Then

E|x∆(t) − x̄∆(t)| p̂ ≤ C p̂(ϕ(∆))p̂∆, p̂ ≥ 2, (3.74)

E|x∆(t) − x̄∆(t)| p̂ ≤ C p̂(ϕ(∆))p̂∆ p̂/2, 0 < p̂ < 2. (3.75)

Consequently,

lim
∆→0

E|x∆(t) − x̄∆(t)| p̂ = 0, ∀t ≥ 0. (3.76)

Proof. Fix any ∆ ∈ (0, 1], t ≥ 0 and p̂ ≥ 2. There is an integer k ≥ 0 such that tk ≤ t < tk+1. By
Assumption 3.1 and (3.70), we have

E|x∆(t) − x̄∆(t)| p̂ (3.77)

≤ C p̂

E ∣∣∣∣∣∣
∫ t

tk
f∆(x̄∆(s))ds

∣∣∣∣∣∣ p̂ + E
∣∣∣∣∣∣
∫ t

tk
g∆(x̄∆(s))dB(s)

∣∣∣∣∣∣p̂ + E
∣∣∣∣∣∣
∫ t

tk
h∆(x̄∆(s−))dN(s)

∣∣∣∣∣∣p̂


≤ C p̂

∆ p̂−1E
∫ t

tk
| f∆(x̄∆(s))| p̂ ds + ∆(p̂−2)/2E

∫ t

tk
|g∆(x̄∆(s))| p̂ ds + E

∣∣∣∣∣∣
∫ t

tk
h∆(x̄∆(s−))dN(s)

∣∣∣∣∣∣ p̂


≤ C p̂

∆p/2(ϕ(∆))p̂ + E
∣∣∣∣∣∣
∫ t

tk
h∆(x̄∆(s−))dN(s)

∣∣∣∣∣∣p̂
 ,

where C p̂ is a generic constant. The property of Poisson increments implies

E
∣∣∣∣∣∣
∫ t

tk
h∆(x̄∆(s−))dN(s)

∣∣∣∣∣∣p̂ ≤ (ϕ(∆))p̂E|∆Nk |
p̂

≤ c0(ϕ(∆))p̂∆.

Inserting this into (3.77) and recalling p̂ ≥ 2 gives

E|x∆(t) − x̄∆(t)| p̂ ≤ C p̂(ϕ(∆))p̂∆.

Noting from (3.10) that (ϕ(∆))p̂∆ = (ϕ(∆))p̂∆1/2∆1/2 ≤ ∆1/2, we obtain (3.76) form (3.74).
For 0 < p̂ < 2, we have

E|x∆(t) − x̄∆(t)|p̂ ≤
(
E|x∆(t) − x̄∆(t)|2

) p̂/2

≤
(
C p̂(ϕ(∆))2∆

)p̂/2
= C p̂(ϕ(∆))p̂∆ p̂/2.

Thus, the proof is complete. 2
The following lemma reveals the boundedness of the second moments for the truncated EM110

solutions.

Lemma 3.20. Let Assumption 3.15 and 3.16 hold. Then

sup
0≤∆≤1

sup
0≤t≤T

E|x∆(t)|2 ≤ C, ∀T > 0. (3.78)
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Proof. Fix any ∆ ∈ (0, 1] and T > 0. By the Itô formula and Assumption 3.16, we have

E|x∆(t)|2 ≤ E|x0|
2 + E

∫ t

0

(
2xT

∆(s) f∆(x̄∆(s)) + |g∆(x̄∆(s))|2
)
ds

+ λE
∫ t

0

(
2x∆(s)T h∆(x̄∆(s−)) + |h∆(x̄∆(s−))|2

)
ds

≤ E|x0|
2 + E

∫ t

0

(
2x̄T

∆(s) f∆(x̄∆(s)) + |g∆(x̄∆(s))|2
)
ds

+ λE
∫ t

0

(
2x̄T

∆(s)h∆(x̄∆(s−)) + |h∆(x̄∆(s−))|2
)
ds + J̄1

≤ E|x0|
2 + 2K̂

∫ t

0

(
1 + E|x̄∆(s)|2

)
ds + J̄1, (3.79)

where

J̄1 = E
∫ t

0

(
2(x∆(s) − x̄∆(s))T f∆(x̄∆(s)) + 2λ(x∆(s) − x̄∆(s))T h∆(x̄∆(s−))

)
ds.

By Lemma 3.19, (3.68) and (3.69), we have

J̄1 ≤ 2(λ + 1)ϕ(∆)
∫ t

0
E|x∆(s) − x̄∆(s)|ds

≤ 2(λ + 1)TC(ϕ(∆))2∆1/2 ≤ C.

Inserting this into (3.79) and using Lemma 3.19 gives

E|x∆(t)|2 ≤ C + 2K̄
∫ t

0
E|x̄∆(s)|2ds.

Hence, we have

sup
0≤u≤t

E|x∆(u)|2 ≤ C + 2K̄
∫ t

0
sup

0≤u≤s
E|x∆(u)|2ds.

The Gronwall inequality yields
sup

0≤u≤T
E|x∆(u)|2 ≤ C.

Thus, we complete the proof. 2
As the proof is in a similar way as Lemma 3.10 and 3.11 were proved, we also have the

following Lemma.

Lemma 3.21. Let Assumption 3.15 and 3.16 hold. For any real number n > |x0|, then

P(τn ≤ T ) ≤
C
n2 and P(ρ∆,n ≤ T ) ≤

C
n2 , (3.80)

where τn and ρ∆,n is the same as before.115

Now, let us discuss the convergence of the truncated EM method for SDEs with Poisson jumps.
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Theorem 3.22. Let Assumption 3.15 and 3.16 hold. Then, for any r ∈ (0, 2)

lim
∆→0

E|x(T ) − x∆(T )|r = 0 (3.81)

and

lim
∆→0

E|x(T ) − x̄∆(T )|r = 0. (3.82)

Proof. Let τn, ρ∆,n, and e∆(t) be the same as before. We set θ∆,n = τn ∧ ρ∆,n. Applying the Young
inequality, we have that for any δ > 0,

E|e∆(T )|r = E
(
|e∆(T )|rI{θ∆,n>T }

)
+ E

(
|e∆(T )|rI{θ∆,n≤T }

)
≤ E

(
|e∆(T ∧ θ∆,n)|r

)
+

rδ
2
E|e∆(T )|2 +

2 − r
2δr/(2−r) P(θ∆,n ≤ T ). (3.83)

By Lemma 3.17 and 3.20, we have

E|e∆(T )|2 ≤ 2E|x(T )|p + 2E|x∆(T )|p ≤ C. (3.84)

Using Lemma 3.21, we obtain

P(θ∆,n ≤ T ) ≤ P(τn ≤ T ) + P(ρ∆,n ≤ T ) ≤
C
n2 . (3.85)

Inserting (3.84) and (3.85) into (3.83), we get

E|e∆(T )|r ≤ E|e∆(T ∧ θ∆,n)|r +
Crδ

2
+

C(2 − r)
2n2δr/(2−r) .

Now, let ε > 0 be arbitrary. We can choose δ sufficiently small such that

Crδ
2
≤
ε

3

and then choose n sufficiently large such that

C(2 − r)
2n2δr/(2−r) ≤

ε

3
.

We may assume that ∆∗ is sufficiently small for µ−1(ϕ(∆∗)) ≥ n. In the same way as Theorem 3.5
in [14] was proved, we can show that for all ∆ ∈ (0,∆∗]

E|e∆(T )|2 ≤ C∆,

which implies
E
(
|e∆(T ∧ θ∆,n)|r

)
≤
ε

3
.

Hence, we obtain the required assertion (3.81). Combining this with Lemma (3.19) gives (3.82).
Thus, the proof is complete. 2

For the purpose of getting the convergence order at time T, we need some additional condi-
tions.120
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Assumption 3.23. There exists a constant L̄1 > 0 such that

2(x − y)T ( f (x) − f (y)) + |g(x) − g(y)|2

+ 2λ(x − y)T (h(x) − h(y)) + λ|h(x) − h(y)|2 ≤ L̄1|x − y|2, (3.86)

for any x, y ∈ Rd.

Assumption 3.24. There exist constant L̄2 > 0 and 0 ≤ γ̄ < 1 such that

| f (x) − f (y)| ∨ |h(x) − h(y)| ≤ L̄2(1 + |x|γ̄ + |y|γ̄)|x − y|, ∀x, y ∈ Rd. (3.87)

Obviously, this condition implies

| f (x)| ∨ |h(x)| ≤ L̄3|x|1+γ̄, (3.88)

where L̄3 = 2L̄2 + | f (0)| + |h(0)|.

Lemma 3.25. Let Assumption 3.15, 3.16, 3.23 and 3.24 hold. Let n > |x0| be a real number ,τn

and ρ∆,n be the same as before. Set

θ∆,n = τn ∧ ρ∆,n and e∆(t) = x(t) − x∆(t), ∀t > 0.

Assume that ∆ ∈ (0, 1] is sufficiently small such that µ−1(ϕ(∆)) ≥ n. Then

E|e∆(T ∧ θ∆,n)|2 ≤ C(ϕ(∆))2∆.

Proof. We write θ∆,n = θ for simplicity. By the Itô formula and Assumption 3.23, we get that for
0 ≤ t ≤ T ,

E|e∆(t ∧ θ)|2

≤ E
∫ t∧θ

0

(
2eT

∆(s)( f (x(s)) − f∆(x̄∆(s))) + |g(x(s)) − g∆(x̄∆(s))|2
)
ds

+ λE
∫ t∧θ

0

(
|e∆(s) + (h(x(s−)) − h∆(x̄∆(s−)))|2 − |e∆(s)|2

)
ds

≤ E
∫ t∧θ

0

(
2(x(s) − x̄∆(s))T ( f (x(s)) − f∆(x̄∆(s))) + |g(x(s)) − g∆(x̄∆(s))|2

)
ds + J̄2

+ E
∫ t∧θ

0

(
2λ(x(s) − x̄∆(s))T (h(x(s−)) − h∆(x̄∆(s−))) + λ|h(x(s−)) − h∆(x̄∆(s−))|2

)
ds + J̄3

≤ L̄1

∫ t

0
E|x(s ∧ θ) − x̄∆(s ∧ θ)|2ds + J̄2 + J̄3, (3.89)

where

J̄2 = 2E
∫ t∧θ

0
|x∆(s) − x̄∆(s)|| f (x(s)) − f∆(x̄∆(s))|ds,

J̄3 = 2λE
∫ t∧θ

0
|x∆(s) − x̄∆(s)||h(x(s−)) − h∆(x̄∆(s−))|ds.
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By the condition µ−1(ϕ(∆)) ≥ n and the definition of the truncated functions f∆ and g∆, we have
that

f∆(x̄∆(s)) = f (x̄∆(s)) and g∆(x̄∆(s)) = g(x̄∆(s)), for 0 ≤ s ≤ t ∧ θ.

Hence, by Assumption 3.24 and the Hölder inequality as well as Lemma 3.19 and 3.20, we get
that

J̄2 ≤ 2E
∫ t∧θ

0
|x∆(s) − x̄∆(s)|| f (x(s)) − f (x̄∆(s))|ds

≤ 2L̄2E
∫ t∧θ

0
|x∆(s) − x̄∆(s)||1 + |x(s)|γ̄ + |x̄∆(s)|γ̄||x(s) − x̄∆(s)|ds

≤ L̄2

∫ t∧θ

0
E|x(s) − x̄∆(s)|2ds + C

∫ t∧θ

0
E(1 + |x(s)|2γ̄ + |x̄∆(s)|2γ̄)|x∆(s) − x̄∆(s)|2ds

≤ L̄2

∫ t

0
E|x(s ∧ θ) − x̄∆(s ∧ θ)|2ds

+ C
∫ T

0

(
1 + E|x(s)|2 + E|x̄∆(s)|2

)γ̄(
E|x∆(s) − x̄∆(s)|2/(1−γ̄)

)1−γ̄
ds

≤ L̄2

∫ t

0
E|x(s ∧ θ) − x̄∆(s ∧ θ)|2ds + C(ϕ(∆))2∆, (3.90)

where condition 0 ≤ γ̄ < 1 has been used. Similarly, we have

J̄3 ≤ λL̄2

∫ t

0
E|x(s ∧ θ) − x̄∆(s ∧ θ)|2ds + C(ϕ(∆))2∆. (3.91)

Inserting (3.90), (3.91) into (3.89) and combining Lemma 3.19, we have

E|e∆(t ∧ θ)|2 ≤ C
∫ t

0
E|e∆(s ∧ θ)|2ds + C(ϕ(∆))2∆.

The Gronwall inequality complete the proof. 2

Theorem 3.26. Let Assumption 3.15, 3.16, 3.23 and 3.24 hold. Let r ∈ (0, 2). If

ϕ(∆) ≥ µ
(
L̄−(1+γ̄)

3 ((ϕ(∆))r∆r/2)−1/(2−r)
)

(3.92)

holds for all sufficiently small ∆ ∈ (0, 1], then for every such small ∆,

E|x(T ) − x∆(T )|r ≤ C(ϕ(∆))r∆r/2 (3.93)

and

E|x(T ) − x̄∆(T )|r ≤ C(ϕ(∆))r∆r/2, (3.94)

for any T > 0.
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Proof. Let τn, ρ∆,n, θ∆,n and e∆(t) be the same as before. By (3.83)-(3.85), inequality

E|e∆(T )|r ≤ E|e∆(T ∧ θ∆,n)|r +
Crδ

2
+

C(2 − r)
2n2δr/(2−r)

holds for any ∆ ∈ (0, 1], n > |x0| and δ > 0. We can therefore choose δ = (ϕ(∆))r∆r/2 and
n = L̄−(1+γ̄)

3 ((ϕ(∆))r∆r/2)−1/(2−r) to get

E|e∆(T )|r ≤ E|e∆(T ∧ θ∆,n)|r + C(ϕ(∆))r∆r/2.

By condition (3.92), we have

µ−1(ϕ(∆)) ≥ L̄−1+γ̄
4 ((ϕ(∆))r∆r/2)−1/(2−r) = n.

Using Lemma 3.25, we have

E|e∆(T )|r ≤ (E|e∆(T )|2)r/2 ≤ C((ϕ(∆))2∆)r/2 = C(ϕ(∆))r∆r/2.

Combining this with Lemma (3.19) gives (3.94). Thus, the proof is complete. 2125

Corollary 3.27. Let Assumption 3.15, 3.16, 3.23 and 3.24 hold. Define

µ(n) = L̄3n1+γ̄, n ≥ 0. (3.95)

Let 0 < r ≤ 2/(2 + γ̄) and

ϕ(∆) = ∆−ε, ε ∈
[ r(1 + γ̄)

4 + 2rγ̄
,

1
4

]
. (3.96)

Assume that (3.92) holds for all sufficiently small ∆ ∈ (0, 1] . Then,

E|x(T ) − x∆(T )|r ≤ C∆r(1−ε)/2 (3.97)

and

E|x(T ) − x̄∆(T )|r ≤ C∆r(1−ε)/2. (3.98)

Proof. Applying Theorem 3.26 along with (3.95) and (3.96) gives the required assertion (3.97)
and (3.98). 2

Remark 3.28. Substituting (3.95) and (3.96) into (3.92) gives

∆−ε ≥ ∆−r(1−2ε)(1+γ̄)/(4−2r), namely ε ≥
r(1 + γ̄)
4 + 2rγ̄

.

But, condition (3.96) means

r(1 + γ̄)
4 + 2rγ̄

≤
1
4
, namely r ≤

2
2 + γ̄

≤ 1.

Hence, we have to force r to be not greater than 2/(2 + γ̄) in the corollary 3.27.
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Remark 3.29. Fixing 0 ≤ γ̄ < 1 , by (3.96) and (3.97), we can conclude that convergence order
is increasing in ε. Hence, substituting

ε =
r(1 + γ̄)
4 + 2rγ̄

into r/2(1 − 2ε) obtains the optimal Lr-convergence order, that is

R :=
r(2 − r)

2(2 + rγ̄)
, for 0 < r ≤

2
2 + γ̄

, (3.99)

which means that convergence order R increases as r increases. In other words, the higher
moment has a better convergence order for SDEs with jumps when 0 < r ≤ 2/(2 + γ̄). If we take

r =
2

2 + γ̄
,

then (3.99) becomes

R =
1

4 + 2γ̄
,

this is the maximum of optimal Lr-convergence order. In particular, if γ̄ = 0, i.e. the drift and
the jump coefficients grow linearly, then convergence order is equal to 1/4 by choosing r = 1.130

4. Asymptotic behaviours

4.1. Stability
In this subsection, we show that the partially truncated EM method can preserve the mean

square exponential stability of the underlying SDE (2.1). For the purpose of stability, we also
assume that

f (0) = g(0) = h(0) = 0, (4.1)

which means

|F1(x)| ∨ |G1(x)| ∨ |h(x)| ≤ K1|x|, ∀x ∈ Rd. (4.2)

We first impose the following assumption.

Assumption 4.1. Assume that there exist constants θ ≥ 0 and α1, α2 ≥ 0 satisfying α1 ≥ α2 +

λK1(2 + K1) such that

2xT F1(x) + (1 + θ)|G1(x)|2 ≤ −α1|x|2, ∀x ∈ Rd,

and

2xT F(x) + (1 + θ−1)|G(x)|2 ≤ α2|x|2, ∀x ∈ Rd.

If there is no super-linearly growing term G(x), we set θ = 0 and θ−1|G(x)|2 = 0. Similarly,
when the linearly growing term G1(x) is absent, we set θ = ∞ and θ|G1(x)|2 = 0. Moreover, this
assumption means

2xT f (x) + |g(x)|2 + λ(xT h(x) + |h(x)|2) ≤ −(α1 − α2 − λK1(2 + K1))|x|2, x ∈ Rd. (4.3)

It is therefore known that the SDE (2.1) is exponentially stable in the mean square sense. We
state the following lemma.135
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Lemma 4.2. Let Assumption 3.1, 3.2, 3.3 and 4.1 hold. Then for any initial value x0 ∈ Rd, the
solution of the SDE (2.1) satisfies

E|x(t)|2 ≤ |x0|
2e−(α1−α2−λK1(2+K1))t, ∀t ≥ 0.

The following theorem shows that the truncated EM method preserves the mean square ex-
ponential stability perfectly. We employ the technique due to Guo et al. [16] to prove our results.

Theorem 4.3. Let Assumption 3.1, 3.2, 3.3 and 4.1 hold. Then for any ε ∈ (0, α1 −α2 − λK1(2 +

K1)), there exists a ∆̂ ∈ (0, 1] such that for all ∆ ∈ (0, ∆̂] and any initial value x0 ∈ Rd, the
truncated EM solutions satisfy

E|X∆(tk)|2 ≤ |x0|
2e−(α1−α2−λK1(2+K1)−ε)tk , ∀k ≥ 0. (4.4)

Proof. Fix ∆ ∈ (0, 1]. In the same way as Theorem 4.3 in [16] was proved, we have

2xT f∆(x) + |g∆(x)|2 ≤ −(α1 − α2)|x|2, ∀x ∈ Rd. (4.5)

From (3.14), we have

E|X∆(tk+1)|2 = E
(
|X∆(tk)|2 + | f∆(X∆(tk))|2∆2 + |g∆(X∆(tk))∆Bk |

2

+ 2X∆(tk)T f∆(X∆(tk))∆ + |h(X∆(t−k ))∆Nk |
2

+ 2∆ f T
∆ (X∆(tk))h(X∆(t−k ))∆Nk + 2X∆(tk)T h(X∆(t−k ))∆Nk

)
, (4.6)

for 0 ≤ k ≤ M − 1. The property of Brownian increments implies

E|g∆(X∆(tk))∆Bk |
2 = ∆E|g∆(X∆(tk))|2.

But, the Poisson increments satisfy E∆Nk = λ∆ and E(∆Nk)2 = λ∆(1 + λ∆). Hence, using the
independence of the increments and (4.2), we find that

2E|X∆(tk)h(X∆(t−k ))∆Nk | ≤ 2K1E|X∆(tk)|2E|∆Nk | = 2K1λ∆E|X∆(tk)|2, (4.7)

E|h(X∆(t−k ))∆Nk |
2 ≤ K2

1E|X∆(tk)|2E|∆Nk |
2

≤ K2
1λ∆(1 + λ∆)E|X∆(tk)|2

= K2
1λ∆E|X∆(tk)|2 + K2

1λ
2∆2E|X∆(tk)|2 (4.8)

and

2E|∆ f∆(X∆(tk))h(X∆(t−k ))∆Nk | ≤ 2K1∆E(|X∆(tk) f∆(X∆(tk))|)E|∆Nk |

≤ K1λ∆2(E|X∆(tk)|2 + E| f∆(X∆(tk))|2). (4.9)

Substituting (4.7)-(4.9) into (4.6) gives

E|X∆(tk+1)|2 ≤ E
(
|X∆(tk)|2 + 2X∆(tk)T f∆(X∆(tk))∆ + |g∆(X∆(tk))|2∆

)
+ λK1(2 + K1)∆E|X∆(tk)|2 + (1 + K1λ)∆2E| f∆(X∆(tk))|2

+ (K2
1λ

2 + K1λ)∆2E|X∆(tk)|2. (4.10)
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By (4.5), we have

E|X∆(tk+1)|2 ≤ [1 − (α1 − α2 − λK1(2 + K1))∆]E|X∆(tk)|2

+ (1 + K1λ)∆2E| f∆(X∆(tk))|2 + (K2
1λ

2 + K1λ)∆2E|X∆(tk)|2. (4.11)

By (3.1) and (4.1), we have

|F∆(x)|2 ≤ 4L1|x|2, if |x| ≤ 1,

and

|F∆(x)|2 ≤ (ϕ(∆))2 ≤ (ϕ(∆))2|x|2, if |x| > 1.

Hence, we have

∆| f∆(x)|2 ≤ 2(K2
1 + 4L1 + (ϕ(∆))2)∆|x|2

≤ 2
(
(K2

1 + 4L1)∆ + ∆1/2∧(p̄−2)/ p̄
)
|x|2,

for all x ∈ Rd, where (3.10) has been used. For any ε ∈ (0, α1 − α2 − λK1(2 + K1)), there is a
∆̂ ∈ (0, 1] sufficiently small such that for all ∆ ∈ (0, ∆̂], (α1 − α2 − λK1(2 + K1))∆ ≤ 1 and2(1 + K1λ)

(
(K2

1 + 4L1)∆ + ∆1/2∧( p̄−2)/ p̄
)
≤ 0.5ε,

(K2
1λ

2 + K1λ)∆ ≤ 0.5ε.
(4.12)

For each such ∆, we have

(1 + K1λ)∆2E| f∆(X∆(tk))|2 + (K2
1λ

2 + K1λ)∆2E|X∆(tk)|2 ≤ ε∆E|X∆(tk)|2.

Inserting this into (4.11), we yield

E|X∆(tk+1)|2 ≤ [1 − (α1 − α2 − λK1(2 + K1) − ε)∆]E|X∆(tk)|2

≤ · · ·

≤ |x0|
2[1 − (α1 − α2 − λK1(2 + K1) − ε)∆]k+1. (4.13)

By the elementary inequality

1 − (α1 − α2 − λK1(2 + K1) − ε)∆ ≤ e−[α1−α2−λK1(2+K1)−ε]∆,

we have

E|X∆(tk+1)|2 ≤ |x0|
2e−[α1−α2−λK1(2+K1)−ε]tk+1 . (4.14)

Thus, the proof is complete. 2

4.2. Asymptotic boundedness140

In this subsection, we show that the truncated EM method maintains the asymptotic bound-
edness of the underlying of SDE (2.1). The additional assumption is the following one.
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Assumption 4.4. Assume that there exist constants θ ≥ 0 and ᾱ1, ᾱ2, β̄1, β̄2 > 0 satisfying β̄1 >
β̄2 + max(λ(4K2

1 + 1), 2λK1(2 + K1)) such that

2xT F1(x) + (1 + θ)|G1(x)|2 ≤ ᾱ1 − β̄1|x|2, ∀x ∈ Rd,

and

2xT F(x) + (1 + θ−1)|G(x)|2 ≤ ᾱ2 + β̄2|x|2, ∀x ∈ Rd.

When there is no super-linearly growing term G(x), we set θ = 0 and θ−1|G(x)|2 = 0. Sim-
ilarly, if the linearly growing term G1(x) is absent, we set θ = ∞ and θ|G1(x)|2 = 0. Moreover,
(3.3) implies

λ(2xT h(x) + |h(x)|2) ≤ λ(|x|2 + 2|h(x)|2) ≤ 4λK2
1 + λ(4K1 + 1)|x|2, ∀x ∈ Rd.

Hence, by Assumption 4.4, we have

2xT f (x) + |g(x)|2 + λ(2xT h(x) + |h(x)|2) ≤ α̂ − β̂|x|2, ∀x ∈ Rd, (4.15)

where α̂ = ᾱ1 + ᾱ2 + 4λK2
1 and β̂ = β̄1 − β̄2 − λ(4K2

1 + 1).

Theorem 4.5. Let Assumption 3.1, 3.2, 3.3 and 4.4 hold. Then for any initial value x0 ∈ Rd, the
solution of the SDE (2.1) satisfies

lim sup
t→∞

E|x(t)|2 ≤
ᾱ1 + ᾱ2 + 4λK2

1

β̄1 − β̄2 − λ(4K2
1 + 1)

. (4.16)

Proof. Let τn , α̂, and β̂ be the same as before. Set σn = t ∧ τn. For any t ≥ 0, the Itô formula
gives that

E
[
eβ̂σn |x(σn)|2

]
= |x0|

2 + E
∫ σn

0
eβ̂σn

(
2xT (s) f (x(s)) + |g(x(s))|2

+ 2xT (s)h(x(s)) + |h(x(s))|2 + β̂|x(s)|2
)
ds.

By (4.15), we have

E
[
eβ̂σn |x(σn)|2

]
≤ |x0|

2 + α̂

∫ t

0
eβ̂sds = |x0|

2 +
α̂

β̂
(eβ̂t − 1).

Letting n→ ∞, we have

E
[
eα̂t |x(t)|2

]
≤ |x0|

2 +
α̂

β̂
(eβ̂t − 1)

which implies

E|x(t)|2 ≤
|x0|

2

eβ̂t
+
α̂

β̂
.

Thus, the proof is complete. 2
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Lemma 4.6. For 0 < A < 1 and B ≥ 0. If

Dk ≤ ADk−1 + B, k = 1, 2, · · · . (4.17)

Then

lim sup
k→∞

Dk ≤
B

1 − A
. (4.18)

Proof. The proof is given in the Appendix. 2145

Theorem 4.7. Let Assumption 3.1, 3.2, 3.3 and 4.4 hold. Then for any ε ∈
(
0, β̄1 − β̄2 −

max(λ(4K2
1 + 1), 2λK1(2 + K1))

)
, there is a ∆̂ ∈ (0, 1] such that for every ∆ ∈ (0, ∆̂) and any

initial value x0 ∈ Rd, the truncated EM solutions satisfy

lim sup
k→∞

E|X∆(tk)|2 ≤
ᾱ1 + ᾱ2 + 2λK1(2 + K1) + ε

β̄1 − β̄2 − 2λK1(2 + K1) − ε
. (4.19)

Proof. Fix ε ∈ (0, β̄1 − β̄2). In the same way as Theorem 5.3 in [16] was proved, we have

2xT f∆(x) + |g∆(x)|2 ≤ ᾱ1 + ᾱ2 − (β̄1 − β̄2 − 0.5ε)|x|2, ∀x ∈ Rd, (4.20)

as long as ∆ ∈ (0, ∆̂1], where ∆̂1 ∈ (0, 1] is sufficiently small and satisfies
ᾱ2

(µ−1(ϕ(∆̂1)))2
≤ 0.5ε. (4.21)

Using the independence of the Poisson increments and (3.3) as well as Lemma 3.7, we have

E|h(X∆(t−k ))∆Nk |
2 ≤ 2K2

1E(1 + |X∆(tk)|2)E|∆Nk |
2

≤ 2K2
1λ∆(1 + λ∆)E(1 + |X∆(tk)|2)

≤ 2K2
1λ∆E|X∆(tk)|2 + 2K2

1λ∆ + C∆2, (4.22)

2E|X∆(tk)h(X∆(t−k ))∆Nk | ≤ 2K1E(|X∆(tk)|(1 + |X∆(tk)|))E|∆Nk |

≤ 4K1λ∆E(1 + |X∆(tk)|2)

≤ 4K1λ∆E|X∆(tk)|2 + 4K1λ∆ (4.23)

and

2E|∆ f∆(X∆(tk))h(X∆(t−k ))∆Nk | ≤ 2K1∆E((1 + |X∆(tk)|)| f∆(X∆(tk))|)E|∆Nk |

≤ K1λ∆2(E(1 + |X∆(tk)|2) + E| f∆(X∆(tk))|2)

≤ K1λ∆2E| f∆(X∆(tk))|2 + C∆2. (4.24)

Fix x0 ∈ Rd arbitrarily. For any ∆ ∈ (0, ∆̂1), substituting (4.22)-(4.24) into (4.6) gives

E|X∆(tk+1)|2 ≤ E
(
|X∆(tk)|2 + 2X∆(tk)T f∆(X∆(tk))∆ + |g∆(X∆(tk))|2∆

)
+ 2λK1(2 + K1)∆E|X∆(tk)|2 + (1 + K1λ)∆2E| f∆(X∆(tk))|2

+ 2λK1(2 + K1)∆ + C∆2

≤ (1 − (β̄1 − β̄2 − 2λK1(2 + K1) − 0.5ε)∆)E|X∆(tk)|2

+ (ᾱ1 + ᾱ2 + 2λK1(2 + K1))∆ + C∆2

+ (1 + K1λ)∆2E| f∆(X∆(tk))|2, (4.25)
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where (4.20) has been used. By (3.3) and (3.12), we have

| f∆(x)|2 ≤ 2|F1(x)|2 + 2|F(x)|2 ≤ 4K2
1 (1 + |x|2) + 2(ϕ(∆))2, ∀x ∈ Rd.

Hence, by (3.10), we get

∆| f∆(x)|2 ≤ 4K2
1∆(1 + |x|2) + 2∆1/2∧(p̄−2)/p̄, ∀x ∈ Rd.

Consequently, there is a ∆̂ ∈ (0, ∆̂1) sufficiently small such that for any ∆ ∈ (0, ∆̂), ∆(β̂1−β̂2−ε) <
1 and

C∆ + (1 + K1λ)∆| f∆(X∆(tk))|2 ≤ ε + 0.5ε|X∆(tk)|2. (4.26)

Thus, fix any ∆ ∈ (0, ∆̂). Inserting (4.26) into (4.25) yields

E|X∆(tk+1)|2 ≤ (1 − (β̄1 − β̄2 − 2λK1(2 + K1) − ε)∆)E|X∆(tk)|2

+ (ᾱ1 + ᾱ2 + 2λK1(2 + K1) + ε)∆. (4.27)

Applying Lemma 4.6 to (4.27) gives the required assertion (4.19). 2

5. Examples

Example 5.1. Consider the scalar power logistic model in a population system with jumps

dx(t) = x(t)[(5 − 10x2(t))]dt + x2(t)dB(t) + x(t−)dN(t), (5.1)

with the initial value x(0) = 1, where B(t) is a scalar Brownian motion and N(t) is a scalar
Poisson process with intensity λ = 0.25. Letting h(x) = x, we decompose f (x) = 5x − 10x3 and
g(x) = x2 into two parts denoted by f (x) = F1(x) + F(x) and g(x) = G1(x) + G(x) with

F1(x) = 5x, F(x) = −10x3, G1(x) = 0, G(x) = x2, (5.2)

respectively. We now demonstrate the process of implementing the truncated EM and show the
convergence rate of this method for this system.
Step 1. Verify the assumptions.
Obviously, (3.1) is satisfied. It is easy to see that

|F(x) − F(y)| ∨ |G(x) −G(y)| ≤ 15(1 + x2 + y2)|x − y|, ∀x, y ∈ R.

Thus, Assumption 3.1 is satisfied with γ = 2. Similarly, we can deduce that Assumption 3.2 and
3.3 is also fulfilled for r̄ = 3 and p̄ = 21, respectively.
Step 2. Choose µ(·) and ϕ(·).
By (5.2), we have

sup
|x|≤n

(|F(x)| ∨ |G(x)|) ≤ 10n3, ∀n ≥ 1,

which means µ(n) = 10n3. Setting r = 2, then condition (3.61), namely, (1 + γ)r ∨ r̄ < p < p̄,
becomes 6 < p < 21. If we let p = 20 and choose a parameter ε ∈ (0, 1/4], say ε = 1/6, then
(3.64), namely, p ≥ (1+γ)r

2ε , holds. Hence, according to (3.10), we can choose

ϕ(∆) = 10∆−1/6.
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Fig. 1. The L1-convergence order of truncated EM scheme for SDE (5.1)

Step 3. Define f∆(x) and g∆(x).
From Step 2, we define the truncating factor µ−1(ϕ(∆)) = ∆−1/18. The truncated functions f∆(x)
and g∆(x) are defined by

f∆(x) = F1(x) + F((|x| ∧ ∆−1/18)
x
|x|

) and g∆(x) = G1(x) + G((|x| ∧ ∆−1/18)
x
|x|

).

Step 4. Calculate Xk in each iteration.
For the given step size ∆, the time T and X0 = 1, the Xk+1 is calculated by

Xk+1 = Xk + f∆(Xk)∆ + g∆(Xk)∆Bk + h(Xk)∆Nk, 0 ≤ k ≤ T/∆ − 1. (5.3)

For p = 20, γ = 2, r = 2 and ε = 1/6, we compute ε(p− (1+γ)r)/(1+γ) = 7/9, (p−γr)/p = 4/5
and r(1 − 2ε)/2 = 2/3, respectively. By Theorem 3.11, we have

E|x(T ) − x∆(T )|2 ≤ C∆2/3,

which implies that the truncated EM method for SDE (5.1) has the order 2/3 of L2-convergence
or the order 1/3 of L1-convergence.

As the SDE (5.1) does not have any explicit solutions, the scheme (5.3) with step size 2−14

is treated as the true solution of SDE (5.1) in the numerical experiments. Fig. 1 shows the
L2-errors, which are defined by

(
E
∣∣∣x(T ) − x∆(T )

∣∣∣2)1/2
≈

( 1
1000

1000∑
i=1

∣∣∣[x(T )]i − [x∆(T )]i
∣∣∣2)1/2

,

with step sizes 2−11, 2−10, 2−9, 2−8 and 2−7 at time T = 3. For each step size, 1000 sample paths150

are simulated. The numerical simulation shows that the L1-convergence order of the partially
truncated EM method for SDE (5.1) is approximately 1/2, which is close to the theoretical result
obtained in this paper, see Fig. 1 for illustration.

27



Example 5.2. Consider the following scalar SDE with jumps

dx(t) = −(x(t) + x5(t))dt + x2(t)dB(t) + x(t−)dN(t), (5.4)

with the initial value x(0) = 0.5, where B(t) is a scalar Brownian motion and N(t) is a scalar
Poisson process with jump intensity λ = 0.5. Obviously, we have

F1(x) = −x, F(x) = −x5, G1(x) = 0, G(x) = x2, h(x) = x, (5.5)

and

|F1(x)| ∨ |G1(x)| ∨ |h(x)| = |x|, with K1 = 1,

|F(x) − F(y)| ∨ |G(x) −G(y)| ≤ L1(1 + x4 + y4)|x − y|,

where L1 is a constant. This means that Assumption 3.1 is satisfied with γ = 4. Setting θ = ∞

gives
2xF1(x) + (1 + θ)|G1(x)|2 = −2x2,

and
2xF(x) + (1 + θ−1)|G(x)|2 = −2x6 + x4 ≤ −2x2

(
x2 −

1
4

)2
+

1
8

x2 ≤
1
8

x2.

Hence, Assumption 4.1 is satisfied with α1 = 2 and α2 = 1/8. Moreover, for any r̄, we have

(x − y)(F(x) − F(y)) +
r̄ − 1

2
|G(x) −G(y)| ≤

(
1 +

(r̄ − 1)2

4

)
|x − y|2, ∀x ∈ R,

which means that Assumption 3.2 is satisfied. Also, we can check that Assumption 3.3 holds for
any p̄ (see [16]). By Theorem 4.2, the SDE 5.4 is stable exponentially in the mean square sense
for any initial value x0 ∈ R and the solution x(t) of SDE 5.4 satisfies

E|x(t)|2 ≤ |x0|
2e−(α1−α2−λK1(2+K1))t = |x0|

2e−0.375t, ∀t ≥ 0.

From (5.5), we can choose µ(n) = n5 such that

sup
|x|≤n

(|F(x)| ∨ |G(x)|) = sup
|x|≤n

(|x5| ∨ |x2|) ≤ n5, ∀n ≥ 1.

Letting r = 2, r̄ = 3, γ = 4, p = 40 and ϕ(∆) = ∆−1/8. Then we choose µ−1(ϕ(∆)) = ∆−1/40.
By Corollary 3.12, the numerical solutions converge strongly to the true solution in L2 with

convergence order [r(1 − 2ε)/2] ∧ [(p − γr)/p] = 3/4 ∧ 4/5 = 3/4 . Finally, by Theorem 4.3,
for any ε ∈ (0, 0.375), there exists a ∆̂ ∈ (0, 1] such that for all ∆ ∈ (0, ∆̂] and any initial value
x0 ∈ R, the solutions of the truncated EM method (3.14) satisfy

E|X∆(tk)|2 ≤ |x0|
2e−(α1−α2−λK1(2+K1)−ε)tk = |x0|

2e−(0.375−ε)tk , ∀k ≥ 0.

Figs. 2 and 3 demonstrate the mean square exponential stability of the truncated EM method.

Example 5.3. Consider the following scalar SDE with jumps

dx(t) = (x(t) − x3(t))dt + x(t)dB(t) + x(t−)dN(t), (5.6)
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with the initial value x(0) = 0.5, where B(t) is a scalar Brownian motion and N(t) is a scalar
Poisson process with jump intensity λ = 0.1. We decompose the drift and diffusion coefficient in
the form with

F1(x) = −2x, F(x) = 3x − x3, G1(x) = x, G(x) = 0, h(x) = x, (5.7)

which means

|F1(x)| ∨ |G1(x)| ∨ |h(x)| = 2|x|, with K1 = 2.

Setting θ = 0 gives
2xF1(x) + (1 + θ)|G1(x)|2 = −3x2,

and
2xF(x) + (1 + θ−1)|G(x)|2 = 2x(3x − x3) = −2(x2 − 1.5)2 + 4.5 ≤ 4.5.

Hence, Assumption 4.4 is satisfied with

ᾱ1 = 0, β̄1 = 3, ᾱ2 = 4.5, and β̄2 = 0. (5.8)

It is easy to check that coefficients of the SDE 5.6 with their decompositions in (5.7) satisfy
Assumption 3.1, 3.2 and 3.3 for any p̄ > 2. Using Theorem 4.5 gives that for any initial value
x0 ∈ R, the solution x(t) of SDE 5.6 satisfies

lim sup
t→∞

E|x(t)|2 ≤
ᾱ1 + ᾱ2 + 4λK2

1

β̄1 − β̄2 − λ(4K2
1 + 1)

≈ 4.69. (5.9)

Moreover, taking r = 2,γ = 2, r̄ = 3 as well as p = 50, we can choose µ(n) = 4n3 and
ϕ(∆) = 4∆−3/50 and to define the numerical solutions X∆(tk) by the partially truncated EM
method. By Theorem 3.11, this solutions of truncated EM converge to the true solution in L2

with convergence order [r(1 − 2ε)/2] ∧ [(p − γr)/p] = 22/25 ∧ 23/25 = 0.88. Finally, by The-
orem 4.7, for any ε ∈ (0, 1.3), there exists a ∆̂ ∈ (0, 1] such that for all ∆ ∈ (0, ∆̂] and any initial
value x0 ∈ R, the numerical solutions satisfy

lim sup
k→∞

E|X∆(tk)|2 ≤
ᾱ1 + ᾱ2 + 2λK1(2 + K1) + ε

β̄1 − β̄2 − 2λK1(2 + K1) − ε
=

6.1 + ε

1.4 − ε
.
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The asymptotic boundedness of the numerical method is shown in Figs. 4 and 5.155

6. Conclusions and future research

In this paper, the truncated EM method is investigated for SDEs driven by both Brownian
motions and Possion jumps. Both the finite time convergence and asymptotic behaviours of the
method are studied. The Lr(r ≥ 2) strong convergence is proved when the drift and diffusion
coefficients satisfy super-linear growth condition and the coefficient for Possion jumps satisfies160

linear growth condition. When 0 < r < 2, we are able to prove the Lr-convergence of the
methods to SDEs with all the three coefficients allowing to grow super-linearly.

In the future works, we will report on the SDEs driven by Lévy process and theLr-convergence
for SDEs whose all the three coefficients can grow super-linearly.

Appendix A. Proof of Lemma 3.9165

Proof. By the Itô formula and (3.8), we have

E|x(t ∧ τn)|2 ≤ |x0|
2 + E

∫ t∧τn

0
K3(1 + |x(s)|2)ds

+ λE
∫ t∧τn

0
(2x(s)T h(x(s)) + |h(x(s))|2)ds

≤ |x0|
2 + (K3 + 2λ(2K1 + K2

1 ))
∫ t

0
E(1 + |x(s ∧ τn)|2)ds,

for any 0 < t < T . The Gronwall inequality shows

E|x(T ∧ τn)|2 ≤ C,

which implies

P(τn ≤ T ) ≤
C
n2 .

Thus, the proof is complete. 2
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Appendix B. Proof of Lemma 3.10

Proof. We write ρ∆,n = ρ for simplicity. For 0 ≤ t ≤ T , the Itô formula gives

E|x∆(t ∧ ρ)|2 = |x0|
2 + E

∫ t∧ρ

0

(
2xT

∆(s) f∆(x̄∆(s)) + |g∆(x̄∆(s))|2
)
ds

+ λE
∫ t∧ρ

0

(
2xT

∆(s)h(x̄∆(s−)) + |h(x̄∆(s−))|2
)
ds

= |x0|
2 + E

∫ t∧ρ

0

(
2x̄T

∆(s) f∆(x̄∆(s)) + |g∆(x̄∆(s))|2
)
ds

+ E
∫ t∧ρ

0
2(x∆(s) − x̄∆(s))T f∆(x̄∆(s))ds

+ λE
∫ t∧ρ

0

(
2xT

∆(s)h(x̄∆(s−)) + |h(x̄∆(s−))|2
)
ds. (B.1)

By (3.3), we obtain

E
∫ t∧ρ

0

(
2xT

∆(s)h(x̄∆(s−)) + |h(x̄∆(s−))|2
)
ds

≤ E
∫ t∧ρ

0

(
|x∆(s)|2 + 2|h(x̄∆(s−))|2

)
ds

≤ E
∫ t∧ρ

0

(
|x∆(s)|2 + 4K2

1 (1 + |x̄∆(s)|2)
)
ds

≤ 4K2
1T + (8K2

1T + 1)E
∫ t∧ρ

0
|x∆(s)|2ds + 8K2

1TE
∫ t∧ρ

0
|x∆(s) − x̄∆(s)|2ds. (B.2)

Substituting this into (B.1) and applying (3.13), we have

E|x∆(t ∧ ρ)|2 ≤ |x0|
2 +

∫ t∧ρ

0
2K4(1 + |x̄∆(s)|2)ds + 4λK2

1T

+ E
∫ t∧ρ

0
2(x∆(s) − x̄∆(s))T f∆(x̄∆(s))ds

+ λ(8K2
1T + 1)E

∫ t∧ρ

0
|x∆(s)|2ds + λ8K2

1TE
∫ t∧ρ

0
|x∆(s) − x̄∆(s)|2ds

≤ (|x0|
2 + 2K4T + 4λL2

1T ) + (4K4 + λ(8K2
1T + 1))

∫ t

0
E|x∆(s ∧ ρ)|2ds

+ (4K4 + 8λK2
1T )

∫ T

0
E|x∆(s) − x̄∆(s)|2ds

+ 2E
∫ t∧ρ

0
|x∆(s) − x̄∆(s)|| f∆(x̄∆(s))|ds. (B.3)

By Lemma 3.6, we have ∫ T

0
E|x∆(s) − x̄∆(s)|2ds ≤ C.
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By (3.3), we have

E
∫ t∧ρ

0
|x∆(s) − x̄∆(s)|| f∆(x̄∆(s))|ds

≤ K1E
∫ t∧ρ

0
|x∆(s) − x̄∆(s)|(1 + |x̄∆(s)|)ds + I5

≤ C
(
E

∫ t∧ρ

0
|x∆(s) − x̄∆(s)|2ds +

∫ t

0
E|x∆(s ∧ ρ)|2ds + 1

)
+ I5 (B.4)

where

I5 = E
∫ T

0
|x∆(s) − x̄∆(s)||F∆(x̄∆(s))|ds.

Using Lemma 3.8, condition (3.10) and (3.12) gives

I5 ≤ ϕ(∆)
∫ T

0

(
E|x∆(s) − x̄∆(s)|2

)1/2
ds

≤ C(ϕ(∆))2∆1/2 = C(ϕ(∆)∆1/4)2 ≤ C.

Hence, we have

E|x∆(t ∧ ρ)|2 ≤ C
(
1 +

∫ t

0
E|x∆(s ∧ ρ)|2ds

)
.

The Gronwall inequality gives

E|x∆(T ∧ ρ)|2 ≤ C,

which implies (3.80). Thus, the proof is complete. 2

Appendix C. Proof of Lemma 3.18

Proof. Fix any ∆ ∈ (0, 1], we have

1
µ−1(ϕ(∆))

≤
1

µ−1(ϕ(1))
.

For x ∈ Rd with |x| ≤ µ−1(ϕ(∆)), by the definition of the truncated function, we obtain the
required assertion (3.71). For the case that |x| > µ−1(ϕ(∆)), Assumption 3.16 gives

2xT f∆(x) + |g∆(x)|2 + λ(2xT h∆(x) + |h∆(x)|2)

= 2(x − π∆(x))T f∆(x) + 2λ(x − π∆(x))T h∆(x)

+ 2π∆(x)T f∆(x) + |g∆(x)|2 + 2λπ∆(x)T h∆(x) + λ|h∆(x)|2

≤
( |x|
µ−1(ϕ(∆))

− 1
)(

2π∆(x)T f (π∆(x)) + 2λπ∆(x)T h(π∆(x))
)

+ K̄(1 + |π∆(x)|2)

≤
( |x|
µ−1(ϕ(∆))

− 1
)
(K̄(1 + |π∆(x)|2)) + K̄(1 + |π∆(x)|2)
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=
|x|

µ−1(ϕ(∆))
K̄(1 + |µ−1(ϕ(∆))|2)

= K̄|x|
( 1
µ−1(ϕ(∆))

+ |µ−1(ϕ(∆))|
)

≤ K̄
( 1
µ−1(ϕ(∆))

∨ 1
)
|x|(1 + |x|)

≤ 2K̄
( 1
µ−1(ϕ(∆))

∨ 1
)
(1 + |x|2).

Thus, we complete the proof. 2170

Appendix D. Proof of Lemma 4.6

Proof. (4.17) is equivalent to the following expression

Dk +
B

A − 1
≤ A

(
Dk−1 +

B
A − 1

)
, for k = 0, 1, 2, · · · .

Hence, we have

Dk +
B

A − 1
≤ Ak

(
D0 +

B
A − 1

)
.

It follows

Dk ≤ Ak
(
D0 +

B
A − 1

)
+

B
1 − A

.

Recalling 0 < A < 1 and taking k → ∞, we obtain the required assertion (4.18). 2
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