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Abstract 

Stable isotope data can assist in successful monitoring of the fate of injected CO2 in enhanced oil recovery and 

geological storage projects. This is demonstrated for the International Energy Agency Greenhouse Gas Weyburn-

Midale CO2 Monitoring and Storage Project (Saskatchewan) and the Pembina Cardium CO2 Monitoring Project 

(Alberta) where fluid and gas samples from multiple wells were collected and analyzed for geochemical and isotopic 

compositions. In both projects, C and O isotope values of injected CO2 were sufficiently distinct from those of 

background CO2 in the reservoir. Consequently C and O isotope ratios constitute a suitable �fingerprint� for tracing 

the fate of injected CO2 in the respective reservoirs.  
 

© 2008 Elsevier Ltd. All rights reserved 
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1. Introduction 

Global atmospheric concentrations of carbon dioxide (CO2) have increased markedly as a result of human 

activities since 1750 and now far exceed pre-industrial values determined from ice cores spanning several hundred 

thousands of years [1]. The recent global increase in atmospheric carbon dioxide concentration is due primarily to 

fossil fuel combustion [2]. At the current rate of increase in atmospheric CO2 concentrations (~2ppm/year) further 

warming and changes in the global climate system will very likely be larger than those already observed during the 

20th century [2]. It is thus likely that anthropogenic CO2 emissions must be reduced to stabilize the climate �to 

preserve a planet on which civilization developed and to which life on Earth is adapted� [3].  
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Carbon Capture and Storage (CCS) is a promising component of any serious plan to reduce anthropogenic CO2 

emissions to the atmosphere and thereby mitigate future impacts of human-induced climate change [4]. CCS 

associated with the combustion of fossil fuels allows for near carbon neutrality (typically capture is 90% of CO2 

emissions) whilst still exploiting the energy gain from carbon based fuels. A successful CCS project must 

demonstrate that the injected CO2 is safely and securely sequestered in the chosen reservoir. Combined geophysical 

and geochemical monitoring programs have the potential to determine the fate of the injected CO2 in the reservoir 

and to assess the nature and effectiveness of the storage mechanisms [5].  

 

As CO2 is injected into reservoirs it will undergo a number of physical and chemical reactions [6]. CO2 density 

will increase with increasing depth and when the CO2 reaches its critical point (31 C and 74bar) at depths of 

approximately 800m [7] in the subsurface it will become a supercritical fluid. Interaction between the CO2 and the 

reservoir fluids will lead to a variety of dissolution processes and partitioning of the CO2 into different phases. A 

portion of the CO2 will stay as free phase supercritical fluid, some will dissolve in residual hydrocarbons in the 

reservoir and some will dissolve in the reservoir fluids. In the latter case CO2 will undergo a number of chemical 

reactions that include the following [8,9]: 

 CO2(aq) + H2O   H2CO3  (1) 

 H2CO3    H+  + HCO3
-  (2) 

After commencement of CO2 injection, geochemical patterns in reservoir fluids and gases will reveal the above-

mentioned processes. For example, the production of hydrogen ions (equation 2) will decrease pH while the 

bicarbonate ions produced in the same equation will increase alkalinity when the hydrogen ions are buffered by 

water-rock reactions. Geochemical data obtained for reservoir fluids and gases can therefore be used to monitor the 

fate of CO2 in the subsurface. This is particularly true if injected CO2 can be distinguished from carbon compounds 

in the reservoir by tracer techniques. Stable isotope ratios of carbon and oxygen (expressed as 13C and 18O values) 

can be easily determined for injected CO2 and carbon compounds in reservoir fluids and gases by a suitable 

geochemical monitoring and measurement program. It is essential to determine the isotopic composition of CO2 

(and DIC) in the reservoir prior to CO2 injection. If the injected CO2 is isotopically distinct with respect to baseline 

CO2, stable isotope ratios can be used as �fingerprints� and facilitate monitoring of the migration and behavior of the 

CO2 in the reservoir after commencement of CO2 injection. The objective of this paper is to demonstrate the 

usefulness of isotopic tracers for geochemical monitoring of injected CO2. 

2. Study areas 

Data from two CO2�Enhanced Oil Recovery (EOR) projects in western Canada are used to demonstrate the 

feasibility of using geochemical and isotopic data to trace the fate of injected CO2 in the subsurface. The sites are the 

International Energy Agency Greenhouse Gas Weyburn - Midale CO2 Monitoring and Storage Project in southern 

Saskatchewan and the Pembina Cardium CO2 Monitoring Project in central Alberta (Fig. 1).  The Mississippian 

Midale beds of the carbonate reservoir at Weyburn consist of an upper dolostone �Marly� unit and a lower limestone 

�Vuggy� unit into which CO2 has been injected since 2000 [10].  In contrast, CO2 at the Pembina project is injected 

into the siliciclastic Upper Cretaceous Cardium formation that comprises a series of stacked sandstone reservoirs 

(see companion paper by Nightingale et al. for full mineralogy). This provides an excellent opportunity to study and 

compare the interaction of CO2 with two contrasting sedimentary reservoir lithologies: siliciclastics and carbonates. 

3. Methods 

To monitor changes in the CO2 distribution in the reservoir, the geochemical and isotopic composition of the 

fluids and gases must be determined at regular intervals throughout the duration of the project. One critical aspect is 

the establishment of a baseline pre-injection study. The baseline study will reveal both the �natural� state of the 

reservoir fluids before CO2 injection and should also aim at elucidating natural variability in the reservoir. 

Sample collection differs slightly at the two sites due to the operation of the reservoir and chemical composition 

of the fluids (e.g. high H2S values at Weyburn), however generalities can be drawn. Emberley et al. [11] described 
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the procedures in detail, that, in summary, are the collection of multiple gas, oil and water samples at each well 

monitored in the project and the subsequent analyses. At Pembina 8 wells were sampled and at Weyburn 43 were 

sampled. Analysis of the fluid and gas samples revealed up to 40 individual parameters for each well on each of 3 

baseline and 28 monitoring trips at Pembina and 1 baseline and 10 monitor trips at Weyburn. These included: 

alkalinity, pH, gas composition (CO2, H2S, C1-4), major ionic species (Na, K, Cl, Ca, Mg, Fe etc) and C, O and S 

isotopic compositions of various compounds. 

 

CO2 in the casing gas from the wells was collected in sealed containers and the chemical composition was 

analyzed in the field using a Varian CP4900 Micro GC. In the laboratory, the samples were analyzed for carbon 

isotope ratios of CO2 (
13CCO2) using a GC coupled to an isotope ratio mass spectrometer (IRMS). 13C values are 

recorded in per mil (�) relative to V-PDB. Accuracy and precision for the 13CCO2 values is better than ±0.5 �. 

Oxygen isotope ratios of CO2 (
18O ) were also determined by comparison against oxygen isotope ratios of COCO2 2 

generated from internationally accepted reference materials and are reported versus V-SMOW. Samples for oxygen 

isotope ratio determinations on reservoir fluids were collected in 15 mL plastic vacu-tubes and 18O values were 

determined by using equilibration techniques coupled with dual inlet IRMS. Oxygen isotope ratios are recorded 

using the usual delta ( ) notation ( 18OH2O) in per mil (�) deviation relative to V-SMOW with an analytical 

uncertainty of < ± 0.2 �. 

 

 

Figure 1: Locations of study sites in western Canada. Blue box Pembina Cardium CO2 Monitoring Project. Green Box: International Energy 

Agency Greenhouse Gas Weyburn-Midale CO  Monitoring and Storage Project. 2

4. Results 

CO2 contents (in mole %) and 13C of CO2 and 18O of H2O values were determined for both projects and are 

displayed for selected observation wells in Figures 2 and 3. 
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4.1. Carbon isotope ratios 

Figure 2 shows both the mole % CO2 and the 13CCO2 values against time lapsed in the monitoring project for two 

selected wells at Weyburn. Baseline 13C values of CO2 gas ( 13CCO2) were between -12� and - 14� while baseline 

CO2 concentrations were < 10 mole %. The injected CO2 at Weyburn comes from a coal gasification plant in North 

Dakota and has a 13C  value of -20.4 �. After COCO2 2 injection commenced, geochemical data for Well 1 revealed 

that CO2 contents increased to reach values of 70-90 mole % (Fig. 2a) after over a year of injection whilst 13CCO2 

values steadily decreased to values near -20 � (Fig. 2b). In contrast, geochemical data for Well 2 displayed only a 

minor increase in CO2 concentration with time (Fig. 2d) while the 13CCO2 values trended towards values near  -20 

� circa one year after CO2 injection began (Fig. 2e). 

 

 

Figure 2: Weyburn isotope ratios. a) Mole % CO  vs. Days since Injection, Weyburn Well 1. b) 13C2 CO2 vs. Days since Injection, Weyburn Well 

1. c) 18OH2O vs. Days since Injection, Weyburn Well 1.  d) Mole % CO  vs. Days since Injection, Weyburn Well 2. e) 13C2 CO2 vs. Days since 

Injection, Weyburn Well 2. f) 18O  vs. Days since Injection, Weyburn Well 2. H2O

Figure 3 summarizes both the mole % CO2 and the 13CCO2 values against time lapsed in the monitoring project 

for two selected wells at Pembina. Baseline 13C values for CO2 gas were between -16 � and -18 � and CO2 
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concentrations at baseline were ~ 1 mole %. CO2 injected at Pembina is trucked in daily and has a mean 13C value 

of -4.5 ± 2 � depending on the source of the CO2. Geochemical data for Well 1 revealed that CO2 concentrations 

increased rapidly as CO2 injection began to maximum values around 90% (Fig. 3a) within 6 months of injection. At 

the same time 13CCO2 values increased rapidly towards values of -5 � (Fig. 3b). Geochemical data for Well 2 

showed negligible changes in CO2 concentration with time (Fig. 3d) while 13C values trended towards -8 � over a 

period of 6 months after injection began (Fig. 3e). 

 

 

Figure 3: Pembina isotope ratios. a) Mole % CO  vs. Days since Injection, Pembina Well 1. b) 13C2 CO2 vs. Days since Injection, Pembina Well 1. 

c) 18OH2O vs. Days since Injection, Pembina Well 1.  d) Mole % CO  vs. Days since Injection, Pembina Well 2. e) 13C2 CO2 vs. Days since 

Injection, Pembina Well 2. f) 18O  vs. Days since Injection, Pembina Well 2.  H2O

4.2. Oxygen isotope ratios 

Oxygen isotope ratios ( 18O) of injected CO2 and of fluids ( 18OH2O) obtained from the same observation wells 

described above were determined. Baseline 18O  values for brines at Weyburn were ~ -6 �. Injected COH2O 2 had a 
18O value of +4.9 � vs. V-SMOW. As CO2 content increased at Well 1 (Fig. 2a) the 18O  values of the H2O
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reservoir brine decreased by approximately 2 � (Fig. 2c). In contrast, the 18O value of the reservoir brine remained 

unchanged at ~ -6 � at Well 2 (Fig. 2f) where no significant change in CO2 concentration was observed (Fig. 2d). 

 

At Pembina the baseline 18O values for the reservoir fluids were -15 to -16 �. Injected CO2 had a 18O value of 

+28.7 � vs. V-SMOW. As CO2 concentrations increased in Well 1 (Fig. 3a) 18OH2O values increased by ~3 � 

(Fig. 3c). In contrast the 18OH2O values remained unchanged (-15 �) in Well 2 (Fig. 3f) that experienced no 

significant increase in CO2 contents (Fig. 3d). 

5. Discussion 

In assessing trends of 13CCO2, the detection of CO2 across the spatial extent of the reservoir is addressed. Figures 

2 and 3 show that as CO2 concentrations increase, the 13CCO2 values trend towards that of the injected CO2. Note 

that this trend away from baseline 13C values towards that of the injected CO2, in opposite senses of direction 

(towards positive or negative), is simply as a result of the Weyburn CO2 having a more negative isotope signature 

than the baseline CO2, and conversely, the Pembina CO2 having a more positive 13C value. This trend is indicative 

of injected CO2 migrating towards the wells where the CO2 is sampled.  

 

Well 2 at both Weyburn (Fig. 2d,e) and Pembina (Fig. 3d,e) show that even with very small increases in CO2 

concentration at the wells, the 13CCO2 values trend toward the value of the injected CO2. Figure 4 explains these 

trends further. The data plotted as crosses on Figure 4 are the data represented in Figures 2 and 3. The solid lines 

represent the theoretical two endmember mixing curve between background and injected CO2. Where initial 

concentrations of CO2 are low, as at both wells at Pembina, the addition of small amounts of CO2 rapidly changes 

the 13C value of the sample. At 10 mole % CO2, more than 90% of the CO2 will be from the injection source and 

hence the 13C values approach those of the injected CO2. At Weyburn, where initial CO2 concentrations are 

markedly higher, additional injected CO2 will change the carbon isotope value at different rates. At Well 1, with 9% 

CO2 at baseline, the carbon isotope response will be slower than at Well 2 (3% CO2 at baseline) assuming a similar 

rate of injected CO2 reaching each well. At the point when injected CO2 comprises 90% of the sample at Weyburn, 

mole % CO2 has to be significantly higher than at Pembina (90 and 40% for Well 1 and 2 respectively). Thus, Figure 

4 indicates also that 13CCO2 can be used as an early identifier of injected CO2 breakthrough at individual wells. It 

also indicates that significant attention must be paid to both the distinction between background and injected CO2 

isotope values and to the host lithology (and hence initial CO2 concentrations in the reservoir) when monitoring CO2 

projects. 

 

The 18OH2O trends reveal the extent to which oxygen in the CO2 has been exchanged with the oxygen in the 

reservoir brines. Kharaka et al. [12] showed that in a CO2 storage setting the volume of CO2 sourced oxygen in the 

system can increase to the point where it influences the 18O values of the reservoir fluids. Due to the relatively low 

abundance of oxygen that could be liberated by water-rock interactions, the only other reaction that could change the 

value of the 18OH2O would be water injection into the reservoir. Water injection would also change the hydrogen 

isotope values ( 2H). The wells that showed change in 2H were omitted from this study so that  changes in 18OH2O 

were due to CO2 interaction only. In Figure 2 and 3 it can be seen that when CO2 concentration increased 

significantly the 18OH2O value is influenced whereas when CO2 concentration does not change significantly the 
18OH2O value remains constant. This indicates that in Well 1 at both Weyburn and Pembina there is enough CO2 in 

contact with the water to influence its 18O value. Conversely, at Well 2 at both sites there is too little CO2 to change 

the 18OH2O value. 
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Figure 4. 13C  versus mole % COCO2 2 for Wells 1 and 2 at both Weyburn and Pembina. Solid lines show the theoretical two endmember mixing 

curve between background and injected CO2 for each well. Crosses represent  measurements taken at all four wells. The squares and labels 

indicate the theoretical points at which injected CO  comprises 50% and 90% of the CO  sample at each well. 2 2

6. Conclusion 

Regulatory and safety issues dictate that successful CCS projects will require the ability to trace the fate of CO2 

in the reservoir. Carbon isotope ratios are an effective tool to trace the movement and reaction of injected CO2 in 

mature oil fields, provided that the injection CO2 is isotopically distinct. In addition, trends observed in the 18O 

values of produced water at several wells at Pembina and Weyburn point towards an increasing amount of CO2 

sourced oxygen in the produced waters. Geochemical data taken obtained for fluids from the same wells as this 

study at Pembina (see companion paper by Shevalier et al.) show further evidence that CO2 is causing water-rock 

reactions in the reservoir and provides additional means to detect CO2 presence in the reservoir. 

 

Further work to quantify the amount of CO2 sourced oxygen and thus to quantify the amount of CO2 dissolved in 

the produced waters using the 18O values is currently being pursued.  
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