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Abstract 

Geochemical and isotopic monitoring allows determination of CO2 presence in the subsurface through the sampling of produced 

fluids and gases at production and/or monitoring wells. This is demonstrated by data from 22 months of monitoring at the 

Pembina Cardium CO2 Monitoring Pilot in central Alberta, Canada. Eight wells centered around two CO2 injectors were sampled 

monthly between February 2005 and February 2007. Stable isotope analyses of the samples revealed that changes in the �13
CCO2 

values in produced gas as well as changes in the �18
O values of the produced fluids indicate CO2 presence and identify trapping 

mechanisms at select production wells. Using equilibrium isotope exchange relationships and CO2 solubility calculations, fluid 

and gas saturations in the pore space in excess of that occupied by oil were calculated. We demonstrate that stable isotope 

measurements on produced fluids and gases at the Pembina Cardium CO2 storage site can be used to determine both qualitatively 

and quantitatively the presence of CO2 around the observation well, given that the injected CO2 is isotopically distinct. 
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1. Introduction 

Monitoring of injected CO2 is necessary to prove both the safety and validation of geologic CO2 storage [1]. 

Monitoring is also required under the emerging regulatory regimes being developed for Carbon Capture and Storage 

(CCS) in the USA [2], Europe [3] and Australia [4] amongst others. A highly desirable component of verification of 

CO2 storage within the reservoir is an assessment of the saturation of the pore-space that is occupied by CO2. 

Geochemical and isotopic monitoring approaches are suitable for tracing the movement and fate of CO2 in the 

subsurface through the sampling of produced fluids and gases at production and/or monitoring wells [5, 6]. The 

objective of this study was to further develop geochemical and isotopic monitoring techniques capable of 

quantifying CO2 storage in the subsurface. 
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2. Site Description 

The Pembina Cardium CO2 Monitoring Pilot site (Fig. 1) is located near the town of Drayton Valley, west of 

Edmonton (Alberta, Canada) in the Pembina Field which is the largest individual [7], and one of the oldest onshore 

oilfields in Canada. The Cardium is a siliciclastic reservoir at approximately 1650 m depth and reservoir 

temperature and pressure of 50°C and 19MPa respectively [8]. 

 

 

Figure 1. Location map of the Pembina Cardium CO2 Storage Monitoring Pilot in west-central Alberta. Well bottom-hole locations shown as: 

Blue open circles = Group 1 wells; Green solid circles  = Group 2 wells, and; Red open circles with arrow = CO2 injectors. Grey outlined area 

shows CO2-EOR area containing 6 of the production wells and both CO2 injectors. 

 

The pilot is an enhanced oil recovery (EOR) operation hosted in the Upper Cretaceous Cardium Formation of the 

Pembina oil field. Dashtgard et al. [9] provided a detailed description of the geology of the reservoir. Primary 

production began in the Pembina Oilfield in 1953. Decreasing pressure, increasing gas-oil ratios and production 

declines led to water-flood pilots as early as 1956 [10]. As production peaked in the early 1970’s [11] and total 

production from primary and secondary methods was near the maximum recoverable, tertiary recovery by CO2 flood 

was considered [9] and begun in 2005.  

 

Approximately 75,000 tons of liquid CO2 were delivered by truck and injected between 2005 and 2008 by two 

injector wells over two 5-spot patterns (1 injector, 4 producers) where 2 production wells are shared between the 

patterns [8] (Fig. 1). Casing gas and fluid samples were obtained from eight production wells sampled 

approximately monthly between February 2005 and March 2008. Baseline data were collected between February 

and April 2005 allowing an assessment of the natural variability of various geochemical parameters. Following 

baseline sampling and the commencement of CO2 injection, 15 monitoring events took place between May 2005 and 

January 2007. In February 2007, the EOR operation switched to a water alternating gas (WAG) regime and a further 

13 monitoring events took place until March 2008.  

3. Methods 

Fluid samples were collected at the 8 individual well locations in 8L carboys. The carboys were sealed immediately 

after water was collected to minimize further degassing from the fluids. After a couple of minutes to allow oil and 

water legs to separate, a fluid sample was taken from the bottom of the carboy and transferred to a 125ml flint glass 

bottle and filled without headspace. From this sample, alkalinity and pH values were determined in the field. 

Separate samples were filtered and transferred into 125ml Nalgene bottles for cation and anion analyses in the 

laboratory by ion chromatography and atomic absorption spectroscopy, respectively and a sub-sample was 

transferred to 10 mL glass vacu-tainers for subsequent isotopic analysis. Casing gas samples were collected in 

sealed containers and the chemical composition was analyzed in the field using a Varian CP4900 Micro GC. CO2 

fluxes were calculated by multiplying the total volume of gas produced by the mole fraction of CO2 measured at the 

well head during the sampling events.  
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In addition to chemical analyses, the isotopic compositions of water, CO2, and dissolved inorganic carbon (DIC) 

were determined. Carbon isotope ratios of CO2 (�
13

CCO2) were determined from the casing gas samples using a GC 

coupled to an isotope ratio mass spectrometer (IRMS) and reported relative to V-PDB. Oxygen isotope ratios of CO2 

(�18
OCO2) were determined by comparison against oxygen isotope ratios of CO2 generated from internationally 

accepted reference materials (NBS 19 was reacted with phosphoric acid at 25°C and the appropriate isotope 

fractionation corrections were applied) and certified calibration gases (Messer Griesheim) and are reported versus 

V-SMOW with an uncertainty of <±0.2 ‰. Water �18
O values were determined by using standard CO2 equilibration 

techniques followed by dual inlet IRMS [12]. Hydrogen isotope ratios of water samples were determined using the 

chromium reduction technique [13]. Oxygen and hydrogen isotope ratios are recorded using the usual delta (�) 

notation (�
18

O, �
2
H) in per mil (‰) deviation relative to V-SMOW with an analytical uncertainty of < ± 0.2 ‰ and < 

± 2.0 ‰ respectively, according to the equation: 

 

Rsample  [‰] =
Rsample

Rreference

�1
� 

� 
� 

� 

� 
	 •1000      [1] 

 

where R represents the 
18

O/
16

O and 
2
H/

1
H ratios of samples and reference materials, respectively. 

 

4. Results and Discussion 

 

Chemical and isotopic data are presented for 22 months of monitoring at the Pembina Cardium CO2 Monitoring 

Pilot in the Pembina oilfield in central Alberta, Canada. Stable isotope analyses revealed changes in the �18
O values 

of the produced fluids (Fig. 2) as well as changes in the �13
CCO2 values in produced gas (Fig. 3) indicating CO2 

presence and identifying trapping mechanisms at various production wells.  

 

The eight production/observation wells were divided into two groups based on different chemical and isotopic 

responses. Group 1 wells were characterized by marked increases in the �18
O values of the produced fluids (Fig. 2, 

Table 1) and the �13
C values of produced CO2 (Fig. 3, Table 1) with a concurrent increase in the CO2 content of the 

gas (Fig. 4). Group 2 wells showed no increase in the �18
O values of the fluids (Fig. 2, Table 1), smaller increases in 

�13
C values of CO2 (Fig. 3, Table 1) and only marginal increases in CO2 content (Fig. 4). In addition, total CO2 

fluxes at group 1 wells (>100,000 m
3
) far exceeded those at group 2 wells (<1500 m

3
) (Table 1).  

 
Table 1. CO2 flux, changes in �18O values of produced fluids and changes in �13C values of produced CO2 at each well over 22 months of CO2 

injection. 

Group Well CO2 flux [m
3
] � �18

O H2O [‰]  � �13
C CO2 [‰] 

7-11 157000 +1.1 +11.4 

8-11 123000 +0.7 +10.2 

9-11 297000 +2.4 +17.4 

1 

12-12 461000 +3.9 +14.9 

1-11 400 +0.6 +9.1 

10-11 200 -0.1 +5.6 

4-12 1200 -0.3 +6.2 

2 

5-12 750 -0.6 +7.9 
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Figure 2. Change of �18O of produced fluids from baseline values (0) at group 1 (a) and 2 (b) wells over 22 months of CO2 injection.  
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Figure 3. Change of �13C of CO2 in produced gas from baseline values (0) at group 1 (a) and 2 (b) wells over 22 months of CO2 injection.  

3946 G. Johnson et al. / Energy Procedia 4 (2011) 3942–3948



 

Figure 4. CO2 contents (mole % CO2) of produced gas at all wells over 22 months of CO2 injection. 

Oxygen isotope exchange between CO2 and water has been studied intensively for more than five decades [12, 14, 

15]. At isotopic equilibrium under the reservoir conditions of the Pembina project, oxygen in CO2 is expected to 

have a �18
O value that is 35 ‰ higher than that of water [14], with the �18

O value of CO2 typically being controlled 

by the latter. However, Kharaka et al. [5] showed that �18
O values of water were altered under CO2 storage scenarios 

at the Frio project in Texas, USA, due to the presence of high quantities of CO2. At the Pembina project, injection 

CO2 had a �18
O value of +29 ‰ and baseline water had �18

O values near -15 ‰. This difference of circa 44 ‰ is 

larger than the oxygen isotope enrichment factor between H2O and CO2. Therefore, high amounts of CO2 in isotopic 

equilibrium with water have the potential to increase the �18
O values of water by up to 9 ‰. The extent of increase 

of the �18
O values of the water is directly related to the fraction of oxygen in the system that is sourced by the CO2 

[16]. The observed changes in the �18
O values of water (Table 1, Figure 2) are larger than can be caused by 

dissolved CO2 and thus must result from exposure of the water to free phase CO2. Thus by assessing the magnitude 

of the change in the �18
O value of the water, pore-space saturations of CO2 in the system can be calculated [16]. 

 

Using equilibrium oxygen isotope exchange relationships between water and CO2 and CO2 solubility calculations 

[17], fluid and gas saturations in the pore space in excess of that occupied by oil were calculated. For group 1 wells, 

fluids were saturated with CO2 (solubility trapping) and had free-phase CO2 pore-space saturations in excess of oil 

in the range 0.05-0.60 (structural/stratigraphic trapping). Fluids obtained from group 2 wells were either 

subsaturated with respect to CO2 and hence had no free phase CO2 (3 wells) or were saturated but with very little 

free-phase CO2 with pore-space saturations <0.1 (1 well). These saturation values are consistent with the changes in 

both CO2 content and �13
C values observed in the casing gas collected at the same wells (Figs. 3, 4) as well as other 

geochemical proxies [18]. 

5. Conclusions 

We conclude that chemical and stable isotope measurements of produced fluids and gases at CO2 storage sites can 

be used to determine both qualitatively and quantitatively the presence of CO2 around observation wells, provided 

that the injected CO2 is isotopically distinct. If a sufficient number of observation/production wells exist, this 

method can be used to determine the fate of CO2 in the reservoir near observation wells, but lacks the ability to 

assess CO2 saturations away from these sampling points. Geophysical methods have been demonstrated to give 

spatial resolution [19, 20] for CO2 presence, but cannot satisfactorily quantify CO2 saturation over the entire range 

of expected saturation values. Therefore, we suggest that geochemical and isotopic monitoring in combination with 

G. Johnson et al. / Energy Procedia 4 (2011) 3942–3948 3947



geophysical monitoring is highly desirable to assess CO2 pore-space saturation throughout the reservoir. This 

approach is considered a critical step in determining more accurate ‘CO2 budgets’ for CO2 storage sites. 
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